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attribute-based encryption

key-policy

lct,| = O(|x|), |sk] = O(1)  (BGGHNSVVI4,GVWI3]

ciphertext-policy
|ctf| = 5(1), sk, | = 5(‘x|) [W22, BV22, AY20]

vV expressive circuits O(-) hides poly(depth)

vV’ security lattices (post-quantum)
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computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

example. f{x1,X2,X3,X4) = X1X2 + X3X4

Af A G™ 1(A2) + AgG_l(A4>



computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

lemma. [BGGHNSVV14,GSW13]
[Al —le ‘ | Ag—)CgG] Af—f(x)G

gadget matrix G = [I | 21 [ 4I--- | {I] € ZZXO("logq)



computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

lemma. VA;,Vf, Vx, 3 small Hy /.
[Al —le ‘ s | Ag —XgG] . HAlf,x = Af—f(x)G
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key-policy
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lattice-based ABE

key-policy — based on LWE
[Al —XlG ‘ | Ag —XgG] SAo,Sp+M

sk;: [Ar| Ag] - sky=p

ciphertext-policy — based on “evasive” LWE

th (Af® I) SAo, ..

sk, : Ag-skr=[A —x;G |- |A —xG]®T



how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4



how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4

(r1x2) (x34) x1(%x2(x3x4))



how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4

(r1x2) (x34) x1(%x2(x3x4))

A1G 1 (A2)G 1 (A3GH(AY)) A1G HAGH(A3GH(AY)))



how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4

X (X1XQ)(X3X4) v x (x2<x3x4))

A1G 1 (A2)G 1 (A3GH(AY)) A1G HAGH(A3GH(AY)))
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how to compute /!

circuit branching program
depth O(logn) - length poly(n)

N
-

| X1 = 0
x modulus n0(10g7) v' modulus poly(n)

[GVWI3, GVIS, ...]
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broadcast encryption

cts «— E(S C [N],m), sk, < G(x € [N])
D(ctg, sk,) =mifx € S
?
fact. broadcast = CP-ABE for fs(x) := (x € §)

fact. fg € deg d polynomials over {0, 1}dN1/d

state of the art for broadcast

|cts]|, [sk.| = poly(log N) via lattices [w22,8v22,av20]
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ABE & lattices: what’s next!

theory oriented
— sublinear |ct| from falsifiable assumptions
— removing poly(depth) factors
— surprises? (vis-a-vis pairings)
practice oriented
— concrete efficiency & structured lattices
— optimizing A for simple f?
// thanks!



