Finding isomorphisms between trilinear forms, slightly faster

Anand Kumar Narayanan ${ }^{1}$ Youming Qiao ${ }^{2}$ Gang Tang 2,3
${ }^{1}$ SandboxAQ, Palo Alto, CA, USA.
${ }^{2}$ University of Technology Sydney, Ultimo, NSW, Australia.
${ }^{3}$ University of Birmingham, UK.

Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an invertible matrix A such that

Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an invertible matrix A such that

$$
A \quad A^{-1}=\psi
$$

Yes, quickly!

Three is a shroud!

Given two square matrices ϕ and ψ, can we tell if there is an invertible matrix A such that

Yes, quickly! Jumping from two (square matrices) to three (three dimensional tensors given by a cube of numbers), is a giant leap in computational complexity.

Most such linear algebraic problems concerning three dimensional tensors (or equivalently, trilinear forms) are (NP- or VNP- or \#P-)hard, with a web

of complexity theoretic reductions connecting them. Among them is the tensor isomorphism problem, on whose hardness MEDS, ALTEQ, etc. are built.

New algorithms for tensor isomorphism

- We present algorithms to find tensor isomorphisms polynomially faster than previously known, and discuss how this informs the security/parameters of MEDS/ALTEQ.
- Meet-in-the-middle/birthday style algorithms, exploiting novel invariants to finding collisions.
- Based on our work (eprint number 368, 2024) to appear in Eurocrypt 2024, which builds on algorithms by Bouillaguet, Fouque, and Véber (Eurocrypt 2013), and Beullens (Crypto 2023).
- For the complexity theoretic reductions, average case analysis, search to decision variant reduction, etc., consult the series (ITCS 2021 I,II,III,IV) of papers by Joshua Grochow and Youming Qiao.

Trilinear forms

A trilinear form is a function

$$
\begin{aligned}
\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} & \longrightarrow \mathbb{F}_{q} \\
(u, v, w) & \longmapsto \sum_{i} \sum_{j} \sum_{k} \phi_{i j k} u_{i} v_{j} w_{k}
\end{aligned}
$$

that is linear in each of its three arguments. Think of it as an $n \times n \times n$ cube

of \mathbb{F}_{q} elements.

Trilinear forms

A trilinear form is a function

$$
\begin{aligned}
\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} & \longrightarrow \mathbb{F}_{q} \\
(u, v, w) & \longmapsto \sum_{i} \sum_{j} \sum_{k} \phi_{i j k} u_{i} v_{j} w_{k}
\end{aligned}
$$

that is linear in each of its three arguments. Think of it as an $n \times n \times n$ cube

of \mathbb{F}_{q} elements. It is alternating if it satisfies the anti-symmetry constraint

$$
\phi(u, u, w)=\phi(u, v, v)=\phi(w, v, w)=0, \forall u, v, w \in \mathbb{F}_{q}^{n} .
$$

Tensor Isomorphism (Variant underlying MEDS).

Triples of invertible matrices $(A, B, C) \in G L_{n}\left(\mathbb{F}_{q}\right)^{3}$ act on tensors by basis change

$$
((A, B, C), \phi(\star, \star, \star)) \longmapsto \phi^{A, B, C}:=\phi(A \star, B \star, C \star)
$$

on the respective three dimensions.

Tensor Isomorphism (Variant underlying MEDS).

Triples of invertible matrices $(A, B, C) \in G L_{n}\left(\mathbb{F}_{q}\right)^{3}$ act on tensors by basis change

$$
((A, B, C), \phi(\star, \star, \star)) \longmapsto \phi^{A, B, C}:=\phi(A \star, B \star, C \star)
$$

on the respective three dimensions. Two forms ϕ, ψ are isomorphic if there exists such a basis change $(A, B, C) \in G L_{n}\left(\mathbb{F}_{q}\right)^{3}$ taking one to the other, as pictured.

Given two isomorphic tensors, find an isomorphsim between them.

Tensor Isomorphism (Variant underlying ALTEQ).

