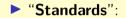
Tackling advanced cryptography ... toward standards?

Presented* at SSR 2023 & STAP'23 (joint session) April 22, 2023 | Lyon (France)

SSR 2023: Security Standardisation Research Conference STAP'23: Symmetric Techniques for Advanced Protocols

* Luís Brandão: At NIST as a Foreign Guest Researcher (non-employee), Contractor from Strativia. Expressed opinions are from the speaker and should not be construed as official NIST views. Joint work with René Peralta.

Outline


- 1. On a few used words
- 2. NIST Intro
- 3. NIST PEC and Threshold Crypto
- 4. The Threshold Call
- 5. Interaction and Feedback

(Slides will be made publicly available)

NIST = National Institute of Standards and Technology. PEC = Privacy-Enhancing Crytpography.

Outline

- 1. On a few used words
- 2. NIST Intro
- 3. NIST PEC and Threshold Crypto
- 4. The Threshold Call
- 5. Interaction and Feedback

- "Standards":
 - Standard ... as a specification that can or should (or should not) be followed
 - Standardization ... as a process (including prior to the "standard")
 - Standardization bodies/communities, standardization-related workshops

- "Standards":
 - Standard ... as a specification that can or should (or should not) be followed
 - Standardization ... as a process (including prior to the "standard")
 - Standardization bodies/communities, standardization-related workshops
- "Advanced": contextual, relative to something (next slide)

- "Standards":
 - Standard ... as a specification that can or should (or should not) be followed
 - Standardization ... as a process (including prior to the "standard")
 - Standardization bodies/communities, standardization-related workshops
- "Advanced": contextual, relative to something (next slide)
- "?": ? ? ? many questions

- "Standards":
 - Standard ... as a specification that can or should (or should not) be followed
 - Standardization ... as a process (including prior to the "standard")
 - Standardization bodies/communities, standardization-related workshops
- "Advanced": contextual, relative to something (next slide)
- "?": ? ? ? many questions
- Others: "tackling", "cryptography", "...", "toward"

"Advanced" cryptography

Tradition: standards for building blocks for "traditional" data security.

	Traditional	
Data status	At rest or In transit	
Operation being secured	Storage or Communication	
Example crypto primitives	Encryption, Signatures, Hashing	
NIST crypto standards today?	Yes	

"Advanced" cryptography

Tradition: standards for building blocks for "traditional" data security.

	Traditional	Advanced
Data status	At rest or In transit	In use
Operation being secured	Storage or Communication	Computation
Example crypto primitives	Encryption, Signatures, Hashing	MPC, HE, ZKP
NIST crypto standards today?	Yes	No

Legend: HE = homomorphic encryption; MP = multi-party; MPC = (secure) MP computation; ZKP = zero-knowledge proof

"Advanced" cryptography

Tradition: standards for building blocks for "traditional" data security.

	Traditional	Advanced
Data status	At rest or In transit	In use
Operation being secured	Storage or Communication	Computation
Example crypto primitives	Encryption, Signatures, Hashing	MPC, HE, ZKP
NIST crypto standards today?	Yes	No

Legend: HE = homomorphic encryption; MP = multi-party; MPC = (secure) MP computation; ZKP = zero-knowledge proof

Modernization: advanced crypto (enhanced features, composition, distributed systems, ...)

Outline

- 1. On a few used words
- 2. NIST Intro
- 3. NIST PEC and Threshold Crypto
- 4. The Threshold Call
- 5. Interaction and Feedback

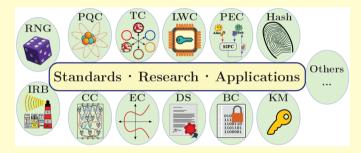
NIST: Laboratories \rightarrow **Divisions** \rightarrow **Groups**

- ► Non-regulatory federal agency (@ U.S. Dept. Commerce)
- Mission: ... innovation ... industrial competitiveness ... measurement science, <u>standards</u>, and technology ... economic security ... quality of life.

NIST name and address plate (source: nist.gov)

NIST: Laboratories \rightarrow **Divisions** \rightarrow **Groups**

- ► Non-regulatory federal agency (@ U.S. Dept. Commerce)
- Mission: ... innovation ... industrial competitiveness ... measurement science, <u>standards</u>, and technology ... economic security ... quality of life.



