Novel Schoolbook-Originated Polynomial Multiplication Accelerators for NTRU-based PQC

Yazheng Tu¹, Shi Bai², Jinjun Xiong³, and Jiafeng Xie¹

¹: Electrical and Computer Engineering Department, Villanova University
²: Mathematics and Statistic Department, Florida Atlantic University
³: Computer Science and Engineering Department, University at Buffalo
Outline

- Introduction
- Preliminary
- Point-Wise Multiplier
- SCOPE-I: The First Accelerator
- SCOPE-II: The Second Accelerator
- Evaluation
- Future works
Introduction

• Background
 • NTRU-based PQC is an important branch of lattice-based cryptography
 • Not many specific works carried out

• Motivation
 • When a complete polynomial multiplication is needed, solutions other than NTT can be explored

• Contributions
 • A novel LUT-based point-wise multiplier combined with modulo reduction
 • A novel polynomial multiplier architecture incorporating the developed point-wise multiplier
 • A TMVP-based accelerator with innovations in algorithm and architecture.
 • A thorough evaluation ensuring the efficiency of the proposed strategy
Preliminary

• **Notations**
 - \(n \): the size of the polynomials; \(q \): the modulus
 - \(G, D \): input polynomials, \(G = \sum_{i=0}^{n-1} g_i x^i \), \(D = \sum_{i=0}^{n-1} d_i x^i \), where \(g_i, d_i \) are coefficients
 - \(W \): the output polynomial, \(W = \sum_{i=0}^{n-1} w_i x^i \), where \(w_i \) are coefficients

• **NTRU-based PQC**
 - FALCON: Fast Fourier lattice-based compact signatures over NTRU, built on [7]
 - NTRU: a merger of NTRUEncrypt and NTRU-HRSS-KEM

• **Schoolbook-based Polynomial Multiplication**
 - \(W = GD \mod f(x) \); \(f(x) = x^n + 1 \) for Falcon, \(f(x) = x^n - 1 \) for NTRU
 - \([W] = [G] \times [D] \), \([W], [D] \) are \(n \times 1 \) vectors while \([G] \) is a \(n \times n \) circulant matrix

• **TMVP-based method**
 - \[
 \begin{bmatrix}
 W_0 \\
 W_1
 \end{bmatrix} = \begin{bmatrix}
 G_0 & G_2 \\
 G_1 & G_0
 \end{bmatrix}
 \begin{bmatrix}
 D_0 \\
 D_1
 \end{bmatrix} = \begin{bmatrix}
 G_0 & -G_1 \\
 G_1 & G_0
 \end{bmatrix}
 \begin{bmatrix}
 D_0 \\
 D_1
 \end{bmatrix} = \begin{bmatrix}
 G_0(D_0 + D_1) + (-G_0 - G_1)D_1 \\
 G_0(D_0 + D_1) + (-G_0 + G_1)D_0
 \end{bmatrix}
 \]
Point-Wise Multiplier (Cont.)

• Consideration
 • \(C = A \times B; \ C: 28 \text{ bits}, A, B: 14 \text{ bits} \)
 • \(B = \sum_{j=0}^{13} b_i 2^j, b_i: \text{bits of } B \)
 • \(C = A \times \sum_{j=0}^{13} b_i 2^j = \sum_{j=0}^{13} (A \times 2^j)b_i \)

• Proposal
 • Multiplication equivalent to adding 14 MUXes
 • Combine neighboring MUXes into a larger one to reduce number of MUXes
 • Trade-off between the size of the MUX and the complexity of summation
 • Problem becomes the finding of an optimal number/ size of MUXes
 • Final recommendation of \(B: 4, 4, 3, \text{ and } 3 \text{ bits} \)
 • 4 MUXes, each with \(2^4, 2^4, 2^3\) and \(2^3\) inputs
Point-Wise Multiplier (Cont.)

- Modular Reduction
 - Traditional methods execute reduction at the end
 - Drawback-1: Leads to difference in bit-width from each MUX
 - Drawback-2: Need to expand all signals to 28 bit
 - Propose to execute reduction at the beginning. **Key benefits** include:
 - Reduce shifted values before feeding to MUXes
 - Scale back to 14-bit
 - In the range \([0, q)\)
 - Only Simple Reduction is needed in the following calculation
 - Halve the bit-width
 - Reduce the critical path
Point-Wise Multiplier (Cont.)