Invertible matrices $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ act on alternating tensors by the same basis change

$$
(A, \phi(\star, \star, \star)) \longmapsto \phi^{A}:=\phi(A \star, A \star, A \star)
$$

on each of the three dimensions. Two alternating trilinear forms ϕ, ψ are isomorphic if there exists such a basis change $A \in G L_{n}\left(\mathbb{F}_{q}\right)$ taking one to the other, as pictured.

Given two isomorphic alternating tensors, find an isomorphsim between them.

Finding tensor isomorphism (MEDS variant)

Co-rank one points are $u \in \mathbb{F}_{q}^{n}$ such that $\phi(u, \star, \star)$ is co-rank one. That is, the matrix

u
has rank $n-1$.

Finding tensor isomorphism (MEDS variant)

Co-rank one points are $u \in \mathbb{F}_{q}^{n}$ such that $\phi(u, \star, \star)$ is co-rank one. That is, the matrix

has rank $n-1$. We design a fast computable invariant, pairing trilinear forms ϕ with co-rank one projective points $\hat{u} \in \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)$,

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle
$$

satisfying, for all ϕ, \hat{u}, A, B, C,

$$
\langle\phi, \hat{u}\rangle=\left\langle\phi^{A, B, C}, A^{-1} \hat{u}\right\rangle .
$$

Finding tensor isomorphism (MEDS variant)

Co-rank one points are $u \in \mathbb{F}_{q}^{n}$ such that $\phi(u, \star, \star)$ is co-rank one. That is, the matrix

has rank $n-1$. We design a fast computable invariant, pairing trilinear forms ϕ with co-rank one projective points $\hat{u} \in \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)$,

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle
$$

satisfying, for all ϕ, \hat{u}, A, B, C,

$$
\langle\phi, \hat{u}\rangle=\left\langle\phi^{A, B, C}, A^{-1} \hat{u}\right\rangle .
$$

This invariant is distinguishing and informs a meet-in-the-middle birthday attack over the projective points, to test (and find) isomorphism.

Constructing the invariant

Start with a co-rank one $\hat{u}=\hat{u}_{1} \in \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)$.

Constructing the invariant

Start with a co-rank one $\hat{u}=\hat{u}_{1} \in \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)$.

Constructing the invariant

Start with a co-rank one $\hat{u}=\hat{u}_{1} \in \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)$.

Constructing the invariant

Start with a co-rank one $\hat{u}=\hat{u}_{1} \in \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)$.

$\exists!\hat{u}_{2} \in$ s.t. $\phi\left(u_{2}, \star, w_{1}\right)=0$

Constructing the invariant

Start with a co-rank one $\hat{u}=\hat{u}_{1} \in \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)$.

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \quad V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \quad W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}
$$

Constructing the invariant

If each list U, V, W has n-linearly independent vectors, then we can construct three unique invertible matrices A_{U}, B_{V}, C_{W} to act. The resulting tensor

$$
\langle\phi, \hat{u}\rangle:=\phi^{A_{u}, B_{V}, C_{W}}
$$

(not merely the isomorphism class) is the invariant.

Constructing the invariant

If each list U, V, W has n-linearly independent vectors, then we can construct three unique invertible matrices A_{U}, B_{V}, C_{W} to act. The resulting tensor

$$
\langle\phi, \hat{u}\rangle:=\phi^{A_{u}, B_{V}, C_{w}}
$$

(not merely the isomorphism class) is the invariant.
If the automorphism group of ϕ is trivial (which is conjectured for random ϕ for not too small n), the invariant is distinguishing. That is,

$$
\operatorname{Pr}_{\left(\hat{u}_{1}, \hat{u}_{2}\right)}\left(\left\langle\phi, \hat{u}_{1}\right\rangle \neq\left\langle\phi, \hat{u}_{2}\right\rangle\right) \approx 1
$$

