NIST 5th PQC Standardization Conference

Novel Schoolbook-Originated Polynomial Multiplication Accelerators for NTRU-based PQC

Yazheng Tu ${ }^{1}$, Shi Bai², Jinjun Xiong ${ }^{3}$, and Jiafeng Xie ${ }^{1}$
1: Electrical and Computer Engineering Department, Villanova University
2: Mathematics and Statistic Department, Florida Atlantic University
3: Computer Science and Engineering Department, University at Buffalo

- Introduction
- Preliminary
- Point-Wise Multiplier
- SCOPE-I: The First Accelerator

Outline

- SCOPE-II: The Second Accelerator
- Evaluation
- Future works

Introduction

- Background
- NTRU-based PQC is an important branch of lattice-based cryptography
- Not many specific works carried out
- Motivation
- When a complete polynomial multiplication is needed, solutions other than NTT can be explored
- Contributions
- A novel LUT-based point-wise multiplier combined with modulo reduction
- A novel polynomial multiplier architecture incorporating the developed point-wise multiplier
- A TMVP-based accelerator with innovations in algorithm and architecture.
- A thorough evaluation ensuring the efficiency of the proposed strategy

Preliminary

- Notations
- n : the size of the polynomials; q : the modulus
- G, D : input polynomials, $G=\sum_{i=0}^{n-1} g_{i} x^{i}, D=\sum_{i=0}^{n-1} d_{i} x^{i}$, where g_{i}, d_{i} are coefficients
- W : the output polynomial, $W=\sum_{i=0}^{n-1} w_{i} x^{i}$, where w_{i} are coefficients
- NTRU-based PQC
- FALCON: Fast Fourier lattice-based compact signatures over NTRU, built on [7]
- NTRU: a merger of NTRUEncrypt and NTRU-HRSS-KEM
- Schoolbook-based Polynomial Multiplication
- $W=G D \bmod f(x) ; f(x)=x^{n}+1$ for Falcon, $f(x)=x^{n}-1$ for NTRU
- $[W]=[G] \times[D],[W],[D]$ are $n \times 1$ vectors while $[G]$ is a $n \times n$ circulant matrix
- TMVP-based method
$\cdot\left[\begin{array}{l}W_{0} \\ W_{1}\end{array}\right]=\left[\begin{array}{ll}G_{0} & G_{2} \\ G_{1} & G_{0}\end{array}\right]\left[\begin{array}{l}D_{0} \\ D_{1}\end{array}\right]=\left[\begin{array}{cc}G_{0} & -G_{1} \\ G_{1} & G_{0}\end{array}\right]\left[\begin{array}{l}D_{0} \\ D_{1}\end{array}\right]=\left[\begin{array}{l}G_{0}\left(D_{0}+D_{1}\right)+\left(-G_{0}-G_{1}\right) D_{1} \\ G_{0}\left(D_{0}+D_{1}\right)+\left(-G_{0}+G_{1}\right) D_{0}\end{array}\right]$

Point-Wise Multiplier (Cont.)

- Consideration
- $C=A \times B ; C: 28$ bits, $A, B: 14$ bits
- $B=\sum_{j=0}^{13} b_{i} 2^{j}, b_{i}$: bits of B
- $C=A \times \sum_{j=0}^{13} b_{i} 2^{j}=\sum_{j=0}^{13}\left(A \times 2^{j}\right) b_{i}$
- Proposal
- Multiplication equivalent to adding 14 MUXes

- Combine neighboring MUXes into a larger one to reduce number of MUXes
- Trade-off between the size of the MUX and the complexity of summation
- Problem becomes the finding of an optimal number/ size of MUXes
- Final recommendation of $B: 4,4,3$, and 3 bits
- 4 MUXes, each with $2^{4}, 2^{4}, 2^{3}$ and 2^{3} inputs

Point-Wise Multiplier (Cont.)

