
Finding isomorphisms between trilinear forms, slightly
faster

Anand Kumar Narayanan 1 Youming Qiao 2 Gang Tang 2,3

1SandboxAQ, Palo Alto, CA, USA.

2University of Technology Sydney, Ultimo, NSW, Australia.

3University of Birmingham, UK.



Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an invertible matrix A such
that

A ϕ A−1 ψ=

Yes, quickly! Jumping from two (square matrices) to three (three dimensional tensors
given by a cube of numbers), is a giant leap in computational complexity.

Most such linear algebraic problems concerning three dimensional tensors (or
equivalently, trilinear forms) are (NP- or VNP- or #P-)hard, with a web

of complexity theoretic reductions connecting them. Among them is the tensor
isomorphism problem, on whose hardness MEDS, ALTEQ, etc. are built.



Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an invertible matrix A such
that

A ϕ A−1 ψ=

Yes, quickly!

Jumping from two (square matrices) to three (three dimensional tensors
given by a cube of numbers), is a giant leap in computational complexity.

Most such linear algebraic problems concerning three dimensional tensors (or
equivalently, trilinear forms) are (NP- or VNP- or #P-)hard, with a web

of complexity theoretic reductions connecting them. Among them is the tensor
isomorphism problem, on whose hardness MEDS, ALTEQ, etc. are built.



Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an invertible matrix A such
that

A ϕ A−1 ψ=

Yes, quickly! Jumping from two (square matrices) to three (three dimensional tensors
given by a cube of numbers), is a giant leap in computational complexity.

Most such linear algebraic problems concerning three dimensional tensors (or
equivalently, trilinear forms) are (NP- or VNP- or #P-)hard, with a web

of complexity theoretic reductions connecting them. Among them is the tensor
isomorphism problem, on whose hardness MEDS, ALTEQ, etc. are built.



New algorithms for tensor isomorphism

▶ We present algorithms to find tensor isomorphisms polynomially faster than
previously known, and discuss how this informs the security/parameters of
MEDS/ALTEQ.

▶ Meet-in-the-middle/birthday style algorithms, exploiting novel invariants to
finding collisions.

▶ Based on our work (eprint number 368, 2024) to appear in Eurocrypt 2024,
which builds on algorithms by Bouillaguet, Fouque, and Véber (Eurocrypt
2013), and Beullens (Crypto 2023).

▶ For the complexity theoretic reductions, average case analysis, search to
decision variant reduction, etc., consult the series (ITCS 2021 I,II,III,IV) of
papers by Joshua Grochow and Youming Qiao.



Trilinear forms
A trilinear form is a function

ϕ : Fnq × Fnq × Fnq −→ Fq

(u, v,w) 7−→
∑
i

∑
j

∑
k

ϕijkuivjwk

that is linear in each of its three arguments. Think of it as an n× n× n cube

ϕijk

u

v

w

of Fq elements.

It is alternating if it satisfies the anti-symmetry constraint

ϕ(u, u,w) = ϕ(u, v, v) = ϕ(w, v,w) = 0, ∀u, v,w ∈ Fnq.



Trilinear forms
A trilinear form is a function

ϕ : Fnq × Fnq × Fnq −→ Fq

(u, v,w) 7−→
∑
i

∑
j

∑
k

ϕijkuivjwk

that is linear in each of its three arguments. Think of it as an n× n× n cube

ϕijk

u

v

w

of Fq elements. It is alternating if it satisfies the anti-symmetry constraint

ϕ(u, u,w) = ϕ(u, v, v) = ϕ(w, v,w) = 0, ∀u, v,w ∈ Fnq.



Tensor Isomorphism (Variant underlying MEDS).

Triples of invertible matrices (A,B,C) ∈ GLn(Fq)3 act on tensors by basis change

((A,B,C), ϕ(⋆, ⋆, ⋆)) 7−→ ϕA,B,C := ϕ(A⋆,B⋆,C⋆)

on the respective three dimensions.

Two forms ϕ, ψ are isomorphic if there exists
such a basis change (A,B,C) ∈ GLn(Fq)3 taking one to the other, as pictured.

ϕijk

∃A
basis change

∃B
basis

change

∃C
basis change

=
ψijk

Given two isomorphic tensors, find an isomorphsim between them.



Tensor Isomorphism (Variant underlying MEDS).

