
One Tree to Rule Them All

Optimizing GGM Trees and OWFs for Post-Quantum Signatures

Carsten Baum1,2 Ward Beullens3 Cyprien de Saint Guilhem4 Shibam Mukherjee5

Emmanuela Orsini6 Sebastian Ramacher7 Christian Rechberger5 Lawrence Roy1 Peter Scholl1

1Aarhus University 2Technical University of Denmark
3IBM Research Zurich 4COSIC KU Leuven 5TU Graz
6Bocconi University 7AIT Austrian Institute of Technology

team@faest.info Thank you to Lennart Braun for many slides.

1

mailto:team@faest.info

FAEST

2

. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk(x) = y ”

• 1× fresh VOLE (in-the-Head)

• A pinch of Fiat-Shamir

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.

FAEST

After Picnic, BBQ, and Banquet . . .

3

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk(x) = y ”

• 1× fresh VOLE (in-the-Head)

• A pinch of Fiat-Shamir

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.

FAEST

After Picnic, BBQ, and Banquet . . .
. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

3

• 1× fresh VOLE (in-the-Head)

• A pinch of Fiat-Shamir

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.

FAEST

After Picnic, BBQ, and Banquet . . .
. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk (x) = y ”

3

• A pinch of Fiat-Shamir

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.

FAEST

After Picnic, BBQ, and Banquet . . .
. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk (x) = y ”

• 1× fresh VOLE (in-the-Head)

3

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.

FAEST

After Picnic, BBQ, and Banquet . . .
. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk (x) = y ”

• 1× fresh VOLE (in-the-Head)

• A pinch of Fiat-Shamir

3

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.

FAEST

After Picnic, BBQ, and Banquet . . .
. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk (x) = y ”

• 1× fresh VOLE (in-the-Head)

• A pinch of Fiat-Shamir

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

3

FAEST

After Picnic, BBQ, and Banquet . . .
. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk (x) = y ”

• 1× fresh VOLE (in-the-Head)

• A pinch of Fiat-Shamir

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.

3

Security Properties

• Soundness: V cannot be convinced of a false statement

• Zero-Knowledge: V does not learn anything new from the interaction

If the verifer has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

Identifcation Schemes Based on Zero-Knowledge Proofs

Prover P Verifer V

4

Security Properties

• Soundness: V cannot be convinced of a false statement

• Zero-Knowledge: V does not learn anything new from the interaction

If the verifer has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

Identifcation Schemes Based on Zero-Knowledge Proofs

I know k s. t. AESk (x) = y !

Prover P Verifer V

4

Security Properties

• Soundness: V cannot be convinced of a false statement

• Zero-Knowledge: V does not learn anything new from the interaction

If the verifer has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

Identifcation Schemes Based on Zero-Knowledge Proofs

I know k s. t. AESk (x) = y !

Prover P Verifer V

4

Security Properties

• Soundness: V cannot be convinced of a false statement

• Zero-Knowledge: V does not learn anything new from the interaction

If the verifer has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

Identifcation Schemes Based on Zero-Knowledge Proofs

I know k s. t. AESk (x) = y !

Prover P Verifer V

Yes, you are
pk = (x , y).

4

If the verifer has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

Identifcation Schemes Based on Zero-Knowledge Proofs

I know k s. t. AESk (x) = y !

Prover P Verifer V

Yes, you are
pk = (x , y).

Security Properties

• Soundness: V cannot be convinced of a false statement

• Zero-Knowledge: V does not learn anything new from the interaction

4

Signature Schemes Based on Zero-Knowledge Proofs

I know k s. t. AESk (x) = y !

Prover P Verifer V

Yes, you are
pk = (x , y).

Security Properties

• Soundness: V cannot be convinced of a false statement

• Zero-Knowledge: V does not learn anything new from the interaction

If the verifer has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

4

• AES is F2-linear except for the S-boxes

x 7→ y =

(
0 if x = 0

x−1 ∈ F28 otherwise
(⋆)

=⇒ Sample keys such that no zeros appear in the
S-boxes and just check inversions (x · y = 1 over
F28)

⇝ AES-128: 200 quadratic constraints / 1600 bit
witness

AES as a ZK-friendly Cipher?