NIST name and address plate (source: nist.gov)

$\underbrace{\text{Information}}_{\text{Technology}} \rightarrow \text{Computer Security Division (CSD):}$

→ Cryptographic Technology Group (CTG): research, develop, engineer, and produce guidelines, recommendations and best practices for cryptographic algorithms, methods, and protocols.

Activities in the "Crypto" Group

- Public documentation: FIPS; Special Publications (SP 800); NIST Reports (IR).
- International cooperation: government, industry, academia, standardization bodies.

Legend: BC = Block Ciphers. CC = Circuit Complexity. Crypto = Cryptography. DS = Digital Signatures. EC = Elliptic Curves. FIPS = Federal Information Processing Standards. IR = Internal or Interagency (denoting that the public NIST report was developed internally at NIST or in an interagency collaboration, respectively. IRB = Interoperable Randomness Beacons. KM = Key Management. LWC = Lightweight Crypto. PEC = Privacy-Enhancing Crypto. PQC = Post-Quantum Crypto. RNG = Random-Number Generation. SP 800 = Special Publications in Computer Security. TC = [Multi-Party] Threshold Crypto).

More details at https://www.nist.gov/itl/csd/cryptographic-technology

Some examples of NIST Crypto Projects

- PQC: [standardization] "post-quantum" signatures and key-encapsulation
- **LWC:** [standardization] "lightweight" Auth. Enc. w/ Assoc. Data, and hashing

Legend: AEAD = Auth[enticated] Enc[ryption] w[ith] Assoc[iated] Data. CTG = Cryptographic Technology Group. LWC = Lightweight Cryptography. MPTC = Multi-Party Threshold Cryptography. NIST = National Institute of Standards and Technology. PEC = Privacy-Enhancing Cryptography. PQC = Post-Quantum Cryptography.

Some examples of NIST Crypto Projects

- PQC: [standardization] "post-quantum" signatures and key-encapsulation
- LWC: [standardization] "lightweight" Auth. Enc. w/ Assoc. Data, and hashing
- PEC: [exploratory] "privacy-enhancing" (advanced) features/functionalities
- MPTC: [exploratory] "multi-party threshold" schemes for crypto primitives
- warious others https://www.nist.gov/itl/csd/cryptographic-technology

Legend: AEAD = Auth[enticated] Enc[ryption] w[ith] Assoc[iated] Data. CTG = Cryptographic Technology Group. LWC = Lightweight Cryptography. MPTC = Multi-Party Threshold Cryptography. NIST = National Institute of Standards and Technology. PEC = Privacy-Enhancing Cryptography. PQC = Post-Quantum Cryptography.

Some examples of NIST Crypto Projects

- PQC: [standardization] "post-quantum" signatures and key-encapsulation
- LWC: [standardization] "lightweight" Auth. Enc. w/ Assoc. Data, and hashing
- ▶ PEC: [exploratory] "privacy-enhancing" (advanced) features/functionalities
- MPTC: [exploratory] "multi-party threshold" schemes for crypto primitives
- various others https://www.nist.gov/itl/csd/cryptographic-technology

The "Threshold Call" (from MPTC+PEC): to gather reference material for public analysis ... aiming for recommendations (in a 1st phase), including about PEC.

Legend: AEAD = Auth[enticated] Enc[ryption] w[ith] Assoc[iated] Data. CTG = Cryptographic Technology Group. LWC = Lightweight Cryptography. MPTC = Multi-Party Threshold Cryptography. NIST = National Institute of Standards and Technology. PEC = Privacy-Enhancing Cryptography. PQC = Post-Quantum Cryptography.

Some NIST Crypto "Standardization" Updates

- Post-Quantum (PQC): [Aim] Draft <u>Standards</u> of selected schemes (Summer 2023).
 - Public call (2022) for more PQ-signatures (submit by June 1st).
- Lightweight (LWC): Feb 2023, selected ASCON (Auth. Enc. w/ Assoc. Data; hash).
 - Workshop on June 21–22 (submit by May 1st). [Aim] Draft Standard (late 2023).
- Threshold Call (MPTC/PEC): Call Draft (Jan. 25th); public comments (April 10th).
 - [Aim] Call finalized in 2023 2nd half; submissions deadline within 2024 1st half.