- **Hardware Structure**
 - Components:
 - Two 16-to-1 MUXes
 - Two 8-to-1 MUXes
 - One 2-layer adder tree
 - Three Simple Reduction units

- **Longa Reduction Unit (K-red)**
 - Deploys K-red in [29]
 - $k \cdot C \mod q$
 - $k = 3$ for $q = 12289$, differs for different q
 - Select correct answer from different values
 - C pre-multiplied with modular inverse of k
SCOPE-I: The First Accelerator

- Proposed Algorithm
 - Calculates the product of one column of $[G]$ and one d_i at one time

- Proposed SCOPE-I Overview
 - Five main components
 - Basic Input Process Component (BIPC)
 - Basic Shift and Reduction Component (BSRC)
 - Basic Point-wise Multiplier Component (BPMC)
 - ConTrol Unit (CTU)
 - Time Complexity: $(n + x)$ cycles
 - x: pipeline register layers
 - Basic Input Process Component (BIPC)
 - Load and output g_i’s
 - Serial-in parallel-out shift register
SCOPE-I: The First Accelerator

• Proposed Algorithm
 • Inputs:
 • $G = \sum_{i=0}^{n-1} g_i x^i$
 • $D = \sum_{i=0}^{n-1} d_i x^i$
 • Output:
 • $W = \sum_{i=0}^{n-1} w_i x^i$
 • Parallel calculation
 • Calculates the product of one column of $[G]$ and one d_i at one time
 • Complexity of $O(n)$
• Serial Input
• Serial Output
SCOPE-I: The First Accelerator (Cont.)

• Basic Input Process Component (BIPC)
 • Responsible load g_i and output g_i’s in parallel during calculation
 • Contains n 14-bit registers
 • Load one g_i at each cycle
 • Feed to first register (R_0) and shift the others
 • Take n cycles for loading
 • Signal en stops shifting by disabling the registers
 • Parallel outputs
• Basic Shift and Reduction Component (BSRC)
 - Calculate 0-7/15 multiples of the input
 - E.g. \(7x = 4x + 3x = (x << 2) + (x << 1) \)
 - Perform logic shift to calculated multiples
 - Execute Longa reduction to shifted multiples

• Basic Point-wise Multiplication Component (PWM)
 - Calculates point-wise multiplications
 - Contains \(n \) proposed PWM
 - All PWM shares one BSRC output
 - Each PWM takes one different \(g_i \)
 - Output \(n \, g_i \cdot d_i \mod q \) in parallel
SCOPE-I: The First Accelerator (Cont.)

• Basic A CCumulation Component (BACC)
 • Accumulates the point-wise products to form the final answer.
 • An example of the accumulation process with $n = 4$ is provided in the table.

• Components
 • n 14-bit registers.
 • n full adders.
 • Simple Reductions

<table>
<thead>
<tr>
<th>Cycle</th>
<th>d_i</th>
<th>R_0</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>d_3</td>
<td>g_0d_3</td>
<td>g_1d_3</td>
<td>g_2d_3</td>
<td>g_3d_3</td>
</tr>
<tr>
<td>1</td>
<td>d_2</td>
<td>$g_0d_2 - g_3d_3$</td>
<td>$g_1d_2 + g_0d_3$</td>
<td>$g_2d_2 + g_1d_3$</td>
<td>$g_3d_2 + g_2d_3$</td>
</tr>
<tr>
<td>2</td>
<td>d_1</td>
<td>$g_0d_1 - g_3d_2 - g_2d_3$</td>
<td>$g_1d_1 + g_0d_2 - g_3d_3$</td>
<td>$g_2d_1 + g_1d_2 + g_0d_3$</td>
<td>$g_3d_1 + g_2d_2 + g_1d_3$</td>
</tr>
<tr>
<td>3</td>
<td>d_0</td>
<td>$g_0d_0 - g_3d_1 - g_2d_2 - g_1d_3$</td>
<td>$g_1d_0 + g_0d_1 - g_3d_2 - g_2d_3$</td>
<td>$g_2d_0 + g_1d_1 + g_0d_2 - g_3d_3$</td>
<td>$g_3d_0 + g_2d_1 + g_1d_2 + g_0d_3$</td>
</tr>
</tbody>
</table>

Accumulation Process of The Proposed First Accelerator (SCOPE-I) with $n = 4$
SCOPE-I: The First Accelerator (Cont.)