• Picnic used LowMC – tailored to MPC, but less well
analyzed than AES . . .

5

=⇒ Sample keys such that no zeros appear in the
S-boxes and just check inversions (x · y = 1 over
F28)

⇝ AES-128: 200 quadratic constraints / 1600 bit
witness

AES as a ZK-friendly Cipher?

• Picnic used LowMC – tailored to MPC, but less well
analyzed than AES . . .

• AES is F2-linear except for the S-boxes (
0 if x = 0

x 7→ y = (⋆)
x−1 ∈ F28 otherwise

5

AES as a ZK-friendly Cipher?

• Picnic used LowMC – tailored to MPC, but less well
analyzed than AES . . .

• AES is F2-linear except for the S-boxes (
0 if x = 0

x 7→ y = (⋆)
x−1 ∈ F28 otherwise

=⇒ Sample keys such that no zeros appear in the
S-boxes and just check inversions (x · y = 1 over
F28)

⇝ AES-128: 200 quadratic constraints / 1600 bit
witness

5

VOLE-based Zero-Knowledge

6

Space of Zero-Knowledge Proofs

Proof size

Prover runtime

7

Space of Zero-Knowledge Proofs

Proof size

Ligero

STARK

Groth16

Prover runtime

7

Space of Zero-Knowledge Proofs

Proof size

Ligero

STARK

Groth16

MPC-in-the-Head

VOLE-ZK

Prover runtime

7

Space of Zero-Knowledge Proofs

Proof size

Ligero

STARK

Groth16

MPC-in-the-Head

VOLE-ZK
linear size: (1 + o(1)) · ℓ
secret-coin

Prover runtime

7

Space of Zero-Knowledge Proofs

Proof size

Ligero

STARK

Groth16

MPC-in-the-Head

VOLE-ZK

VOLE-in-the-Head
size: Θ(λ/ log(λ)) · ℓ
public-coin

Prover runtime

7

What are VOLEs?

8

What are VOLEs?

8

as Homomorphic Commitments

Linearly Homomorphic Commitments
use qi = wi · ∆ + vi as information-theoretic MAC on wi

• hiding since vi is random

• breaking binding =⇒ guessing ∆ =⇒ prob. 1/|F|
(cf. EC:CatFio13 [EC:CatFio13],
EC:BDOZ11 [EC:BDOZ11])

Vector Oblivious Linear Evaluation (VOLE)

Prover P Verifer V
(VOLE Sender) (VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈ Fn

∆ ∈ F

FVOLE q⃗ = ∆ · w⃗ + v⃗

v

p(X) = w · X + v

q

∆

9

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Prover P Verifer V
(VOLE Sender) (VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈R Fn

∆ ∈R F

FVOLE q⃗ = ∆ · w⃗ + v⃗

Linearly Homomorphic Commitments v

use qi = wi · ∆ + vi as information-theoretic MAC on wi

• hiding since vi is random

• breaking binding =⇒ guessing ∆ =⇒ prob. 1/|F|

p(X) = w · X + v

q

∆(cf. EC:CatFio13 [EC:CatFio13],
EC:BDOZ11 [EC:BDOZ11])

9

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Prover P Verifer V
(VOLE Sender) (VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈R Fn

∆ ∈R F

FVOLE q⃗ = ∆ · w⃗ + v⃗
′ v

Linearly Homomorphic Commitments v

use qi = wi · ∆ + vi as information-theoretic MAC on wi

• hiding since vi is random

• breaking binding =⇒ guessing ∆ =⇒ prob. 1/|F|

p(X) = w · X + v

q

′ p (X) = ′ w · X + ′ v

∆(cf. EC:CatFio13 [EC:CatFio13],
EC:BDOZ11 [EC:BDOZ11])

9

Commit & Prove Zero-Knowledge

w1 w2 · · · wnI know w s. t. C(w) = 0!