Some NIST Crypto "Standardization" Updates

- Post-Quantum (PQC): [Aim] Draft Standards of selected schemes (Summer 2023).
 - Public call (2022) for more PQ-signatures (submit by June 1st).
- Lightweight (LWC): Feb 2023, selected ASCON (Auth. Enc. w/ Assoc. Data; hash).
 - Workshop on June 21-22 (submit by May 1st). [Aim] Draft Standard (late 2023).
- Threshold Call (MPTC/PEC): Call Draft (Jan. 25th); public comments (April 10th). - [Aim] Call finalized in 2023 2nd half; submissions deadline within 2024 1st half.
- Crypto Publication Review: Revising Standards (FIPS & SP) older than 5 years.
- **FIPS 186-5** (signatures, including EdDSA): Standard (final) published Feb. 7th.
- RBG workshop (May 30th); Cipher Modes workshop (Oct. 3rd; submit by July 1st).

Legend: AEAD = Auth[enticated] Enc[ryption] w[ith] Assoc[iated] Data, EdDSA = Edwards-Curve Digital Signature Algorithm, Feb = February, FIPS = Federal Information Processing Standards, Jan = January, Oct = October, RBG = Random Bit Generation, SP = Special Publication (800 series) [in Computer Security], 9/24

Some NIST Crypto "Standardization" Updates

- Post-Quantum (PQC): [Aim] Draft Standards of selected schemes (Summer 2023).
 - Public call (2022) for more PQ-signatures (submit by June 1st).
- Lightweight (LWC): Feb 2023, selected ASCON (Auth. Enc. w/ Assoc. Data; hash).
 - Workshop on June 21-22 (submit by May 1st). [Aim] Draft Standard (late 2023).
- Threshold Call (MPTC/PEC): Call Draft (Jan. 25th); public comments (April 10th). - [Aim] Call finalized in 2023 2nd half; submissions deadline within 2024 1st half.
- Crypto Publication Review: Revising Standards (FIPS & SP) older than 5 years.
- FIPS 186-5 (signatures, including EdDSA): Standard (final) published Feb. 7th.
- **RBG workshop** (May 30th); Cipher Modes workshop (Oct. 3rd; submit by July 1st).

Legend: AEAD = Auth[enticated] Enc[ryption] w[ith] Assoc[iated] Data, EdDSA = Edwards-Curve Digital Signature Algorithm, Feb = February, FIPS = Federal Information Processing Standards, Jan = January, Oct = October, RBG = Random Bit Generation. SP = Special Publication (800 series) [in Computer Security]. 0/24

Outline

- 1. On a few used words
- 2. NIST Intro
- 3. NIST PEC and Threshold Crypto
- 4. The Threshold Call
- 5. Interaction and Feedback

Cryptography (that can be) used to enhance privacy.

(emphasis on non-standardized tools)

Cryptography (that can be) used to enhance privacy.

(emphasis on non-standardized tools)

Goals:

1. Accompany the progress of emerging *PEC tools*.

Legend: ABE: attribute-based encryption. IBE: identity-based encryption. PEC: privacy-enhancing cryptography. Symm./pub.: symmetric-key or public-key based. 11/24

Cryptography (that can be) used to **enhance privacy**. (emphasis on non-standardized tools)

Goals:

- 1. Accompany the progress of emerging *PEC tools*.
- 2. Promote development of PEC reference material.

PEC tools
STPPA (series of talks)
PEC use-case suite
Threshold schemes
ZKProof collaboration
Encounter metrics
Email list (PEC Forum)
https://csrc.nist.gov/projects/pec

Legend: ABE: attribute-based encryption. IBE: identity-based encryption. PEC: privacy-enhancing cryptography. Symm./pub.: symmetric-key or public-key based. 11/24

Cryptography (that can be) used to **enhance privacy**. (emphasis on non-standardized tools)

Goals:

- 1. Accompany the progress of emerging *PEC tools*.
- 2. Promote development of PEC reference material.

