
© Copyright Microsoft Corporation. All rights reserved. 

SBOM Lifecycle

Adrian Diglio

5/31/2023

Principal PM Manager of Secure Software Supply 

Chain (S3C)



© Copyright Microsoft Corporation. All rights reserved. 

Agenda

• SBOM Pyramid

• Generating Different Types of SBOMs

• Sharing SBOMs based on software type

• Preparing for SBOM Consumption

• Security practices to help with SBOM hygiene



© Copyright Microsoft Corporation. All rights reserved. 

Consume

Share

Generate



© Copyright Microsoft Corporation. All rights reserved. 

SBOM Type Definition

Design SBOM of intended, planned software project or product with included 

components (some of which may not yet exist) for a new software artifact.

Source SBOM created directly from the development environment, source files, and 

included dependencies used to build a product artifact. 

Build SBOM generated as part of the process of building the software to create a 

releasable artifact (e.g., executable or package) from data such as source files, 

dependencies, built components, build process ephemeral data, and other 

SBOMs.

Analyzed SBOM generated through analysis of artifacts (e.g., executables, packages, 

containers, and virtual machine images) after its build. Such analysis generally 

requires a variety of heuristics. In some contexts, this may also be referred to as a 

“3rd party” SBOM

Deployed SBOM provides an inventory of software that is present on a system. This may be 

an assembly of other SBOMs that combines analysis of configuration options, 

and examination of execution behavior in a (potentially simulated) deployment 

environment.

Runtime SBOM generated through instrumenting the system running the software, to 

capture only components present in the system, as well as external call-outs or 

dynamically loaded components. In some contexts, this may also be referred to 

as an “Instrumented” or “Dynamic” SBOM.



© Copyright Microsoft Corporation. All rights reserved. 

Syft

github.com/microsoft/sbom-tool

https://github.com/anchore/syft
https://github.com/microsoft/sbom-tool


© Copyright Microsoft Corporation. All rights reserved. 

Introducing self-service SBOMs | The GitHub Blog

SBOM gh CLI extension 

upload SBOM to dependency graph 

https://github.blog/2023-03-28-introducing-self-service-sboms/
https://github.com/advanced-security/gh-sbom
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/using-the-dependency-submission-api


Defender for IoT Firmware Analysis

Private Preview

Automated identification of potential 

firmware security vulnerabilities

• SBOM

• Known vulnerabilities (CVE)

• Binary hardening

• Crypto Material

• Built-in accounts / weak passwords

• Continuous monitoring of new threats

• Surfaced in Defender for IoT

• Brownfield device visibility

• Ongoing monitoring

• Enforce security policy before accepting 

delivery

Owner/operator

• Part of Secure Development Lifecycle (SDL) 

• Future GitHub integration

• Enforce security policy before ship

• Supply chain validation

• Regulatory (vuln mgmt / SBOM, etc.)

OEM



© Copyright Microsoft Corporation. All rights reserved. 

Software Type Delivery Method Example Links Considerations

Operating 

System, 

Installable Binary

Included in compiled code PowerShell security 

features - PowerShell | 

Microsoft Learn

Components worried 

about reproducibility 

might keep SBOMs 

detached (stored online)

Container image Detached, stored side-by-side in 

the registry

Attach, push, and pull 

supply chain artifacts -

Azure Container Registry | 

Microsoft Learn

Virtual Hard 

Drive (VHD)

Detached (stored online)

Embedded, IoT, 

Firmware

Detached (stored online) If included in the 

compiled code, it couldn’t 

be extracted

Open Source

Components

Multiple (depends on ecosystem). 

Stored in repo, detached, or 

included in package

SBOMs at Anaconda

Cloud Service Detached (stored online)

Microservices Detached (stored online)

https://learn.microsoft.com/en-us/powershell/scripting/learn/security-features?view=powershell-7.2#software-bill-of-materials-sbom
https://learn.microsoft.com/en-us/powershell/scripting/learn/security-features?view=powershell-7.2#software-bill-of-materials-sbom
https://learn.microsoft.com/en-us/powershell/scripting/learn/security-features?view=powershell-7.2#software-bill-of-materials-sbom
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-oras-artifacts
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-oras-artifacts
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-oras-artifacts
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-oras-artifacts
https://engineering.anaconda.com/2022/04/sboms-at-anaconda.html


© Copyright Microsoft Corporation. All rights reserved. 

