Efficacy and Mitigation of the Cryptanalysis on AIM

Seongkwang Kim¹
Jincheol Ha²
Mincheol Son²
Byeonghak Lee¹

¹ Samsung SDS, Seoul, Korea
² KAIST, Daejeon, Korea
Overview

• Cryptanalysis on AIM
 • AIMer is a NIST PQC round 1 candidate based on MPC-in-the-Head paradigm and symmetric primitive AIM
 • AIM has been analyzed recently up to 15-bit security degradation
 • We re-analyze the complexity of exhaustive search on AIM, and re-calculate the amount of the security degradation
Overview

• Cryptanalysis on AIM
 • AIMer is a NIST PQC round 1 candidate based on MPC-in-the-Head paradigm and symmetric primitive AIM
 • AIM has been analyzed recently up to 15-bit security degradation
 • We re-analyze the complexity of exhaustive search on AIM, and re-calculate the amount of the security degradation

• AIM2 and AIMer v2.0
 • To mitigate the analyses, we propose a new symmetric primitive AIM2 which inherits the design rationale of AIM
 • We extensively analyze the security of AIM2
 • Despite of the patch, AIMer v2.0 enjoys faster performance
Symmetric Primitive AIM
Symmetric Primitive AIM

- AIM: \(\{0,1\}^n \times \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n} \) is the one-way function in AlMer v1.0
- It was designed to be efficiently proved by BN++
Symmetric Primitive AIM

- AIM: $\{0,1\}^n \times \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n}$ is the one-way function in AlMer v1.0
- It was designed to be efficiently proved by BN++
- Given a single pair (iv, ct) such that $iv \leftarrow \{0,1\}^n$ and $AIM(iv, pt) = ct$, it should be hard to find $pt^* \in \mathbb{F}_{2^n}$ such that $AIM(iv, pt^*) = ct$

- In AlMer, $pk = (iv, ct)$ and $sk = (pk, pt)$
Symmetric Primitive AIM

- Mersenne S-box
 - \(\text{Mer}[e](x) = x^{2^e-1} \)
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces \(3n \) quadratic equations
Symmetric Primitive AIM

- Mersenne S-box
 - \(\text{Mer}[e](x) = x^{2^e-1} \)
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces \(3n\) quadratic equations

- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
Symmetric Primitive AIM

- Mersenne S-box
 - $\text{Mer}[e](x) = x^{2^e-1}$
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces $3n$ quadratic equations

- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations

- Randomized structure
 - $(A_{iv}, b_{iv}) \leftarrow \text{XOF}(iv)$
 - $\text{Lin}(x) = A_{iv} \cdot x + b_{iv}$
Symmetric Primitive AIM

- Mersenne S-box
 - \(\text{Mer}[e](x) = x^{2^e-1} \)
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces \(3n \) quadratic equations

- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations

- Randomized structure
 - \((A_{iv}, b_{iv}) \leftarrow \text{XOF}(iv)\)
 - \(\text{Lin}(x) = A_{iv} \cdot x + b_{iv}\)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>(\lambda)</th>
<th>(n)</th>
<th>(\ell)</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_3)</th>
<th>(e_*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-I</td>
<td>128</td>
<td>128</td>
<td>2</td>
<td>3</td>
<td>27</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>AIM-III</td>
<td>192</td>
<td>192</td>
<td>2</td>
<td>5</td>
<td>29</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>AIM-V</td>
<td>256</td>
<td>256</td>
<td>3</td>
<td>3</td>
<td>53</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Analyses on AIM
Exhaustive Search on AIM

- In the conference version, the complexity of exhaustive search on AIM was overestimated.
- The reason is the addition chain structure of AIM.
- For example, AIM-I requires only 6 multiplications for evaluating 2 S-boxes:
 \[x \rightarrow x^{2^2-1} \rightarrow x^{2^3-1} \rightarrow x^{2^6-1} \rightarrow x^{2^{12}-1} \rightarrow x^{2^{24}-1} \rightarrow x^{2^{27}-1} \]
Exhaustive Search on AIM

