Update on Standardization of Ascon family

Meltem Sönmez Turan NIST Lightweight Cryptography Team

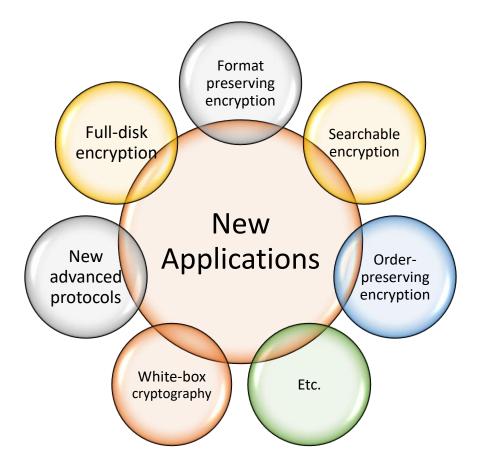
Third NIST Workshop on Block Cipher Modes of Operation October 3 – 4, 2023

This Talk will cover

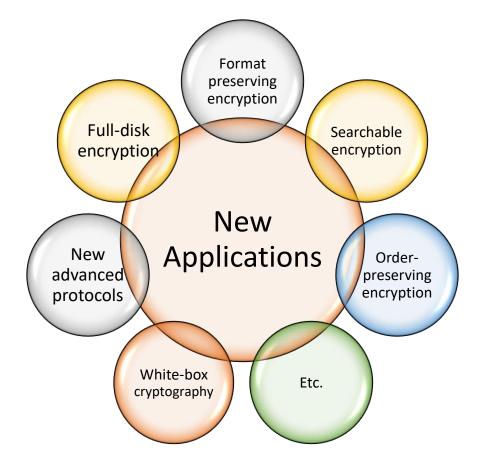
an overview of the NIST lightweight cryptography standardization

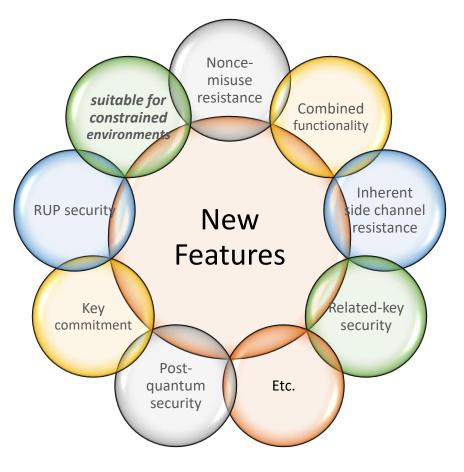
an update on standardization of Ascon family

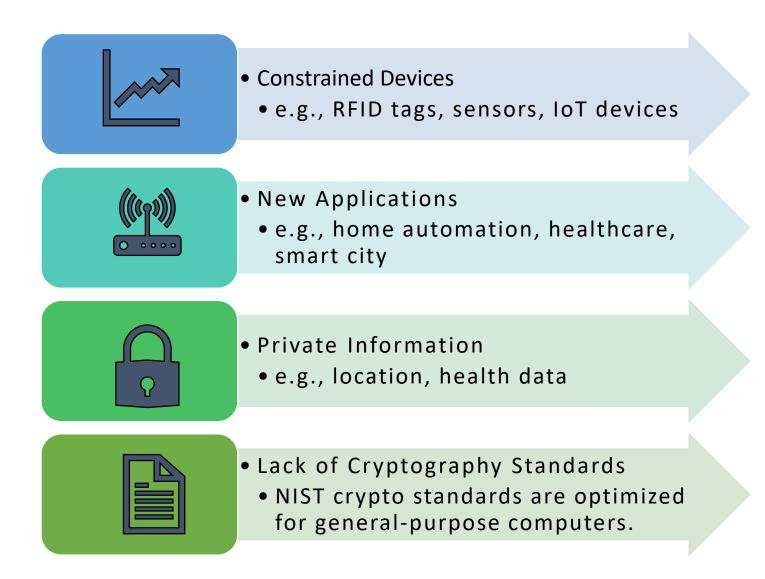
Advanced Encryption Standard (AES)


- FIPS 197 Advanced Encryption Standard Published in 2001.
- Reviewed¹ after 20 years and updated in May 2023.
- Widely adopted, with significant impact on economy²
- Instantiated with a mode of operation from SP 800-38 series (e.g., CBC, OFB, CBC, GCM, ...)

