One Tree to Rule Them All

Optimizing GGM Trees and OWFs for Post-Quantum Signatures

Carsten Baum^{1,2} Ward Beullens³ Cyprien de Saint Guilhem⁴ Shibam Mukherjee⁵ Emmanuela Orsini⁶ Sebastian Ramacher⁷ Christian Rechberger⁵ Lawrence Roy¹ Peter Scholl¹

¹Aarhus University ³IBM Research Zurich ⁶Bocconi University ²Technical Un ⁴COSIC K ⁷AIT Austria

²Technical University of Denmark
⁴COSIC KU Leuven
⁵TU Graz
⁷AIT Austrian Institute of Technology

team@faest.info

Thank you to Lennart Braun for many slides.

FAEST

... welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

... welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for "I know $k \in \{0,1\}^{\lambda}$ such that $AES_k(x) = y$ "

... welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

- 1× Zero-knowledge proof for "I know $k \in \{0,1\}^{\lambda}$ such that $\mathsf{AES}_k(x) = y$ "
- $1 \times$ fresh VOLE (in-the-Head)

... welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

- 1× Zero-knowledge proof for "I know $k \in \{0,1\}^{\lambda}$ such that $\mathsf{AES}_k(x) = y$ "
- $1 \times$ fresh VOLE (in-the-Head)
- A pinch of Fiat-Shamir

... welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

- 1× Zero-knowledge proof for "I know $k \in \{0,1\}^{\lambda}$ such that $\mathsf{AES}_k(x) = y$ "
- $1 \times$ fresh VOLE (in-the-Head)
- A pinch of Fiat-Shamir
- \implies Delicious Digital Signature Scheme with secret key $k \in \{0,1\}^{\lambda}$ and public key (x, y).

... welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

- 1× Zero-knowledge proof for "I know $k \in \{0,1\}^{\lambda}$ such that $\mathsf{AES}_k(x) = y$ "
- $1 \times$ fresh VOLE (in-the-Head)
- A pinch of Fiat-Shamir
- \implies Delicious Digital Signature Scheme with secret key $k \in \{0,1\}^{\lambda}$ and public key (x, y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, Peter Scholl.

Security Properties

- \bullet Soundness: ${\mathcal V}$ cannot be convinced of a false statement
- Zero-Knowledge: $\mathcal V$ does not learn anything new from the interaction

Signature Schemes Based on Zero-Knowledge Proofs

Security Properties

- \bullet Soundness: ${\mathcal V}$ cannot be convinced of a false statement
- $\bullet\,$ Zero-Knowledge: ${\cal V}$ does not learn anything new from the interaction

If the verifier has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

• Picnic used LowMC – tailored to MPC, but less well analyzed than AES ...

AES as a ZK-friendly Cipher?

- Picnic used LowMC tailored to MPC, but less well analyzed than AES ...
- \bullet AES is $\mathbb{F}_2\text{-linear}$ except for the S-boxes

$$x \mapsto y = egin{cases} 0 & ext{if } x = 0 \ x^{-1} \in \mathbb{F}_{2^8} & ext{otherwise} \end{cases}$$

 (\star)

AES as a ZK-friendly Cipher?

- Picnic used LowMC tailored to MPC, but less well analyzed than AES ...
- AES is $\mathbb{F}_2\text{-linear}$ except for the S-boxes

$$x \mapsto y = \begin{cases} 0 & \text{if } x = 0 \\ x^{-1} \in \mathbb{F}_{2^8} & \text{otherwise} \end{cases}$$

 (\star)

- ⇒ Sample keys such that no zeros appear in the S-boxes and just check inversions $(x \cdot y = 1 \text{ over } \mathbb{F}_{2^8})$
 - → AES-128: 200 quadratic constraints / 1600 bit witness

VOLE-based Zero-Knowledge

Proof size

Prover runtime

7

What are VOLEs?

What are VOLEs?