- In the conference version, the complexity of exhaustive search on AIM was overestimated
- The reason is the addition chain structure of AIM
- For example, AIM-I requires only 6 multiplications for evaluating 2 S-boxes

\[x \to x^{2^2-1} \to x^{2^3-1} \to x^{2^6-1} \to x^{2^{12}-1} \to x^{2^{24}-1} \to x^{2^{27}-1} \]

<table>
<thead>
<tr>
<th></th>
<th>Previous Cost</th>
<th>Current Cost</th>
<th>AES Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-I</td>
<td>149.0</td>
<td>146.3</td>
<td>143</td>
</tr>
<tr>
<td>AIM-III</td>
<td>214.4</td>
<td>211.8</td>
<td>207</td>
</tr>
<tr>
<td>AIM-V</td>
<td>280.0</td>
<td>276.7</td>
<td>272</td>
</tr>
</tbody>
</table>

Table. Complexity of exhaustive search attack on AIM and AES in log
Recent Analyses on AIM

- Recent analysis on AIM
 - [LMOM23] Fast exhaustive search, claiming up to 15-bit security degradation
 - [Liu23] Less costly algebraic attack, but not broken
 - [Sar23] Efficient exhaustive search by implementation, unknown amount of security degradation
 - [ZWYGC23] Guess & determine + linearization attack, claiming up to 6-bit security degradation

Recent analyses on AIM

- Recent analysis on AIM
 - [LMOM23] Fast exhaustive search, claiming up to 15-bit security degradation
 - [Liu23] Less costly algebraic attack, but not broken
 - [Sar23] Efficient exhaustive search by implementation, unknown amount of security degradation
 - [ZWYGC23] Guess & determine + linearization attack, claiming up to 6-bit security degradation

- Mainly, there are two vulnerabilities in the structure of AIM
 - Low degree representation in \(n \) variables ⇒ Fast exhaustive search attack
 - Common input to the parallel Mersenne S-boxes ⇒ Structural vulnerability

Fast Exhaustive Search Attack (Liu et al.)

\[\text{AIM}[\text{iv}](\text{pt}) = \text{ct} \]

\[\iff F(x) = y \& \deg F = d \]
Fast Exhaustive Search Attack (Liu et al.)

- Boolean polynomial system can be brute-force searched with $4d \log n 2^n$ computation and $O(n^{d+2})$ memory if d is small enough.

$$AIM[iv](pt) = ct \iff F(x) = y \& \deg F = d$$
Fast Exhaustive Search Attack (Liu et al.)

- Boolean polynomial system can be brute-force searched with $4d \log n 2^n$ computation and $O(n^{d+2})$ memory if d is small enough.
- If degree d is small enough, this fast exhaustive search is faster than naive brute-force search.

$\text{AIM[iv]}(\text{pt}) = \text{ct}$

$\iff F(x) = y \ \& \ \text{deg} F = d$
Fast Exhaustive Search Attack (Liu et al.)

- Boolean polynomial system can be brute-force searched with $4d \log n \times 2^n$ computation and $O(n^{d+2})$ memory if d is small enough
- If degree d is small enough, this fast exhaustive search is faster than naive brute-force search
- The result of Liu et al. (updated security degradation)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Deg</th>
<th>Log(Time) [bits]</th>
<th>Log(Mem) [bits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-I</td>
<td>128</td>
<td>10</td>
<td>136.2 ($-$10.1)</td>
<td>61.7</td>
</tr>
<tr>
<td>AIM-III</td>
<td>192</td>
<td>14</td>
<td>200.7 ($-$11.1)</td>
<td>84.3</td>
</tr>
<tr>
<td>AIM-V</td>
<td>256</td>
<td>15</td>
<td>265.0 ($-$11.7)</td>
<td>95.1</td>
</tr>
</tbody>
</table>

