The Ascon Family: Lightweight Authenticated Encryption, Hashing, and More

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schläffer

Ascon Team

- Christoph Dobraunig
- Maria Eichlseder
- Florian Mendel
- Martin Schläffer

© Lunghammer, TU Graz

The Ascon family

- Authenticated encryption (CAESAR, 2014)
 - Ascon-128
 - Ascon-128a
- Hashing (NIST, 2019)
 - Ascon-Hash/Xof
 - Ascon-Hasha/Xofa
- Extensions (ePrint, 2021)
 - Ascon-Mac/Prf
 - Ascon-PrfShort

The Ascon design basics

Permutation based

• Single 320-bit permutation (all)

Sponge based

- Absorb/squeeze (Hash, XOF)
- Duplex-mode (AEAD)
- High-rate absorption (MAC, PRF)

• Keyed initialization/finalization

• Increases robustness (AEAD)

Main design goals

• Security

• Online

- Efficiency
- Simplicity

- Single pass
- Lightweight

• Scalability

• Robustness (SCA, misuse)

Ascon: Authenticated Encryption

The permutation: 6/8/12 rounds

Properties of the permutation

- Simplicity
 - Small 320-bit state size
 - Defined on 5 64-bit words
 - Using bitwise Boolean functions
- Fast in Software
 - Up to 5 instructions in parallel
 - Bit-sliced S-box (64 in parallel)
 - Bit-interleaving on 32-bit processors

- Flexible in hardware
 - Small area to high speed
- Easy integration of side-channel countermeasures
 - No look-up tables
 - Low degree S-box
- High diffusion and proven bounds

Ascon AEAD: Encryption

Ascon AEAD: Decryption

AEAD instances

Nonce-based AEAD, duplex sponge-based with keyed initialization and finalization

	Ascon-128	Ascon-128a	Ascon-80pq
Security [bits]	128	128	128
Key k [bits]	128	128	160
Rate r [bits]	64	128	64
Capacity c [bits]	256	192	256
Rounds (a, b)	(12, 6)	(12, 8)	(12, 6)

Ascon-128 vs Ascon-128a

- Same security, different trade-off (block size vs. number of rounds)
- Both scrutinized for years in cryptographic competitions
- Most security analysis can be applied to both algorithms
- Tight security proof for Ascon (<u>https://eprint.iacr.org/2023/775</u>)

$$\frac{T}{2^{\min\{\kappa,c\}}} + \frac{D}{2^{\min\{\tau,c\}}} + \frac{TD}{2^b}$$

- Ascon-128a: 33% more performance, more rounds, larger rate
- Ascon-128: higher robustness in case of state recovery (<u>https://eprint.iacr.org/2023/796</u>)
- \rightarrow We are in favor of standardizing both a fast and a more robust version

Larger nonce, shorter tags

- Support for shorter tags is useful
 - Recommend e.g., 64, 96 and 128 bits
- We would recommend to encode the size of the tag in the IV.
- In addition, we think that if shorter tags are supported, a strict limit on verification fails should be imposed by the application.
- Otherwise, for short tags, one ends up in attack scenarios resembling return of unverified plaintext which might be a problem for the application.

Larger nonce, shorter tags

- We do not see the immediate need to support larger nonce, considering the limit on messages that can be encrypted under a single key.
- In case someone would like to use a fixed prefix in the nonce, we suggest to put this prefix into the associated data instead.

Secret nonce, larger keys

Secret nonce, larger keys

- Also done in AES-GCM in TLS (RFC 8446)
- Increases key size to 256 bits, security level remains at 128 bits
- Improves multi-user security (<u>https://eprint.iacr.org/2023/924</u>)

Ascon-80pq

- Instead of Ascon-80pq we prefer to add support for larger keys, secret nonce to increase multi-user security and also resistance against Grover's algorithm.
- By dropping Ascon-80pq we can extend the IV to 64 bits again which gives use some options for encoding additional information such as tag sizes etc.
- Reduce number of variants in the standard.

Ascon: Hashing and XOF

Ascon Hash / XOF

• Similar structure, same permutation(s) as AEAD

- Hash: Fixed output size (ℓ =256)
- Xof: Variable output size

Hash / XOF instances

• Uses the sponge construction, different number of rounds for init/final and absorb/squeeze

	Ascon-Hash/Xof	Ascon-Hasha/Xofa
Security [bits]	128	128
Rate r [bits]	64	64
Capacity c [bits]	256	256
Rounds (a, b)	(12, 12)	(12, 8)

 \rightarrow We are in favor of standardizing XOF

Ascon: PRF and MAC

Ascon PRF / MAC

- We see the requirement for having efficient PRFs that can be used as, e.g., MACs or stream ciphers from an industry point of view.
- Efficient constructions exists for Ascon with low implementation overhead (<u>https://eprint.iacr.org/2021/1574</u>)
- Alternative constructions based on HMAC or KMAC are not as efficient and not our preferred option.

