

5th NIST PQC Standardization Conference, April 10-12, 2024

ANTRAG SYMPLIFYING AND IMPROVING FALCON WITHOUT COMPROMISING SECURITY

Thomas Espitau, Jade Guiton, **Thi Thu Quyen Nguyen**, Chao Sun, Mehdi Tibouchi, Alexandre Wallet.

- Fast
- Short signature
- Security NIST I,V

- Restricted parameter choices
- Hard implementation
- Fast
- Short signature
- Security NIST I,V

- Restricted parameter choices
- Hard implementation
- Fast
- Short signature
- Security NIST I,V

Mitaka (Eurocrypt 2022)

- More parameter choices
- Simpler implementation
- Fast

- Restricted parameter choices
- Hard implementation
- Fast
- Short signature
- Security NIST I,V

Mitaka (Eurocrypt 2022)

- More parameter choices
- Simpler implementation
- Fast
- Signature 15% larger
- Loss of 20-30 security bits

- Restricted parameter choices
- Hard implementation
- Fast
- Short signature
- Security NIST I,V

Mitaka (Eurocrypt 2022)

- More parameter choices
- Simpler implementation
- Fast
- Signature 15% larger
- Loss of 20-30 security bits

ANTRAG: Make the best of both worlds

HASH-AND-SIGN OVER LATTICES

Sign(m, sk_{Λ}, γ):

- $\mathbf{r} := H(\mathbf{m})$
- $v \leftarrow \text{CloseVector}_{\Lambda,\gamma}(\mathbf{c})$

 $\mathbf{s} \coloneqq \mathbf{c} - \mathbf{v}$

 \rightarrow Return sig \coloneqq s.

Verify(m, sig, $\mathbf{pk}_{\Lambda}, \gamma$): > Accept iff $\|\mathbf{sig}\| \leq \gamma$ and $H(\mathbf{m}) - \mathbf{sig} \in \Lambda$.

HASH-AND-SIGN OVER LATTICES

Sign(m, sk_{Λ}, γ):

- $\mathbf{r} := H(\mathbf{m})$
- $v \leftarrow \text{DiscreteGaussianSampler}(\mathbf{sk}_{\Lambda}, \mathbf{c})$

 $\mathbf{s} \coloneqq \mathbf{c} - \mathbf{v}$

 \rightarrow Return sig \coloneqq s.

Verify(m, sig, $\mathbf{pk}_{\Lambda}, \gamma$): > Accept iff $\|\mathbf{sig}\| \leq \gamma$ and $H(\mathbf{m}) - \mathbf{sig} \in \Lambda$.

HASH-AND-SIGN OVER LATTICES

Sign(m, sk_{Λ}, γ):

 $\mathbf{r} := H(\mathbf{m})$

 $v \leftarrow \text{DiscreteGaussianSampler}(\mathbf{sk}_{\Lambda}, \mathbf{c})$

 $\mathbf{s} \coloneqq \mathbf{c} - \mathbf{v}$

 \rightarrow Return sig \coloneqq s.

Remarks:

TRANSACTIONS

- Security : related to Close Vector Problem (CVP) hard to solve without sk.
- > Smaller DiscreteGaussianSampler(sk_{Λ} ,·): better security.
- \rightarrow need sk of « good quality », i.e short basis.

5

• $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$ and q is a prime

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$ and q is a prime
- Small polynomials $f, g \in \mathcal{K}$

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$ and q is a prime
- Small polynomials $f, g \in \mathcal{K}$
- Small $F, G \in \mathcal{K}$ such that fG gF = q

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$ and q is a prime
- Small polynomials $f, g \in \mathcal{K}$
- Small $F, G \in \mathcal{K}$ such that fG gF = q
- Large $h \coloneqq f^{-1}g \mod q$

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$ and q is a prime
- Small polynomials $f, g \in \mathcal{K}$
- Small $F, G \in \mathcal{K}$ such that fG gF = q
- Large $h \coloneqq f^{-1}g \mod q$
- $\Lambda_{NTRU} \coloneqq \{(u, v) \in \mathcal{K}^2 | v = uh \mod q\}$

- $\mathcal{K} = \mathbb{Z}[X]/(X^n + 1) \approx \mathbb{Z}^n$ and q is a prime
- Small polynomials $f, g \in \mathcal{K}$
- Small $F, G \in \mathcal{K}$ such that fG gF = q
- Large $h \coloneqq f^{-1}g \mod q$
- $\Lambda_{NTRU} \coloneqq \{(u, v) \in \mathcal{K}^2 | v = uh \mod q\}$
- The secret key *sk* is the trapdoor.

NTRU *Trapdoor* generation

• Gaussian Distribution $\mathcal{N}_{\mathbb{R},c,\sigma}$

• Gaussian Distribution $\mathcal{N}_{\mathbb{R},c,\sigma}$

• Discrete Gaussian Distribution on \mathbb{Z} : $D_{\mathbb{Z},c,\sigma}$

• Gaussian Distribution $\mathcal{N}_{\mathbb{R},c,\sigma}$

• Discrete Gaussian Distribution on \mathbb{Z} : $D_{\mathbb{Z},c,\sigma}$

• Discrete Gaussian Distribution on Ring \mathcal{R} : $D_{\mathcal{R},c,\sigma}$

 $\langle\!\langle \rangle\!\rangle$ idemia secure transactions

()) IDEMIA SECURE TRANSACTIONS

 $\left<\!\!\left<\!\!\right> \right> \stackrel{\text{IDEMIA}}{\text{SECURE TRANSACTIONS}}$

SAMPLER/SIGNATURE'S SIZE

 $\|\mathbf{sig}_{F}\| \propto \|\mathbf{sk}\|_{FFO} \approx 1.17\sqrt{q}$

 $\mathbf{2.04}\sqrt{q} \approx \|\mathbf{sk}\|_{hybrid} \propto \|\mathbf{sig}_{\boldsymbol{M}}\|$

SAMPLER/SIGNATURE'S SIZE

QUALITY α and trappor generation

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the **sampler**.

