
Nibbling MAYO

Ward Beullens,

Fabio Campos,

Sofía Celi,

Basil Hess, and

Matthias J. Kannwischer.

Summary of results

We propose new high-speed implementations of MAYO for x86
and Cortex-M4 platforms.

• Our implementations use a new representation of public key.
Nibble-sliced instead of bit-sliced.

• Our implementations are based on the “Method of the four
Russians” which we found to be more efficient that bitsliced
arithmetic.

5-part API

Compact
KeyGen

SK

Expansion
Sign

PK

Expansion
Verify

Ice Lake performance MAYO 1
AVX2 + AESNI Bit-sliced | Nibble-sliced implementation

Compact
KeyGen

SK

Expansion
Sign

PK

Expansion
Verify

110 𝑘 | 43 𝑘

162 𝑘 | 53 𝑘 297 𝑘 | 165 𝑘

22𝑘 | 22𝑘 126 𝑘 | 31 𝑘

Ice Lake performance MAYO 1
AVX2 + AESNI Bit-sliced | Nibble-sliced implementation

KeyGen

SK

Expansion
Sign

PK

Expansion
Verify

110 𝑘 | 44 𝑘

459 𝑘 | 218 𝑘

148 𝑘 | 53 𝑘

Sign

Verify

Dilithium2: KeyGen 81 𝑘, Sign 219 𝑘, Verify 79 𝑘

Cortex-M4 performance MAYO 1
ST NUCLEO-L4R5ZI @ 20 MHz Bit-sliced | Nibble-sliced

KeyGen

SK

Expansion
Sign

PK

Expansion
Verify

5.2 𝑀 | 4.4 𝑀

9.1 𝑀 | 8.2 𝑀

4.8 𝑀 | 4.8 𝑀

Sign

Verify

Dilithium2: KeyGen 1.6 𝑀, Sign 4.0 M, Verify 1.6 𝑀

Overly simplified description of MAYO1

Key Gen:

• Multiply 64 matrices of size 58-by-58 by a 58-by-8 matrix

Sign:

• Multiply 64 matrices of size 58-by-58 by a 58-by-8 matrix

• Multiply 64 matrices of size 58-by-58 by a 58-by-9 matrix

• Solve a system of 64 linear equations in 72 variables

Verify:

• Multiply 64 matrices of size 66-by-66
by a 66-by-9 matrix

Bit-sliced v.s. Nibble-sliced representations

How to represent matrices over 𝐺𝐹(16)? Representation is irrelevant for security, but important for
interoperability and efficient implementation.

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 𝑑0 + 𝑑1𝑥 + 𝑑2𝑥2 + 𝑑3𝑥3 𝑔0 + 𝑔1𝑥 + 𝑔2𝑥2 + 𝑔3𝑥3

𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 𝑒0 + 𝑒1𝑥 + 𝑒2𝑥2 + 𝑒3𝑥3 ℎ0 + ℎ1𝑥 + ℎ2𝑥2 + ℎ3𝑥3

𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 𝑓0 + 𝑓1𝑥 + 𝑓2𝑥2 + 𝑓3𝑥3 𝑖0 + 𝑖1𝑥 + 𝑖2𝑥2 + 𝑖3𝑥3

(Column major) bit-sliced representation:

𝑎0𝑏0𝑐0 𝑎1𝑏1𝑐1 𝑎2𝑏2𝑐2 𝑎3𝑏3𝑐3 …

Good for bit-sliced arithmetic on embedded
platforms.

(Column major) nibble-sliced representation:

𝑎0𝑎1𝑎2𝑎3 𝑏0𝑏1𝑏2𝑏3 𝑐0𝑐1𝑐2𝑐3 …

Good for AVX2 shuffle-based arithmetic on “big” CPUs

Initially, we chose the bit-sliced representation, because on “big” CPUs MAYO is fast enough anyway.

Bit-sliced v.s. Nibble-sliced representations

How to represent matrices over 𝐺𝐹(16)? Representation is irrelevant for security, but important for
interoperability and efficient implementation.