Ascon PRF and MAC

- Initialization with key, 12 rounds in p^a
- Absorb message with $r_1 = 256$ (4x more efficient than Ascon-KMAC)
- Squeeze tag with $r_2 = 128$

Ascon PRF-Short

- Initialization of Ascon-128 (with different IV)
- Nonce replaced by message ($m \le 128$ bits)
- Generates tag (t ≤ 128 bits)
- Applications:

• ...

- Symmetric authentication (challenge-response)
- Efficient key derivation
- Pointer Authentication

 $[V \parallel K \parallel M K]^{128}$

Security

Analysis of AEAD

• Nonce respecting, within data limit 2⁶⁴ and time limit 2¹²⁸

Туре	Target	Rounds	Time	Method	Reference
Key recovery	Ascon initialization	7 / 12	2 ¹²³	Cube	[RHSS21]
	Ascon initialization	6 / 12	2 ⁴⁰	Cube-like	[LDW17]
	Ascon initialization	5 / 12	2 ³¹	Difflinear	[Tez20]
Forgery	Ascon finalization	3 / 12	2 ²⁰	Differential	[GPT21]
State recovery	Ascon-128a iteration	3/8	2 ¹¹⁷	Differential	[GPT21]
	Ascon-128a iteration	2/8	_	Sat-Solver	[DKM+17]

Analysis of AEAD (misuse settings)

- Generic nonce-misuse on duplex designs result in:
 - Confidentiality break with 1+1 misuse queries per block
 - State recovery with D misuse queries where $T \cdot D = 2^{c}$
- State recovery does not lead to trivial key recovery (in Ascon)
- Nonce-misuse attacks do not trivially break authenticity (in Ascon)
- Many interesting results published which analyze Ascon in misuse settings
 - Exceeding data limit of 2⁶⁴
 - Exceeding time limit of 2¹²⁸
 - Using (massive) nonce-misuse

Analysis of AEAD

- D. Chang, D. Hong, J. Kang. Conditional Cube Attacks on Ascon-128 and Ascon-80pq in a Noncemisuse Setting. IACR Cryptology ePrint Archive 2022.
- D. Chang, J. Kang, M. S. Turan. A New Conditional Cube Attack on Reduced-Round Ascon-128a in a Nonce-misuse Setting. NIST LWC Workshop 2022.
- C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer. **Cryptanalysis of Ascon**. CT-RSA 2015.
- D. Gérault, T. Peyrin, Q. Q. Tan. Exploring Differential-Based Distinguishers and Forgeries for Ascon. IACR Transactions on Symmetric Cryptology 2021.
- K. Hu,T. Peyrin. Revisiting Higher-Order Differential(-Linear) Attacks from an Algebraic Perspective: Applications to Ascon, Grain v1, Xoodoo, and ChaCha. NIST LWC Workshop 2022.
- Z. Li, X. Dong, X. Wang. Conditional Cube Attack on Round-Reduced Ascon. IACR Transactions on Symmetric Cryptology 2017.

Analysis of AEAD

- Y. Li, G. Zhang, W. Wang, M. Wang. Cryptanalysis of round-reduced Ascon. SCIENCE CHINA Information Sciences 2017.
- R. Rohit, K. Hu, S. Sarkar, S. Sun. Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon. IACR Transactions of Symmetric Cryptology 2021.
- C. Tezcan. Analysis of Ascon, DryGASCON, and Shamash Permutations. Information Security Science 2020.

Analysis of Hash / XOF

Туре	Target	Output	Rounds	Time	Method	Reference
Preimage	Ascon-Xof(A) final.	64	6 / 12	2 ^{63.3}	Algebraic	[DEMS19]
	Ascon-Xof(A) final.	256	3 / 12	2 ^{114.5}	MitM	[QZH+23]
	Ascon-Xof(A) final.	64	2 / 12	2 ³⁹	Cube-like	[DEMS19]
Collision	Ascon-Hasн(a) final.	256	4 / 12	2 ^{126.8}	MitM	[QZH+23]
	Ascon-Xoғ(a) final.	64	2 / 12	2 ¹⁵	Differential	[ZDW19]
	Ascon-Hasн(a) iteration	256	2 / 12(8)	2 ^{62.6}	Differential	[YLW+23]