$\text{AIM}[\text{iv}](\text{pt}) = \text{ct} \iff F(x) = y \land \deg F = d$
Easier System to Solve (Liu)

\[w = pt^{-1} \]
\[\text{Mer}[e_i](pt) = w \cdot pt^{2e_i} \]
Easier System to Solve (Liu)

- Introducing w makes a system of $5n$ quadratic, $5n$ cubic equations in $2n$ variables

\[w = pt^{-1} \]
\[Mer[e_i](pt) = w \cdot pt^{2e_i} \]
Easier System to Solve (Liu)

• Introducing w makes a system of $5n$ quadratic, $5n$ cubic equations in $2n$ variables

• If XL algorithm always generate linearly independent equations, then this attack works

\[w = pt^{-1} \]
\[\text{Mer}[e_i](pt) = w \cdot pt^{2e_i} \]
Easier System to Solve (Liu)

- Introducing \(w \) makes a system of \(5n \) quadratic, \(5n \) cubic equations in \(2n \) variables
- If XL algorithm always generate linearly independent equations, then this attack works
- The result of Liu (our estimation)

\[
\begin{array}{|c|c|c|}
\hline
n & \text{Log(Time*) [bits]} & \text{Log(Time**) [bits]} \\
\hline
\text{AIM-I} & 128 & 124.8 (-18.8) & 158.3 (+14.4) \\
\text{AIM-III} & 192 & 157.5 (-54.3) & 226.5 (+14.7) \\
\text{AIM-V} & 256 & 188.9 (-87.8) & 290.2 (+13.5) \\
\hline
\end{array}
\]

*Assumption: Every equations generated by XL are linearly independent (unrealistic)
**Assumption: XL finishes at the degree of regularity

\[w = pt^{-1} \]
\[\text{Mer}[e_i](pt) = w \cdot pt^{2e_i} \]
Efficient Exhaustive Search (Saarinen)

\[w = \text{pt}^{-1} \]

\[\text{Mer}[e_i](\text{pt}) = w \cdot \text{pt}^{2^e_i} \]
Efficient Exhaustive Search (Saarinen)

Using LFSR for \mathbb{F}_{2^n}, exhaustive search on x^{-1} is easy:

- $x \ll_{\text{LFSR}} 1 = x \cdot \alpha$ in $\mathbb{F}_2[\alpha]/(f(\alpha))$
- $(x \ll_{\text{LFSR}} 1)^{-1} = x^{-1} \gg_{\text{LFSR}} 1$

$w = pt^{-1}$
$\text{Mer}[e_i](pt) = w \cdot pt^{2e_i}$
Efficient Exhaustive Search (Saarinen)

• Using LFSR for \mathbb{F}_{2^n}, exhaustive search on x^{-1} is easy:
 $$x \ll_{\text{LFSR}} 1 = x \cdot \alpha \text{ in } \mathbb{F}_2[\alpha]/(f(\alpha))$$
 $$(x \ll_{\text{LFSR}} 1)^{-1} = x^{-1} \gg_{\text{LFSR}} 1$$

• The common inverse w reduces the number of multiplications \rightarrow Low complexity

$$w = pt^{-1}$$
$$\text{Mer}[e_i](pt) = w \cdot pt^{2^e_i}$$
Efficient Exhaustive Search (Saarinen)

• Using LFSR for \mathbb{F}_{2^n}, exhaustive search on x^{-1} is easy:

 $x \ll_{\text{LFSR}} 1 = x \cdot \alpha$ in $\mathbb{F}_2[\alpha]/(f(\alpha))$

 $(x \ll_{\text{LFSR}} 1)^{-1} = x^{-1} \gg_{\text{LFSR}} 1$

• The common inverse w reduces the number of multiplications \rightarrow Low complexity

• The result of Saarinen (new estimation)

\[
w = pt^{-1}
\]

\[
\text{Mer}[e_i](pt) = w \cdot pt^{2e_i}
\]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>#mult</th>
<th>Log(Time) [bits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-I</td>
<td>128</td>
<td>3</td>
<td>145.0 (-1.3)</td>
</tr>
<tr>
<td>AIM-III</td>
<td>192</td>
<td>3</td>
<td>210.2 (-1.6)</td>
</tr>
<tr>
<td>AIM-V</td>
<td>256</td>
<td>4</td>
<td>275.5 (-1.2)</td>
</tr>
</tbody>
</table>
Inputs to parallel S-boxes are all the same
Structural Vulnerability (Zhang et al.)