PEC tools STPPA (series of talks) PEC use-case suite Threshold schemes ZKProof collaboration Encounter metrics Email list (PEC Forum)

3. Exploratory work to assess potential for recommendations, standardization; ...

Legend: ABE: attribute-based encryption. IBE: identity-based encryption. PEC: privacy-enhancing cryptography. Symm./pub.: symmetric-key or public-key based. 11/24

Multi-Party Threshold Cryptography: NIST project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

https://csrc.nist.gov/projects/threshold-cryptography

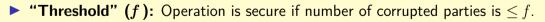
Multi-Party Threshold Cryptography: NIST project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

- 1. Split (secret-share) the secret/private-key across multiple parties.
- 2. Use **MPC** to perform needed operation (with split key), e.g., sign. (MPC = secure multiparty computation ... or call it "Threshold Cryptography")

https://csrc.nist.gov/projects/threshold-cryptography


Multi-Party Threshold Cryptography: NIST project

Cryptographic primitives:

Threshold schemes (for cryptographic primitives):

- 1. Split (secret-share) the secret/private-key across multiple parties.
- 2. Use **MPC** to perform needed operation (with split key), e.g., sign. (MPC = secure multiparty computation ... or call it "Threshold Cryptography")

Decentralized trust about key (not reconstructed): avoids single-point of failure. https://csrc.nist.gov/projects/threshold-cryptography

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to "better" threshold schemes)

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to "better" threshold schemes)

Standards "should" focus on high need and potential for adoption

► Threshold friendliness: desirable feature → improves adoptability (e.g., determ. vs. prob. threshold EdDSA/Schnorr signatures [NISTIR 8214B ipd])

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to "better" threshold schemes)

Standards "should" focus on high need and potential for adoption

► Threshold friendliness: desirable feature → improves adoptability (e.g., determ. vs. prob. threshold EdDSA/Schnorr signatures [NISTIR 8214B ipd])

How to explore the threshold space?:

- applicable to a wide scope of primitives
- bringing added complexity

Strong feasibility result (theory): can be applied to any cryptographic primitive.

But, in practice, some primitives are *threshold-friendlier** than others.

(* i.e., informally, easier in practice to thresholdize, or amenable to "better" threshold schemes)

Standards "should" focus on high need and potential for adoption

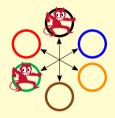
► Threshold friendliness: desirable feature → improves adoptability (e.g., determ. vs. prob. threshold EdDSA/Schnorr signatures [NISTIR 8214B ipd])

How to explore the threshold space?:

- applicable to a wide scope of primitives
- bringing added complexity

Next section: A public Call for reference material ... toward recommendations.

Outline

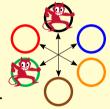

- 1. On a few used words
- 2. NIST Intro
- 3. NIST PEC and Threshold Crypto
- 4. The Threshold Call
- 5. Interaction and Feedback

The NIST Call for Multi-Party Threshold Schemes

NISTIR 8214C ipd (initial public draft)

Email public comments to nistir-8214C-comments@nist.gov, by 2023-April-10.

Calling for threshold schemes for diverse primitives:


The NIST Call for Multi-Party Threshold Schemes

NISTIR 8214C ipd (initial public draft)

Email public comments to nistir-8214C-comments@nist.gov, by 2023-April-10.

Calling for threshold schemes for diverse primitives:

Cat1: Selected NIST-standardized primitives – In EdDSA, ECDSA, RSA, AES, ECC-KE, ...

- Cat2: Primitives in schemes not standardized by NIST
 - Threshold friendly, and possibly with advanced features (e.g., in FHE, IBE, ZKP)

Legend: AES = Advanced Encryption Standard. EC = Elliptic curve. ECC-KE = EC cryptography (based) key-exchange. FHE = fully-homomorphic encryption. EdDSA = Edwards-Curve digital signature algorithm. ECDSA = EC digital signature algorithm. IBE = identity-based encryption. NIST = National Institute of Standards and Technology. RSA = Rivest-Shamir-Adleman. ZKP = zero-knowledge proofs.