• Basic ACcumulation Component (BACC)
 • Output the accumulated values in serial

• ConTrol Unit (CTU)
 • Finite State Machine
 • reset: After clr
 • load: n cycles
 • multi: (n + x) cycles
 • output: n cycles
 • done: last until clr received again

• Pipeline register layers: x = 4
SCOPE-II: The Second Accelerator

• Proposed Algorithm

\[
\begin{pmatrix}
W_0 \\
W_1
\end{pmatrix} =
\begin{bmatrix}
G_0 & G_2 \\
G_1 & G_0
\end{bmatrix}
\begin{pmatrix}
D_0 \\
D_1
\end{pmatrix} =
\begin{bmatrix}
G_0 & -G_1 \\
G_1 & G_0
\end{bmatrix}
\begin{pmatrix}
D_0 \\
D_1
\end{pmatrix} =
\begin{bmatrix}
G_0(D_0 + D_1) + (-G_0 - G_1)D_1 \\
G_0(D_0 + D_1) + (-G_0 + G_1)D_0
\end{bmatrix}
\]

• Inputs:

- \(G = \sum_{i=0}^{n-1} g_i x^i \)
- \(D = \sum_{i=0}^{n-1} d_i x^i \)

• Output:

- \(W = \sum_{i=0}^{n-1} w_i x^i \)

- \([G_0]_j \): the element in the ith row and the jth column of \([G_0]\)
- \([W_0]_i \): the element in the ith row of \([W_0]\)
SCOPE-II: The Second Accelerator (Cont.)

- Proposed SCOPE-II Overview
 - Time Complexity: \((n + x)\) cycles, where \(x\) is the pipeline register layers.
SCOPE-II: The Second Accelerator (Cont.)

- TIPC

Details of the SSRs for \((-G_1 - G_0)\) and \((G_1 - G_0)\)

Details of the SSRs for \(G_0\)
SCOPE-II: The Second Accelerator (Cont.)

- TMVP Shift and Reduction Component (TSRC)
 - Responsible for process of D_0, D_1, $(D_0 + D_1)$, respectively.
 - Multiply, shift, and execute Longa Reduction in each BSRC.
SCOPE-II: The Second Accelerator (Cont.)

- TMVP Point-wise Multiplication Component
 - Contains three individual BPMCs
 - Responsible for process of
 - \([G_1 - G_0]_i [D^i_0]\]
 - \([G_0]_i [D^i_{sum}]\]
 - \([-G_1 - G_0]_i [D^i_1]\]
 - \(D^i_{sum}\) are the coefficients of \((D_0 + D_1)\)
 - Receive linear combinations of coefficients
 - Calculate the point-wise products
 - Feed to TACC for accumulation
SCOPE-II: The Second Accelerator (Cont.)

- TMVP A_Cumulation Component (TACC)

 - \(n/2 \) cycles
 - Output

\(W_{n-1}, W_0, \ldots, W_{n-2} \)
SCOPE-II: The Second Accelerator (Cont.)

- Linear Combination Component (LCC)
 - Execute two additions to produce final results
 - \([G_1 - G_0]_i[D_0^i] + [G_0]_i[D_{sum}^i]\)
 - \([G_1 - G_0]_i[D_0^i] + [-G_1 - G_0]_i[D_1^i]\)
 - Works with the TACC synchronously
 - Two Simple Reductions involved
 - Outputs two coefficients at the same time
 - Outputs scaled to range \([0, q)\)
Evaluation: Complexity Analysis

SCOPE-I
- n registers in BIPC
- n registers, 2-to-1 MUXes are used in BACC
- $3n$ 8-to-1, n 16-to-1, and $3n$ 2-to-1 MUXes in BPMC
- $(7n + 1)$ adders in BPMC and BACC, 200 adders in BSRC
- $(n + 4)$ cycles

SCOPE-II
- $3n/2$ registers, 2-to-1 MUXes, and Sign Inverters in TIPC
- $3n/2$ registers and 2-to-1 MUXes in TACC
- $3n/2$ registers and 2-to-1 MUXes in TSRC
- $(n/2 + 4)$ cycles
Evaluation: FPGA-based Implementation

- **Falcon**
 - $n = 512$, $q = 12289$
 - Artix-7 (XC7a200t) and Ultrascale+ (XCZU9EG-FFVB1156-2)

- **NTRU**
 - $n = 701$, $q = 2^{13}$; $n = 821$, $q = 2^{12}$
 - Zynq Ultrascale+(XCZU9EG-FFVB1156-2) and Zynq-7000 (xc7z100ffg1156-2)

