Nibbling MAYO

Ward Beullens,
Fabio Campos, Sofía Celi,
Basil Hess, and
Matthias J. Kannwischer.

Summary of results

We propose new high-speed implementations of MAYO for x86 and Cortex-M4 platforms.

- Our implementations use a new representation of public key. Nibble-sliced instead of bit-sliced.
- Our implementations are based on the "Method of the four Russians" which we found to be more efficient that bitsliced arithmetic.

5-part API

Ice Lake performance MAYO 1

 AVX2 + AESNI Bit-sliced | Nibble-sliced implementation

Ice Lake performance MAYO 1 AVX2 + AESNI Bit-sliced | Nibble-sliced implementation

Dilithium2: KeyGen $81 k$, Sign $219 k$, Verify $79 k$

Cortex-M4 performance MAYO 1

 st nucleo-las52 @ 20 MHz Bit-sliced | Nibble-sliced

Dilithium2: KeyGen 1.6 M, Sign 4.0 M, Verify 1.6 M

Overly simplified description of MAYO1

Key Gen:

- Multiply 64 matrices of size 58 -by- 58 by a 58 -by- 8 matrix

Sign:

- Multiply 64 matrices of size 58 -by- 58 by a 58 -by- 8 matrix
- Multiply 64 matrices of size 58 -by- 58 by a 58 -by- 9 matrix
- Solve a system of 64 linear equations in 72 variables

Verify:

- Multiply 64 matrices of size 66-by-66 by a 66-by-9 matrix

Bit-sliced v.s. Nibble-sliced representations

How to represent matrices over $G F(16)$? Representation is irrelevant for security, but important for interoperability and efficient implementation.

$$
\begin{array}{c|c|c}
\hline a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} & d_{0}+d_{1} x+d_{2} x^{2}+d_{3} x^{3} & g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3} \\
\hline b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3} & e_{0}+e_{1} x+e_{2} x^{2}+e_{3} x^{3} & h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3} \\
\hline c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3} & f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3} & i_{0}+i_{1} x+i_{2} x^{2}+i_{3} x^{3}
\end{array}
$$

(Column major) bit-sliced representation:

$$
a_{0} b_{0} c_{0} \quad a_{1} b_{1} c_{1} \quad a_{2} b_{2} c_{2} \quad a_{3} b_{3} c_{3} \ldots
$$

Good for bit-sliced arithmetic on embedded platforms.
(Column major) nibble-sliced representation:

$$
a_{0} a_{1} a_{2} a_{3} b_{0} b_{1} b_{2} b_{3} \quad c_{0} c_{1} c_{2} c_{3} \ldots
$$

Good for AVX2 shuffle-based arithmetic on "big" CPUs

Initially, we chose the bit-sliced representation, because on "big" CPUs MAYO is fast enough anyway.

Bit-sliced v.s. Nibble-sliced representations

How to represent matrices over $G F(16)$? Representation is irrelevant for security, but important for interoperability and efficient implementation.

$$
\begin{array}{c|c|c}
\hline a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} & d_{0}+d_{1} x+d_{2} x^{2}+d_{3} x^{3} & g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3} \\
\hline b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3} & e_{0}+e_{1} x+e_{2} x^{2}+e_{3} x^{3} & h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3} \\
\hline c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3} & f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3} & i_{0}+i_{1} x+i_{2} x^{2}+i_{3} x^{3}
\end{array}
$$

(Column major) bit-sliced representation:

$$
a_{0} b_{0} c_{0} \quad a_{1} b_{1} c_{1} \quad a_{2} b_{2} c_{2} \quad a_{3} b_{3} c_{3} \ldots
$$

Good for bit-sliced arithmetic on embedded platforms.
(Column major) nibble-sliced representation:

$$
a_{0} a_{1} a_{2} a_{3} \quad b_{0} b_{1} b_{2} b_{3} \quad c_{0} c_{1} c_{2} c_{3} \ldots
$$

Good for AVX2 shuffle-based arithmetic on "big" CPUs

Initially, we chose the bit-sliced representation, because on "big" CPUs MAYO is fast enough anyway.

Contribution of this paper: Nibble-sliced representation is also good for Cortex M4, so we should switch.

Method of the 4 Russians

Arlazarov, Dinic, Kronrod, Faradzev (1974)

Method for computing matrix multiplication $A * B$, where A has dimensions l by m, and B has dimensions m by n Using only $O\left(\frac{l m n}{\log _{q} l}\right)$ additions and table lookups.

Step 1: Reduce to to case where A is very tall and narrow

Step 2: Do multiplication by A using table lookups

Step 1: split A and B in narrow strips

A_{i} have width $t \approx \log _{q} l$, where l is the height of A, and q is the size of the finite field.

Step 2: Multiplication by table lookup

- Make a table that contains all the linear combinations of rows of B_{i}. (Table has size $q^{t} n=\ln$, requires \ln additions to construct)
- Compute $A_{i} * B_{i}$ by looking up each row in the table. (l lookups of rows of n elements)
- Cost is $O(l n)$ and needs to be repeated $\frac{m}{\log _{q} l}$ times, so total cost is $O\left(\frac{l m n}{\log _{q} l}\right)$

Results on Cortex M4:

		$\begin{gathered} \left(\mathbf{P}_{i}^{(1)}+\mathbf{P}_{i}^{(1) \mathbf{T}}\right) \mathbf{O} \\ \text { Sign } \end{gathered}$	$\begin{gathered} \mathbf{P}_{i}^{(1)} \mathbf{V}^{\top} \\ \text { Sign } \end{gathered}$	$\mathbf{P}_{i}^{(1)} \mathbf{O}$ KeyGen
MAYO_{1}	bitsliced M4R	$\begin{aligned} & 2165337 \\ & 1244009 \quad(1.74 \times) \end{aligned}$	$\begin{aligned} & 1323797 \\ & 1119136 \quad(1.18 \times) \end{aligned}$	$\begin{array}{r} 1177752 \\ 714332 \quad(1.65 \times) \end{array}$
MAYO_{2}	bitsliced M4R	$\begin{aligned} & 5199607 \\ & 2906460 \quad(1.79 \times) \end{aligned}$	$\begin{array}{ll} 629400 & \\ 681081 & (0.92 \times) \end{array}$	$\begin{array}{ll} 2830681 & \\ 1683616 & (1.68 \times) \end{array}$
MAYO_{3}	bitsliced M4R	$\begin{array}{ll} 9535835 & \\ 6576258 & (1.45 \times) \end{array}$	$\begin{array}{ll} 5635495 & \\ 3452417 & (1.63 \times) \end{array}$	$\begin{array}{ll} 5126000 & \\ 3525668 & (1.45 \times) \end{array}$

Conclusion: We can switch to Nibble-based representation and get a nice speedup on embedded platforms, as well as a huge speedup on AVX2 platforms.

Other contributions

- Improved AVX2 shuffle-based matrix multiplication New records: 56.5 multiply-and-accumulates / cycle (Skylake) 78.8 multiply-and-accumulates / cycle (Ice Lake)
- Constant time Gaussian elimination for rectangular matrices.
- Read paper for more ...