Too many acronyms, we know. (Legend further below)

Subcategory: Type	
C1.1: Signing	
C1.2: PKE	
C1.3: 2KA	
C1.4: Symmetric	
C1.5: Keygen	

Legend: 2KA: pair-wise key-agreement. 2KE: pair-wise key-establisment. AES: Advanced Encryption Standard. CDH: cofactor Diffie-Hellman. ECC: Elliptic-curve cryptography (or, if used as an adjective, EC-based). ECDSA: Elliptic-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. Elliptic-curve based Key-Establishment. FIPS: Federal Information Processing Standard. KC: Key-confirmtion. KDM: Key-derivation mechanism. Keygen: Key-generation. MQV: Menezes-Qu-Vanstone. PKE: public-key encryption. RSA: Rivest-Shamir-Adleman (signature and encryption schemes). RSADSA: RSA digital signature algorithm. SP 800: Special Publication (in Computer Security). Note: In the 2nd column, each item within a subcategory is itself called a family of specifications, since it may include diverse primitives or modes/variants.

Too many acronyms, we know. (Legend further below)

Subcategory: Type	Families of specifications	NIST references
C1.1: Signing	EdDSA sign, ECDSA sign, RSADSA sign	FIPS 186-5 (see also NISTIR 8214B)

Legend: 2KA: pair-wise key-agreement. 2KE: pair-wise key-establisment. AES: Advanced Encryption Standard. CDH: cofactor Diffie-Hellman. ECC: Elliptic-curve cryptography (or, if used as an adjective, EC-based). ECDSA: Elliptic-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. Step-Establishment. FIPS: Federal Information Processing Standard. KC: Key-confirmtion. KDM: Key-derivation mechanism. Keygen: Key-generation. MQV: Menezes-Qu-Vanstone. PKE: public-key encryption. RSA: Rivest–Shamir–Adleman (signature and encryption schemes). RSADSA: RSA digital signature algorithm. SP 800: Special Publication (in Computer Security). Note: In the 2nd column, each item within a subcategory is itself called a family of specifications, since it may include diverse primitives or modes/variants.

Too many acronyms, we know. (Legend further below)

Subcategory: Type	Families of specifications	NIST references
C1.2: PKE	RSA decrypt, RSA encrypt (a secret value)	SP 800-56B Rev2

Legend: 2KA: pair-wise key-agreement. 2KE: pair-wise key-establisment. AES: Advanced Encryption Standard. CDH: cofactor Diffie-Hellman. ECC: Elliptic-curve cryptography (or, if used as an adjective, EC-based). ECDSA: Elliptic-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. Step-Establishment. FIPS: Federal Information Processing Standard. KC: Key-confirmtion. KDM: Key-derivation mechanism. Keygen: Key-generation. MQV: Menezes-Qu-Vanstone. PKE: public-key encryption. RSA: Rivest–Shamir–Adleman (signature and encryption schemes). RSADSA: RSA digital signature algorithm. SP 800: Special Publication (in Computer Security). Note: In the 2nd column, each item within a subcategory is itself called a family of specifications, since it may include diverse primitives or modes/variants.

Too many acronyms, we know. (Legend further below)

Subcategory: Type	Families of specifications	NIST references
-------------------	----------------------------	-----------------

C1.4: Symmetric AES encipher/decipher, KDM/KC (for 2KE) FIPS 197, SP 800-56C Rev2, ...

Legend: 2KA: pair-wise key-agreement. 2KE: pair-wise key-establisment. AES: Advanced Encryption Standard. CDH: cofactor Diffie-Hellman. ECC: Elliptic-curve cryptography (or, if used as an adjective, EC-based). ECDSA: Elliptic-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. Elliptic-curve based Key-Establishment. FIPS: Federal Information Processing Standard. KC: Key-confirmtion. KDM: Key-derivation mechanism. Keygen: Key-generation. MQV: Menezes-Qu-Vanstone. PKE: public-key encryption. RSA: Rivest-Shamir-Adleman (signature and encryption schemes). RSADSA: RSA digital signature algorithm. SP 800: Special Publication (in Computer Security). Note: In the 2nd column, each item within a subcategory is itself called a family of specifications, since it may include diverse primitives or modes/variants.