Vector Oblivious Linear Evaluation (VOLE)

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Linearly Homomorphic Commitments

use $q_i = w_i \cdot \Delta + v_i$ as information-theoretic MAC on w_i

- hiding since *v_i* is random
- breaking $\underline{\text{binding}} \implies \text{guessing } \Delta \implies \text{prob. } 1/|\mathbb{F}|$

(cf. EC:CatFio13 [EC:CatFio13], EC:BDOZ11 [EC:BDOZ11])

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Linearly Homomorphic Commitments

use $q_i = w_i \cdot \Delta + v_i$ as information-theoretic MAC on w_i

- hiding since *v_i* is random
- breaking $\underline{\text{binding}} \implies \text{guessing } \Delta \implies \text{prob. } 1/|\mathbb{F}|$

(cf. EC:CatFio13 [EC:CatFio13], EC:BDOZ11 [EC:BDOZ11])

Commit & Prove Zero-Knowledge

- 1. linearly homomorphic commitments $[\cdot]$
 - can compute $[z] \leftarrow a \cdot [x] + [y] + b \checkmark$

- 1. linearly homomorphic commitments $[\cdot]$
 - can compute $[z] \leftarrow a \cdot [x] + [y] + b$
- 2. multiplication check

- given ([a], [b], [c]), verify
$$a \cdot b \stackrel{?}{=} c$$

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = v_x + x \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = v_x + x \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = v_x + x \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that
Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = v_x + x \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that

$$-p(\Delta)=0$$
, and

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = v_x + x \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that

$$- p(\Delta) = 0, \text{ and}$$
$$- e := c - a \cdot b \neq 0$$

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = v_x + x \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that

$$-p(\Delta)=0$$
, and

$$- e := c - a \cdot b \neq 0$$

 \implies p has degree 2 \implies p has at most 2 roots \implies soundness error $2/|\mathbb{F}|$

VOLE-in-the-Head

• If the prover $\mathcal P$ knows $\Delta,$ the commitments are no longer binding!

- If the prover $\mathcal P$ knows $\Delta,$ the commitments are no longer binding!
- But: At the end of the protocol, it is fine for ${\mathcal P}$ to learn $\Delta.$

- If the prover $\mathcal P$ knows $\Delta,$ the commitments are no longer binding!
- But: At the end of the protocol, it is fine for ${\mathcal P}$ to learn $\Delta.$
- \implies commit $\mathcal P$ to its messages and delay $\mathcal V$'s choice Δ to the end of the protocol

- If the prover \mathcal{P} knows Δ , the commitments are no longer binding!
- But: At the end of the protocol, it is fine for ${\mathcal P}$ to learn $\Delta.$
- \implies commit $\mathcal P$ to its messages and delay $\mathcal V$'s choice Δ to the end of the protocol

- If the prover \mathcal{P} knows Δ , the commitments are no longer binding!
- But: At the end of the protocol, it is fine for ${\mathcal P}$ to learn $\Delta.$
- \implies commit $\mathcal P$ to its messages and delay $\mathcal V$'s choice Δ to the end of the protocol

Implement \mathcal{F}_{VOLE} with SoftSpoken VOLE [C:Roy22].

Input: An $\binom{N}{N-1}$ -OT, for $N = 2^k \leq \text{poly}(\lambda)$: \mathcal{P} has seeds sd_x for all $x \in \mathbb{F}_{2^k}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^k}$ and all seeds except sd_{Δ}.

Input: An $\binom{N}{N-1}$ -OT, for $N = 2^k \leq \text{poly}(\lambda)$: \mathcal{P} has seeds sd_x for all $x \in \mathbb{F}_{2^k}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^k}$ and all seeds except sd_Δ .

Input: An $\binom{N}{N-1}$ -OT, for $N = 2^k \leq \text{poly}(\lambda)$: \mathcal{P} has seeds sd_x for all $x \in \mathbb{F}_{2^k}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^k}$ and all seeds except sd_Δ .

Input: An $\binom{N}{N-1}$ -OT, for $N = 2^k \leq \text{poly}(\lambda)$: \mathcal{P} has seeds sd_x for all $x \in \mathbb{F}_{2^k}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^k}$ and all seeds except sd_Δ .

Input: An $\binom{N}{N-1}$ -OT, for $N = 2^k \leq \text{poly}(\lambda)$: \mathcal{P} has seeds sd_x for all $x \in \mathbb{F}_{2^k}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^k}$ and all seeds except sd_Δ .

Derandomization: \mathcal{P} sends $\vec{d} = \vec{w} - \vec{u}$. \mathcal{V} updates $\vec{q}' = \vec{q} + \Delta \vec{d}$.

How to get an $\binom{N}{N-1}$ -OT for the VOLE?