Prover P

+

×C

wout

10

2. multiplication check

– given ([a], [b], [c]), verify a · b ?
= c

Commit & Prove Zero-Knowledge

[w1] [w2] · · · [wn]I know w s. t. C(w) = 0!

Prover P

+

×C

[wi]

[wj]

Ingredients:

1. linearly homomorphic commitments [·]

– can compute [z] ← a · [x] + [y] + b

[wout]

10

Commit & Prove Zero-Knowledge

[w1] [w2] · · · [wn]I know w s. t. C(w) = 0!

Prover P

+

×C

[wi]

[wj]

Ingredients:

1. linearly homomorphic commitments [·]

– can compute [z] ← a · [x] + [y] + b

2. multiplication check

– given ([a], [b], [c]), verify a · b =
?
c

[wout]

10

QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb| {z }
known by V

= (−va · vb)| {z }
known by P

+ (vc − a · vb − b · va)| {z }
known by P

· ∆ + (c − a · b)| {z }
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c − a · b ̸= 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

use a random linear combination to
verify many multiplications

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

11

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c − a · b ̸= 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

use a random linear combination to
verify many multiplications

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb = (−va · vb) + (vc − a · vb − b · va) · ∆ + (c − a · b) · ∆2 | {z } | {z } | {z } | {z }
known by V known by P known by P = 0 if P honest

11

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c − a · b ̸= 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb = (−va · vb) + (vc − a · vb − b · va) · ∆ + (c − a · b) · ∆2 | {z } | {z } | {z } | {z }
known by V known by P known by P = 0 if P honest

use a random linear combination to
verify many multiplications

11

– p (∆) = 0, and

– e := c − a · b ̸= 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

use a random linear combination to
verify many multiplications

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb = (−va · vb) + (vc − a · vb − b · va) · ∆ + (c − a · b) · ∆2 | {z } | {z } | {z } | {z }
known by V known by P known by P = 0 if P honest

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

11

– e := c − a · b ̸= 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

use a random linear combination to
verify many multiplications

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb | {z }
= (−va · vb)| {z }

+ (vc − a · vb − b · va)| {z }
· ∆ + (c − a · b)| {z }

· ∆2

known by V known by P known by P = 0 if P honest

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

11

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

use a random linear combination to
verify many multiplications

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb | {z }
= (−va · vb)| {z }

+ (vc − a · vb − b · va)| {z }
· ∆ + (c − a · b)| {z }

· ∆2

known by V known by P known by P = 0 if P honest

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– e := c − a · b ≠ 0

– p (∆) = 0, and

11

use a random linear combination to
verify many multiplications

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

= (−va · vb)| {z }
+ (vc − a · vb − b · va)| {z }

· ∆ + (c − a · b)| {z }
· ∆2

known by V known by P known by P = 0 if P honest

∆ · qc − qa · qb | {z }

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– e := c − a · b ≠ 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

– p (∆) = 0, and

11

VOLE-in-the-Head

12

• If the prover P knows ∆, the commitments are no longer binding!

• But: At the end of the protocol, it is fne for P to learn ∆.

=⇒ commit P to its messages and delay V’s choice ∆ to the end of the protocol

FVOLE

commit

open

Prover P
(VOLE Sender)

Verifer V
(VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈R Fn ∆ ∈R F

q⃗ = ∆ · w⃗ + v⃗∆

Implement FVOLE with SoftSpoken VOLE [C:Roy22].

VOLE-in-the-Head – The Idea

Observation: Why are VOLE-ZK protocols not public coin?

13

• But: At the end of the protocol, it is fne for P to learn ∆.