- Modular Reduction
- Traditional methods execute reduction at the end
- Drawback-1: Leads to difference in bit-width from each MUX
- Drawback-2: Need to expand all signals to 28 bit
- Propose to execute reduction at the beginning. Key benefits include:
- Reduce shifted values before feeding to MUXes
- Scale back to 14-bit
- In the range $[0, q)$
- Only Simple Reduction is needed in the following calculatien
- Halve the bit-width
- Reduce the critical path

Point-Wise Multiplier (Cont.)

- Hardware Structure
- Components:
- Two 16-to-1 MUXes
- Two 8-to-1 MXUes
- One 2-layer adder tree
- Three Simple Reduction units
- Longa Reduction Unit (K-red)

- Deploys K-red in [29]
- $k \cdot C \bmod q$
- $k=3$ for $q=12289$, differs for different q
- Select correct answer from different values
- C pre-multiplied with modular inverse of k

SCOPE-I: The First Accelerator

- Proposed Algorithm
- Calculates the product of one column of $[G]$ and one d_{i} at one time

- Proposed SCOPE-I Overview

- Five main components
- Basic Input Process Component (BIPC)
- Basic Shift and Reduction Component (BSRC)
- Basic Point-wise Multiplier Component (BPMC)
- Basic Point-wise Multiplier Component (BPMC)
- ConTrol Unit (CTU)
- Time Complexity: $(n+x)$ cycles - x : pipeline register layers
- Basic Input Process Component (BIPC)
- Load and output g_{i} 's
- Serial-in parallel-out shift register

SCOPE-I: The First Accelerator

- Proposed Algorithm
- Inputs:
- $G=\sum_{i=0}^{n-1} g_{i} x^{i}$
- $D=\sum_{i=0}^{n-1} d_{i} x^{i}$
- Output:
- $W=\sum_{i=0}^{n-1} w_{i} x^{i}$
- Parallel calculation
- Calculates the product of one column of $[G]$ and one d_{i} at one time
- Complexity of $O(n)$
- Serial Input
- Serial Output

SCOPE-I: The First Accelerator (Cont.)

- Basic Input Process Component (BIPC)
- Responsible load g_{i} and output g_{i} 's in parallel during calculation
- Contains n 14-bit registers
- Load one g_{i} at each cycle
- Feed to first register $\left(\mathrm{R}_{0}\right)$ and shift the others
- Take n cycles for loading
- Signal en stops shifting by disabling the registers
- Parallel outputs

SCOPE-I: The First Accelerator (Cont.)

- Basic Shift and Reduction Componen -Calculate 0-7/15 multiples of the inp
-E.g. $7 x=4 x+3 x=(x \ll 2)+(x \ll$ -Perform logic shift to calculated mul -Execute Longa reduction to shifted n
- Basic Point-wise Multiplication Comi
- Calculates point-wise multiplication
- Contains n proposed PWM
- All PWM shares one BSRC output
- Each PWM takes one different g_{i}
- Output $n g_{i} \cdot d_{i} \bmod q$ in parallel

SCOPE-I: The First Accelerator (Cont.)

- Basic ACcumulation Component (BACC)

- Accumulates the point-wise products to form the final answer.
- An example of the accumulation process with $n=4$ is provided in the table.
- Components
- n 14-bit registers.
- n full adders.
- Simnle Redııtions