Analysis of Hash / XOF

- C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer. **Preliminary Analysis of Ascon-Xof and Ascon-Hash**. Technical Report. 2019.
- D. Gérault, T. Peyrin, Q. Q. Tan. Exploring Differential-Based Distinguishers and Forgeries for Ascon. IACR Transactions on Symmetric Cryptology 2021.
- R. Zong, X. Dong, X. Wang. Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash. IACR Cryptology ePrint Archive 2019.
- L. Qin, B. Zhao, J. Hua, X. Dong, X. Wang. Weak-Diffusion Structure: Meet-in-the-Middle Attacks on Sponge-based Hashing Revisited. IACR Cryptology ePrint Archive 2023.
- X. Yu, F. Liu, G. Wang, S. Sun, W. Meier. A Closer Look at the S-box: Deeper Analysis of Round-Reduced ASCON-HASH. IACR Cryptology ePrint Archive 2023.

Security properties of the permutation

- Ascon does not require ideal properties of the permutation
 - Non-random properties are known
 - Detailed overview of analysis in final NIST status update
- Properties of S-box:
 - Algebraic degree 2
 - Differential/linear branch number 3
 - Max. differential probability 2⁻², max. squared correlation 2⁻²
- Properties of linear layer:
 - Differential/linear branch number 4
 - Efficient diffusion due to weak alignment

Analysis of the permutation

- C. Dobraunig, M. Eichlseder, F. Mendel. Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates. ASIACRYPT 2015.
- D. Gérault, T. Peyrin, Q. Q. Tan. Exploring Differential-Based Distinguishers and Forgeries for Ascon. IACR Transactions on Symmetric Cryptology 2021.
- K. Hu,T. Peyrin. Revisiting Higher-Order Differential(-Linear) Attacks from an Algebraic Perspective: Applications to Ascon, Grain v1, Xoodoo, and ChaCha. NIST LWC Workshop 2022.
- G. Leander, C. Tezcan, F. Wiemer. Searching for Subspace Trails and Truncated Differentials. IACR Transactions on Symmetric Cryptology 2018.
- R. Rohit, K. Hu, S. Sarkar, S. Sun. Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon. IACR Transactions of Symmetric Cryptology 2021.
- C. Tezcan. Truncated, Impossible, and Improbable Differential Analysis of Ascon. ICISSP 2016.
- Y. Todo. Structural Evaluation by Generalized Integral Property. EUROCRYPT 2015.

Bounds and characteristics

- C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer. Cryptanalysis of Ascon. CT-RSA 2015.
- C. Dobraunig, M. Eichlseder, F. Mendel. Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates. ASIACRYPT 2015.
- D. Gérault, T. Peyrin, Q. Q. Tan. Exploring Differential-Based Distinguishers and Forgeries for Ascon. IACR Transactions on Symmetric Cryptology 2021.
- R. H. Makarim, R. Rohit. Towards Tight Differential Bounds of Ascon. FSE 2022 Rump Session.
 2022.
- J. Erlacher, F. Mendel, M. Eichlseder. Bounds for the Security of Ascon against Differential and Linear Cryptanalysis. IACR Transactions on Symmetric Cryptology 2022.
- S. El Hirch, S. Mella, A. Mehrdad, J. Daemen. Improved Differential and Linear Trail Bounds for Ascon. IACR Trans. Symmetric Cryptol. 2022.

Bounds and characteristics

 Best known characteristics and bounds for up to 6 rounds of the Ascon permutation (<u>https://eprint.iacr.org/2022/1377</u>)

Rounds	Differential		Lin	ear
1	2 ⁻²	2 ⁻²	2 ⁻²	2 ⁻²
2	2 ⁻⁸	2 ⁻⁸	2 ⁻⁸	2 ⁻⁸
3	2 ⁻⁴⁰	2-40	2 ⁻²⁸	2 ⁻²⁸
4	2 ⁻¹⁰⁷	≤ 2 ⁻⁸⁶	2 ⁻⁹⁸	≤ 2 ⁻⁸⁸
5	2 ⁻¹⁹⁰	≤ 2 ⁻¹⁰⁰	2 ⁻¹⁸⁶	≤ 2 ⁻⁹⁶
6	-	≤ 2 ⁻¹²⁹	-	≤ 2 ⁻¹³²