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 𝑑0 + 𝑑1𝑥 + 𝑑2𝑥2 + 𝑑3𝑥3 𝑔0 + 𝑔1𝑥 + 𝑔2𝑥2 + 𝑔3𝑥3

𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 𝑒0 + 𝑒1𝑥 + 𝑒2𝑥2 + 𝑒3𝑥3 ℎ0 + ℎ1𝑥 + ℎ2𝑥2 + ℎ3𝑥3

𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 𝑓0 + 𝑓1𝑥 + 𝑓2𝑥2 + 𝑓3𝑥3 𝑖0 + 𝑖1𝑥 + 𝑖2𝑥2 + 𝑖3𝑥3

(Column major) bit-sliced representation:

𝑎0𝑏0𝑐0 𝑎1𝑏1𝑐1 𝑎2𝑏2𝑐2 𝑎3𝑏3𝑐3 …

Good for bit-sliced arithmetic on embedded
platforms.

(Column major) nibble-sliced representation:

𝑎0𝑎1𝑎2𝑎3 𝑏0𝑏1𝑏2𝑏3 𝑐0𝑐1𝑐2𝑐3 …

Good for AVX2 shuffle-based arithmetic on “big” CPUs

Initially, we chose the bit-sliced representation, because on “big” CPUs MAYO is fast enough anyway.

Contribution of this paper: Nibble-sliced representation is also good for Cortex M4, so we should switch.

Method of the 4 Russians
Arlazarov, Dinic, Kronrod, Faradzev (1974)

Method for computing matrix multiplication 𝐴 ∗ 𝐵, where
𝐴 has dimensions 𝑙 by 𝑚, and 𝐵 has dimensions 𝑚 by 𝑛
Using only 𝑂(

𝑙𝑚𝑛

log𝑞 𝑙
) additions and table lookups.

Step 1: Reduce to to case where A is very tall and narrow

Step 2: Do multiplication by A using table lookups

Step 1: split 𝐴 and 𝐵 in narrow strips

𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒

𝐵1

𝐵2

𝐵3

𝐵4

= ∑ ∗ 𝑨𝒊 𝑩𝒊∗

𝐴𝑖 have width 𝑡 ≈ log𝑞 𝑙, where 𝑙 is the height of 𝐴, and 𝑞 is the size of the finite field.

𝑙

𝑚 𝑚

Step 2: Multiplication by table lookup

• Make a table that contains all the linear
combinations of rows of 𝐵𝑖.
(Table has size 𝑞𝑡𝑛 = 𝑙𝑛, requires 𝑙𝑛
additions to construct)

• Compute 𝐴𝑖 ∗ 𝐵𝑖 by looking up each row in
the table. (𝑙 lookups of rows of 𝑛 elements)

• Cost is 𝑂(𝑙𝑛) and needs to be repeated
𝑚

log𝑞 𝑙

times, so total cost is O(
𝑙𝑚𝑛

log𝑞 𝑙
)

𝑨𝒊 𝑩𝒊∗

Results on Cortex M4:

Conclusion: We can switch to Nibble-based representation and get a nice speedup on
embedded platforms, as well as a huge speedup on AVX2 platforms.

Other contributions

• Improved AVX2 shuffle-based matrix multiplication
New records: 56.5 multiply-and-accumulates / cycle (Skylake)

78.8 multiply-and-accumulates / cycle (Ice Lake)

• Constant time Gaussian elimination for rectangular matrices.

• Read paper for more …

	MAYO
	Slide 1: Nibbling MAYO
	Slide 2: Summary of results
	Slide 3: 5-part API
	Slide 7: Ice Lake performance MAYO 1 AVX2 + AESNI Bit-sliced | Nibble-sliced implementation
	Slide 8: Ice Lake performance MAYO 1 AVX2 + AESNI Bit-sliced | Nibble-sliced implementation
	Slide 9: Cortex-M4 performance MAYO 1 ST NUCLEO-L4R5ZI @ 20 MHz Bit-sliced | Nibble-sliced
	Slide 10: Overly simplified description of MAYO1
	Slide 11: Bit-sliced v.s. Nibble-sliced representations
	Slide 12: Bit-sliced v.s. Nibble-sliced representations
	Slide 13: Method of the 4 Russians Arlazarov, Dinic, Kronrod, Faradzev (1974)
	Slide 14: Step 1: split cap A. and cap B in narrow strips
	Slide 15: Step 2: Multiplication by table lookup
	Slide 16: Results on Cortex M4:
	Slide 17: Other contributions