• Find some $d|\left(2^n - 1\right)$ such that

\[\begin{align*}
\text{Mer}[e_1](\text{pt}) &= \left(\text{pt}^d\right)^{s_1} \cdot \text{pt}^{2^t_1} \\
\text{Mer}[e_2](\text{pt}) &= \left(\text{pt}^d\right)^{s_2} \cdot \text{pt}^{2^t_2} \\
\text{Mer}[e_3](\text{pt}) &= \left(\text{pt}^d\right)^{s_3} \cdot \text{pt}^{2^t_3}
\end{align*}\]

Inputs to parallel S-boxes are all the same
Structural Vulnerability (Zhang et al.)

- Find some $d|(2^n - 1)$ such that
 \[
 \begin{align*}
 \text{Mer}[e_1](pt) &= (pt^d)^{s_1} \cdot pt^{2t_1} \\
 \text{Mer}[e_2](pt) &= (pt^d)^{s_2} \cdot pt^{2t_2} \\
 \text{Mer}[e_3](pt) &= (pt^d)^{s_3} \cdot pt^{2t_3}
 \end{align*}
 \]

- When pt^d is guessed, above system becomes linear

Inputs to parallel S-boxes are all the same
Structural Vulnerability (Zhang et al.)

- Find some $d|(2^n - 1)$ such that

 \[
 \begin{align*}
 \text{Mer}[e_1](pt) &= (pt^d)^{s_1} \cdot pt^{2^t_1} \\
 \text{Mer}[e_2](pt) &= (pt^d)^{s_2} \cdot pt^{2^t_2} \\
 \text{Mer}[e_3](pt) &= (pt^d)^{s_3} \cdot pt^{2^t_3}
 \end{align*}
 \]

- When pt^d is guessed, above system becomes linear
- A few bits of complexity are dismissed as a constant in the big-O notation

Inputs to parallel S-boxes are all the same
Structural Vulnerability (Zhang et al.)

- Find some $d | (2^n - 1)$ such that

 \[
 \begin{align*}
 \text{Mer}[e_1](\text{pt}) &= (\text{pt}^d)^{s_1} \cdot \text{pt}^{2t_1} \\
 \text{Mer}[e_2](\text{pt}) &= (\text{pt}^d)^{s_2} \cdot \text{pt}^{2t_2} \\
 \text{Mer}[e_3](\text{pt}) &= (\text{pt}^d)^{s_3} \cdot \text{pt}^{2t_3}
 \end{align*}
 \]

- When pt^d is guessed, above system becomes linear
- A few bits of complexity are dismissed as a constant in the big-O notation
- The result of Zhang et al. (our estimation)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>d</th>
<th>Log(Time) [bits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-I</td>
<td>128</td>
<td>5</td>
<td>146.0 (-0.3)</td>
</tr>
<tr>
<td>AIM-III</td>
<td>192</td>
<td>45</td>
<td>210.4 (-1.4)</td>
</tr>
<tr>
<td>AIM-V</td>
<td>256</td>
<td>3</td>
<td>277.0 $(+0.3)$</td>
</tr>
</tbody>
</table>
Summary of Analyses on AIM

The main vulnerabilities of AIM are:

- Low algebraic degree
- No domain separation

By our complexity estimations, the amount of security degradation is clarified or reduced.

Some turn out to be not as powerful as claimed.

