
The Ascon Family: 
Lightweight Authenticated Encryption, 
Hashing, and More

Christoph Dobraunig, Maria Eichlseder, 
Florian Mendel, Martin Schläffer



Ascon Team

• Christoph Dobraunig 

• Maria Eichlseder

• Florian Mendel 

• Martin Schläffer 

© Lunghammer, TU Graz



The Ascon family

• Authenticated encryption (CAESAR, 2014) 

• Ascon-128

• Ascon-128a

• Hashing (NIST, 2019) 

• Ascon-Hash/Xof

• Ascon-Hasha/Xofa

• Extensions (ePrint, 2021)

• Ascon-Mac/Prf

• Ascon-PrfShort
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The Ascon design basics

• Permutation based

• Single 320-bit permutation (all)

• Sponge based 

• Absorb/squeeze (Hash, XOF)

• Duplex-mode (AEAD)

• High-rate absorption (MAC, PRF)

• Keyed initialization/finalization

• Increases robustness (AEAD)
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Main design goals

• Security

• Efficiency

• Simplicity

• Scalability

• Online

• Single pass

• Lightweight

• Robustness (SCA, misuse)
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Ascon: Authenticated 
Encryption



The permutation: 6/8/12 rounds
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Properties of the permutation

• Simplicity

• Small 320-bit state size

• Defined on 5 64-bit words

• Using bitwise Boolean functions

• Fast in Software

• Up to 5 instructions in parallel 

• Bit-sliced S-box (64 in parallel)

• Bit-interleaving on 32-bit processors

• Flexible in hardware 

• Small area to high speed 

• Easy integration of side-channel 
countermeasures 

• No look-up tables 

• Low degree S-box

• High diffusion and proven bounds
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Ascon AEAD: Encryption
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Ascon AEAD: Decryption
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AEAD instances

Nonce-based AEAD, duplex sponge-based with keyed initialization and finalization

Ascon-128 Ascon-128a Ascon-80pq

Security [bits] 128 128 128

Key k [bits] 128 128 160

Rate r [bits] 64 128 64

Capacity c [bits] 256 192 256

Rounds (a, b) (12, 6) (12, 8) (12, 6)
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Ascon-128 vs Ascon-128a

• Same security, different trade-off (block size vs. number of rounds)

• Both scrutinized for years in cryptographic competitions

• Most security analysis can be applied to both algorithms

• Tight security proof for Ascon (https://eprint.iacr.org/2023/775)

• Ascon-128a: 33% more performance, more rounds, larger rate

• Ascon-128: higher robustness in case of state recovery (https://eprint.iacr.org/2023/796)

→We are in favor of standardizing both a fast and a more robust version
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Larger nonce, shorter tags

• Support for shorter tags is useful
• Recommend e.g., 64, 96 and 128 bits 

• We would recommend to encode the size of the tag in the IV. 

• In addition, we think that if shorter tags are supported, a strict limit on verification 
fails should be imposed by the application. 

• Otherwise, for short tags, one ends up in attack scenarios resembling return of 
unverified plaintext which might be a problem for the application.
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Larger nonce, shorter tags

• We do not see the immediate need to support larger nonce, considering the limit 
on messages that can be encrypted under a single key. 

• In case someone would like to use a fixed prefix in the nonce, we suggest to put 
this prefix into the associated data instead.
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Secret nonce, larger keys
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Secret nonce, larger keys

• Also done in AES-GCM in TLS (RFC 8446)

• Increases key size to 256 bits, security level remains at 128 bits

• Improves multi-user security (https://eprint.iacr.org/2023/924) 
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Ascon-80pq

• Instead of Ascon-80pq we prefer to add support for larger keys, secret nonce to 
increase multi-user security and also resistance against Grover’s algorithm.

• By dropping Ascon-80pq we can extend the IV to 64 bits again which gives use 
some options for encoding additional information such as tag sizes etc.

