Validation Testing for Block Cipher Modes

Third NIST Workshop on Block Cipher Modes 2023 10/4/2023 Chris Celi, CAVP Program Manager, NIST christopher.celi@nist.gov

National Institute of Standards and Technology U.S. Department of Commerce

- Applies to all Federal agencies that use cryptography to protect sensitive information
- Requires that cryptographic modules undergo validation testing via the Cryptographic Module Validation Program (CMVP) in order to be used by the Federal government
- The Cryptographic Algorithm Validation Program (CAVP) exists as a branch of the CMVP to perform algorithm tests on cryptographic modules

Cryptographic Algorithm Validation Program

• CAVP is a program within NIST

- Validation consists of conformance testing to FIPS 140 "Security Requirements of Cryptographic Modules"
- Tested algorithms listed in SP 800-140 documents

A cryptographic module is any software, hardware, hybrid, system, etc. that has at least one approved security function (cryptographic algorithm), such as encryption, authentication, digital signatures, key exchange...

Vendors, Labs, and CAVP

- Vendors of cryptographic modules use **NVLAP-accredited 17ACVT laboratories** to test their algorithms.
- First-party labs may also be **NVLAP-accredited** to **17ACVT**
- All testing happens on the NIST-hosted Automated Cryptographic Validation Test System (ACVTS)

<u>https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program</u>

Validation Process

NIST

Vendor	CST Lab	CMVP NIST and CSEC	User
Designs and Produces Hardware • Software • Firmware	Tests for Conformance Derived Test Requirements	Validates	Specifies and Purchases
Define Boundary Define Approved Mode of Operation Security Policy	CAVP Algorithm Testing Documentation Review Source Code Review Operational and Physical Testing	Review Test Results Ongoing NVLAP Assessment Issue Certificates NIST Cost Recovery Fee	Security and Assurance Applications or products with embedded modules

Algorithm Validation Process

Proxy/Validation Authority Architecture

Automated Cryptographic Validation System

Algorithm Validation Process

- NIST-hosted server called Automated Cryptographic Validation Test System (ACVTS) provides algorithm test vectors
- JSON-based communication over an API
- Tests (almost) all NIST-approved cryptographic algorithms
- Server provides inputs to a client that returns the outputs for verification
 - "Black-box" testing approach

ACVTS

- Production Server active since 2019
 - Access limited to NVLAP-accredited 17ACVT labs
 - Pay per vector set (or unlimited for one year)
- Demo Server active since 2017
 - Access open to those who request
 - No costs
 - See https://github.com/usnistgov/ACVP for more information
- Over 1,850,000 vector sets served!

ACVTS – Block Cipher Modes

- Covers all modes in SP 800-38 series
- Apply Known Answer Tests (KATs)
 - Cycle through key bits, plaintext bits, ciphertext bits, S-boxes to cover everything
- Apply randomly generated tests
 - Generate random key, plaintext compute ciphertext
- Apply Monte Carlo Tests (MCTs)
 - Chain encrypt/decrypt calls hundreds of thousands of times

ACVTS – Block Cipher Modes – CTR

- These tests are good, but don't always cover interesting parts of the algorithm...
- Until 2017, the CAVP would ask "how the counter mechanism was set up" for CTR modes
 - Most common response was an empty text box
- CAVP developed "Counter tests" to provide assurances of the requirements

ACVTS – Block Cipher Modes – CTR

- This has lots of issues due to SP 800-38A
- "incrementing function can ensure [uniqueness]", Appendix B
 - Incrementing function definition?
 - Linear function? Wrap-around with random start? What bits?
- Uniqueness over 2^m messages is not testable

ACVTS – Block Cipher Modes – CTR

- Would be helpful to...
- Define standard incrementing functions
 - Over full 128-bits, over 32-bits, etc.
- Could still allow other incrementing functions, but require a standardized one for testing
 - Similar to RSA key sizes

ACVTS – Block Cipher Modes – GCM

NIST

- Initialization vectors uniqueness requirements are difficult to test
 - Require special acknowledgement in the CMVP submission
- Implementations often don't allow an IV to be provided
 - Around 40%
 - Leads to difficulty in testing the algorithm

"Normal" Test Cases

"Deferred" Test Cases

Test system generates all values up-front, and sends IV, plaintext, and key to implementation

Test system provides plaintext and key

Need the implementation to generate an IV and provide it back to the test system

ACVTS – Block Cipher Modes – XTS

- Payload length versus data unit length...
- Payload length total length of the data to be encrypted
- Data unit length length of the "chunks" to be encrypted at a time
- Block length 128 bits, AES
- What if...
 - Payload length is not be divisible by data unit length?

ACVTS – Block Cipher Modes – XTS

- XTS is defined as a stream cipher
- Payload length = 576 bits
- Data unit length = 512 bits
- Data units are processed, but the last payload is only 64 bits
- Encryption of a data unit containing less than one AES block is not defined!

Conclusion

Questions?

See our GitHub https://github.com/usnistgo v/ACVP-Server

CAVP Program Manager Chris Celi christopher.celi@nist.gov