Triples of invertible matrices (A,B,C) ∈ GLn(Fq)3 act on tensors by basis change

((A,B,C), ϕ(⋆, ⋆, ⋆)) 7−→ ϕA,B,C := ϕ(A⋆,B⋆,C⋆)

on the respective three dimensions. Two forms ϕ, ψ are isomorphic if there exists
such a basis change (A,B,C) ∈ GLn(Fq)3 taking one to the other, as pictured.

ϕijk

∃A
basis change

∃B
basis

change

∃C
basis change

=
ψijk

Given two isomorphic tensors, find an isomorphsim between them.



Tensor Isomorphism (Variant underlying ALTEQ).

Invertible matrices A ∈ GLn(Fq) act on alternating tensors by the same basis change

(A, ϕ(⋆, ⋆, ⋆)) 7−→ ϕA := ϕ(A⋆,A⋆,A⋆)

on each of the three dimensions. Two alternating trilinear forms ϕ, ψ are isomorphic
if there exists such a basis change A ∈ GLn(Fq) taking one to the other, as pictured.

ϕijk

∃A
basis change

∃A
basis

change

∃A
basis change

=
ψijk

Given two isomorphic alternating tensors, find an isomorphsim between them.



Finding tensor isomorphism (MEDS variant)

Co-rank one points are u ∈ Fnq such that ϕ(u, ⋆, ⋆) is co-rank one. That is, the matrix

ϕijk

u

has rank n− 1.

We design a fast computable invariant, pairing trilinear forms ϕ with
co-rank one projective points û ∈ P(Fnq),

(ϕ, û) 7−→
〈
ϕ, û

〉
satisfying, for all ϕ, û,A,B,C, 〈

ϕ, û
〉
=

〈
ϕA,B,C,A−1û

〉
.

This invariant is distinguishing and informs a meet-in-the-middle birthday attack over
the projective points, to test (and find) isomorphism.



Finding tensor isomorphism (MEDS variant)

Co-rank one points are u ∈ Fnq such that ϕ(u, ⋆, ⋆) is co-rank one. That is, the matrix

ϕijk

u

has rank n− 1. We design a fast computable invariant, pairing trilinear forms ϕ with
co-rank one projective points û ∈ P(Fnq),

(ϕ, û) 7−→
〈
ϕ, û

〉
satisfying, for all ϕ, û,A,B,C, 〈

ϕ, û
〉
=

〈
ϕA,B,C,A−1û

〉
.

This invariant is distinguishing and informs a meet-in-the-middle birthday attack over
the projective points, to test (and find) isomorphism.



Finding tensor isomorphism (MEDS variant)

Co-rank one points are u ∈ Fnq such that ϕ(u, ⋆, ⋆) is co-rank one. That is, the matrix

ϕijk

u

has rank n− 1. We design a fast computable invariant, pairing trilinear forms ϕ with
co-rank one projective points û ∈ P(Fnq),

(ϕ, û) 7−→
〈
ϕ, û

〉
satisfying, for all ϕ, û,A,B,C, 〈

ϕ, û
〉
=

〈
ϕA,B,C,A−1û

〉
.

This invariant is distinguishing and informs a meet-in-the-middle birthday attack over
the projective points, to test (and find) isomorphism.



Constructing the invariant

Start with a co-rank one û = û1 ∈ P(Fnq).

ϕ

u1

∃!v̂1 s.t. ϕ(u1,v1,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ1∈ s.t. ϕ(⋆,v1,w1)=0−−−−−−−−−−−−−−−→

ϕ

w1

∃!û2∈ s.t. ϕ(u2,⋆,w1)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ϕ

u2
∃!v̂2 s.t. ϕ(u2,v2,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ2∈ s.t. ϕ(⋆,v2,w2)=0−−−−−−−−−−−−−−−→

ϕ

w2

∃!û3∈ s.t. ϕ(u3,⋆,w2)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

ϕ

un
∃!v̂n s.t. ϕ(un,vn,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵn∈ s.t. ϕ(⋆,vn,wn)=0−−−−−−−−−−−−−−−→

ϕ

wn

U = {u1, u2, . . . , un} V = {v1, v2, . . . , vn} W = {w1,w2, . . . ,wn}



Constructing the invariant

Start with a co-rank one û = û1 ∈ P(Fnq).