OMB M-22-18

PowerShell

https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://learn.microsoft.com/en-us/powershell/scripting/learn/security-features?view=powershell-7.2#software-bill-of-materials-sbom


© Copyright Microsoft Corporation. All rights reserved. 

OpenSSF Mobilization Plan 

identified 10 workstreams, 

including SBOMs Everywhere

NuGet’s 2023 Plan includes 

supporting SBOM Generation 

natively within Clients and SDKs 

and more

https://github.com/ossf/sbom-everywhere/blob/main/reference/mobilization_plan.pdf
https://github.com/NuGet/Home/issues/12407
https://github.com/NuGet/Home/issues/12497
https://github.com/NuGet/Home/issues/12497


© Copyright Microsoft Corporation. All rights reserved. 



© Copyright Microsoft Corporation. All rights reserved. 

CISA SBOM Sharing 

Lifecycle Report

https://www.cisa.gov/sites/default/files/2023-04/sbom-sharing-lifecycle-report_508.pdf
https://www.cisa.gov/sites/default/files/2023-04/sbom-sharing-lifecycle-report_508.pdf


© Copyright Microsoft Corporation. All rights reserved. 

Readiness for SBOM 

Consumption

SBOM Consumption 

Tooling

Risk Management 

Team’s acceptance 

of Increased Scope

Contractual 

requirements 

updated and shared 

New Incident 

Response & other 

Processes Captured 

Budget

SDKs or Tooling for 

Partners/Vendors



© Copyright Microsoft Corporation. All rights reserved. 

*This is a 3P tool that represents what software consumers will see

Software consumers will load 

SBOMs into SBOM Management 

tools that will reveal: 

1) OSS licenses

2) OSS vulnerabilities

An SBOM’s core purpose is for 

incident response. When the next 

Log4J happens, our customers can 

answer the question “Am I 

affected?” and “What is affected?”

Many Organizations will have 

SBOMs available before they 

have VEX statements available

https://www.reversinglabs.com/blog/log4j-is-why-you-need-an-sbom


© Copyright Microsoft Corporation. All rights reserved. 

Ingest

Inventory

Update

EnforceAudit 

Scan

Rebuild

Fix 
Upstream

8
Practices

OpenSSF Secure Supply Chain Consumption Framework (S2C2F)



© Copyright Microsoft Corporation. All rights reserved. 

Accidental vulnerabilities in OSS code or containers that we inherit SaltStack Automated patching, display OSS vulnerabilities as pull requests UPD-2, UPD-3

Intentional vulnerabilities/backdoors added to an OSS code base phpMyAdmin Perform proactive security review of OSS SCA-5

A malicious actor compromises a known good OSS component 

and adds malicious code into the repo
ESLint incident

Ability to block ingestion via malware scan, curated feed, all packages are 

scanned for malware prior to download
ING-3, ENF-2, SCA-4

A malicious actor creates a malicious package that is similar in 

name to a popular OSS component to trick developers into 

downloading it

Typosquatting
OSS provenance analysis, curated feed, all packages are scanned for 

malware prior to download
AUD-1, ENF-2, SCA-4

A malicious actor compromises the compiler used by the OSS 

during build, adding backdoors
CCleaner

Rebuilding OSS on trusted build infrastructure ensures that packages 

don’t have anything injected at build time
REB-1

Dependency confusion, package substitution attacks Dependency Confusion Securely configure your package source mapping, curated feed ENF-1, ENF-2

An OSS component adds new dependencies that are malicious Event-Stream incident All packages are scanned for malware prior to download, curated feed SCA-4, ENF-2