Goal: reduce α .

QUALITY α and trappor generation

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the **sampler** .

Goal: reduce α .

> Observation: α only depends on f, g.

QUALITY α and trapdor generation

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the sampler .

Goal: reduce α .

- > Observation: α only depends on f, g.
- > Falcon's method: Sample f, g from a small $D_{\mathbb{Z}^n,0,\sigma}$ With a reasonable number of repetitions we can find f, g with $\|\mathbf{sk}\| \le \alpha(\sigma)\sqrt{q}$.

QUALITY α and trappoor generation

The security of the scheme depends on the quality α of the **trapdoor**

$$\alpha = \frac{\|\mathbf{s}\mathbf{k}\|}{\sqrt{q}} = \frac{1}{\sqrt{q}} \left\| \begin{pmatrix} f & F \\ g & G \end{pmatrix} \right\|$$

with $\|\cdot\|$ defined by the sampler .

Goal: reduce α .

- > Observation: α only depends on f, g.
- > Falcon's method: Sample f, g from a small $D_{\mathbb{Z}^n,0,\sigma}$ With a reasonable number of repetitions we can find f, g with $\|\mathbf{sk}\| \le \alpha(\sigma)\sqrt{q}$.
- > Our method:

ANTRAG: Annular Trapdoor Generation $\alpha_{hybrid} = 1.14$

$$\mathbb{Z}^n \approx \mathcal{K} \ni \sum_n f_i x^i = f \xrightarrow{\text{DFT}} (f(\zeta_1), \cdots, f(\zeta_n)) \in \mathbb{C}^n$$

$$\mathbb{Z}^n \approx \mathcal{K} \ni \sum_n f_i x^i = f \xrightarrow{\mathsf{DFT}} (f(\zeta_1), \cdots, f(\zeta_n)) \in \mathbb{C}^n$$

• For fixed $\alpha_{hybrid} = \alpha$, we want to find *f*, *g* such that for $\forall i \leq n$

$$\frac{q}{\alpha^2} \le |f(\zeta_i)|^2 + |g(\zeta_i)|^2 \le \alpha^2 q$$

$$\mathbb{Z}^n \approx \mathcal{K} \ni \sum_n f_i x^i = f \xrightarrow{\text{DFT}} (f(\zeta_1), \cdots, f(\zeta_n)) \in \mathbb{C}^n$$

• For fixed $\alpha_{hybrid} = \alpha$, we want to find f, g such that for $\forall i \leq n$

$$\frac{q}{\alpha^2} \le |f(\zeta_i)|^2 + |g(\zeta_i)|^2 \le \alpha^2 q$$

SECURITY OF ANTRAG'S TRAPDOOR

>Formal security

- Same as Falcon
 - \rightarrow Security of keys : based on NTRU assumption
 - \rightarrow Security of signatures : based on GPV framework

SECURITY OF ANTRAG'S TRAPDOOR

>Formal security

- Same as Falcon
 - \rightarrow Security of keys : based on NTRU assumption
 - \rightarrow Security of signatures : based on GPV framework

>Concrete security

- Signature forgery:
 - \rightarrow Improved trapdoor for hybrid sampler => signature has the same security level as Falcon's
- Key recovery:
 - \rightarrow Usual attacks: same as Falcon
 - \rightarrow Attack from the structure of Antrag: voided due to rounding error

SECURITY OF ANTRAG'S TRAPDOOR

>Formal security

- Same as Falcon
 - \rightarrow Security of keys : based on NTRU assumption
 - \rightarrow Security of signatures : based on GPV framework

>Concrete security

- Signature forgery:
 - \rightarrow Improved trapdoor for hybrid sampler => signature has the same security level as Falcon's
- Key recovery:
 - \rightarrow Usual attacks: same as Falcon
 - \rightarrow Attack from the structure of Antrag: voided due to rounding error

ANTRAG's trapdoor has the same security level as FALCON's

PERFORMANCE: FALCON VS ANTRAG

	512			1024		
	Falcon	Antrag-1r	Antrag-1s	Falcon	Antrag-5r	Antrag-5s
Classical sec (bits)	123	123	122	284	284	257
Key size (bytes)	896	896	768	1792	1792	1664
Sign size (bytes)	666	666	590	1280	1280	1208
Keygen (ms)	6.4	5.7	6.1	19.1	19.1	15.4
Signing (μs)	202	115	120	399	240	238
Verification (μs)	27	24	42	58	49	88

> Antrag-Xr parameters are fully compatible with Falcon

- Same format for keys and signatures
- The verification algorithm of each accepts signatures from the other.

> Antrag-Xs parameters are optimized for the signature's size/security

• Shorter keys and signatures while maintaining the same security level.

$\langle\!\langle \rangle\!\rangle$ idemia secure transactions

CONCLUSIONS

Antrag : Novel technique to generate high quality trapdoors for the hybrid Gaussian sampler

- \rightarrow gives much simpler signature scheme with **improved performance** + no security loss
- \rightarrow supports **all** NIST security levels (I to V)
- \rightarrow achieves full verification compatibility with Falcon or shorter keys and signatures.

THANK YOU!