<table>
<thead>
<tr>
<th></th>
<th>FES (Liu et al.)</th>
<th>Easier System (Liu)</th>
<th>Efficient Search (Saarinen)</th>
<th>Linearization (Zhang et al.)</th>
<th>Exhaustive Search</th>
<th>AES Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-I</td>
<td>136.2 (−10.1)</td>
<td>158.3 (+14.4)</td>
<td>145.0 (−1.3)</td>
<td>146.0 (−0.3)</td>
<td>146.3</td>
<td>143</td>
</tr>
<tr>
<td>AIM-III</td>
<td>200.7 (−11.1)</td>
<td>226.5 (+14.7)</td>
<td>210.2 (−1.6)</td>
<td>210.4 (−1.4)</td>
<td>211.8</td>
<td>207</td>
</tr>
<tr>
<td>AIM-V</td>
<td>265.0 (−11.7)</td>
<td>290.2 (+13.5)</td>
<td>275.5 (−1.2)</td>
<td>277.0 (+0.3)</td>
<td>276.7</td>
<td>272</td>
</tr>
</tbody>
</table>
Summary of Analyses on AIM

- The main vulnerabilities of AIM are:
 - Low algebraic degree
 - No domain separation
- By our complexity estimations, the amount of security degradation is clarified or reduced
- Some turn out to be not as powerful as claimed

<table>
<thead>
<tr>
<th></th>
<th>FES (Liu et al.)</th>
<th>Easier System (Liu)</th>
<th>Efficient Search (Saarinen)</th>
<th>Linearization (Zhang et al.)</th>
<th>Exhaustive Search</th>
<th>AES Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-I</td>
<td>136.2 (−6.8)</td>
<td>158.3 (+17.7)</td>
<td>145.0 (+2.0)</td>
<td>146.0 (+3.0)</td>
<td>146.3</td>
<td>143</td>
</tr>
<tr>
<td>AIM-III</td>
<td>200.7 (−5.3)</td>
<td>226.5 (+19.5)</td>
<td>210.2 (+3.2)</td>
<td>210.4 (+3.4)</td>
<td>211.8</td>
<td>207</td>
</tr>
<tr>
<td>AIM-V</td>
<td>265.0 (−7.0)</td>
<td>290.2 (+18.2)</td>
<td>275.5 (+3.5)</td>
<td>277.0 (+5.0)</td>
<td>276.7</td>
<td>272</td>
</tr>
</tbody>
</table>
AIM2 and Analysis
AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
 - $\text{Mer}[e]^{-1}(x) = x^a$
 - $a = (2^e - 1)^{-1} \mod (2^n - 1)$
 - More resistant to algebraic attacks
AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
 - $\text{Mer}[e]^{-1}(x) = x^a$
 - $a = (2^e - 1)^{-1} \mod (2^n - 1)$
 - More resistant to algebraic attacks

- Larger exponents
 - To mitigate fast exhaustive search
AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
 - $\text{Mer}[e]^{-1}(x) = x^a$
 - $a = (2^e - 1)^{-1} \mod (2^n - 1)$
 - More resistant to algebraic attacks

- Larger exponents
 - To mitigate fast exhaustive search

- Fixed constant addition
 - To differentiate inputs of S-boxes
 - Increase the degree of composite power function
 \[(x^a)^b \text{ vs } (x^a + c)^b\]
AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
 - $\text{Mer}[e]^{-1}(x) = x^a$
 - $a = (2^e - 1)^{-1} \mod (2^n - 1)$
 - More resistant to algebraic attacks

- Larger exponents
 - To mitigate fast exhaustive search

- Fixed constant addition
 - To differentiate inputs of S-boxes
 - Increase the degree of composite power function
 $$(x^a)^b \text{ vs } (x^a + c)^b$$

<table>
<thead>
<tr>
<th>Scheme</th>
<th>λ</th>
<th>n</th>
<th>ℓ</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM2-I</td>
<td>128</td>
<td>128</td>
<td>2</td>
<td>49</td>
<td>91</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>AIM2-III</td>
<td>192</td>
<td>192</td>
<td>2</td>
<td>17</td>
<td>47</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>AIM2-V</td>
<td>256</td>
<td>256</td>
<td>3</td>
<td>11</td>
<td>141</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
Algebraic Analysis on AIM2