Federal Information Processing Standards Publication Advanced Encryption Standard (AES)				
Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900				
This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.197-upd1				
Published November 26, 2001; Updated May 9, 202	23			
SARTHENT OF COMMERCIAL SARTHENT OF COMMERCIAL * ENTRY STATES OF MUELT				
U.S. Department of Commerce Donald L. Evans, Secretary				
Technology Administration Phillip J. Bond, Under Secretary for Technology				
National Institute of Standards and Technology Karen H. Brown, Acting Director				


- 1. NIST IR 8319 & Publication Reviews <u>https://csrc.nist.gov/projects/crypto-publication-review-project/completed-reviews</u>
- 2. Leech et al., *The Economic Impacts of the Advanced Encryption Standard*, 2018


Why do we need more symmetric-key primitives?


Why do we need more symmetric-key primitives?

Why do we need more symmetric-key primitives?

Public competition-like process with multiple rounds like AES, SHA3 and PQC standardization

Develop new guidelines, recommendations and standards optimized for constrained devices

Authenticated Encryption and (optional) hashing for constrained software and hardware environments

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

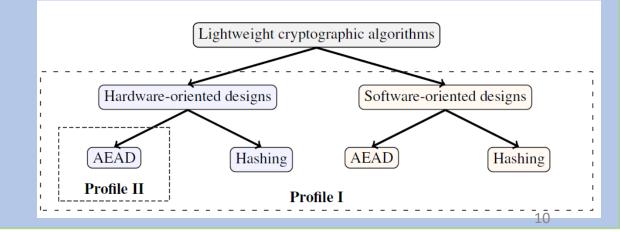
Final Round (March 2021 – February 2023)

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023)


Workshops:

- First Lightweight Cryptography Workshop July 20 – 21, 2015
- Second Lightweight Cryptography Workshop
 October 17 18, 2016

to get feedback on target applications, industry need, requirements, etc.

Publications:

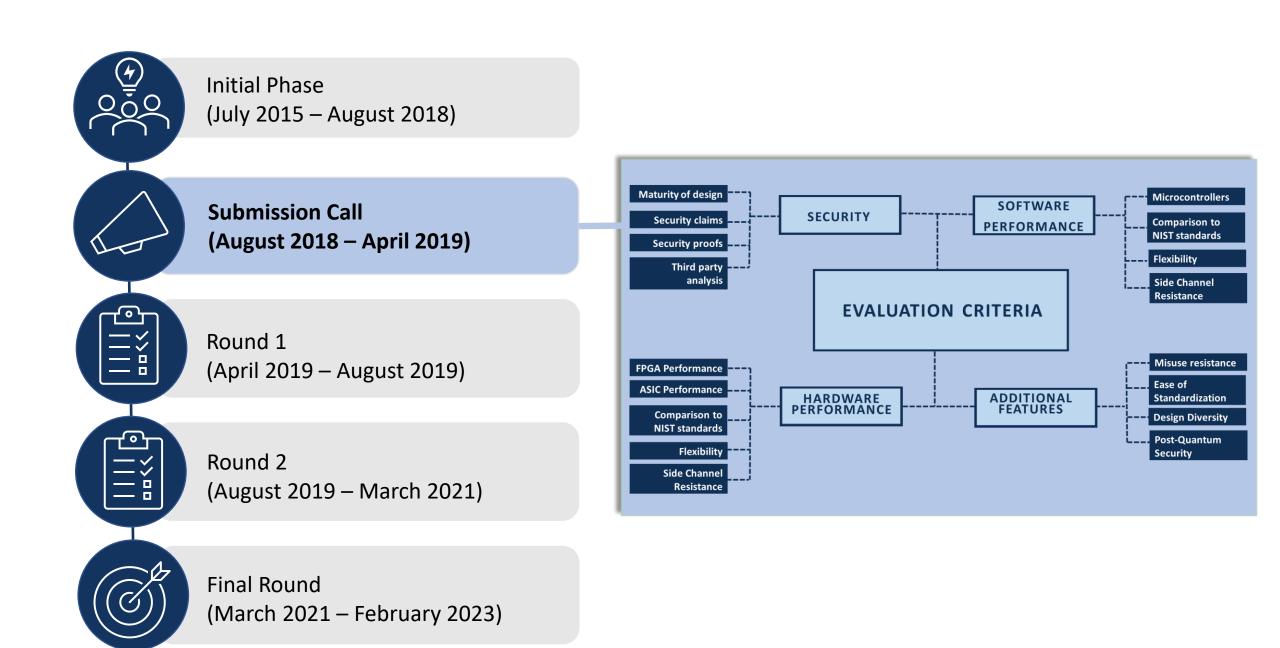
- NISTIR 8114 Report on Lightweight Cryptography
- (White paper, retired) *Profiles for the Lightweight Cryptography Standardization Process*

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023) In August 2018, NIST published 'Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process'.