Cycle	d_{i}	R_{0}	R_{1}	R_{2}	R_{3}
0	d_{3}	$g_{0} d_{3}$	$g_{1} d_{3}$	$g_{2} d_{3}$	$g_{3} d_{3}$
1	d_{2}	$g_{0} d_{2}-g_{3} d_{3}$	$g_{1} d_{2}+g_{0} d_{3}$	$g_{2} d_{2}+g_{1} d_{3}$	$g_{3} d_{2}+g_{2} d_{3}$
2	d_{1}	$g_{0} d_{1}-g_{3} d_{2}-g_{2} d_{3}$	$g_{1} d_{1}+g_{0} d_{2}-g_{3} d_{3}$	$g_{2} d_{1}+g_{1} d_{2}+g_{0} d_{3}$	$g_{3} d_{1}+g_{2} d_{2}+g_{1} d_{3}$
3	d_{0}	$g_{0} d_{0}-g_{3} d_{1}-g_{2} d_{2}-g_{1} d_{3}$	$g_{1} d_{0}+g_{0} d_{1}-g_{3} d_{2}-g_{2} d_{3}$	$g_{2} d_{0}+g_{1} d_{1}+g_{0} d_{2}-g_{3} d_{3}$	$g_{3} d_{0}+g_{2} d_{1}+g_{1} d_{2}+g_{0} d_{3}$

SCOPE-I: The First Accelerator (Cont.)

- Basic ACcumulation Component (BACC)
- Output the accumulated values in serial
- ConTrol Unit (CTU)
- Finite State Machine
- reset: After clr
- load: n cycles
- multi: $(n+x)$ cycles
- output: n cycles

- done: last until clr received again
- Pipeline register layers: $\boldsymbol{x}=4$

SCOPE-II: The Second Accelerator

- Proposed Algorithm
- $\left[\begin{array}{l}W_{0} \\ W_{1}\end{array}\right]=\left[\begin{array}{ll}G_{0} & G_{2} \\ G_{1} & G_{0}\end{array}\right]\left[\begin{array}{l}D_{0} \\ D_{1}\end{array}\right]=\left[\begin{array}{cc}G_{0} & -G_{1} \\ G_{1} & G_{0}\end{array}\right]\left[\begin{array}{l}D_{0} \\ D_{1}\end{array}\right]=\left[\begin{array}{l}G_{0}\left(D_{0}+D_{1}\right)+\left(-G_{0}-G_{1}\right) D_{1} \\ G_{0}\left(D_{0}+D_{1}\right)+\left(-G_{0}+G_{1}\right) D_{0}\end{array}\right]$
- Inputs:
- $G=\sum_{i=0}^{n-1} g_{i} x^{i}$
- $D=\sum_{i=0}^{n-1} d_{i} x^{i}$
- Output:
- $W=\sum_{i=0}^{n-1} w_{i} x^{i}$
- $\left[G_{0}^{i}\right]_{j}$: the element in the ith row and the jth column of [G_{0}]
- $\left[W_{0}^{i}\right]$: the element in the ith row of $\left[W_{0}\right]$

SCOPE-II: The Second Accelerator (Cont.)

- Proposed SCOPE-II Overview
- Time Complexity: $(n+x)$ cycles, where x is the pipeline register layers

SCOPE-II: The Second Accelerator (Cont.)

- TIPC

Details of the SSRs for $\left(-G_{1}-G_{0}\right)$ and $\left(G_{1}-G_{0}\right)$

Details of the SSRs for G_{0}

SCOPE-II: The Second Accelerator (Cont.)

- TMVP Shift and Reduction Component (TSRC)
- Responsible for process of $D_{0}, D_{1},\left(D_{0}+D_{1}\right)$, respectively.
- Multiply, shift, and execute Longa Reduction in each BSRC.

SCOPE-II: The Second Accelerator (Cont.)

- TMVP Point-wise Multiplication Component
- Contains three individual BPMCs
- Responsible for process of
- $\left[G_{1}-G_{0}\right]_{i}\left[D_{0}^{i}\right]$
- $\left[G_{0}\right]_{i}\left[D_{\text {sum }}^{i}\right]$
- $\left[-G_{1}-G_{0}\right]_{i}\left[D_{1}^{i}\right]$
- $D_{\text {sum }}^{i}$ are the coefficients of $\left(D_{0}+D_{1}\right)$
- Receive linear combinations of coefficients
- Calculate the point-wise products
- Feed to TACC for accumulation

SCOPE-II: The Second Accelerator (Cont.)