• Reduce number of variants in the standard.
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Ascon: Hashing and XOF



Ascon Hash / XOF

• Similar structure, same permutation(s) as AEAD

• Hash: Fixed output size (l =256)

• Xof: Variable output size
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Hash / XOF instances

• Uses the sponge construction, different number of rounds for init/final and 
absorb/squeeze

→We are in favor of standardizing XOF

Ascon-Hash/Xof Ascon-Hasha/Xofa

Security [bits] 128 128

Rate r [bits] 64 64

Capacity c [bits] 256 256

Rounds (a, b) (12, 12) (12, 8)
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Ascon: PRF and MAC



Ascon PRF / MAC

• We see the requirement for having efficient PRFs that can be used as, e.g., MACs 
or stream ciphers from an industry point of view. 

• Efficient constructions exists for Ascon with low implementation overhead 
(https://eprint.iacr.org/2021/1574)

• Alternative constructions based on HMAC or KMAC are not as efficient and not our 
preferred option. 
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Ascon PRF and MAC
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• Initialization with key, 12 rounds in pa

• Absorb message with r1 = 256 (4x more efficient than Ascon-KMAC)

• Squeeze tag with r2 = 128



Ascon PRF-Short

• Initialization of Ascon-128 (with different IV)

• Nonce replaced by message (m ≤ 128 bits)

• Generates tag (t ≤ 128 bits)

• Applications:
• Symmetric authentication (challenge-response) 

• Efficient key derivation

• Pointer Authentication 

• …
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Security
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Analysis of AEAD

• Nonce respecting, within data limit 264 and time limit 2128
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Analysis of AEAD (misuse settings)

• Generic nonce-misuse on duplex designs result in:
• Confidentiality break with 1+1 misuse queries per block

• State recovery with D misuse queries where T·D=2c

• State recovery does not lead to trivial key recovery (in Ascon)

• Nonce-misuse attacks do not trivially break authenticity (in Ascon)

• Many interesting results published which analyze Ascon in misuse settings
• Exceeding data limit of 264

• Exceeding time limit of 2128

• Using (massive) nonce-misuse
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Analysis of AEAD
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Analysis of AEAD
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Analysis of Hash / XOF
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Analysis of Hash / XOF
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Security properties of the permutation

• Ascon does not require ideal properties of the permutation
• Non-random properties are known

• Detailed overview of analysis in final NIST status update

• Properties of S-box:
• Algebraic degree 2

• Differential/linear branch number 3

• Max. differential probability 2-2, max. squared correlation 2-2

• Properties of linear layer:
• Differential/linear branch number 4

• Efficient diffusion due to weak alignment
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Analysis of the permutation
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Bounds and characteristics
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Bounds and characteristics
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Rounds Differential Linear

1 2-2 2-2 2-2 2-2

2 2-8 2-8 2-8 2-8

3 2-40 2-40 2-28 2-28

4 2-107 ≤ 2-86 2-98 ≤ 2-88

5 2-190 ≤ 2-100 2-186 ≤ 2-96

6 - ≤ 2-129 - ≤ 2-132

• Best known characteristics and bounds for up to 6 rounds of the Ascon 
permutation (https://eprint.iacr.org/2022/1377)

https://eprint.iacr.org/2022/1377


Implementations
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FPGA benchmarks

Throughput Area Throughput / Area

ASCON-128a 6297.6 2410 2.61

ASCON-128 3744.0 2126 1.76

AES128-GCM 2700.8 3270 0.83

Throughput Area Throughput / Area

ASCON-128a 3031.0 4552 0.67

ASCON-128 2157.0 3215 0.67

AES128-GCM 1548.3 8754 0.18

Throughput Area Throughput / Area

ASCON-128a 2158.1 5909 0.37

ASCON-128 1427.5 3764 0.38

AES128-GCM 1384.4 6740 0.21

Xilinx Artix-7

Intel Cyclone

10 LP

Lattice ECP5

https://eprint.iacr.org/2020/1207
Your costs and results may vary.
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ASIC benchmarks 

https://eprint.iacr.org/2021/049

Throughput Area Throughput / Area

Ascon-128a 25.60 1.49 17.18

Ascon-128 16.00 1.56 10.25

AES128-GCM 11.63 2.75 4.22

Your costs and results may vary.
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Embedded SW 
implementations