=⇒ commit P to its messages and delay V’s choice ∆ to the end of the protocol

FVOLE

commit

open

Prover P
(VOLE Sender)

Verifer V
(VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈R Fn ∆ ∈R F

q⃗ = ∆ · w⃗ + v⃗∆

Implement FVOLE with SoftSpoken VOLE [C:Roy22].

VOLE-in-the-Head – The Idea

Observation: Why are VOLE-ZK protocols not public coin?

• If the prover P knows ∆, the commitments are no longer binding!

13

=⇒ commit P to its messages and delay V’s choice ∆ to the end of the protocol

FVOLE

commit

open

Prover P
(VOLE Sender)

Verifer V
(VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈R Fn ∆ ∈R F

q⃗ = ∆ · w⃗ + v⃗∆

Implement FVOLE with SoftSpoken VOLE [C:Roy22].

VOLE-in-the-Head – The Idea

Observation: Why are VOLE-ZK protocols not public coin?

• If the prover P knows ∆, the commitments are no longer binding!

• But: At the end of the protocol, it is fne for P to learn ∆.

13

FVOLE

commit

open

Prover P
(VOLE Sender)

Verifer V
(VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈R Fn ∆ ∈R F

q⃗ = ∆ · w⃗ + v⃗∆

Implement FVOLE with SoftSpoken VOLE [C:Roy22].

VOLE-in-the-Head – The Idea

Observation: Why are VOLE-ZK protocols not public coin?

• If the prover P knows ∆, the commitments are no longer binding!

• But: At the end of the protocol, it is fne for P to learn ∆.

=⇒ commit P to its messages and delay V’s choice ∆ to the end of the protocol

13

Implement FVOLE with SoftSpoken VOLE [C:Roy22].

VOLE-in-the-Head – The Idea

Observation: Why are VOLE-ZK protocols not public coin?

• If the prover P knows ∆, the commitments are no longer binding!

• But: At the end of the protocol, it is fne for P to learn ∆.

=⇒ commit P to its messages and delay V’s choice ∆ to the end of the protocol

commitProver P w⃗ ∈ Fn Verifer V
(VOLE Sender) v ∈R Fn (VOLE Receiver) ⃗ ∆ ∈R F FVOLE

∆ open
q⃗ = ∆ · w⃗ + v⃗

13

VOLE-in-the-Head – The Idea

Observation: Why are VOLE-ZK protocols not public coin?

• If the prover P knows ∆, the commitments are no longer binding!

• But: At the end of the protocol, it is fne for P to learn ∆.

=⇒ commit P to its messages and delay V’s choice ∆ to the end of the protocol

commitProver P w⃗ ∈ Fn Verifer V
(VOLE Sender) v ∈R Fn (VOLE Receiver) ⃗ ∆ ∈R F FVOLE

∆ open
q⃗ = ∆ · w⃗ + v⃗

Implement FVOLE with SoftSpoken VOLE [C:Roy22].

13

u⃗ = −
X
x∈F2k

G (sdx) =
X
x∈F2k

û(x)G (sdx)

v⃗ =
X
x∈F2k

xG (sdx) =
X
x∈F2k

v̂(x)G (sdx)

q⃗ =
X
x∈F2k

(x −∆)G (sdx)

=
X
x∈F2k

q̂(x)G (sdx)

q⃗ − v⃗ =
X
x∈F2k

(−∆)G (sdx) = ∆u⃗

1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

0
0

x

û(x)

v̂(x)

q̂(x)
∆

∆û(x)

Derandomization: P sends d⃗ = w⃗ − u⃗. V updates q⃗′ = q⃗ +∆d⃗ .

Small-Field SoftSpoken VOLE �
N �

Input: An -OT, for N = 2k ≤ poly(λ):N−1

P has seeds sdx for all x ∈ F2k . V has ∆ ∈ F2k and all seeds except sd∆.

14

q⃗ − v⃗ =
X
x∈F2k

(−∆)G (sdx) = ∆u⃗

Derandomization: P sends d⃗ = w⃗ − u⃗. V updates q⃗′ = q⃗ +∆d⃗ .

