Attribute-Based and Broadcast
Encryption from Lattices

EEE Hoeteck Wee
NTT Research

attribute-based encryption

key-policy (KP-ABE)

ciphertext-policy (CP-ABE)

attribute-based encryption

key-policy ct, < E(x,m), sky < G(f)

ciphertext-policy ct; < E(f,m), sk, < G(x)

attribute-based encryption

key-policy ct, < E(x,m), sky < G(f)

ciphertext-policy ct; < E(f,m), sk, < G(x)

v’ expressive formulae

v’ security pairings

attribute-based encryption

key-policy
et = O(|x]), [sks = O(size(f))
ciphertext-policy
et/ = O(size(f)), sk = O(|x|)
v’ expressive formulae

v’ security pairings

attribute-based encryption

key-policy

ciphertext-policy

vV’ expressive circuits

attribute-based encryption

key-policy

ciphertext-policy

vV’ expressive circuits

vV’ security lattices (post-quantum)

attribute-based encryption

key-policy

lct,| = O(|x|), |sk] = O(1) (BGGHNSVVI4,GVWI3]

ciphertext-policy

vV expressive circuits O(-) hides poly(depth)

vV’ security lattices (post-quantum)

attribute-based encryption

key-policy

lct,| = O(|x|), |sk] = O(1) (BGGHNSVVI4,GVWI3]

ciphertext-policy
|ctf| = 5(1), sk, | = 5(‘x|) [W22, BV22, AY20]

vV expressive circuits O(-) hides poly(depth)

vV’ security lattices (post-quantum)

LWE: learning with errors

(B)

B

B Z;xO(n logq)

LWE: learning with errors

(B, sB +e)

Ls | L e |

B +

nx0(nlogq)
S < Zy, B < Zq

LWE: learning with errors

(B, sB + e) = uniform

Ls | L e |

B +

LWE: learning with errors

(B, sB) = uniform

Ls | L e |

B +

computation on matrices

A;

i€/

computation on matrices

A RN As

i€l

computation on matrices

A RN As

i€l

Af%f(Al,...,Ag)

computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

example. f{x1,X2,X3,X4) = X1 + X3 + X4

Af=A1+A3+A4

computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

example. f{x1,X2,X3,X4) = X1X2 + X3X4

Af ~ A1A2 + A3A4

computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

example. f{x1,X2,X3,X4) = X1X2 + X3X4

Af A G™ 1(A2) + AgG_l(A4>

computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

lemma. [BGGHNSVV14,GSW13]
[Al —le ‘ | Ag—)CgG] Af—f(x)G

gadget matrix G = [I | 21 [4I--- | {I] € ZZXO("logq)

computation on matrices

A RN As

i€l

Ar=f(Ar, ... Ay)

lemma. VA;,Vf, Vx, 3 small Hy /.
[Al —le ‘ s | Ag —XgG] . HAlf,x = Af—f(x)G

lattice-based ABE

key-policy
ct,: [A—x1G| | Ay — x/G]
sky: Af

pp:Ala"'aAE

lattice-based ABE

key-policy
cte: s|AL —nG |- | A~ 0G]

sky: Ay

pp:Ala"'aAf

lattice-based ABE

key-policy
ct::s[A; — 0G| - | Ar — %Gl A, sp + M

sk;: A

pp:Al,---;A€7AO7p

lattice-based ABE

key-policy
ct::s[A; — 0G| - | Ar — %Gl A, sp + M

skr: [Ar| Ao] - sky=p
pp:Al,---;A€7AO7p

lattice-based ABE

key-policy
ctr: s|A1 —nG |- | A —xGl sAo,sp + M

skr: [Ar| Ag] - sky=p

D: ct, }*lA—f> S(Af_f(x)G)

lattice-based ABE

key-policy
ctr: s|A1 —nG |- | A —xGl sAo,sp + M

skr: [Ar| Ag] - sky=p

H X
D: ct, 5 SAf flx) =0

lattice-based ABE

key-policy
ctr: s|A1 —nG |- | A —xGl sAo,sp + M

sk;: [Ar| Ag] - sky=p

D: ct, i [SA7 | sAo] 2, sp if flx) =0

lattice-based ABE

key-policy
et s[A1 —x1G |- | A — xG). sAo,sp + M

skr: [Ar| Ag] - sky=p

ciphertext-policy
cty: SAf

sk, : A1 =G [| Ay = xG]

lattice-based ABE

key-policy
[Al —XlG ‘ | Ag —XgG] SAo,Sp+M

sk;: [Ar| Ag] - sky=p

ciphertext-policy
th (Af® I) SAo, ..

