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2 Outline 

Context: Code-based KEMs with iterative decoding 

∎ Current 4th round candidate BIKE is built on sparse QC random codes (QC-MDPC) 

● QC-MDPCs are decoded with an iterative, fxed point procedure 
● Achieved DFR depends on both the code and the decoder choice 

∎ Decoding failures reveal information on the private key, breaking IND-CCA2 

● Estimating DFR in closed-form has proven to be challenging 
● [WWW23]: estimates of DFR for BIKE w/ BGF decoder were optimistic 

Contributions 

1. Closed form estimate of avg. DFR for (v, w)-regular codes w/ 2-iteration BF decoder 

2. Analyze the code parameters for a IND-CCA2 QC-MDPC scheme 

∎ Accepted at IEEE International Symposium on Information Theory (ISIT 2024) 



3 (v, w)-regular and QC-MDPC binary codes 

(v, w)-regular codes 

∎ Binary block codes with length n, dimension k and redundancy n − k = r 

∎ Each column h∶,j of the parity check matrix H has Hamming weight wt(h∶,j) = v 

∎ Each row of hi,∶ the parity check matrix H has Hamming weight wt(hi,∶) = w = n 
r v 

QC-MDPC codes 

∎ Subset of (v, w)-regular codes with H defned tiling p × p circulant matrices, v ≈ 
√ 

n 

∎ Both BIKE and LEDAcrypt use n = n0p, r = p codes, w = n0v, p prime, ordp(2) = p − 1 

● BIKE uses n0 = 2 
● LEDAcrypt uses n0 ∈ {2, 3, 4} codes 



4 Iterative syndrome decoding: fnd e, given H and s = HeT 

1 0 1 0 0 0 1 0 0 1 

0 1 0 1 0 1 0 1 0 0 

0 0 1 0 1 0 1 0 1 0 

1 0 0 1 0 0 0 1 0 1 

0 1 0 0 1 1 0 0 1 0 

1 

1 

1 

1 

0 

0 0 1 0 0 0 0 1 0 0 

p.c. matrix H 

error e 

s 

Toy example: n = 10, r = 5, v = 2, w = 4, wt(e) = 2 



5 Iterative BF decoder: initialization 

iter = 0 completed iter.s; invariant s(iter) = H(e ⊕ ē(iter))T 

p.c. matrix H 
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6 UPC computation 
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iter = 0 completed iter.s; invariant s(iter) = H(e ⊕ ē(iter))T 



7 Flip ≥ thē(iter),j if upcj 
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iter = 0 completed iter.s; invariant s(iter) = H(e ⊕ ē(iter))T 



8 Update s as s ⊕ h∶,j if ē(iter),j was fipped 
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iter = 0 completed iter.s; invariant s(iter) = H(e ⊕ ē(iter))T 



9 Increment iter, if s(iter) = 0 ⇒ e ⊕ = 0 return = 0e(iter) e(iter) 

iter = 0 completed iter.s; invariant s(iter) = H(e ⊕ 
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10 Average DFR estimation technique 

Outline of the method 

1. Derive the distribution of the syndrome weight wt(s), Pr(Wt = y)

2. Derive the probability distribution of number of discrepancies between the error e and 
its estimate ē(1) added (d+) and removed (d−) by the frst iteration 

3. Partition error estimate ē(1) bits after frst iteration in classes, derive Pr(E(2) = d), and 
the DFR as 1 − Pr(E(2) = 0)

Bonus from code-specifc knowledge (if available) 

∎ [Til18, BBC+23]: Given a specifc H compute τ(H) s.t. for all 0 ≤ x ≤ τ (H)
Pr(E(2) = 0∣E(1) = x) = 1, i.e., if wt(e ⊕ ē(1)) ≤ τ (H) the 2nd iteration converges to s = 0 



11 Syndrome weight distribution estimation 

Method - Step 1 

∎ Compute distribution of the r.v. Wt modeling wt(s) = wt(HeT), i.e., the 
syndrome weight of a weight-t error e through a (v, w)-regular p.c. matrix H 

Working assumption 

∎ Rows of H are independently and uniformly random drawn from the set of binary 
vectors with length n and w asserted bits 

Strategy 

∎ Wt derived as the result of t steps on a non-homogeneous Markov Chain (MC): 

● MC steps model the effect of adding an asserted bit to e ⇒ column of H to s 
● MC transition probabilities derived counting the number of fips taking place in s 
● Initial distribution, i.e., W0 is simply Pr(W0 = 0) = 1 