- **Other schoolbook or similar designs**
 - $n = 256$, $q = 12289$; $n = 256$, $q = 2^{12}$
 - Kintex-7 (xc7k480tffv1156-3), Virtex Ultrascale+ (xcvu9p-flga2577-3-e), Zynq Ultrascale+ (XCZU9EG-FFVB1156-2), Virtex-7 (xc7v2000tflg1925-2L), and Zynq-7000 (xc7z100ffg1156-2)
Evaluation: Comparison

• Comparison With The Existing Works (FALCON)

<table>
<thead>
<tr>
<th>Design</th>
<th>Method</th>
<th>LUT</th>
<th>FF</th>
<th>Slice</th>
<th>DSP</th>
<th>BRAM</th>
<th>Fmax1</th>
<th>Latency2</th>
<th>Delay3</th>
<th>ELUT4</th>
<th>EADP5</th>
<th>EADPR6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOPE-I</td>
<td>SB</td>
<td>88,267</td>
<td>35,159</td>
<td>14,598</td>
<td>0</td>
<td>0</td>
<td>525</td>
<td>516</td>
<td>1.0</td>
<td>88,231</td>
<td>86,718</td>
<td>30.30%</td>
</tr>
<tr>
<td>SCOPE-II</td>
<td>TMVP</td>
<td>157,686</td>
<td>84,226</td>
<td>26,937</td>
<td>0</td>
<td>0</td>
<td>529</td>
<td>260</td>
<td>0.5</td>
<td>157,686</td>
<td>77,502</td>
<td>31.41%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th>Method</th>
<th>LUT</th>
<th>FF</th>
<th>Slice</th>
<th>DSP</th>
<th>BRAM</th>
<th>Fmax1</th>
<th>Latency2</th>
<th>Delay3</th>
<th>ELUT4</th>
<th>EADP5</th>
<th>EADPR6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOPE-I</td>
<td>SB</td>
<td>97,322</td>
<td>35,159</td>
<td>15,163</td>
<td>0</td>
<td>0</td>
<td>254</td>
<td>516</td>
<td>2.0</td>
<td>97,322</td>
<td>197,709</td>
<td>18.34%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th>Method</th>
<th>LUT</th>
<th>FF</th>
<th>Slice</th>
<th>DSP</th>
<th>BRAM</th>
<th>Fmax1</th>
<th>Latency2</th>
<th>Delay3</th>
<th>ELUT4</th>
<th>EADP5</th>
<th>EADPR6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOPE-I</td>
<td>SB</td>
<td>22,648</td>
<td>15,030</td>
<td>14,734</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>782</td>
<td>3.9</td>
<td>34,456</td>
<td>134,723</td>
<td>NA</td>
</tr>
<tr>
<td>SCOPE-II</td>
<td>TMVP</td>
<td>154,688</td>
<td>87,439</td>
<td>24,503</td>
<td>0</td>
<td>0</td>
<td>410</td>
<td>260</td>
<td>0.6</td>
<td>154,688</td>
<td>98,095</td>
<td>27.19%</td>
</tr>
</tbody>
</table>

Note: Due to the relatively large resource usage of the proposed second accelerator (TMVP-based), we don’t implement it on the Artix-7 device.
SB: schoolbook.
*: The performance listed is an estimation since no specific data for $n = 512$ is provided in this work.
1: Fmax: Maximum frequency. Unit: MHz
2: Latency: Calculation latency (number of cycles). We roughly estimated the NTT-based polynomial multiplication in [27] as 2,100 for $n = 512$.
3: Delay = Latency/Fmax. Unit: μs.
4: ELUT: Equivalent LUT, following [22]. 1 DSP = 102.4 Slices (7 series)/51.2 Slices (UltraScale+); one 18K BRAM = 116.2 Slices (7 series)/58.1 Slices (UltraScale+). UltraScale+ has 8 LUTs in one Slice/CLB while 7 series contains 4 LUTs in one Slice/CLB.
5: EADP: Equivalent ADP. EADP = 4ELUT\timesdelay (since the Slice number is not available for all designs, we use LUT as the main resource usage metric).
6: EADPR: EADP reduction (based on the same FPGA device with the same n).
PGA-based Implementation

• Comparison With The Existing Works (FALCON)
 • SCOPE-I and SCOPE-II exhibit 30.30% and 31.41% lower EADP than [27], respectively, on Zynq Ultrascale+
 • SCOPE-I maintains an 18.34% lower EADP than [27] on Artix-7
 • 33.8% and 27.19% more efficient in EADP compared to [30]
 • SCOPE-I is 4.15x faster in latency cycles compared to [27]
 • SCOPE-I has 1.67x higher frequency than [27]

Evaluation: Comparison (Cont.)