Constructing the invariant

If each list U, V, W has n-linearly independent vectors, then we can construct three unique invertible matrices A_{U}, B_{V}, C_{W} to act. The resulting tensor

$$
\langle\phi, \hat{u}\rangle:=\phi^{A_{u}, B_{V}, C_{w}}
$$

(not merely the isomorphism class) is the invariant.
If the automorphism group of ϕ is trivial (which is conjectured for random ϕ for not too small n), the invariant is distinguishing. That is,

$$
\operatorname{Pr}_{\left(\hat{u}_{1}, \hat{u}_{2}\right)}\left(\left\langle\phi, \hat{u}_{1}\right\rangle \neq\left\langle\phi, \hat{u}_{2}\right\rangle\right) \approx 1
$$

Runtime

Assuming certain heuristics, the expected runtime of our algorithm is

$$
O\left(q^{(n-2) / 2} \cdot\left(q \cdot n^{3}+n^{4}\right) \cdot(\log (q))^{2}\right)
$$

Consequently, the bit security estimates of the MEDS scheme is reduced, as indicated in the table below.

parameter set	n	q	Algebraic	Leon-like	Ours
MEDS-I	14	4093	148.1	170.68	102.59
MEDS-III	22	4093	218.41	246.95	152.55
MEDS-V	30	2039	298.82	297.77	186.57

Remedy. Enlarging q increases the security estimate to meet the requirement. This should not affect the running times significantly, and only increase the signature size.

Finding tensor isomorphism (ALTEQ variant)

For a projective point \hat{u} of large co-rank r, let $K_{\hat{u}}$ be the $\operatorname{kernel} \operatorname{ker}(\phi(u, \star, \star))$. Then

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle:=\left(\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}\right) \bmod (G L(K) \times G L(n, q))
$$

is an invariant. On the right is the isomorphism class of the restriction $\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}$ modulo $G L(K) \times G L(n, q)$.

Finding tensor isomorphism (ALTEQ variant)

For a projective point \hat{u} of large co-rank r, let $K_{\hat{u}}$ be the $\operatorname{kernel} \operatorname{ker}(\phi(u, \star, \star))$. Then

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle:=\left(\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}\right) \bmod (G L(K) \times G L(n, q))
$$

is an invariant. On the right is the isomorphism class of the restriction $\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}$ modulo $G L(K) \times G L(n, q)$.

Given ($\hat{u}, \hat{u}^{\prime}$) as partial information, we can test using Gröbner basis if

$$
\langle\phi, \hat{u}\rangle=?\left\langle\psi, \hat{u}^{\prime}\right\rangle .
$$

Algorithm.

Finding tensor isomorphism (ALTEQ variant)

For a projective point \hat{u} of large co-rank r, let $K_{\hat{u}}$ be the $\operatorname{kernel} \operatorname{ker}(\phi(u, \star, \star))$. Then

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle:=\left(\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}\right) \bmod (G L(K) \times G L(n, q))
$$

is an invariant. On the right is the isomorphism class of the restriction $\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}$ modulo $G L(K) \times G L(n, q)$.

Given ($\hat{u}, \hat{u}^{\prime}$) as partial information, we can test using Gröbner basis if

$$
\langle\phi, \hat{u}\rangle=?\left\langle\psi, \hat{u}^{\prime}\right\rangle .
$$

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r points roughly be q^{k}.

Finding tensor isomorphism (ALTEQ variant)

For a projective point \hat{u} of large co-rank r, let $K_{\hat{u}}$ be the $\operatorname{kernel} \operatorname{ker}(\phi(u, \star, \star))$. Then

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle:=\left(\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}\right) \bmod (G L(K) \times G L(n, q))
$$

is an invariant. On the right is the isomorphism class of the restriction $\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}$ modulo $G L(K) \times G L(n, q)$.

Given ($\hat{u}, \hat{u}^{\prime}$) as partial information, we can test using Gröbner basis if

$$
\langle\phi, \hat{u}\rangle=?\left\langle\psi, \hat{u}^{\prime}\right\rangle .
$$

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r points roughly be q^{k}.

- Sample a set U_{ϕ} of $q^{k / 2}$ co-rank r points with respect to ϕ.
- Sample a set U_{ψ} of $q^{k / 2}$ co-rank r points with respect to ψ.