- TMVP ACcumulation Component (TACC)
- $n / 2$ cycles
- Output

$$
W_{\frac{n}{2}-1}, W_{0}, \ldots, W_{\frac{n}{2}-2}
$$

BACC

SCOPE-II: The Second Accelerator (Cont.)

- Linear Combination Component (LCC)
- Execute two additions to produce final results
- $\left[G_{1}-G_{0}\right]_{i}\left[D_{0}^{i}\right]+\left[G_{0}\right]_{i}\left[D_{\text {sum }}^{i}\right]$
- $\left[G_{1}-G_{0}\right]_{i}\left[D_{0}^{i}\right]+\left[-G_{1}-G_{0}\right]_{i}\left[D_{1}^{i}\right]$
- Works with the TACC synchronously
- Two Simple Reductions involved
- Outputs two coefficients at the same time
- Outputs scaled to range $[0, q)$

Evaluation: Complexity Analysis

- SCOPE-I
- n registers in BIPC
- n registers, 2-to-1 MUXes are used in BACC
- $3 n$ 8-to-1, n 16-to-1, and $3 n$ 2-to-1 MUXes in BPMC
- $(7 n+1)$ adders in BPMC and BACC, 200 adders in BSRC
- $(n+4)$ cycles
- SCOPE-II
- $3 n / 2$ registers,2-to-1 MUXes, and Sign Inverters in TIPC
- $3 n / 2$ registers and 2-to-1 MUXes in TACC
- $3 n / 2$ registers and 2-to-1 MUXes in TSRC
- $(n / 2+4)$ cycles

Evaluation: FPGA-based Implementation

- Falcon
- $n=512, q=12289$
- Artix-7 (XC7a200t) and Ultrascale+ (XCZU9EG-FFJB1156-2)
- NTRU
- $n=701, q=2^{13} ; n=821, q=2^{12}$
- Zynq Ultrascale+(XCZU9EG-FFVB1156-2) and Zynq-7000 (xc7z100ffg1156-2)
- Other schoolbook or similar designs
- $n=256, q=12289 ; n=256, q=2^{12}$
- Kintex-7 (xc7k480tffv1156-3), Virtex Ultrasclae+ (xcvu9p-flga2577-3-e), Zynq Ultrascale+ (XCZU9EG-FFVB1156-2), Virtex-7 (xc7v2000tflg19252L), and Zynq-7000 (xc7z100ffg1156-2)

Evaluation: Comparison

- Comparison With The Existing Works (FALCON)

Design	n	Method	LUT	FF	Slice	DSP	BRAM	Fmax ${ }^{1}$	Latency ${ }^{2}$	Delay ${ }^{3}$	ELUT ${ }^{4}$	EADP ${ }^{5}$	EADPR ${ }^{6}$
Zynq Ultrascale+													
[27]	512	NTT	14,327	7,314	NA	4	2	314	2,100	6.7	16,895	112,992	NA
SCOPE-I	512	SB	88,267	35,159	14,598	0	0	525	516	1.0	88,231	86,718	30.30\%
SCOPE-II	512	TMVP	157,686	84,226	26,937	0	0	529	260	0.5	157,686	77,502	31.41\%
Artix-7													
[27]	512	NTT	14,500	7,287	NA	4	2	142	2,100	14.8	16,371	242,103	NA
SCOPE-I	512	SB	97,322	35,159	15,163	0	0	254	516	2.0	97,322	197,709	18.34\%
Kintex Ultrascale+													
[30]*	512	NTT	22,648	15,030	NA	16	24	200	782	3.9	34,456	134,723	NA
SCOPE-I	512	SB	88,185	35,237	14,734	0	0	507	516	1.0	88,185	89,750	33.38\%
SCOPE-II	512	TMVP	154,688	87,439	24,503	0	0	410	260	0.6	154,688	98,095	27.19\%