• Comparison With The Existing Works (NTRU)

| Design | n | q | Method | LUT | FF | Slice | DSP | BRAM | F_{max} | Latency | Delay | ELUT | EADP | EADPR |
|---------|------|------|--------|------|------|-------|------|------|-----------------|------------------|--------------|--------------|--------------|--------------|---------------|
| [10] | 701 | 2^{13} | SB | 71,028 | 18,994 | 11,661 | 0 | 0 | 223 | 701 | 3.14 | 71,028 | 223,276 | NA |
| SCOPE-I | 701 | 2^{13} | SB | 87,190 | 41,843 | 15,069 | 0 | 0 | 577 | 705 | 1.22 | 87,190 | 106,532 | 52.29% |
| SCOPE-II| 701 | 2^{13} | TMVP | 150,266| 59,677 | 26,920 | 0 | 0 | 549 | 354 | 0.64 | 150,266 | 96,893 | 56.60% |
| [10] | 821 | 2^{12} | SB | 72,430 | 21,172 | 11,300 | 0 | 0 | 236 | 821 | 3.48 | 72,430 | 251,970 | NA |
| SCOPE-I | 821 | 2^{12} | SB | 74,760 | 44,360 | 12,268 | 0 | 0 | 556 | 825 | 1.48 | 74,760 | 110,930 | 55.98% |
| SCOPE-II| 821 | 2^{12} | TMVP | 122,677| 64,132 | 22,863 | 0 | 0 | 513 | 414 | 0.81 | 122,677 | 99,002 | 60.71% |
| [9] | 701 | 2^{13} | SB | 1,463 | NA | NA | NA | 86 | 76 | 247,104 | 3.251.37 | 21,449 | 69739901.81 | NA |
| [10] | 701 | 2^{13} | SB | 71,321 | 19,554 | 20,270 | 0 | 0 | 201 | 701 | 3.49 | 71,321 | 248,736 | NA |
| SCOPE-I | 701 | 2^{13} | SB | 87,191 | 41,845 | 25,339 | 0 | 0 | 452 | 705 | 1.56 | 87,191 | 135,995 | 45.33% |
| SCOPE-II| 701 | 2^{13} | TMVP | 153,170| 58,980 | 45,710 | 0 | 0 | 416 | 354 | 0.85 | 153,170 | 130,342 | 47.60% |
| [9] | 821 | 2^{12} | SB | 1,463 | NA | NA | NA | 86 | 76 | 338,664 | 4.456.11 | 21,449 | 95580784.23 | NA |
| [10] | 821 | 2^{12} | SB | 71,990 | 21,202 | 11,647 | 0 | 0 | 210 | 821 | 3.91 | 71,990 | 281,447 | NA |
| [28] | 821 | 2^{12} | SB | 56,218 | 21,406 | NA | NA | 0 | 70 | 821 | 11.73 | 56,218 | 659,357 | NA |
| SCOPE-I | 821 | 2^{12} | SB | 74,773 | 44,360 | 22,272 | 0 | 0 | 438 | 825 | 1.88 | 74,773 | 140,840 | 49.96% |
| SCOPE-II| 821 | 2^{12} | TMVP | 126,409| 63,325 | 36,336 | 0 | 0 | 436 | 414 | 0.95 | 126,409 | 120,031 | 57.35% |
Evaluation: Comparison (Cont.)

• Comparison With The Existing Works (NTRU)

• On Zynq Ultrascale+ Device:
 • SCOPE-I has 52.29% and 55.98% less EADP than [10] for \(n = 701 \) and \(n = 821 \)
 • SCOPE-II has 56.6% and 60.71% less EADP for respective \(n \)

• On Zynq-7000 Device:
 • For \(n = 701 \), SCOPE-I and SCOPE-II at least 45.33% and 60.71% less EADP
 • For \(n = 821 \), SCOPE-I and SCOPE-II at least 49.96% and 57.35% less EADP