- Brute-force search of quadratic equations
 - Variables: x (input), t_i (output of i-th S-box), z (input of the last S-box) in \mathbb{F}_2^n
Algebraic Analysis on AIM2

• Brute-force search of quadratic equations
 • Variables: x (input), t_i (output of i-th S-box), z (input of the last S-box) in \mathbb{F}_2^n
 • Set up an equation with indeterminate $a_{\alpha \beta \gamma}$:
 \[
 \sum_{\alpha,\gamma \in \mathbb{F}_2^n, \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{F}_2^n} a_{\alpha \beta \gamma} x^{\alpha} t_i^{\beta} z^{\gamma} = 0
 \]
Algebraic Analysis on AIM2

• Brute-force search of quadratic equations
 • Variables: x (input), t_i (output of i-th S-box), z (input of the last S-box) in \mathbb{F}_2^n
 • Set up an equation with indeterminate $a_{\alpha \beta \gamma}$:

$$\sum_{\alpha, \gamma \in \mathbb{F}_2^n, \beta = (\beta_1, \ldots, \beta_i) \in \mathbb{F}_2^{\ell n}} a_{\alpha \beta \gamma} x^\alpha t_i^\beta z^\gamma = 0$$

 • Randomly sample x, compute corresponding t_i and z, and substitute them
Algebraic Analysis on AIM2

- Brute-force search of quadratic equations
 - Variables: x (input), t_i (output of i-th S-box), z (input of the last S-box) in \mathbb{F}_2^n
 - Set up an equation with indeterminate $a_{\alpha \beta \gamma}$:
 \[
 \sum_{\alpha, \gamma \in \mathbb{F}_2^n, \beta = (\beta_1, ..., \beta_\ell) \in \mathbb{F}_2^{\ell n}} a_{\alpha \beta \gamma} x^{\alpha} t_i^{\beta_i} z^\gamma = 0
 \]
 \[\text{with} \quad \text{hw}(\alpha) + \text{hw}(\beta) + \text{hw}(\gamma) \leq 2\]
 - Randomly sample x, compute corresponding t_i and z, and substitute them
 - Repeat the previous step sufficiently many times, and solve the linear system w.r.t. $a_{\alpha \beta \gamma}$
Algebraic Analysis on AIM2

- Brute-force search of quadratic equations
 - Variables: x (input), t_i (output of i-th S-box), z (input of the last S-box) in \mathbb{F}_2^n
 - Set up an equation with indeterminate $a_{\alpha \beta \gamma}$:
 \[
 \sum_{\alpha, \gamma \in \mathbb{F}_2^n, \beta = (\beta_1, \ldots, \beta_\ell) \in \mathbb{F}_2^{\ell \cdot n}} a_{\alpha \beta \gamma} x^\alpha t_i^\beta z^\gamma = 0
 \]

 - Randomly sample x, compute corresponding t_i and z, and substitute them
 - Repeat the previous step sufficiently many times, and solve the linear system w.r.t. $a_{\alpha \beta \gamma}$

- The resulting system and complexity

<table>
<thead>
<tr>
<th></th>
<th>#var</th>
<th>#eq</th>
<th>Log(Time) [bits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM2-I</td>
<td>256</td>
<td>384</td>
<td>207.9 (+60.9)</td>
</tr>
<tr>
<td></td>
<td>384</td>
<td>1536</td>
<td>185.3 (+38.3)</td>
</tr>
<tr>
<td>AIM2-III</td>
<td>384</td>
<td>576</td>
<td>301.9 (+89.6)</td>
</tr>
<tr>
<td></td>
<td>576</td>
<td>2304</td>
<td>262.4 (+50.1)</td>
</tr>
<tr>
<td>AIM2-V</td>
<td>768</td>
<td>1536</td>
<td>503.7 (+226.0)</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>4608</td>
<td>411.4 (+133.7)</td>
</tr>
</tbody>
</table>
Algebraic Analysis on AIM2