Finding tensor isomorphism (ALTEQ variant)

For a projective point \hat{u} of large co-rank r, let $K_{\hat{u}}$ be the $\operatorname{kernel} \operatorname{ker}(\phi(u, \star, \star))$. Then

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle:=\left(\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}\right) \bmod (G L(K) \times G L(n, q))
$$

is an invariant. On the right is the isomorphism class of the restriction $\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}$ modulo $G L(K) \times G L(n, q)$.

Given ($\hat{u}, \hat{u}^{\prime}$) as partial information, we can test using Gröbner basis if

$$
\langle\phi, \hat{u}\rangle=?\left\langle\psi, \hat{u}^{\prime}\right\rangle .
$$

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r points roughly be q^{k}.

- Sample a set U_{ϕ} of $q^{k / 2}$ co-rank r points with respect to ϕ.
- Sample a set U_{ψ} of $q^{k / 2}$ co-rank r points with respect to ψ.
- Using the aforementioned Gröbner basis algorithm to test, find a collision $\langle\phi, \hat{u}\rangle=$? $\left\langle\psi, \hat{u}^{\prime}\right\rangle$ for some $\hat{u} \in U_{\phi}$ and $\hat{u}^{\prime} \in U_{\psi}$.

Finding tensor isomorphism (ALTEQ variant)

For a projective point \hat{u} of large co-rank r, let $K_{\hat{u}}$ be the $\operatorname{kernel} \operatorname{ker}(\phi(u, \star, \star))$. Then

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle:=\left(\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}\right) \bmod (G L(K) \times G L(n, q))
$$

is an invariant. On the right is the isomorphism class of the restriction $\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}$ modulo $G L(K) \times G L(n, q)$.

Given ($\hat{u}, \hat{u}^{\prime}$) as partial information, we can test using Gröbner basis if

$$
\langle\phi, \hat{u}\rangle=?\left\langle\psi, \hat{u}^{\prime}\right\rangle .
$$

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r points roughly be q^{k}.

- Sample a set U_{ϕ} of $q^{k / 2}$ co-rank r points with respect to ϕ.
- Sample a set U_{ψ} of $q^{k / 2}$ co-rank r points with respect to ψ.
- Using the aforementioned Gröbner basis algorithm to test, find a collision $\langle\phi, \hat{u}\rangle=$? $\left\langle\psi, \hat{u}^{\prime}\right\rangle$ for some $\hat{u} \in U_{\phi}$ and $\hat{u}^{\prime} \in U_{\psi}$.
Heuristic runtime: Roughly $q^{k / 2}$ times the cost to sample co-rank r points. Already taken into account in the design of ALTEQ.

Finding tensor isomorphism (ALTEQ variant)

For a projective point \hat{u} of large co-rank r, let $K_{\hat{u}}$ be the $\operatorname{kernel} \operatorname{ker}(\phi(u, \star, \star))$. Then

$$
(\phi, \hat{u}) \longmapsto\langle\phi, \hat{u}\rangle:=\left(\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}\right) \bmod (G L(K) \times G L(n, q))
$$

is an invariant. On the right is the isomorphism class of the restriction $\phi: K_{\hat{u}} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}$ modulo $G L(K) \times G L(n, q)$.

Given ($\hat{u}, \hat{u}^{\prime}$) as partial information, we can test using Gröbner basis if

$$
\langle\phi, \hat{u}\rangle=?\left\langle\psi, \hat{u}^{\prime}\right\rangle .
$$

Algorithm. Input two alternating trilinear forms ϕ, ψ. Let the number of co-rank r points roughly be q^{k}.

- Sample a set U_{ϕ} of $q^{k / 2}$ co-rank r points with respect to ϕ.
- Sample a set U_{ψ} of $q^{k / 2}$ co-rank r points with respect to ψ.
- Using the aforementioned Gröbner basis algorithm to test, find a collision $\langle\phi, \hat{u}\rangle=$? $\left\langle\psi, \hat{u}^{\prime}\right\rangle$ for some $\hat{u} \in U_{\phi}$ and $\hat{u}^{\prime} \in U_{\psi}$.
Heuristic runtime: Roughly $q^{k / 2}$ times the cost to sample co-rank r points. Already taken into account in the design of ALTEQ.