Submission deadline: February 2019

Security requirements

At least 112-bit security level for messages up to 2^{50} bytes, (nonce respecting). Key size at least 128 bits.

Design requirements Perform better than NIST standards (AES-GCM, SHA-2), optimized for short messages etc.

Implementation requirements Reference and optimized implementation compatible with API etc.

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023) Around 4 months

56 First-round candidates

Evaluation of the candidates were done based on their security

 e.g., distinguishing attacks, practical tag forgeries, domain separation issues, new designs with no third-party analysis etc.

NIST IR 8268 explains how 32 candidates (out of 56) were selected to move forward to the second round. NISTIR 8268

Status Report on the First Round of the NIST Lightweight Cryptography Standardization Process

> Meltem Sönmez Turaı Kerry A. McKay Çağdaş Çalıl Donghoon Chanş Larry Basshan

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8268

Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

Final Round (March 2021 – February 2023)

Around 20 months

32 Second-round candidates

Workshops:

- Third Lightweight Cryptography Workshop November 4 – 6, 2019
- Fourth Lightweight Cryptography Workshop 2016
 October 19 21, 2020

NIST IR 8369 explains how 10 finalists were selected to move forward to the final round. NISTIR 8369

Status Report on the Second Round of the NIST Lightweight Cryptography Standardization Process

> Meltem Sönmez Turan Kerry McKay Donghoon Chang Çağdaş Çalık Lawrence Bassham Jinkeon Kang John Kelsey

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8369


Submission Call (August 2018 – April 2019)

Round 1 (April 2019 – August 2019)

Round 2 (August 2019 – March 2021)

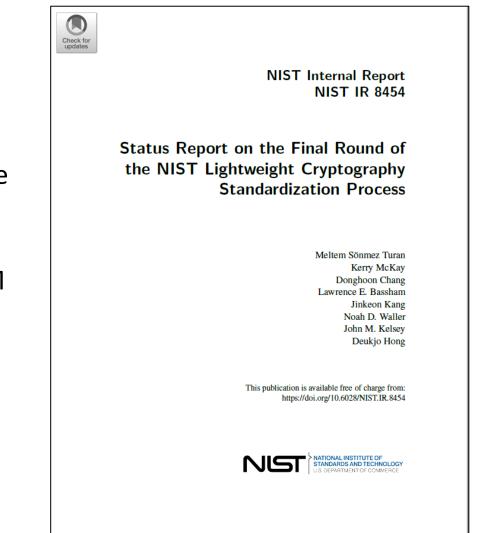
Final Round (March 2021 – February 2023)

Evaluation of ten finalists took about 24 months.

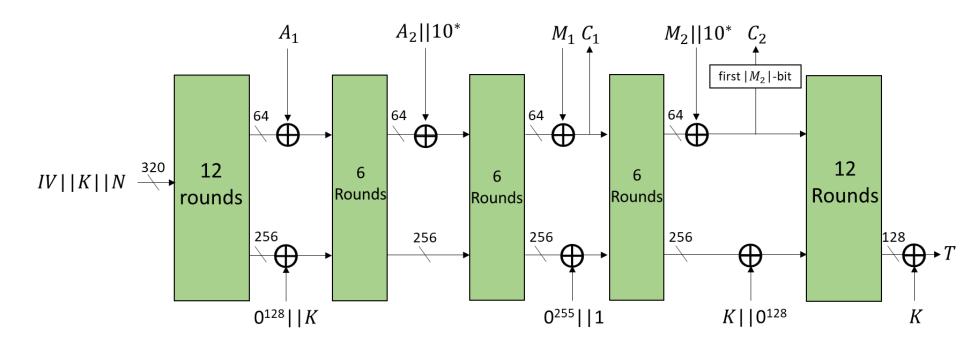
Fair evaluation of finalists is challenging:

- Assigning different weights for different criteria
- Different security claims, different functionality, attacks with different complexities etc.
- Limited resources (not all algorithms got the same attention from the crypto community) for security analysis and benchmarking.

Decision relied on publicly available analysis and benchmarking results.


