

Root-cause Analysis of the Side Channel Leakage from ASCON Implementations

Zhenyuan Liu (zliu12@wpi.edu) and Patrick Schaumont

Worcester Polytechnic Institute, Worcester, Massachusetts

Sixth Lightweight Cryptography Workshop (virtual) on June 21-22, 2023.

Introduction and Motivation

Others work

 T-test, Chi2
Leakage and Countermeasure Testing (yes/no)

Our focus

Root-case analysis of Side-channel leakage

- 1. Identify Origin of Leakage
- 2. Test Implementation Properties
- 3. Leakage and Countermeasure Debugging (how, where)
- 4. Starting point to design the Countermeasures

Block Diagram of ASCON Coprocessor

3

WPI

Root-cause Analysis Methodology

Gates correspond to standard cells in this paper. There are 57,671 gates in the PicoChip Design.

1. Non-specific root-cause analysis: two groups of test vectors (random vs fixed key).

2. Simulation setup: chip frequency 4 MHz, 4samples per clock cycle (hardware ASCON), and1 sample per clock cycle (software ascon).

1. Identify leaky time interval (LTI) (as leaky time points).

2. Rank the logic gates of the design according to the amount of contributed leakage per gate by computing a leakage impact factor (LIF) for each gate.

3. Identify where these leaky gates coming from and what 4 instructions cause it.

Root-cause Analysis on ASCON Co-processor (KeyLoad)

◉WPI

70e	lw	a4,-228(s0)	#	load key[0] from RAM
712:	lw	a5,-20(s0)		
716:	addi	a5,a5,4		
718	sw	a4,0(a5)	#	store key[0] to coproc
71a	lw	a4,-224(s0)	#	load key[1] from RAM
71e:	lw	a5,-20(s0)		
722:	addi	a5,a5,8		
724	sw	a4,0(a5)	#	store key[1] to coproc
726	lw	a4,-220(s0)	#	load key[2] from RAM
72a:	lw	a5,-20(s0)		
72e:	addi	a5,a5,12		
730	sw	a4,0(a5)	#	store key[2] to coproc
732	lw	a4,-216(s0)	#	load key[3] from RAM
736:	lw	a5,-20(s0)		
73a:	addi	a5,a5,16		
73c	sw	a4,0(a5)	#	store key[3] to coproc
73e:	lw	a5,-20(s0)		
742:	li	a4,4		
744:	sw	a4,0(a5)	#	coproc control: key update
746:	nop			
748:	lw	a5,-20(s0)		
74c:	addi	a5,a5,68		
750:	TM	a5,0(a5)		
752:	andi	a5,a5,1		which from been underta manda
754:	beqz	$a_{5}, (40)$	#	wait for key update ready
750:	1 W	a0, -20(50)		
roa:	11	a+,0		
75c	SW	a4,0(a5)	#	coproc control: key valid

Gates correspond to standard cells in this paper. There are 57,671 gates in the PicoChip Design.

Root-cause Analysis on ASCON Co-processor (Initialization)

Gates correspond to standard cells in this paper. There are 57,671 gates in the PicoChip Design.

Root-cause Analysis on Software ASCON (NonceLoad + KeyLoad + 1st round of INIT)

Sequence

2a68: addi a0,sp,88						
2a6a:	sw	s7,112(sp)	#	store	nonce[0]	
2a6c:	sw	s3,116(sp)	#	store	nonce[1]	
2a6e:	sw	s11,124(sp)	#	store	nonce[2]	
2a70:	sw	a1,120(sp)	#	store	nonce[3]	
2a72	sw	s4,96(sp)	#	store	key[0]	
2a74	sw	s6,100(sp)	#	store	key[1]	
2a76	sw	s10,104(sp)	#	store	key[2]	
2a78	sw	s0,108(sp)	#	store	key[3]	
2a7a: jal ra,fe4 <p12></p12>						

00000fe4 <P12>:

fee	lw s1,8(a0)	# load key[0]
ffO	lw ra,12(a0)	# load key[1]
1004	lw a5,16(a0)	# load key[2]
1006	lw t4,20(a0)	# load key[3]
1026	xori s4,a5,240	<pre># round constant: state_reg[2] XOR with 0xf0</pre>
1036	not a7,t4	# not key[3]
103a	xori a5,a5,-241	# XORI key[2]
1246:	jal ra,19c	

ASCON Status

Gates correspond to standard cells in this paper. There are 57,671 gates in the PicoChip Design.

Root-cause Analysis on Software ASCON (12th round of INIT + KeyXor)

Validating Simulation against Measurement (Software ASCON)

Thank you! Please ask me questions for bonus points :)