The integrity of an OSS package is tampered after build, but 

before consumption

How to tamper with 

Electron apps
Digital signature or hash verification, SBOM validation AUD-3, AUD-4

Upstream source can be removed or taken down which can then 

break builds that depend on that OSS component or container
left-pad

Use package-caching solutions, mirror a copy of OSS source code to an 

internal location for Business Continuity and Disaster Recovery (BCDR) 

scenarios

ING-2, ING-4

OSS components reach end-of-support/end-of-life and therefore 

don’t patch vulnerabilities

log4net

CVE-2018-1285
Scan OSS to determine if it is at end-of-life SCA-3

Vulnerability not fixed by upstream maintainer in desired 

timeframe

Prototype Pollution in 

lodash

Implement a change in the code to address a zero-day vulnerability, 

rebuild, deploy to your organization, and confidentially contribute the fix 

to the upstream maintainer.

FIX-1

Bad actor compromises a package manager account (e.g. npm), 

with no change to the corresponding open source repo, and 

uploads a new malicious version of a package

Ua-parser-js OSS provenance analysis, curated feed, scan OSS for malware AUD-1, ENF-2, SCA-4

https://www.helpnetsecurity.com/2020/05/04/saltstack-salt-vulnerabilities/
https://arstechnica.com/information-technology/2012/09/questions-abound-as-malicious-phpmyadmin-backdoor-found-on-sourceforge-site/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://www.securityweek.com/checkmarx-finds-threat-actor-fully-automating-npm-supply-chain-attacks
https://blog.morphisec.com/morphisec-discovers-ccleaner-backdoor
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://github.com/jonmest/How-To-Tamper-With-Any-Electron-Application
https://github.com/jonmest/How-To-Tamper-With-Any-Electron-Application
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://github.com/apache/logging-log4net/
https://nvd.nist.gov/vuln/detail/CVE-2018-1285
https://hackerone.com/reports/712065
https://hackerone.com/reports/712065
https://www.truesec.com/hub/blog/uaparser-js-npm-package-supply-chain-attack-impact-and-response


© Copyright Microsoft Corporation. All rights reserved. 

Secure Supply Chain Consumption 

Framework Maturity Model
The framework lists out 

the requirements and 

organizes it into a maturity 

model, where each level 

has different themes.

S2C2F is referenced in the 

forthcoming NSA ESF 

guidebook

Checkout the S2C2F Guide 

today: s2c2f/framework.md at main · 

ossf/s2c2f · GitHub

https://github.com/ossf/s2c2f/blob/main/specification/framework.md


© Copyright Microsoft Corporation. All rights reserved. 

• LinkedIn: Adrian Diglio | LinkedIn

• Email: Adrian.Diglio@Microsoft.com

Adrian Diglio

• Generating Software Bills of Materials 

(SBOMs) with SPDX at Microsoft -

Engineering@Microsoft

• Microsoft contributes S2C2F to OpenSSF | 

Microsoft Security Blog

• The Journey to Secure the Software Supply 

Chain at Microsoft - Engineering@Microsoft

Further Reading


	Slide 1: SBOM Lifecycle
	Slide 2: Agenda
	Slide 3: The SBOM Pyramid
	Slide 4: CISA SBOM Types
	Slide 5: Microsoft’s open source SBOM-Tool
	Slide 6: GitHub’s Self-Service SBOMs
	Slide 7: Defender for IoT Firmware Analysis
	Slide 8: Share: SBOMs by Type
	Slide 9: SBOM Sharing
	Slide 10: Supporting the SBOM Everywhere Initiative
	Slide 11: SBOM Validation at Release 
	Slide 12: SBOM Sharing Lifecycle Phases
	Slide 13: Organizational Preparation for SBOM Consumption
	Slide 14: Example SBOM Consumption Tooling
	Slide 15: Hygiene for Producing Better SBOMs
	Slide 16: Real-world OSS supply chain threats
	Slide 17: Secure Supply Chain Consumption Framework Maturity Model
	Slide 18: Questions?