Note: Due to the relatively large resource usage of the proposed second accelerator (TMVP-based), we don't implement it on the Artix-7 device.
SB: schoolbook.
*: The performance listed is an estimation since no specific data for $n=512$ is provided in this work.
${ }^{1}$: Fmax: Maximum frequency. Unit: MHz
${ }^{2}$: Latency: Calculation latency (number of cycles). We roughly estimated the NTT-based polynomial multiplication in [27] as 2,100 for $n=512$.
${ }^{3}$: Delay = Latency/Fmax. unit: μs.
${ }^{4}$: ELUT: Equivalent LUT, following [22]. 1 DSP $=102.4$ Slices (7 series)/51.2 Slices (UltraScale+); one 18 K BRAM $=116.2$ Slices (7 series) $/ 58.1 \mathrm{Slices}$ (UltraScale+). UltraScale+ has 8 LUTs in one Slice/CLB while 7 series contains 4 LUTs in one Slice/CLB.
${ }^{5}$: EADP: Equivalent ADP. EADP = \#ELUT \times delay (since the Slice number is not available for all designs, we use LUT as the main resource usage metric).
${ }^{6}$: EADPR: EADP reduction (based on the same FPGA device with the same n).

PGA-based Implementation

- Comparison With The Existing Works (FALCON)
- SCOPE-I and SCOPE-II exhibit 30.30\% and 31.41\% lower EADP than [27], respectively, on Zynq Ultrascale+
- SCOPE-I maintains an 18.34\% lower EADP than [27] on Artix-7
- 33.8\% and 27.19\% more efficient in EADP compared to [30]
- SCOPE-I is 4.15x faster in latency cycles compared to [27]
- SCOPE-I has 1.67x higher frequency than [27]
[27] L. Beckwith, D. T. Nguyen, and K. Gaj, "High-performance hardware implementation of lattice-based digital signatures." Cryptology ePrint Archive, Paper 2022/217, 2022. https://eprint.iacr.org/2022/217. [30] B. Li, Y. Yan, Y. Wei, and H. Han, "Scalable and parallel optimization of the number theoretic transform based on FPGA," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

Evaluation: Comparison (Cont.)

- Comparison With The Existing Works (NTRU)

Design	n	q	Method	LUT	FF	Slice	DSP	BRAM	Fmax ${ }^{1}$	Latency ${ }^{2}$	Delay ${ }^{3}$	ELUT ${ }^{4}$	EADP ${ }^{5}$	EADPR ${ }^{6}$
Zynq Ultrascale+														
[10]	701	2^{13}	SB	71,028	18,994	11,661	0	0	223	701	3.14	71,028	223,276	NA
SCOPE-I	701	2^{13}	SB	87,190	41,843	15,069	0	0	577	705	1.22	87,190	106,532	52.29\%
SCOPE-II	701	2^{13}	TMVP	150,266	59,677	26,920	0	0	549	354	0.64	150,266	96,893	56.60\%
[10]	821	2^{12}	SB	72,430	21,172	11,300	0	0	236	821	3.48	72,430	251,970	NA
SCOPE-I	821	2^{12}	SB	74,760	44,360	12,268	0	0	556	825	1.48	74,760	110,930	55.98\%
SCOPE-II	821	2^{12}	TMVP	122,677	64,132	22,863	0	0	513	414	0.81	122,677	99,002	60.71\%
Zynq-7000+														
[9]	701	2^{13}	SB	1,463	NA	NA	0	86	76	247,104	3,251.37	21,449	69739901.81	NA
[10]	701	2^{13}	SB	71,321	19,554	20,270	0	0	201	701	3.49	71,321	248,736	NA
SCOPE-I	701	2^{13}	SB	87,191	41,845	25,339	0	0	452	705	1.56	87,191	135,995	45.33\%
SCOPE-II	701	2^{13}	TMVP	153,170	58,980	45,710	0	0	416	354	0.85	153,170	130,342	47.60\%
[9]	821	2^{12}	SB	1,463	NA	NA	0	86	76	338,664	4,456.11	21,449	95580784.23	NA
[10]	821	2^{12}	SB	71,990	21,202	11,647	0	0	210	821	3.91	71,990	281,447	NA
[28]	821	2^{12}	SB	56,218	21,406	NA	0	0	70	821	11.73	56,218	659,357	NA
SCOPE-I	821	2^{12}	SB	74,773	44,360	22,272	0	0	438	825	1.88	74,773	140,840	49.96\%
SCOPE-II	821	2^{12}	TMVP	126,409	63,325	36,336	0	0	436	414	0.95	126,409	120,031	57.35\%

