Nibbling MAYO

Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kannwischer.

Summary of results

We propose new high-speed implementations of MAYO for x86 and Cortex-M4 platforms.

- Our implementations use a new representation of public key. Nibble-sliced instead of bit-sliced.
- Our implementations are based on the "Method of the four Russians" which we found to be more efficient that bitsliced arithmetic.

Ice Lake performance MAYO 1

AVX2 + AESNI Bit-sliced | Nibble-sliced implementation

Ice Lake performance MAYO 1

AVX2 + AESNI Bit-sliced | Nibble-sliced implementation

Dilithium2: KeyGen 81 k, Sign 219 k, Verify 79 k

Cortex-M4 performance MAYO 1

ST NUCLEO-LAR5ZI @ 20 MHz Bit-sliced | Nibble-sliced

Dilithium2: KeyGen 1.6 *M*, Sign 4.0 M, Verify 1.6 *M*

Overly simplified description of MAYO1

Key Gen:

• Multiply 64 matrices of size 58-by-58 by a 58-by-8 matrix

Sign:

- Multiply 64 matrices of size 58-by-58 by a 58-by-8 matrix
- Multiply 64 matrices of size 58-by-58 by a 58-by-9 matrix
- Solve a system of 64 linear equations in 72 variables

Verify:

• Multiply 64 matrices of size 66-by-66 by a 66-by-9 matrix

Bit-sliced v.s. Nibble-sliced representations

How to represent matrices over GF(16)? Representation is irrelevant for security, but important for interoperability and efficient implementation.

$a_0 + a_1 x + a_2 x^2 + a_3 x^3$	$d_0 + d_1 x + d_2 x^2 + d_3 x^3$	$g_0 + g_1 x + g_2 x^2 + g_3 x^3$
$b_0 + b_1 x + b_2 x^2 + b_3 x^3$	$e_0 + e_1 x + e_2 x^2 + e_3 x^3$	$h_0 + h_1 x + h_2 x^2 + h_3 x^3$
$c_0 + c_1 x + c_2 x^2 + c_3 x^3$	$f_0 + f_1 x + f_2 x^2 + f_3 x^3$	$i_0 + i_1 x + i_2 x^2 + i_3 x^3$

(Column major) bit-sliced representation:

(Column major) nibble-sliced representation:

 $a_0b_0c_0 \ a_1b_1c_1 \ a_2b_2c_2 \ a_3b_3c_3 \ \dots$

Good for bit-sliced arithmetic on embedded platforms.

 $a_0a_1a_2a_3 \ b_0b_1b_2b_3 \ c_0c_1c_2c_3 \ \dots$

Good for AVX2 shuffle-based arithmetic on "big" CPUs

Initially, we chose the bit-sliced representation, because on "big" CPUs MAYO is fast enough anyway.

Bit-sliced v.s. Nibble-sliced representations

How to represent matrices over GF(16)? Representation is irrelevant for security, but important for interoperability and efficient implementation.

$a_0 + a_1 x + a_2 x^2 + a_3 x^3$	$d_0 + d_1 x + d_2 x^2 + d_3 x^3$	$g_0 + g_1 x + g_2 x^2 + g_3 x^3$
$b_0 + b_1 x + b_2 x^2 + b_3 x^3$	$e_0 + e_1 x + e_2 x^2 + e_3 x^3$	$h_0 + h_1 x + h_2 x^2 + h_3 x^3$
$c_0 + c_1 x + c_2 x^2 + c_3 x^3$	$f_0 + f_1 x + f_2 x^2 + f_3 x^3$	$i_0 + i_1 x + i_2 x^2 + i_3 x^3$

(Column major) bit-sliced representation:

(Column major) nibble-sliced representation:

 $a_0b_0c_0 \ a_1b_1c_1 \ a_2b_2c_2 \ a_3b_3c_3 \ \dots$

Good for bit-sliced arithmetic on embedded platforms.

 $a_0a_1a_2a_3 \ b_0b_1b_2b_3 \ c_0c_1c_2c_3 \ \dots$

Good for AVX2 shuffle-based arithmetic on "big" CPUs

Initially, we chose the bit-sliced representation, because on "big" CPUs MAYO is fast enough anyway.

Contribution of this paper: Nibble-sliced representation is also good for Cortex M4, so we should switch.

Method of the 4 Russians

Arlazarov, Dinic, Kronrod, Faradzev (1974)

Method for computing matrix multiplication A * B, where A has dimensions l by m, and B has dimensions m by nUsing only $O(\frac{lmn}{\log_q l})$ additions and table lookups.

Step 1: Reduce to to case where A is very tall and narrow

Step 2: Do multiplication by A using table lookups

Step 1: split A and B in narrow strips

 A_i have width $t \approx \log_q l$, where l is the height of A, and q is the size of the finite field.

Step 2: Multiplication by table lookup

- Make a table that contains all the linear combinations of rows of B_i . (Table has size $q^t n = ln$, requires ln additions to construct)
- Compute $A_i * B_i$ by looking up each row in the table. (*l* lookups of rows of *n* elements)
- Cost is O(ln) and needs to be repeated $\frac{m}{\log_q l}$ times, so total cost is $O(\frac{lmn}{\log_q l})$

Results on Cortex M4:

	× /						
		$(\mathbf{P}_i^{(1)} + \mathbf{P}_i^{(1)T})\mathbf{O}$ Sign		$\mathbf{P}_{i}^{(1)}\mathbf{V}^{T}$ Sign		$\mathbf{P}_{i}^{(1)}\mathbf{O}$ KeyGen	
$MAYO_1$	bitsliced	2165337		1323797		1177752	
	M4R	1244009	$(1.74 \times)$	1119136	$(1.18 \times)$	714332	$(1.65 \times)$
$MAYO_2$	bitsliced	5199607		629400		2830681	
	M4R	2906460	$(1.79 \times)$	681081	$(0.92 \times)$	1683616	$(1.68 \times)$
$MAYO_3$	bitsliced	9535835		5635495		5126000	
	M4R	6576258	$(1.45 \times)$	3452417	$(1.63 \times)$	3525668	$(1.45 \times)$

Conclusion: We can switch to Nibble-based representation and get a nice speedup on embedded platforms, as well as a huge speedup on AVX2 platforms.

Other contributions

- Improved AVX2 shuffle-based matrix multiplication New records: 56.5 multiply-and-accumulates / cycle (Skylake) 78.8 multiply-and-accumulates / cycle (Ice Lake)
- Constant time Gaussian elimination for rectangular matrices.
- Read paper for more ...