ϕ

u1
∃!v̂1 s.t. ϕ(u1,v1,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1

∃!ŵ1∈ s.t. ϕ(⋆,v1,w1)=0−−−−−−−−−−−−−−−→

ϕ

w1

∃!û2∈ s.t. ϕ(u2,⋆,w1)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ϕ

u2
∃!v̂2 s.t. ϕ(u2,v2,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ2∈ s.t. ϕ(⋆,v2,w2)=0−−−−−−−−−−−−−−−→

ϕ

w2

∃!û3∈ s.t. ϕ(u3,⋆,w2)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

ϕ

un
∃!v̂n s.t. ϕ(un,vn,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵn∈ s.t. ϕ(⋆,vn,wn)=0−−−−−−−−−−−−−−−→

ϕ

wn

U = {u1, u2, . . . , un} V = {v1, v2, . . . , vn} W = {w1,w2, . . . ,wn}



Constructing the invariant

Start with a co-rank one û = û1 ∈ P(Fnq).

ϕ

u1
∃!v̂1 s.t. ϕ(u1,v1,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ1∈ s.t. ϕ(⋆,v1,w1)=0−−−−−−−−−−−−−−−→

ϕ

w1

∃!û2∈ s.t. ϕ(u2,⋆,w1)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ϕ

u2
∃!v̂2 s.t. ϕ(u2,v2,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ2∈ s.t. ϕ(⋆,v2,w2)=0−−−−−−−−−−−−−−−→

ϕ

w2

∃!û3∈ s.t. ϕ(u3,⋆,w2)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

ϕ

un
∃!v̂n s.t. ϕ(un,vn,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵn∈ s.t. ϕ(⋆,vn,wn)=0−−−−−−−−−−−−−−−→

ϕ

wn

U = {u1, u2, . . . , un} V = {v1, v2, . . . , vn} W = {w1,w2, . . . ,wn}



Constructing the invariant

Start with a co-rank one û = û1 ∈ P(Fnq).

ϕ

u1
∃!v̂1 s.t. ϕ(u1,v1,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ1∈ s.t. ϕ(⋆,v1,w1)=0−−−−−−−−−−−−−−−→

ϕ

w1

∃!û2∈ s.t. ϕ(u2,⋆,w1)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ϕ

u2

∃!v̂2 s.t. ϕ(u2,v2,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ2∈ s.t. ϕ(⋆,v2,w2)=0−−−−−−−−−−−−−−−→

ϕ

w2

∃!û3∈ s.t. ϕ(u3,⋆,w2)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

ϕ

un
∃!v̂n s.t. ϕ(un,vn,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵn∈ s.t. ϕ(⋆,vn,wn)=0−−−−−−−−−−−−−−−→

ϕ

wn

U = {u1, u2, . . . , un} V = {v1, v2, . . . , vn} W = {w1,w2, . . . ,wn}



Constructing the invariant

Start with a co-rank one û = û1 ∈ P(Fnq).

ϕ

u1
∃!v̂1 s.t. ϕ(u1,v1,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ1∈ s.t. ϕ(⋆,v1,w1)=0−−−−−−−−−−−−−−−→

ϕ

w1

∃!û2∈ s.t. ϕ(u2,⋆,w1)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ϕ

u2
∃!v̂2 s.t. ϕ(u2,v2,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵ2∈ s.t. ϕ(⋆,v2,w2)=0−−−−−−−−−−−−−−−→

ϕ

w2

∃!û3∈ s.t. ϕ(u3,⋆,w2)=0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

ϕ

un
∃!v̂n s.t. ϕ(un,vn,⋆)=0−−−−−−−−−−−−−−→

ϕ
v1 ∃!ŵn∈ s.t. ϕ(⋆,vn,wn)=0−−−−−−−−−−−−−−−→

ϕ

wn

U = {u1, u2, . . . , un} V = {v1, v2, . . . , vn} W = {w1,w2, . . . ,wn}



Constructing the invariant

If each list U,V,W has n-linearly independent vectors, then we can construct three
unique invertible matrices AU,BV ,CW to act. The resulting tensor〈

ϕ, û
〉
:= ϕAU,BV ,CW

(not merely the isomorphism class) is the invariant.

If the automorphism group of ϕ is trivial (which is conjectured for random ϕ for not
too small n), the invariant is distinguishing. That is,

Pr
(û1,û2)

(〈
ϕ, û1

〉
̸=

〈
ϕ, û2

〉)
≈ 1.