Too many acronyms, we know. (Legend further below)

Subcategory: Type	Families of specifications	NIST references
C1.1: Signing	EdDSA sign, ECDSA sign, RSADSA sign	FIPS 186-5 (see also NISTIR 8214B)
C1.2: PKE	RSA decrypt, RSA encrypt (a secret value)	SP 800-56B Rev2
C1.3: 2KA	ECC-CDH, ECC-MQV	SP 800-56A Rev3
C1.4: Symmetric	AES encipher/decipher, KDM/KC (for 2KE)	FIPS 197, SP 800-56C Rev2,
C1.5: Keygen	ECC keygen, RSA keygen, bitstring keygen	(corresponding references above)

Legend: 2KA: pair-wise key-agreement. 2KE: pair-wise key-establisment. AES: Advanced Encryption Standard. CDH: cofactor Diffie-Hellman. ECC: Elliptic-curve cryptography (or, if used as an adjective, EC-based). ECDSA: Elliptic-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. EdDSA: Edwards-curve Digital Signature Algorithm. Step-Establishment. FIPS: Federal Information Processing Standard. KC: Key-confirmtion. KDM: Key-derivation mechanism. Keygen: Key-generation. MQV: Menezes-Qu-Vanstone. PKE: public-key encryption. RSA: Rivest–Shamir–Adleman (signature and encryption schemes). RSADSA: RSA digital signature algorithm. SP 800: Special Publication (in Computer Security). Note: In the 2nd column, each item within a subcategory is itself called a family of specifications, since it may include diverse primitives or modes/variants.

Subcategory: Type

C2.1: Signing

C2.2: PKE

C2.3: Key-agreem.

C2.4: Symmetric

C2.5: Keygen

TF = threshold friendly. QR = quantum resistant.

Subcategory: Type	Example types of schemes	Example primitives
C2.1: Signing	TF succinct & verifiably-deterministic signatures TF-QR signatures	Sign Sign

Subcategory: Type

C2.6: Advanced C2.7: ZKPoK C2.8: Gadgets

TF = threshold friendly. QR = quantum resistant.

Subcategory: Type	Example types of schemes	Example primitives

C2.6: Advanced TF-QR fully-homomorphic encryption Decryption; Keygen TF identity-based and attribute-based encryption Decryption; Keygens

Subcategory: Type Example types of schemes

Example primitives

C2.7: **ZKPoK** Zero-knowledge proof of knowledge of private key ZKPoK.Generate

Note: While TF-QR is desired for any type of scheme, some examples show just **TF** to highlight that it is welcome even if not **QR**. Legend: agreement. Keygen = key-generation. PKE = public-key encryption. PRF = pseudorandom function [family]. PRP

= pseudorandom permutation [family]. QR = quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.

Subcategory: Type	Example types of schemes	Example primitives
-------------------	--------------------------	--------------------

C2.8: **Gadgets** Garbled circuit (GC)

GC.generate; GC.evaluate

TF = threshold friendly. QR = quantum resistant.

Subcategory: Type	Example types of schemes	Example primitives
C2.1: Signing	TF succinct & verifiably-deterministic signatures	Sign
	TF-QR signatures	Sign
C2.2: PKE	TF-QR public-key encryption (PKE)	Decrypt/Encrypt (a secret value)
C2.3: Key-agreem.	TF Low-round multi-party key-agreement	Single-party primitives
C2.4: Symmetric	TF blockcipher/PRP	Encipher/decipher
	TF key-derivation / key-confirmation	PRF and hash function
C2.5: Keygen	Any of the above	Keygen
C2.6: Advanced	TF-QR fully-homomorphic encryption	Decryption; Keygen
	TF identity-based and attribute-based encryption	Decryption; Keygens
C2.7: ZKPoK	Zero-knowledge proof of knowledge of private key	ZKPoK.Generate
C2.8: Gadgets	Garbled circuit (GC)	GC.generate; GC.evaluate

Note: While TF-QR is desired for any type of scheme, some examples show just TF to highlight that it is welcome even if not QR.

Legend: agreem. = agreement. Keygen = key-generation. PKE = public-key encryption. PRF = pseudorandom function [family]. PRP = pseudorandom permutation [family]. QR = quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.