How to get an $\binom{N}{N-1}$ -OT for the VOLE?

How to get an $\binom{N}{N-1}$ -OT for the VOLE?

This is just a commitment scheme!

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!

 \implies need VOLE over a big field \mathbb{F}_{2^λ} and Δ from large set.

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!

 \implies need VOLE over a big field \mathbb{F}_{2^λ} and Δ from large set.

 \rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau} = 2^{\lambda}$. Proof size: $\tau \times$ witness size.

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!

 \implies need VOLE over a big field \mathbb{F}_{2^λ} and Δ from large set.

 \rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau} = 2^{\lambda}$. Proof size: $\tau \times$ witness size.

$$\vec{q}_0 = \vec{w} \cdot \Delta_0 + \vec{v}_0$$

$$\vdots$$

$$\vec{q}_{\tau-1} = \vec{w} \cdot \Delta_{\tau-1} + \vec{v}_{\tau-1}$$

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!

 \implies need VOLE over a big field \mathbb{F}_{2^λ} and Δ from large set.

 \rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau} = 2^{\lambda}$. Proof size: $\tau \times$ witness size.

$$\vec{q}_{0} = \vec{w} \cdot \Delta_{0} + \vec{v}_{0}$$

$$\vdots$$

$$\vec{q}_{\tau-1} = \vec{w} \cdot \Delta_{\tau-1} + \vec{v}_{\tau-1}$$

$$\downarrow$$

$$\sum_{i \in [\tau]} \vec{q}_{i} \cdot X^{i} = \vec{w} \cdot \sum_{i \in [\tau]} \Delta_{i} \cdot X^{i} + \sum_{i \in [\tau]} \vec{v}_{i} \cdot X^{i}$$

$$\vec{q} \in \mathbb{F}_{q^{\tau}}$$

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!

 \implies need VOLE over a big field \mathbb{F}_{2^λ} and Δ from large set.

 \rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau} = 2^{\lambda}$. Proof size: $\tau \times$ witness size.

$$\vec{q}_{0} = \vec{w} \cdot \Delta_{0} + \vec{v}_{0}$$

$$\vdots$$

$$\vec{q}_{\tau-1} = \vec{w} \cdot \Delta_{\tau-1} + \vec{v}_{\tau-1}$$

$$\downarrow$$

$$\sum_{i \in [\tau]} \vec{q}_{i} \cdot X^{i} = \vec{w} \cdot \sum_{i \in [\tau]} \Delta_{i} \cdot X^{i} + \sum_{i \in [\tau]} \vec{v}_{i} \cdot X^{i}$$

$$\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell_{\tau}}$$

Use a consistency check to verify that the same \vec{w} was used in every VOLE.

		Field	l elemen	t $x \in [0]$), 2 ^k)	Commitment
		0	1	2	3	
Repetition $i \in [0, au)$	0	sd _{0,0}	sd _{0,1}	sd _{0,2}	sd _{0,3}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1	sd _{1,0}	$sd_{1,1}$	$sd_{1,2}$	sd _{1,3}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	2	sd _{2,0}	$sd_{2,1}$	$sd_{2,2}$	$sd_{2,3}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	3	sd _{3,0}	sd _{3,1}	sd _{3,2}	sd _{3,3}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		Field	l elemen	t <i>x</i> ∈ [0	$, 2^{k})$	Commitment
		0	1	2	3	
Repetition $i \in [0, au)$	0	sd _{0,0}	346,1	sd _{0,2}	sd _{0,3}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1	sd _{1,0}	sd _{1,1}	304,2	$sd_{1,3}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	2	<u>sdz,o</u>	$sd_{2,1}$	$sd_{2,2}$	$sd_{2,3}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3	sd _{3,0}	30-5,1	$sd_{3,2}$	sd _{3,3}	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1^{2^{2}} \\ \hline PRG \\ s_{0}^{2} \end{array} \end{array} \begin{array}{c} \begin{array}{c} 1^{2^{2}} \\ \hline PRG \\ s_{1}^{2} \end{array} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline s_{1}^{2} \end{array} \begin{array}{c} \begin{array}{c} s_{1}^{2} \\ \hline PRG \\ s_{2}^{2} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline s_{2} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline PRG \\ s_{2}^{2} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline s_{2} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline PRG \\ s_{2} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline s_{2} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline \\ s_{2} \end{array} \begin{array}{c} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline s_{2} \end{array} \begin{array}{c} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline \\ s_{2} \end{array} \begin{array}{c} s_{2} \end{array} \begin{array}{c} s_{1}^{2} \\ \hline \\ s_{2} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \begin{array}{c} s_{1} \\ \end{array} \end{array} \begin{array}{c} s_{1} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \begin{array}{c} s_{1} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \begin{array}{c} s_{1} \\ s_{2} \end{array} \end{array} $