Finalists	Variant	Building Block	Mode	Key size	Nonce Size	Tag Size
ASCON	ASCON-128		MonkeyDuplex	128	128	128
	ASCON-128a	ASCON Permutation		128	128	128
	ASCON-80pq			160	128	128
Elephant	Dumbo	Spongent- π [160]		128	96	64
	Jumbo	Spongent- π [176]	Encrypt-then-MAC	128	96	64
	Delirium	KECCAK-f[200]		128	96	128
GIFT-COFB	GIFT-COFB	GIFT-128	Combined Feedback	128	128	128
Grain-128AEAD	Grain-128AEAD	Feedback shift register	Encrypt-and-MAC	128	96	64
	ISAP-A-128a	ASCON Permutation		128	128	128
ISAP	ISAP-K-128a	KECCAK-f[400]	Encrypt-then-MAC	128	128	128
	ISAP-A-128	ASCON Permutation		128	128	128
	ISAP-K-128	KECCAK-f[400]		128	128	128
PHOTON-Beetle	PHOTON-Beetle-AEAD[128]	DUOTON Demonstration	Sponge with	128	128	128
	PHOTON-Beetle-AEAD[32]	PHOTON ₂₅₆ Permutation	Combined Feedback	128	128	128
Romulus	Romulus-N	Skinner 129 294	Combined Feedback	128	128	128
	Romulus-M	Skinny-128-384+	MAC-then-Encrypt	128	128	128
	Romulus-T	Tweakable Block Cipher	Encrypt-then-MAC	128	128	128
SPARKLE	SCHWAEMM256-128	SPARKLE ₃₈₄		128	256	128
	SCHWAEMM128-128	SPARKLE ₂₅₆	Sponge with	128	128	128
	SCHWAEMM192-192	SPARKLE ₃₈₄	Combined Feedback	192	192	192
	SCHWAEMM256-256	SPARKLE ₅₁₂		256	256	256
TinyJAMBU	TinyJAMBU-128		Sponge	128	96	64
	TinyJAMBU-192	Keyed Permutation		192	96	64
	TinyJAMBU-256			256	96	64
Xoodyak	Xoodyakv1	Xoodoo Permutation	Sponge-variant Cyclist	128	128	128

Finalists	Variant	Building Block	Mode	Digest size
ASCON	ASCON-Hash	ASCON Permutation	Sponge	256
	ASCON-Hasha	ASCON Permutation		256
PHOTON-Beetle	PHOTON-Beetle-Hash[32]	PHOTON ₂₅₆ Permutation	Sponge	256
Romulus	Romulus-H	Skinny-128-384+	$MDPH^1$	256
SPARKLE	ESCH256	SPARKLE384	Sponge	256
	ESCH384	SPARKLE ₅₁₂	Sponge	384
Xoodyak	Xoodyak	Xoodoo Permutation	Sponge	256


Selection of Ascon

In February 2023, NIST announced the Ascon family as the winner.

- High security margin, large number of third-party analysis (designed in 2014)
- Primary choice for the for lightweight applications in the final CAESAR portfolio (in 2019)
- No design tweaks
- Performance advantages over NIST standards (AES-GCM and SHA-2) in hardware and software
- Implementation and design flexibility
- Mode-level protection mechanism against leakage and lower additional cost for protected implementations
- Support for additional functionalities XOF, dedicated MAC, in addition to Hash

- AEAD and hashing (fixed or variable output length) scheme
- Main component: 320-bit permutation instantiated with different constants and number of rounds for different variants
- AEAD: MonkeyDuplex mode with keyed initialization and finalization
- Hash: Sponge construction

The primary AEAD variant of Ascon family

Which variants to standardize?

	Variant	Parameter sizes
	Ascon-128	128-bit key/nonce/tag
AEAD	Ascon-128a	128-bit key/nonce/tag
	Ascon-80-pq	160-bit key, 128-bit nonce/tag
Hash	Ascon-hash	256-bit digest
На	Ascon-hasha	256-bit digest
XOF	Ascon-XOF	Arbitrary length digest
×	Ascon-XOFa	Arbitrary length digest

Current tentative decisions:

- Either Ascon-128 or both Ascon-128 and Ascon-128a
- Do not include Ascon-80pq
- XOF standardization instead of hash functions

Possible Updates

- Support of shorter tags: 64 and 96-bit tag
- Support for customization strings
- Little endian encoding of inputs for more efficient implementations
- Support for additional functionalities (PRF, MAC, KDF, DRBG etc.)
- How about key/context commitment, secret nonces ?

NEXT STEPS

- Publication of the draft standards describing the Ascon family (later in 2023)
 - Special Publication (SP) series rather than Federal Information Processing Standards (FIPS) (tentative decision)
- Public comments period of 60 to 90 days

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

CONTACT US

lightweight-crypto@nist.gov

PUBLIC FORUM lwc-forum@list.nist.gov

GITHUB https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

WEBSITE https://csrc.nist.gov/Projects/lightweight-cryptography