Welcome/needed interaction with the community

1. 2023: Interactive feedback about the call:

- a. We got 12 public comments about the ipd (compilation to appear next week)
- b. We expect/welcome subsequent feedback via the $\ensuremath{\mathsf{MPTC}}\xspace$ -forum
- c. Feedback will be used to improve the final call

Welcome/needed interaction with the community

1. 2023: Interactive feedback about the call:

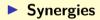
- a. We got 12 public comments about the ipd (compilation to appear next week)
- b. We expect/welcome subsequent feedback via the $\ensuremath{\mathsf{MPTC}}\xspace$ -forum
- c. Feedback will be used to improve the final call

2. 2024: Concrete submissions:

- Structured specification, open-source implementation, evaluation, ...

3. 2024/2025: Public scrutiny of submitted schemes:

- Evaluation comments (can impact subsequent recommendations)


Public comments received in first phase

Main topics (informal)

- #1 Scope; quantum resistance.
- #2 Innovation; models.
- #3 Threshold motivation and alternatives; some expired patents.
- #4 Mandatory checks; KAT values; implementation complexity.
- #5 Fully homomorphic encryption (FHE).
- #6 Threshold & oblivious pseudo-random functions (PRF); keygen; robustness; asynchronicity.
- #7 Shamir Secret-sharing (safe evaluation points)
- #8 Scope; keygen; adaptive security; key-refresh; bounds; broadcast; thresholds; party's state.
- #9 Attribute-based encryption (ABE): ciphertext-policy, key-policy, multi-authority.
- #10 All-or-nothing transform (AONT) and homomophic encryption.
- #11 Implementation dependencies, KAT values in randomized multi-party runs.
- #12 Robustness.

Some takeaways about the "Threshold Call"

- Reference material
- Clarification toward recommendations

Suggested reading: NISTIR 8214C ipd

NIST First Call for Multi-Party Threshold Schemes (Initial Public Draft) [2023-Jan-25]

Some takeaways about the "Threshold Call"

- Reference material: The initial process is not a competition aiming to select a winner, but the public exposure is deemed useful.
- Clarification toward recommendations: The submissions and their analyses will clarify useful system models, security requirements ... and future processes.
- Synergies: Submissions of schemes in standardization development in other bodies and/or by community efforts are also very welcome!

Suggested reading: NISTIR 8214C ipd

NIST First Call for Multi-Party Threshold Schemes (Initial Public Draft) [2023-Jan-25]

Outline

- 1. On a few used words
- 2. NIST Intro
- 3. NIST PEC and Threshold Crypto
- 4. The Threshold Call
- 5. Interaction and Feedback

The initial question (in the title):

Tackling advanced cryptography ... toward standards?

Yes, but ...

- it's a process (many processes)
- it takes a village (many villages)
- it depends on which "standards"

Thank you for your attention! Questions?

- Questions from the audience?
- (Next slide) Brainstorming questions to the audience

PEC-Forum

Tackling advanced cryptography ... toward standards? Presented at the SSR 2023 & STAP'23 (joint session) April 22, 2023 @ Lyon (France) — luis.brandao@nist.gov

1. On the timing & speed of processes: what is too soon, too late, too slow, and too fast?

1. On the timing & speed of processes: what is too soon, too late, too slow, and too fast?

2. What value is there in still pursuing new standards for quantum-breakable primitives?

- 1. On the timing & speed of processes: what is too soon, too late, too slow, and too fast?
- 2. What value is there in still pursuing new standards for quantum-breakable primitives?
- 3. How to handle the standardization tension between innovation and interoperability?

- 1. On the timing & speed of processes: what is too soon, too late, too slow, and too fast?
- 2. What value is there in still pursuing new standards for quantum-breakable primitives?
- 3. How to handle the standardization tension between innovation and interoperability?
- 4. Which crypto functionalities/features make sense to prioritize for standardization?

- 1. On the timing & speed of processes: what is too soon, too late, too slow, and too fast?
- 2. What value is there in still pursuing new standards for quantum-breakable primitives?
- 3. How to handle the standardization tension between innovation and interoperability?
- 4. Which crypto functionalities/features make sense to prioritize for standardization?
- 5. What synergies to aim for between academia, industry, gov and standards bodies?