Google | 🔀 Privacy, Safety & Security

A note on SPHINCS+ parameters

Stefan Kölbl, Jade Philipoom

Fifth PQC Standardization Conference April 11th, 2024

In practice Use cases where SPHINCS+ fits well do not need that many signatures.

Goal What do we get if we target a lower q?

SPHINCS+ Parameter Space

SPHINCS+ Parameter Space

- Too many choices, trade-offs which may fit specific use cases better.
- Our proposal: Focus on use cases where SPHINCS+ will likely find usage:
 - Firmware signing.
 - Limit on $q = 2^{20}$.
- We don't see much value in having *fast* signing, targeting low q:
 - SPHINCS+ signing is slow, or huge signatures.
 - Low q and fast signing -> Higher risk of misuse.

Our proposal

	\overline{n}	h	d	b	k	w	bitsec	sig bytes		
SPHINCS ⁺ -128s	16	63	7	12	14	16	128	7856	_	E00/
SPHINCS ⁺ -128s-q20	16	18	1	24	6	16	128	3264		-30 %
SPHINCS ⁺ -192s	24	63	7	14	17	16	192	16224		E 70/
SPHINCS ⁺ -192s-q20	24	20	1	21	10	16	192	7008		-37%
SPHINCS ⁺ -256s	32	64	8	14	22	16	255	29792	~	E 70/
$SPHINCS^+-256s-q20$	32	19	1	21	14	16	256	12640		-5/%

- Target $q=2^{20}$
- >50% reduction signature size
- Very fast verification, very slow signing (~1 min)

Benchmarks

Parameters	signature size (bytes)	verification speed (cycles)	
SPHINCS ⁺ -SHAKE-128s	7856	1298047	700/
SPHINCS ⁺ -SHAKE-128s-q20	3264	277 852	-/9%
SPHINCS ⁺ -SHAKE-192s	16224	2 089 772	700/
SPHINCS ⁺ -SHAKE-192s-q20	7008	462 991	-/8%
SPHINCS ⁺ -SHAKE-256s	29792	3 390 932	700/
$SPHINCS^+\text{-}\mathrm{SHAKE}\text{-}256\mathrm{s}\text{-}q20$	12640	695 937 🛹	-/9%

- Benchmarks on OpenTitan (open source silicon root of trust)
- Verification speed competitive with RSA/ECDSA
- Full details: <u>https://github.com/jadephilipoom/opentitan/tree/spx-benchmark/spx-benchmark</u>

Main risks

- Tracking signature count = stateful?
- Low usage limits have been problematic in the past (e.g. AES-GCM).

Mitigations

- 1) Security degrades very slowly.
- 2) Backing up keys is much simpler (no synchronization on import/export).
- 3) Concurrent use of keys is much simpler (no synchronization).

Risks

Risks

Risks

We think such parameter sets will find use in practice:

- Significantly more efficient.
- Provide a good alternative to stateful HBS.

Open questions

- Are there other use cases which would benefit from this?
- Should there be more parameter sets?

Thank you

https://eprint.iacr.org/2022/1725