		Field	l elemen	t <i>x</i> ∈ [0	$, 2^{k})$	Commitment
		0	1	2	3	
Repetition $i \in [0, au)$	0	sd _{0,0}	346,1	sd _{0,2}	sd _{0,3}	s ² PRG s ² PRG s ² PRG s ² s ² PRG s ² s ² s ² PRG s ² s ² s ² s ² s ² s ² s ² s ²
	1	sd _{1,0}	$sd_{1,1}$	34,2	sd _{1,3}	RG R
	2	<u>sdz,o</u>	$sd_{2,1}$	$sd_{2,2}$	sd _{2,3}	s ² PRG s ² C C C C C C C C C C C C C
	3	sd _{3,0}	<u>3045,1</u>	$sd_{3,2}$	sd _{3,3}	s ² PRG s ² PRG s ² PRG s ² s ² PRG s ² s ² s ² PRG s ² s ² s ² s ² s ² s ² s ² s ²

Because $N^{\tau} = 2^{\lambda}$, the co-paths always have λ nodes, so opening costs roughly λ^2 bits.

${\sf Verifier}\,\,{\cal V}$

$\mathsf{Prover}\; \mathcal{P}$

 $\text{Verifier } \mathcal{V}$

• vector-commit to random strings

$\mathsf{Prover}\; \mathcal{P}$

 $\text{Verifier } \mathcal{V}$

- vector-commit to random strings
- expand small VOLEs

$\mathsf{Prover}\; \mathcal{P}$

 $\mathsf{Verifier}\ \mathcal{V}$

- vector-commit to random strings
- $\bullet\,$ expand small VOLEs
- combine into big VOLE
$\mathsf{Prover}\; \mathcal{P}$

 $\mathsf{Verifier}\ \mathcal{V}$

- vector-commit to random strings
- expand small VOLEs
- combine into big VOLE

random challenge

VOLE consistency proof

$\mathsf{Prover}\; \mathcal{P}$

 $\mathsf{Verifier}\ \mathcal{V}$

- vector-commit to random strings
- expand small VOLEs
- combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

$\mathsf{Prover}\; \mathcal{P}$

 $\text{Verifier } \mathcal{V}$

- vector-commit to random strings
- $\bullet\,$ expand small VOLEs
- combine into big VOLE

Prover \mathcal{P} Verifier \mathcal{V} vector-commit to random strings • expand small VOLEs • combine into big VOLE random challenge VOLE consistency proof random challenge QuickSilver proof Ā verify: • vector commitments open vector commitments VOLE consistency QuickSilver proof

Grinding

- Prover must generate $\Theta(\tau 2^k \ell)$ PRG bits and run $\Theta(\tau 2^k)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

- Prover must generate $\Theta(\tau 2^k \ell)$ PRG bits and run $\Theta(\tau 2^k)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2^w times more expensive (Grinding). Only need to target $2^{\lambda-w}$ security level.

- Prover must generate $\Theta(\tau 2^k \ell)$ PRG bits and run $\Theta(\tau 2^k)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2^w times more expensive (Grinding). Only need to target $2^{\lambda-w}$ security level.

• This allows for smaller signatures by reducing τ .

- Prover must generate $\Theta(\tau 2^k \ell)$ PRG bits and run $\Theta(\tau 2^k)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2^w times more expensive (Grinding). Only need to target $2^{\lambda-w}$ security level.