Implementations

FPGA benchmarks

	Throughput	Area	Throughput / Area	
ASCON-128a	6297.6	2410	2.61	Vilian Antin 7
ASCON-128	3744.0	2126	1.76	XIIINX ARTIX-7
AES128-GCM	2700.8	3270	0.83	
	Throughput	Area	Throughput / Area	
ASCON-128a	3031.0	4552	0.67	Intel Cyclone
ASCON-128	2157.0	3215	0.67	10 LP
AES128-GCM	1548.3	8754	0.18	
	Throughput	Area	Throughput / Area	
ASCON-1282	2158 1	5909	0.37	
	1427 5	2704	0.37	Lattice ECP5
ASCON-128	1427.5	3764	0.38	-
AES128-GCM	1384.4	6740	0.21	
		https://	//eprint.iacr.org/2020/1207	7

ASIC benchmarks

	Throughput	Area	Throughput / Area
Ascon-128a	25.60	1.49	17.18
Ascon-128	16.00	1.56	10.25
AES128-GCM	11.63	2.75	4.22
		https://e	print.iacr.org/2021/049

Embedded SW implementations

Time to process NIST testvectors in [µs] on embedded devices

	Uno	F1	ESP	F7	R5	
Ascon-128a	1981	66.4	18.4	11.8	7.3	
Ascon-128	2337	76.7	22.3	13.8	8.5	
AES128-GCM	-	332.8	67.2	35.8	23.7	
https://lwc.las3.de/						

Code size in [bytes] on embedded devices

	Uno	F1	ESP	F7	R5	
Ascon-128a	2544	2252	1200	1240	1792	
Ascon-128	2552	2157	1120	1180	1792	
AES128-GCM	-	9908	14832	9836	14272	
https://lwc.las3.de/						

High-end SW performance

	AMD Ryzen 9	ARM Cortex-A72
Ascon-128a	5.6	7.0
Ascon-128	8.1	10.5
AES128-GCM	1.1*	30.6
*with AES-NI		https://bench.cr.yp.to/

Ascon hardware extensions/instructions

- A Fast and Compact RISC-V Accelerator (for RV32, also ARM)
 - RI5CY Ascon with **4.7kGE**: speedup factor **50x**
 - Reuse 10 registers of CPU register file
 - https://eprint.iacr.org/2020/1083.pdf
- ARM Custom Datapath Extension, RISC-V Bitmanip Extension, ...
 - 32-bit funnel shift instructions (RV32B: FSRI, ESP32: SRC)
 - 32-bit interleaving instructions
 - Fused AND/XOR, BIC/XOR instructions
 - SHA-2 like Sigma instructions

- (RV32B: ZIP/UNZIP, ARM CDE: CX3)
- (ARM A64: BCAX, ARM CDE: CX3A)
- (ARM CDE: CX3DA)

Implementation summary

- Often much more efficient than AES128-GCM
 - Up to 3x to 5x speed on microcontrollers (https://lwc.las3.de/)
 - Up to **2x throughput** with **0.5x energy** in hardware (<u>https://eprint.iacr.org/2021/049</u>)
- Designed to ease protection against physical attacks

Side-channel protected implementations

Ascon: Designed with SCA in mind

- Algebraic degree 2 of S-box (more efficient masking)
- Masking using invertible Toffoli gate
 - Fewer (no) fresh randomness needed
 - Better protection against SIFA attacks
- Limited damage if state is recovered
- Leveled implementations
 - Higher protection order for Init/Final (key)
 - Lower protection order for AD/PT/CT processing (data)

Masked hardware implementations

• Masked DOM implementations of Ascon-128 (CHES2017)

Protection Order	[kGE]	[Mbps]	[kGE]	[Mbps]
1	10.86	108	28.89	2246
2	16.19	108	53.00	1896
3	21.59	110	81.21	1903
	•••			

- Additional first and second-order masked hardware implementations:
 - Implementation: https://github.com/ascon/ascon-hardware-sca
 - Evaluation: https://cryptography.gmu.edu/athena/index.php?id=LWC

Your costs and results may vary.

Masked software implementations

• Masked Toffoli/leveled implementations of Ascon-128

impl./shares flags	armv6	C -02	C -Os	2 -02	2 -Os	3 -02	3 -Os
ARM1176JZF	58	70	85	260	343	524	703
STM32F415	59	84	90	320	378	650	669

Performance in cycles/byte (green: evaluated)

- First and second-order masked software implementations:
 - Implementation: <u>https://github.com/ascon/ascon-c</u>
 - Evaluations: <u>https://cryptography.gmu.edu/athena/index.php?id=LWC</u> <u>https://github.com/ascon/simpleserial-ascon</u>

Summary

• Security

- Well analyzed/understood
- High number of external analysis
- Large security margin
- Efficiency
 - Efficient on constraint devices in HW and SW
 - Easier side-channel protection
 - Fast on modern CPUs
- Flexibility
 - Additional constructions like XOF, MAC, PRF, ...

Thank you!