Time to process NIST testvectors in [µs] on embedded devices

Code size in [bytes] on embedded devices

Uno F1 ESP F7 R5

Ascon-128a 1981 66.4 18.4 11.8 7.3

Ascon-128 2337 76.7 22.3 13.8 8.5

AES128-GCM - 332.8 67.2 35.8 23.7

Uno F1 ESP F7 R5

Ascon-128a 2544 2252 1200 1240 1792

Ascon-128 2552 2157 1120 1180 1792

AES128-GCM - 9908 14832 9836 14272

https://lwc.las3.de/

Your costs and results may vary.

https://lwc.las3.de/
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High-end SW 
performance

AMD Ryzen 9 ARM Cortex-A72

Ascon-128a 5.6 7.0

Ascon-128 8.1 10.5

AES128-GCM 1.1* 30.6

*with AES-NI https://bench.cr.yp.to/

Your costs and results may vary.
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Ascon hardware extensions/instructions

• A Fast and Compact RISC-V Accelerator (for RV32, also ARM)

• RI5CY Ascon with 4.7kGE: speedup factor 50x

• Reuse 10 registers of CPU register file

• https://eprint.iacr.org/2020/1083.pdf

• ARM Custom Datapath Extension, RISC-V Bitmanip Extension, ...

• 32-bit funnel shift instructions (RV32B: FSRI, ESP32: SRC)

• 32-bit interleaving instructions (RV32B: ZIP/UNZIP, ARM CDE: CX3)

• Fused AND/XOR, BIC/XOR instructions (ARM A64: BCAX, ARM CDE: CX3A)

• SHA-2 like Sigma instructions (ARM CDE: CX3DA)

Your costs and results may vary.

41

https://eprint.iacr.org/2020/1083.pdf


Implementation summary

• Often much more efficient than AES128-GCM
• Up to 3x to 5x speed on microcontrollers (https://lwc.las3.de/)

• Up to 2x throughput with 0.5x energy in hardware (https://eprint.iacr.org/2021/049)

• Designed to ease protection against physical attacks

Your costs and results may vary.

42

https://lwc.las3.de/
https://eprint.iacr.org/2021/049


Side-channel protected 
implementations
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Ascon: Designed with SCA in mind

• Algebraic degree 2 of S-box (more efficient masking)

• Masking using invertible Toffoli gate

• Fewer (no) fresh randomness needed

• Better protection against SIFA attacks

• Limited damage if state is recovered

• Leveled implementations

• Higher protection order for Init/Final (key)

• Lower protection order for AD/PT/CT processing (data)
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Masked hardware implementations

• Masked DOM implementations of Ascon-128 (CHES2017)

• Additional first and second-order masked hardware implementations:
• Implementation: https://github.com/ascon/ascon-hardware-sca

• Evaluation: https://cryptography.gmu.edu/athena/index.php?id=LWC

Pipelined Parallel
Protection
Order [kGE] [Mbps] [kGE] [Mbps]

1 10.86 108 28.89 2246

2 16.19 108 53.00 1896

3 21.59 110 81.21 1903

… … … … …

Your costs and results may vary.
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Masked software implementations

Pipelined Parallel

Your costs and results may vary.

• Masked Toffoli/leveled implementations of Ascon-128

• First and second-order masked software implementations:

• Implementation: https://github.com/ascon/ascon-c

• Evaluations: https://cryptography.gmu.edu/athena/index.php?id=LWC
https://github.com/ascon/simpleserial-ascon
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impl./shares
flags

armv6 C
-O2

C
-Os

2
-O2

2
-Os

3
-O2

3
-Os

ARM1176JZF 58 70 85 260 343 524 703

STM32F415 59 84 90 320 378 650 669
Performance in cycles/byte (green: evaluated)

https://github.com/ascon/ascon-c
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://github.com/ascon/simpleserial-ascon


Summary

• Security
• Well analyzed/understood
• High number of external analysis
• Large security margin 

• Efficiency
• Efficient on constraint devices in HW and SW 
• Easier side-channel protection 
• Fast on modern CPUs

• Flexibility
• Additional constructions like XOF, MAC, PRF, …
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Thank you!