- This allows for smaller signatures by reducing τ .
- Counter-intuitively, this can also make signing <u>faster</u> k can be reduced while preserving security.

$$\vec{q}_{0} = \vec{w} \cdot \Delta_{0} + \vec{v}_{0}$$

$$\vdots$$

$$\vec{q}_{\tau-2} = \vec{w} \cdot \Delta_{\tau-2} + \vec{v}_{\tau-2}$$

$$\vec{q}_{\tau-1} = \vec{w} \cdot \Delta_{\tau-1} + \vec{v}_{\tau-1}$$

$$\Downarrow$$

$$\sum_{i \in [\tau]} \vec{q}_{i} \cdot X^{i} = \vec{w} \cdot \sum_{i \in [\tau]} \Delta_{i} \cdot X^{i} + \sum_{i \in [\tau]} \vec{v}_{i} \cdot X$$

What if $\Delta_{\tau-1} = 0$?

$$\vec{q}_{0} = \vec{w} \cdot \Delta_{0} + \vec{v}_{0}$$

$$\vdots$$

$$\vec{q}_{\tau-2} = \vec{w} \cdot \Delta_{\tau-2} + \vec{v}_{\tau-2}$$

$$\vec{q}_{\tau-1} = \vec{w} \cdot \Delta_{\tau-1} + \vec{v}_{\tau-1}$$

$$\downarrow$$

$$\sum_{i \in [\tau]} \vec{q}_{i} \cdot X^{i}$$

$$\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell}$$

$$\vec{w} \cdot \sum_{i \in [\tau]} \Delta_{i} \cdot X^{i} + \sum_{i \in [\tau]} \vec{v}_{i} \cdot X^{i}$$

What if $\Delta_{\tau-1} = 0$?

$$\vec{q}_{0} = \vec{w} \cdot \Delta_{0} + \vec{v}_{0}$$

$$\vdots$$

$$\vec{q}_{\tau-2} = \vec{w} \cdot \Delta_{\tau-2} + \vec{v}_{\tau-2}$$

$$\vec{q}_{\tau-1} = \vec{w} \cdot 0 + \vec{v}_{\tau-1}$$

$$\downarrow$$

$$\sum_{i \in [\tau]} \vec{q}_{i} \cdot X^{i}$$

$$\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell_{\tau}}$$

$$\vec{v} \cdot \sum_{i \in [\tau]} \Delta_{i} \cdot X^{i} + \sum_{i \in [\tau]} \vec{v}_{i} \cdot X^{i}$$

What if $\Delta_{\tau-1} = 0$? The last small vole correlation is now trivial,

$$\vec{q}_{0} = \vec{w} \cdot \Delta_{0} + \vec{v}_{0}$$

$$\vdots$$

$$\vec{q}_{\tau-2} = \vec{w} \cdot \Delta_{\tau-2} + \vec{v}_{\tau-2}$$

$$0 = \vec{w} \cdot 0 + 0$$

$$\downarrow$$

$$\sum_{i \in [\tau]} \vec{q}_{i} \cdot X^{i} = \vec{w} \cdot \sum_{i \in [\tau]} \Delta_{i} \cdot X^{i} + \sum_{i \in [\tau]} \vec{v}_{i} \cdot X^{i}$$

$$\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell_{\tau}}$$

What if $\Delta_{\tau-1} = 0$?

The last small vole correlation is now trivial, and can be removed to save communication.

$$\vec{q}_{0} = \vec{w} \cdot \Delta_{0} + \vec{v}_{0}$$

$$\vdots$$

$$\vec{q}_{\tau-2} = \vec{w} \cdot \Delta_{\tau-2} + \vec{v}_{\tau-2}$$

$$0 = \vec{w} \cdot 0 + 0$$

$$\downarrow$$

$$\sum_{\substack{\in [\tau-1]\\\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell_{\tau}}} \vec{q}_{i} \cdot X^{i} = \vec{w} \cdot \sum_{\substack{i \in [\tau-1]\\\Delta \in \mathbb{F}_{q^{\tau}}}} \Delta_{i} \cdot X^{i} + \sum_{\substack{i \in [\tau-1]\\\vec{v} \in \mathbb{F}_{q^{\tau}}^{\ell_{\tau}}}} \vec{v}_{i} \cdot X^{i}$$

Prover \mathcal{P} Verifier \mathcal{V} vector-commit to random strings • expand small VOLEs • combine into big VOLE random challenge VOLE consistency proof random challenge QuickSilver proof Ā verify: • vector commitments open vector commitments VOLE consistency QuickSilver proof

Prover \mathcal{P} Verifier \mathcal{V} vector-commit to random strings • expand small VOLEs • combine into big VOLE random challenge VOLE consistency proof random challenge QuickSilver proof Ā verify: • vector commitments Retry if $\Delta_{\tau-1} \neq 0.$ open vector commitments VOLE consistency QuickSilver proof