Evaluation: Comparison (Cont.)

- Comparison With The Existing Works (NTRU)
- On Zynq Ultrascale+ Device:
- SCOPE-I has 52.29% and 55.98% less EADP than [10] for $n=701$ and $n=821$
- SCPOE-II has 56.6% and 60.71% less EADP for respective n
- On Zynq-7000 Device:
- For $n=701$, SCOPE-I and SCOPE-II at least 45.33% and 60.71% less EADP
- For $n=821$, SCOPE-I and SCOPE-II at least 49.96% and 57.35% less EAD
-[9] P. Choi and D. K. Kim, "Lightweight polynomial multiplication accelerator for NTRU using shared SRAM," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 12, pp. 4574-4578, 2023. -[10] P. He et. al, "HPMA-NTRU: High-performance polynomial multiplication accelerator for ntru," in IEEE Int. Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1-6, 2022.
-[28] Z. Qin, R. Tong, X. Wu, G. Bai, L. Wu, and L. Su, "A compact full hardware implementation of PQC algorithm NTRU," in 2021 International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 792-797, 2021.

PGA-based Implementation

- Comparison With The Existing Schoolbook or Similar Designs

Design	n	q	Method	LUT	FF	Slice	DSP	BRAM	Fmax ${ }^{1}$	Latency ${ }^{2}$	Delay ${ }^{3}$	ELUT ${ }^{4}$	EADP ${ }^{5}$	EADPR ${ }^{6}$
Kintex-7														
[11]	256	7,681	SB	20,000	18,000	8,000	128	0	260	258	1.0	72,429	71,872	NA
SCOPE-I	256	12,289	SB	57,339	20,736	16,523	0	0	449	260	0.6	57,339	33,203	48.93\%
SCOPE-II	256	12,289	TMVP	115,108	52,016	33683	0	0	345	132	0.4	115,108	44,041	38.72\%
Virtex Ultrascale+														
[11]	256	7,681	SB	19,000	18,000	3,300	128	0	298	258	0.9	71,429	61,841	NA
SCOPE-I	256	12,289	SB	54,085	20,748	9,330	0	0	571	260	0.5	54,085	24,627	60.18\%
SCOPE-II	256	12,289	TMVP	100,725	52,271	16,564	0	0	528	132	0.3	100,725	25,181	59.28\%
Zynq Ultrascale+														
[12]	256	2^{13}	TM4	4,550	NA	NA	44	10	588	726	1.2	27,220	33,609	NA
SCOPE-I	256	2^{13}	SB	30,814	14,873	5,438	0	0	607	260	0.4	30,814	13,199	60.73\%
SCOPE-II	256	2^{13}	TMVP	53,698	21418	8,766	0	0	540	132	0.2	53,698	13,126	60.94\%
Virtex-7														
[12]	256	2^{13}	TM4	4,330	NA	NA	44	10	476	726	1.5	27,000	41,181	NA
SCOPE-I	256	2^{13}	SB	30,577	14,883	9,266	0	0	435	260	0.6	30,577	18,276	55.62\%
SCOPE-II	256	2^{13}	TMVP	53,867	21,509	15,918	0	0	418	132	0.3	53,867	17,011	58.69\%
Zynq-7000														
[12]	256	2^{13}	TM4	4,550	NA	NA	44	10	400	726	1.8	27,220	49,405	NA
SCOPE-I	256	2^{13}	SB	30,582	14,874	9,162	0	0	476	269	0.6	30,582	17,283	65.02\%
SCOPE-II	256	2^{13}	TMVP	53,877	21,544	15,343	0	0	409	132	0.3	53,877	17,388	64.80\%

[^0]
Evaluation: Comparison (Cont.)