PGA-based Implementation

- Comparison With The Existing Schoolbook or Similar Designs

| Design | n | q | Method | LUT | FF | Slice | DSP | BRAM | Fmax$^\text{1}$ | Latency$^\text{2}$ | Delay$^\text{3}$ | ELUT$^\text{4}$ | EADP$^\text{5}$ | EADPR$^\text{6}$ |
|-------|------|-------|--------|------|-----|-------|-----|------|----------------|------------------|--------------|-------------|------|----------|--------|
| [11] | 256 | 7,681 | SB | 20,000 | 18,000 | 8,000 | 128 | 0 | 260 | 258 | 1 | 72,429 | 71,872 | NA |
| SCOPE-I | 256 | 12,289 | SB | 57,339 | 20,736 | 16,523 | 0 | 0 | 449 | 260 | 0.6 | 57,339 | 33,203 | 48.93% |
| SCOPE-II | 256 | 12,289 | TMVP | 115,108 | 52,016 | 33,683 | 0 | 0 | 345 | 132 | 0.4 | 115,108 | 44,041 | 38.72% |
| [11] | 256 | 7,681 | SB | 19,000 | 18,000 | 3,300 | 128 | 0 | 298 | 258 | 0.9 | 71,429 | 61,841 | NA |
| SCOPE-I | 256 | 12,289 | SB | 54,085 | 20,748 | 9,330 | 0 | 0 | 571 | 260 | 0.5 | 54,085 | 24,627 | 60.18% |
| SCOPE-II | 256 | 12,289 | TMVP | 100,725 | 52,271 | 16,564 | 0 | 0 | 528 | 132 | 0.3 | 100,725 | 25,181 | 59.28% |
| [12] | 256 | 213 | TM4 | 4,550 | NA | NA | 44 | 10 | 588 | 726 | 1.2 | 27,220 | 33,609 | NA |
| SCOPE-I | 256 | 213 | SB | 30,814 | 14,873 | 5,438 | 0 | 0 | 607 | 260 | 0.4 | 30,814 | 13,199 | 60.73% |
| SCOPE-II | 256 | 213 | TMVP | 53,698 | 21,418 | 8,766 | 0 | 0 | 540 | 132 | 0.2 | 53,698 | 13,126 | 60.94% |
| [12] | 256 | 213 | TM4 | 4,330 | NA | NA | 44 | 10 | 476 | 726 | 1.5 | 27,000 | 41,181 | NA |
| SCOPE-I | 256 | 213 | SB | 30,577 | 14,883 | 9,266 | 0 | 0 | 435 | 260 | 0.6 | 30,577 | 18,276 | 55.62% |
| SCOPE-II | 256 | 213 | TMVP | 53,867 | 21,509 | 15,918 | 0 | 0 | 418 | 132 | 0.3 | 53,867 | 17,011 | 58.69% |
| [12] | 256 | 213 | TM4 | 4,550 | NA | NA | 44 | 10 | 400 | 726 | 1.8 | 27,220 | 49,405 | NA |
| SCOPE-I | 256 | 213 | SB | 30,582 | 14,874 | 9,162 | 0 | 0 | 476 | 269 | 0.6 | 30,582 | 17,283 | 65.02% |
| SCOPE-II | 256 | 213 | TMVP | 53,877 | 21,544 | 15,343 | 0 | 0 | 409 | 132 | 0.3 | 53,877 | 17,388 | 64.80% |

SB: Schoolbook, TM4: Toom-Cook-4.
Evaluation: Comparison (Cont.)

• Comparison With The Existing Schoolbook or Similar Designs
 • For prime modulo
 • SCOPE-I demonstrates 48.93% and 60.18% less EADP on Kintex-7 and Virtex Ultrascale+ devices, respectively.
 • SCOPE-II demonstrates 38.72% and 59.28% less EADP on Kintex-7 and Virtex Ultrascale+ devices, respectively.
 • For power-of-2 modulo
 • Proposed designs on Zynq Ultrascale+ and Zynq-7000 devices have 60.73% and 64.80% less EADP than [12].

Conclusion & Future Works

• Conclusion:
 • The proposed design strategy be seen as an alternative solution to the
 NTT-based polynomial multiplication for the NTRU-based (or other
 lattice-based) PQC when n is relatively small.
 • For large n (such as n = 1, 024), however, the implementation will be
 very large and hence unsuitable for practical applications.

• Future Works:
 • New solutions to deploy the proposed strategy
 • Deploying the proposed SCOPE in the actual cryptoprocessor building
 • New polynomial multiplication implementation strategies
References

THANK YOU