23

Verifier \mathcal{V} Prover \mathcal{P} vector-commit to random strings • expand small VOLEs • combine into big VOLE random challenge VOLE consistency proof random challenge QuickSilver proof Retry index Ā verify: • vector commitments Retry if $\Delta_{\tau-1} \neq 0.$ open vector commitments VOLE consistency

• QuickSilver proof

Verifier \mathcal{V} Prover \mathcal{P} vector-commit to random strings • expand small VOLEs • combine into big VOLE random challenge VOLE consistency proof random challenge QuickSilver proof Retry index Ā Retry if last w verify: • vector commitments bits of $\vec{\Delta}$ aren't open vector commitments VOLE consistency all zero. QuickSilver proof

One Tree to Rule Them All

All-but-some Random Vector Commitments

		Field	l elemen	t <i>x</i> ∈ [0	$, 2^{k})$	Commitment				
		0	1	2	3					
Repetition $i \in [0, au)$	0	sd _{0,0}	3461	sd _{0,2}	sd _{0,3}	^{2°} ^{4°} ^{4°} ^{4°} ^{4°} ^{4°} ^{4°} ^{4°} ⁴				
	1	sd _{1,0}	$sd_{1,1}$	3452	sd _{1,3}	REG				
	2	<u>sdz,o</u>	$sd_{2,1}$	$sd_{2,2}$	sd _{2,3}	s ² PRG s ² C C C C C C C C C C C C C				
	3	sd _{3,0}	30-5,1	sd _{3,2}	sd _{3,3}	signed by the second se				

All-but-some Random Vector Commitments

		Field element $x \in [0, 2^k)$								
		0	1	2	3					
τ)	0	sd _{0,0}	\$0,1	$sd_{0,2}$	sd _{0,3}					
<i>i</i> ∈ [0,	1	$sd_{1,0}$	$sd_{1,1}$	3 4 <u>5</u> 2	sd _{1,3}					
Repetition	2	S1 2,0	$sd_{2,1}$	sd _{2,2}	sd _{2,3}					
	3	sd _{3,0}	\$\$\$,1	sd _{3,2}	sd _{3,3}					

All-but-some Random Vector Commitments

		Repetition $i \in [0, \tau)$									
		0 1		2	3						
0, 2 ^k)	0	sd _{0,0}	$sd_{1,0}$	30 2,0	$sd_{3,0}$						
If $x \in [0, 1]$	1	\$0,1	$sd_{1,1}$	$sd_{2,1}$	\$\$\$5,1						
elemer	2	sd _{0,2}	34 ,2	$sd_{2,2}$	$sd_{3,2}$						
Field	3	sd _{0,3}	$sd_{1,3}$	sd _{2,3}	sd _{3,3}						

Note: only 7 seeds to open, not 8.

Note: only 7 seeds to open, not 8. In general, the opening size depends on Δ . \rightsquigarrow Set a limit T_{open} on seeds in the opening, and retry if it's exceeded.

FAESTER

Size-time Tradeoff

Signature Scheme	OWF $E_{sk}(x)$	1	W	T_{open}	τ	$ au_0$	τ_1	k_0	k_1	sk size	pk size	sig. size
FAEST-128s	$AES128_{sk}(x)$	1600	-	-	11	7	4	12	11	16	32	5006
FAEST-128 _f	$AES128_{sk}(x)$	1600	-	-	16	0	16	8	8	16	32	6336
FAEST-EM-128s	$AES128_x(sk) \oplus sk$	1280	-	-	11	7	4	12	11	16	32	4566
FAEST-EM-128 _f	$AES128_{x}(sk) \oplus sk$	1280	-	-	16	0	16	8	8	16	32	5696
FAESTER-128s	$AES128_{sk}(x)$	1600	7	102	11	0	11	11	11	16	32	4594
FAESTER-128 _f	$AES128_{sk}(x)$	1600	8	110	16	8	8	8	7	16	32	6052
FAESTER-EM-128s	$AES128_x(sk) \oplus sk$	1280	7	103	11	0	11	11	11	16	32	4170
FAESTER-EM-128 _f	$AES128_x(sk) \oplus sk$	1280	8	112	16	8	8	8	7	16	32	5444
Scheme	Runtime in ms			Size in bytes								
-----------------------------	---------------	-------	--------	---------------	----	-----------						
	Keygen	Sign	Verify	sk	pk	Signature						
FAEST-128 _s	0.0006	4.381	4.102	16	32	5006						
FAEST-128 _f	0.0005	0.404	0.395	16	32	6336						
FAEST-EM-128 _s	0.0005	4.151	4.415	16	32	4566						
FAEST-EM-128 _f	0.0005	0.446	0.474	16	32	5696						
FAESTER-128 _s	0.0006	3.282	4.467	16	32	4594						
FAESTER-128 _f	0.0005	0.433	0.610	16	32	6052						
FAESTER-EM-128 _s	0.0005	3.005	4.386	16	32	4170						
FAESTER-EM-128 _f	0.0005	0.422	0.609	16	32	5444						

