
1

A note on SPHINCS+ 
parameters
Stefan Kölbl, Jade Philipoom
Fifth PQC Standardization Conference
April 11th, 2024



22

Background NIST calls requires supporting q = 264 without security 
degradation.

In practice Use cases where SPHINCS+ fits well do not need that many 
signatures.

Goal What do we get if we target a lower q?
 



33

SPHINCS+ Parameter Space



44

SPHINCS+ Parameter Space

● Too many choices, trade-offs which may fit specific use cases better.

● Our proposal: Focus on use cases where SPHINCS+ will likely find usage:

○ Firmware signing.

○ Limit on q = 220.

● We don’t see much value in having fast signing, targeting low q:

■ SPHINCS+ signing is slow, or huge signatures.

■ Low q and fast signing -> Higher risk of misuse.



55

Our proposal

● Target q=220

● >50% reduction signature size

● Very fast verification, very slow signing (~1 min)

-58%

-57%

-57%



66

Benchmarks

● Benchmarks on OpenTitan (open source silicon root of trust)

● Verification speed competitive with RSA/ECDSA

● Full details: https://github.com/jadephilipoom/opentitan/tree/spx-benchmark/spx-benchmark

-79%

-78%

-79%

https://github.com/jadephilipoom/opentitan/tree/spx-benchmark/spx-benchmark


77

Risks

Main risks

● Tracking signature count = stateful?

● Low usage limits have been problematic in the past (e.g. AES-GCM).

Mitigations

1) Security degrades very slowly.

2) Backing up keys is much simpler (no synchronization on import/export).

3) Concurrent use of keys is much simpler (no synchronization).



88

Risks



99

Risks

~2 years on 1 CPU



1010

Risks

~2 years on 1 CPU

~64 years on 1 CPU



1111

Conclusion

We think such parameter sets will find use in practice:

● Significantly more efficient.

● Provide a good alternative to stateful HBS.

Open questions

● Are there other use cases which would benefit from this?

● Should there be more parameter sets?



12

Thank you
https://eprint.iacr.org/2022/1725

https://eprint.iacr.org/2022/1725.pdf