• Brute-force search of intermediate variables in a S-box
 • Variable: $x \in \mathbb{F}_{2^n}$, $t = \text{Mer}[e]^{-1}(x)$, and $y = x^a$
 • Goal: For any $a \in \mathbb{Z}_{2^n-1}$, prove that introducing y does not generate an easy system to solve
Algebraic Analysis on AIM2

• Brute-force search of intermediate variables in a S-box
 • Variable: $x \in \mathbb{F}_{2^n}$, $t = \text{Mer}[e]^{-1}(x)$, and $y = x^a$
 • Goal: For any $a \in \mathbb{Z}_{2^n-1}$, prove that introducing y does not generate an easy system to solve

• Result: Either of followings are checked by theoretically or experimentally
 1. The variable t is of high degree with respect to y
 2. The system does not generate sufficiently many quadratic equations
 3. The system only involves y-variables
Algebraic Analysis on AIM2

• Brute-force search of intermediate variables in a S-box
 • Variable: \(x \in \mathbb{F}_{2^n} \), \(t = \text{Mer}[e]^{-1}(x) \), and \(y = x^a \)
 • Goal: For any \(a \in \mathbb{Z}_{2^n-1} \), prove that introducing \(y \) does not generate an easy system to solve

• Result: Either of followings are checked by theoretically or experimentally
 1. The variable \(t \) is of high degree with respect to \(y \)
 2. The system does not generate sufficiently many quadratic equations
 3. The system only involves \(y \)-variables

<table>
<thead>
<tr>
<th></th>
<th>((e_1), Deg)</th>
<th>((e_2), Deg)</th>
<th>((e_3), Deg)</th>
<th>((e_*), Deg)</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM2-I</td>
<td>(49,16)</td>
<td>(91,15)</td>
<td></td>
<td>(3,15)</td>
<td>(\geq 176.2) (+29.2)</td>
</tr>
<tr>
<td>AIM2-III</td>
<td>(17,17)</td>
<td>(47,17)</td>
<td></td>
<td>(5,26)</td>
<td>(\geq 214.4) (+2.1)</td>
</tr>
<tr>
<td>AIM2-V</td>
<td>(11,31)</td>
<td>(141,23)</td>
<td>(7,25)</td>
<td>(3,29)</td>
<td>(\geq 310.4) (+32.7)</td>
</tr>
</tbody>
</table>
Other Analysis on AIM2

• Exhaustive search
 • Saarinen’s method is the fastest (by <1 bit)
 • Sliding 2 LFSRs standing for \(pt \) and \(pt^{-1} \)
 • Fast exhaustive search is not allowed since there is no low-degree system
Other Analysis on AIM2

• Exhaustive search
 • Saarinen’s method is the fastest (by <1 bit)
 • Sliding 2 LFSRs standing for pt and pt^{-1}
 • Fast exhaustive search is not allowed since there is no low-degree system

• DC/LC
 • Almost same as AIM
Other Analysis on AIM2

• Exhaustive search
 • Saarinen’s method is the fastest (by <1 bit)
 • Sliding 2 LFSRs standing for pt and pt^{-1}
 • Fast exhaustive search is not allowed since there is no low-degree system

• DC/LC
 • Almost same as AIM

• Grover’s algorithm
 • MITM approach can reduce the depth of circuit
 • But AIM2 still costs more than AES
Other Analysis on AIM2

- Exhaustive search
 - Saarinen’s method is the fastest (by <1 bit)
 - Sliding 2 LFSRs standing for pt and pt^{-1}
 - Fast exhaustive search is not allowed since there is no low-degree system
- DC/LC
 - Almost same as AIM
- Grover’s algorithm
 - MITM approach can reduce the depth of circuit
 - But AIM2 still costs more than AES
- Quantum attacks
 - Complexities change but not critically
 - Always slower than Grover’s algorithm
AIMer version 2.0