Signing time (ms), verification time (ms), and signature size (bytes).

Scheme	Runtime in ms			Size in bytes		
	Keygen	Sign	Verify	sk	pk	Signature
FAEST-128 _s	0.0006	4.381	4.102	16	32	5006
FAEST-128 _f	0.0005	0.404	0.395	16	32	6336
FAEST-EM-128 _s	0.0005	4.151	4.415	16	32	4566
FAEST-EM-128 _f	0.0005	0.446	0.474	16	32	5696
FAESTER-128 _s	0.0006	3.282	4.467	16	32	4594
FAESTER-128 _f	0.0005	0.433	0.610	16	32	6052
FAESTER-EM-128 _s	0.0005	3.005	4.386	16	32	4170
FAESTER-EM-128 _f	0.0005	0.422	0.609	16	32	5444

Signing time (ms), verification time (ms), and signature size (bytes).

Benchmarking system: AMD Ryzen 9 7900X 12-Core CPU running Ubuntu 22.04.

• AES S-boxes:

$$x \mapsto y = \begin{cases} 0 & \text{if } x = 0 \\ x^{-1} \in \mathbb{F}_{2^8} & \text{otherwise} \end{cases}$$

• Constraint:
$$x \cdot y = 1$$
. This requires $x \neq 0$.

 (\star)

• AES S-boxes:

$$x \mapsto y = egin{cases} 0 & ext{if } x = 0 \ x^{-1} \in \mathbb{F}_{2^8} & ext{otherwise} \end{cases}$$

• Constraint:
$$x \cdot y = 1$$
. This requires $x \neq 0$

• (*)
$$\iff x^2 \cdot y = x \land x \cdot y^2 = y$$

- observe that $x \mapsto x^2$ is \mathbb{F}_2 -linear.
- \rightsquigarrow 2 quadratic constraints per S-box.

 (\star)

• AES S-boxes:

$$x \mapsto y = egin{cases} 0 & ext{if } x = 0 \ x^{-1} \in \mathbb{F}_{2^8} & ext{otherwise} \end{cases}$$

• Constraint:
$$x \cdot y = 1$$
. This requires $x \neq 0$.

• (*)
$$\iff x^2 \cdot y = x \land x \cdot y^2 = y$$

- observe that $x \mapsto x^2$ is \mathbb{F}_2 -linear.
- $\rightsquigarrow~2$ quadratic constraints per S-box.
- Can use any AES key! No rejection sampling.

 (\star)

MandaRain

- $x, k, y \in \mathbb{F}_{2^{\lambda}}$.
- M_i is a \mathbb{F}_2 -linear transformations.

- $x, k, y \in \mathbb{F}_{2^{\lambda}}$.
- M_i is a \mathbb{F}_2 -linear transformations.
- Fewer rounds \implies smaller witness.

Size-time Tradeoff

Scheme	Runtime in ms			Size in bytes		
	Keygen	Sign	Verify	sk	pk	Signature
FAEST-128 _s	0.0006	4.381	4.102	16	32	5006
FAEST-128 _f	0.0005	0.404	0.395	16	32	6336
FAEST-EM-128 _s	0.0005	4.151	4.415	16	32	4566
FAEST-EM-128 _f	0.0005	0.446	0.474	16	32	5696
FAESTER-128 _s	0.0006	3.282	4.467	16	32	4594
FAESTER-128 _f	0.0005	0.433	0.610	16	32	6052
FAESTER-EM-128s	0.0005	3.005	4.386	16	32	4170
FAESTER-EM-128 _f	0.0005	0.422	0.609	16	32	5444
MandaRain-3-128 _s	0.0018	2.800	5.895	16	32	2890
MandaRain-3-128 _f	0.0018	0.346	0.807	16	32	3588
MandaRain-4-128 _s	0.0026	2.876	6.298	16	32	3052
MandaRain-4-128 _f	0.0026	0.371	0.817	16	32	3876

Signing time (ms), verification time (ms), and signature size (bytes).