sk, : Ag-skr=[A —x;G |- |A —xG]®T

lattice-based ABE

key-policy — based on LWE
[Al —XlG ‘ | Ag —XgG] SAo,Sp+M

sk;: [Ar| Ag] - sky=p

ciphertext-policy — based on “evasive” LWE

th (Af® I) SAo, ..

sk, : Ag-skr=[A —x;G |- |A —xG]®T

how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4

how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4

(r1x2) (x34) x1(%x2(x3x4))

how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4

(r1x2) (x34) x1(%x2(x3x4))

A1G 1 (A2)G 1 (A3GH(AY)) A1G HAGH(A3GH(AY)))

how to compute /!

example. f{x1,X2,X3,X4) = X1X2X3X4

X (X1XQ)(X3X4) v x (x2<x3x4))

A1G 1 (A2)G 1 (A3GH(AY)) A1G HAGH(A3GH(AY)))

how to compute /!

circuit

N
g

intermediate X intermediate

how to compute /!

circuit branching program

g
o

| x1:O

intermediate X intermediate intermediate X input

how to compute /!

circuit branching program
depth O(logn) - length poly(n)

o
o

| x1:O

intermediate X intermediate intermediate X input

how to compute /!

circuit branching program
depth O(logn) - length poly(n)

N
-

| X1 = 0
x modulus n0(10g7) v' modulus poly(n)

[GVWI3, GVIS, ...]

broadcast encryption

cts «— E(S C [N],m), sk, < G(x € [N])

D(ctg, sk,) =mifx € S

broadcast encryption

cts «— E(S C [N],m), sk, < G(x € [N])

D(ctg, sk,) =mifx € S
)

fact. broadcast = CP-ABE for f5(x) := (x € §)

broadcast encryption

cts «— E(S C [N],m), sk, < G(x € [N])
D(ctg, sk,) =mifx € S
?
fact. broadcast = CP-ABE for fs(x) := (x € §)

fact. fg € deg d polynomials over {0, 1}dN1/d

broadcast encryption

cts «— E(S C [N],m), sk, < G(x € [N])
D(ctg, sk,) =mifx € S
?
fact. broadcast = CP-ABE for fs(x) := (x € §)

fact. fg € deg d polynomials over {0, 1}dN1/d

state of the art for broadcast

|cts|, [ski| = O(N'/?) via pairings [BGWOS, ..]

broadcast encryption

cts «— E(S C [N],m), sk, < G(x € [N])
D(ctg, sk,) =mifx € S
?
fact. broadcast = CP-ABE for fs(x) := (x € §)

fact. fg € deg d polynomials over {0, 1}dN1/d

state of the art for broadcast

|cts|, [ski| = O(N'/?) via pairings [W2i]

broadcast encryption

cts «— E(S C [N],m), sk, < G(x € [N])
D(ctg, sk,) =mifx € S
?
fact. broadcast = CP-ABE for fs(x) := (x € §)

fact. fg € deg d polynomials over {0, 1}dN1/d

state of the art for broadcast

|cts]|, [sk.| = poly(log N) via lattices [w22,8v22,av20]

ABE & lattices: what’s next!

ABE & lattices: what’s next!

theory oriented
— sublinear |ct| from falsifiable assumptions

— removing poly(depth) factors

ABE & lattices: what’s next!

theory oriented
— sublinear |ct| from falsifiable assumptions
— removing poly(depth) factors

— surprises? (vis-a-vis pairings)

ABE & lattices: what’s next!

theory oriented

— sublinear |ct| from falsifiable assumptions
— removing poly(depth) factors

— surprises? (vis-a-vis pairings)

practice oriented

— concrete efficiency & structured lattices

ABE & lattices: what’s next!

theory oriented

— sublinear |ct| from falsifiable assumptions
— removing poly(depth) factors

— surprises? (vis-a-vis pairings)

practice oriented

— concrete efficiency & structured lattices

IBE: ciphertext ~ Kyber, keys ~ Falcon

ABE & lattices: what’s next!

theory oriented

— sublinear |ct| from falsifiable assumptions
— removing poly(depth) factors

— surprises? (vis-a-vis pairings)

practice oriented

— concrete efficiency & structured lattices

— optimizing A for simple f?

ABE & lattices: what’s next!

theory oriented
— sublinear |ct| from falsifiable assumptions
— removing poly(depth) factors
— surprises? (vis-a-vis pairings)
practice oriented
— concrete efficiency & structured lattices
— optimizing A for simple f?
// thanks!