Constructing the invariant

If each list U,V,W has n-linearly independent vectors, then we can construct three
unique invertible matrices AU,BV ,CW to act. The resulting tensor〈

ϕ, û
〉
:= ϕAU,BV ,CW

(not merely the isomorphism class) is the invariant.

If the automorphism group of ϕ is trivial (which is conjectured for random ϕ for not
too small n), the invariant is distinguishing. That is,

Pr
(û1,û2)

(〈
ϕ, û1

〉
̸=

〈
ϕ, û2

〉)
≈ 1.



Constructing the invariant

If each list U,V,W has n-linearly independent vectors, then we can construct three
unique invertible matrices AU,BV ,CW to act. The resulting tensor〈

ϕ, û
〉
:= ϕAU,BV ,CW

(not merely the isomorphism class) is the invariant.

If the automorphism group of ϕ is trivial (which is conjectured for random ϕ for not
too small n), the invariant is distinguishing. That is,

Pr
(û1,û2)

(〈
ϕ, û1

〉
̸=

〈
ϕ, û2

〉)
≈ 1.



Runtime

Assuming certain heuristics, the expected runtime of our algorithm is

O(q(n−2)/2 · (q · n3 + n4) · (log(q))2).

Consequently, the bit security estimates of the MEDS scheme is reduced, as
indicated in the table below.

parameter set n q Algebraic Leon-like Ours

MEDS-I 14 4093 148.1 170.68 102.59
MEDS-III 22 4093 218.41 246.95 152.55
MEDS-V 30 2039 298.82 297.77 186.57

Remedy. Enlarging q increases the security estimate to meet the requirement. This
should not affect the running times significantly, and only increase the signature size.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû be the kernel ker(ϕ(u, ⋆, ⋆)). Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(K)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(K)× GL(n, q).

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Using the aforementioned Gröbner basis algorithm to test, find a collision〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points. Already
taken into account in the design of ALTEQ.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû be the kernel ker(ϕ(u, ⋆, ⋆)). Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(K)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(K)× GL(n, q).

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Algorithm.

Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Using the aforementioned Gröbner basis algorithm to test, find a collision〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points. Already
taken into account in the design of ALTEQ.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû be the kernel ker(ϕ(u, ⋆, ⋆)). Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(K)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(K)× GL(n, q).

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Using the aforementioned Gröbner basis algorithm to test, find a collision〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points. Already
taken into account in the design of ALTEQ.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû be the kernel ker(ϕ(u, ⋆, ⋆)). Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(K)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(K)× GL(n, q).

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Using the aforementioned Gröbner basis algorithm to test, find a collision〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points. Already
taken into account in the design of ALTEQ.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû be the kernel ker(ϕ(u, ⋆, ⋆)). Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(K)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(K)× GL(n, q).

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Using the aforementioned Gröbner basis algorithm to test, find a collision〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points. Already
taken into account in the design of ALTEQ.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû be the kernel ker(ϕ(u, ⋆, ⋆)). Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(K)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(K)× GL(n, q).

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Using the aforementioned Gröbner basis algorithm to test, find a collision〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points. Already
taken into account in the design of ALTEQ.



Finding tensor isomorphism (ALTEQ variant)

For a projective point û of large co-rank r, let Kû be the kernel ker(ϕ(u, ⋆, ⋆)). Then

(ϕ, û) 7−→
〈
ϕ, û

〉
:= (ϕ : Kû × Fnq × Fnq −→ Fq) mod (GL(K)× GL(n, q))

is an invariant. On the right is the isomorphism class of the restriction
ϕ : Kû × Fnq × Fnq −→ Fq modulo GL(K)× GL(n, q).

Given (û, û′) as partial information, we can test using Gröbner basis if〈
ϕ, û

〉
=?

〈
ψ, û′

〉
.

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r
points roughly be qk.

▶ Sample a set Uϕ of qk/2 co-rank r points with respect to ϕ.

▶ Sample a set Uψ of qk/2 co-rank r points with respect to ψ.

▶ Using the aforementioned Gröbner basis algorithm to test, find a collision〈
ϕ, û

〉
=?

〈
ψ, û′

〉
for some û ∈ Uϕ and û′ ∈ Uψ .

Heuristic runtime: Roughly qk/2 times the cost to sample co-rank r points. Already
taken into account in the design of ALTEQ.