12 Numerical validation of the distribution of Wt 

(v, n0v) regular codes with n = n0r, wt(e) = t, 109 samples per pt. (sim +, model ×) 

n0 = 2, r = 2200, v = 11, t = 18 
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13 First iteration discrepancy distribution estimation 

Method - Step 2 

∎ Model #discrepancies between e and ē(1), split into added (d+) and removed 
(d−), as random variables: δ+(d+) = Pr(d+ discrepancies added) and δ−(d−)

Strategy 

∎ Knowing Wt, compute Pr(+ discrepancies added∣Wt = w) for all w ∈ {0, . . . , n − k}
through counting arguments 

∎ Compute probability punsat∣b that a p.c. equation is unsatisfed, given that a bit involved 
in it ej is equal to b ∈ {0, 1}

∎ Compute probability distribution of upcj given that ej is equal to b ∈ {0, 1}

∎ For any 1st iteration threshold th(1) of choice, compute δ+(d+) and δ−(d−)

● Note: The number of discrepancies after the 1st it. is: E(1) = t − d− + d+ 



14 Numerical validation of δ+(d+) and δ−(d−) 

n0 = 4, p = 13397, n = n0p, k = (n0 − 1)p, v = 83, t = 66, 105 samples per point 
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15 Second iteration failure rate estimation 

Method - Step 3 

∎ Obtain the second iteration DFR as 1 − Pr(E(2) = 0)

Strategy 

∎ Partition positions of ē(1) into Ja,b, a, b ∈ {0, 1}, a = ej, b = ej ⊕ ē(1),j; for each Ja,b: 

∎ Derive the probability that a p.c. equation involving ē(1),j, j ∈ Ja,b becomes/stays unsat 
after the frst iteration 

∎ Derive the UPC value distribution in the second iteration for ē(1),j, j ∈ Ja,b 

∎ Combine the above with the distributions of ∣Ja,b∣ (obtained from the ones of d+ and 
d−) to obtain Pr(E(2) = d) 



16 DFR estimate numerical validation - code density 

2000 4000 6000 8000 10000 12000 

100 

10−1 

10−3 

10−5 

10−7 

D
FR

 

1500 2000 2500 3000 3500 
10−3 

10−2 

10−1 

100 

D
FR

 

code length n code length n 

k = 1(v, 2v)-regular LDPC codes,v ∈ {9, 11, 13, 15, 17}, 2 , t = 18, parallel decoder w/ n 
thresholds, th1 = th2 = ⌈v+1 ⌉. 108 decodes or 100 decoding failures per point 2 



17 DFR estimate numerical validation - error weight 
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18 Impact on code based-cryptosystem design 

Comparison with previous non-extrapolation estimates on 2 iterations decoder 
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∎ Computations above consider that for all 0 ≤ x ≤ τ(H) Pr(E(2) = 0∣E(1) = x) = 1 
∎ Computations above done with syndrome independent thresholds 

● Syndrome weight dependent thresholds can also be modeled 
● Employing them yields a more effective decoder, lowering DFR further 



19 Considerations on weak keys 

Effects of weak keys 

∎ Weak keys [DGK20, Vas21, ABH+22, WWW23] are p.c. matrices defning codes with 
poor correction capabilities; they are detrimental to the average DFR 

∎ This work provides a technique to estimate the average DFR over all the possible 
codes (keypairs), employing a 2-iteration BF decoder 

● This matches the IND-CCA2 requirement [HHK17] 

Filtering 

∎ Weak keys from [DGK20, Vas21] can be fltered via pattern-matching 

∎ [BBC+20, BBC+23]: Weak keys are characterized by τ(H) values defnitely below 
average and can be removed discarding codes with τ(H) below a chosen threshold τ̄  

● Bonus point: the improvement of the average DFR is automatically quantifed in 
our approach 



20 Concluding remarks 

Take-away points 

∎ We provide a closed-form method to estimate the average DFR of a random 
(v, w)-regular code decoded via 2-iterations parallel BF iterative decoding 

∎ Adopting our approach and tuning BIKE parameters accordingly would yield an 
IND-CCA2 version of BIKE 

∎ The effect of weak keys is taken into account in our estimates, considering both the 
case in which they are discarded and the one in which they’re not 

Ongoing future directions 

∎ Extend the technique to a higher number of parallel BF decoder iterations 

∎ Complete a performance-security optimized design for LEDAcrypt parameters, with 
syndrome-weight dependent thresholds 



21 Questions? 

Thank you for the attention! 
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