- Comparison With The Existing Schoolbook or Similar Designs
- For prime modulo
- SCOPE-I demonstrates 48.93% and 60.18% less EADP on Kintex-7 and Virtex Ultrascale+ devices, respectively.
- SCOPE-II demonstrates 38.72% and 59.28% less ÉADP on Kintex-7 and Virtex Ultrascale+ devices, respectively.
- For power-of-2 modulo
- Proposed designs on Zynq Ultrascale+ and Zynq-7000 devices have 60.73\% and 64.80\% less EADP than [12].
-[11] D.-e.-S. Kundi et. al, "Ultra high-speed polynomial multiplications for lattice-based cryptography on FPGAs, IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 4, pp. 1993-2005, 2022.
-[12] J. Wang et. al, "A high-throughput Toom-Cook-4 polynomial multiplier for lattice-based cryptography using a novel Winograd-schoolbook algorithm," IEEE Transactions on Circuits and Systems I: Regular Papers, 2023.

Conclusion \& Future Works

- Conclusion:
- The proposed design strategy be seen as an alternative solution to the NTT-based polynomial multiplication for the NTRU-based (or other lattice-based) PQC when n is relatively small.
- For large n (such as $\mathrm{n}=1,024$), however, the implementation will be very large and hence unsuitable for practical applications.
- Future Works:
- New solutions to deploy the proposed strategy
- Deploying the proposed SCOPE in the actual cryptoprocessor building
- New polynomial multiplication implementation strategies

References

- [9] P. Choi and D. K. Kim, "Lightweight polynomial multiplication accelerator for NTRU using shared SRAM," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 12, pp. 4574-4578, 2023.
- [10] P. He, Y. Tu, A. Khalid, M. O'Neill, and J. Xie, "HPMA-NTRU: High-performance polynomial multiplication accelerator for ntru," in 2022
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1-6, 2022.
- [11] D.-e.-S. Kundi, Y. Zhang, C. Wang, A. Khalid, M. O'Neill, and W. Liu, "Ultra high-speed polynomial multiplications for lattice-based
cryptography on FPGAs," IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 4, pp. 1993-2005, 2022.
- [12] J. Wang, C. Yang, F. Zhang, Y. Meng, S. Xiang, and Y. Su, "A high-throughput Toom-Cook-4 polynomial multiplier for lattice-based cryptography using a novel Winograd-schoolbook algorithm," IEEE Transactions on Circuits and Systems I: Regular Papers, 2023.
- [27] L. Beckwith, D. T. Nguyen, and K. Gaj, "High-performance hardware implementation of lattice-based digital signatures." Cryptology ePrint Archive, Paper 2022/217, 2022. https://eprint.iacr.org/2022/217.
- [28] Z. Qin, R. Tong, X. Wu, G. Bai, L. Wu, and L. Su, "A compact full hardware implementation of PQC algorithm NTRU," in 2021
International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 792-797, 2021.
- [29] P. Longa and M. Naehrig, "Speeding up the number theoretic transform for faster ideal lattice-based cryptography," in Cryptology and Network Security: 15th Int. Conf., pp. 124-139, 2016.
- [30] B. Li, Y. Yan, Y. Wei, and H. Han, "Scalable and parallel optimization of the number theoretic transform based on FPGA," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

THANK YOU

[^0]: SB: Schoolbook. TM4: Toom-Cook-4.