• Change of Specification
 • Symmetric primitive: AIM → AIM2
 • Prehashing now supported
 • Halved salt size
 • Reduced number of parameter sets (e.g., 128f, 128s)
AIMer version 2.0

• Change of Specification
 • Symmetric primitive: AIM → AIM2
 • Prehashing now supported
 • Halved salt size
 • Reduced number of parameter sets (e.g., 128f, 128s)

• Change of Implementation
 • More readable reference code
 • Additional ARM64 implementation
 • Up to 29% faster signing on AVX2 than v1.0
 • Up to 96% less memory usage in verification
AIMer version 2.0

• Change of Specification
 • Symmetric primitive: AIM \rightarrow AIM2
 • Prehashing now supported
 • Halved salt size
 • Reduced number of parameter sets (e.g., 128f, 128s)

• Change of Implementation
 • More readable reference code
 • Additional ARM64 implementation
 • Up to 29% faster signing on AVX2 than v1.0
 • Up to 96% less memory usage in verification

• Editorial Change
 • Improved EUF-CMA security proof (birthday bound \rightarrow full bound)
 • Implementation-friendly specification
Performance Comparison

Graph showing signing time comparison in ms (AVX2) for v1.0 and v2.0.
Performance Comparison

<table>
<thead>
<tr>
<th>Scheme</th>
<th>pk (B)</th>
<th>sig (B)</th>
<th>Sign (ms)</th>
<th>Verify (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilithium2</td>
<td>1312</td>
<td>2420</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>Falcon-512</td>
<td>897</td>
<td>690</td>
<td>0.27</td>
<td>0.04</td>
</tr>
<tr>
<td>SPHINCS+128s</td>
<td>32</td>
<td>7856</td>
<td>315.74</td>
<td>0.35</td>
</tr>
<tr>
<td>SPHINCS+128f</td>
<td>32</td>
<td>17088</td>
<td>16.32</td>
<td>0.97</td>
</tr>
<tr>
<td>AlMer v1.0</td>
<td>32</td>
<td>5904</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>AlMer v1.0</td>
<td>32</td>
<td>4176</td>
<td>4.42</td>
<td>4.31</td>
</tr>
<tr>
<td>AlMer v2.0</td>
<td>32</td>
<td>5888</td>
<td>0.42</td>
<td>0.41</td>
</tr>
<tr>
<td>AlMer v2.0</td>
<td>32</td>
<td>4160</td>
<td>3.18</td>
<td>3.13</td>
</tr>
</tbody>
</table>

Measured on Intel Xeon E5-1650 v3 @ 3.50 GHz with 128 GB RAM, TurboBoost and Hyper-threading disabled, gcc 7.5.0 with -O3 option
Conclusion

• Summary
 • We re-analyze the efficacy of recent analyses on AIM
 • We patched AIM to AIM2 to mitigate the analyses
 • AImer v2.0 which contains AIM2 enjoys up to 29% faster signing
Conclusion

• Summary
 • We re-analyze the efficacy of recent analyses on AIM
 • We patched AIM to AIM2 to mitigate the analyses
 • AlMer v2.0 which contains AIM2 enjoys up to 29% faster signing

• Remark
 • We submitted AlMer to KpqC and NIST PQC competition
 • Our website: https://aimer-signature.org
 • We are waiting for third-party analysis!
Conclusion

• Summary
 • We re-analyze the efficacy of recent analyses on AIM
 • We patched AIM to AIM2 to mitigate the analyses
 • AlMer v2.0 which contains AIM2 enjoys up to 29% faster signing

• Remark
 • We submitted AlMer to KpqC and NIST PQC competition
 • Our website: https://aimer-signature.org
 • We are waiting for third-party analysis!

• Work in progress
 • We are implementing AlMer on ARM Cortex-M4 in an optimized form
 • Preliminary result: memory usage ≤ 110 KB for all parameter sets
 • We are improving the puncturable PRF in AlMer, and adopting AES-based PRG
 • Preliminary result: 4.8 KB (128f), 3.6 KB (128s)
Thank you!
Check out our website!