KuMQuat

$$y_i = x^{\mathsf{T}} \mathsf{A}_i x + b_i^{\mathsf{T}} x_j$$

$$y_i = x^{\mathsf{T}} \mathsf{A}_i \, x + b_i^{\mathsf{T}} x_j$$

Witness:
$$x \in \mathbb{F}_q^n$$

Constraints:

$$y_i = \sum_{jk} A_{ijk} x_j x_k + \sum_j b_{ij} x_j - y_i \quad \forall i \in [n]$$

$$y_i = x^{\mathsf{T}} \mathsf{A}_i \, x + b_i^{\mathsf{T}} x_j$$

Witness: $x \in \mathbb{F}_q^n$ Constraints:

$$y_i = \sum_{jk} A_{ijk} x_j x_k + \sum_j b_{ij} x_j - y_i \quad \forall i \in [n]$$

• Witness size is minimal (assuming only quadratic constraints).

$$y_i = x^{\mathsf{T}} \mathsf{A}_i \, x + b_i^{\mathsf{T}} x_j$$

Witness: $x \in \mathbb{F}_q^n$ Constraints:

$$y_i = \sum_{jk} A_{ijk} x_j x_k + \sum_j b_{ij} x_j - y_i \quad \forall i \in [n]$$

- Witness size is minimal (assuming only quadratic constraints).
- Optimization: pack multiple \mathbb{F}_q constraints together into a $\mathbb{F}_{2^{\lambda}}$ constraint.

Instance	Security Level	\mathbb{F}_q	п
$MQ-2^1-L1$	L1	\mathbb{F}_{2^1}	152
MQ-2 ⁸ -L1	L1	₽ ₂ 8	48
MQ-2 ¹ -L3	L3	\mathbb{F}_{2^1}	224
MQ-2 ⁸ -L3	L3	₽ ₂ 8	72
MQ-2 ¹ -L5	L5	\mathbb{F}_{2^1}	320
MQ-2 ⁸ -L5	L5	₽ ₂ 8	96

(a) KuMQuat-2¹-L1.

(b) KuMQuat-2⁸-L1.

Scheme	Runtime in ms			Size in bytes		
	Keygen	Sign	Verify	sk	pk	Signature
FAEST-128s	0.0006	4.381	4.102	16	32	5006
FAEST-128 _f	0.0005	0.404	0.395	16	32	6336
FAEST-EM-128s	0.0005	4.151	4.415	16	32	4566
FAEST-EM-128 _f	0.0005	0.446	0.474	16	32	5696
FAESTER-128 _s	0.0006	3.282	4.467	16	32	4594
FAESTER-128 _f	0.0005	0.433	0.610	16	32	6052
FAESTER-EM-128s	0.0005	3.005	4.386	16	32	4170
FAESTER-EM-128 _f	0.0005	0.422	0.609	16	32	5444
MandaRain-3-128 _s	0.0018	2.800	5.895	16	32	2890
MandaRain-3-128 _f	0.0018	0.346	0.807	16	32	3588
MandaRain-4-128 _s	0.0026	2.876	6.298	16	32	3052
MandaRain-4-128 _f	0.0026	0.371	0.817	16	32	3876
KuMQuat-2 ¹ -L1 _s	0.173	4.305	4.107	19	35	2555
KuMQuat-2 ¹ -L1 _f	0.172	0.539	0.736	19	35	3028
KuMQuat-2 ⁸ -L1 _s	0.174	3.599	4.053	48	64	2890
KuMQuat-2 ⁸ -L1 _f	0.172	0.400	0.623	48	64	3588

Signing time (ms), verification time (ms), and signature size (bytes).

Performance Graph

(a) Signing time - signature size trade-off.

(b) Verification time - signature size trade-off.

Additional Graphs

(a) L1 Signing.

(b) L1 Verify.