Small-Field SoftSpoken VOLE �
N �

Input: An -OT, for N = 2k ≤ poly(λ):N−1

P has seeds sdx for all x ∈ F2k . V has ∆ ∈ F2k and all seeds except sd∆.

X X 7
u⃗ = − G (sdx) = û(x)G (sdx)

6 x∈F2k x∈F2kX X 5
⃗ = xG (sdx) = ˆ)v v(x)G (sdx

4x∈F2k x∈F2k

3 X 2
q⃗ = (x − ∆)G (sdx) 1

x∈F2kX 0
= q̂(x)G (sdx) −1

x∈F2k

−2

−3

1 2 3 4 5 6 70
x

û(x)
v̂(x)
q̂(x)
∆

∆û(x)

14

q⃗ − v⃗ =
X
x∈F2k

(−∆)G (sdx) = ∆u⃗

Derandomization: P sends d⃗ = w⃗ − u⃗. V updates q⃗′ = q⃗ +∆d⃗ .

Small-Field SoftSpoken VOLE �
N �

Input: An -OT, for N = 2k ≤ poly(λ):N−1

P has seeds sdx for all x ∈ F2k . V has ∆ ∈ F2k and all seeds except sd∆.

X X 7
u⃗ = − G (sdx) = û(x)G (sdx)

6 x∈F2k x∈F2kX X 5
⃗ = xG (sdx) = ˆ)v v(x)G (sdx

4x∈F2k x∈F2k

3 X 2
q⃗ = (x − ∆)G (sdx) 1

x∈F2kX 0
= q̂(x)G (sdx) −1

x∈F2k

−2

−3

1 2 3 4 5 6 70
x

û(x)
v̂(x)
q̂(x)
∆

∆û(x)

14

Derandomization: P sends d⃗ = w⃗ − u⃗. V updates q⃗′ = q⃗ +∆d⃗ .

Small-Field SoftSpoken VOLE �
N �

Input: An -OT, for N = 2k ≤ poly(λ):N−1

P has seeds sdx for all x ∈ F2k . V has ∆ ∈ F2k

X X 7
u⃗ = − G (sdx) = û(x)G (sdx)

6 x∈F2k x∈F2kX X 5
⃗ = xG (sdx) = ˆ)v v(x)G (sdx

4x∈F2k x∈F2k

3 X 2
q⃗ = (x − ∆)G (sdx) 1

x∈F2kX 0
= q̂(x)G (sdx) −1

x∈F2kX −2
q⃗ − v⃗ = (−∆)G (sdx) = ∆u⃗

−3
x∈F2k

and all seeds except sd∆.

1 2 3 4 5 60
x

û(x)
v̂(x)
q̂(x)
∆

∆û(x)

7

14

Small-Field SoftSpoken VOLE �
N �

Input: An -OT, for N = 2k ≤ poly(λ):N−1

P has seeds sdx for all x ∈ F2k . V has ∆ ∈ F2k and all seeds except sd∆.

X X 7
u⃗ = − G (sdx) = û(x)G (sdx)

6 x∈F2k x∈F2kX X 5
⃗ = xG (sdx) = ˆ)v v(x)G (sdx

4x∈F2k x∈F2k

3 X 2
q⃗ = (x − ∆)G (sdx) 1

x∈F2kX 0
= q̂(x)G (sdx) −1

x∈F2kX −2
q⃗ − v⃗ = (−∆)G (sdx) = ∆u⃗

−3
x∈F2k

′Derandomization: P sends d⃗ = w⃗ − u⃗. V updates q⃗ = q⃗ +∆d⃗ .

1 2 3 4 5 6 70
x

û(x)
v̂(x)
q̂(x)
∆

∆û(x)

14

FOT

commit

open

Prover P
(VOLE Sender)

Verifer V
(VOLE Receiver)

sd0, . . . , sdN−1

∆ ∈R {0, . . . ,N − 1}

sd0, . . . , sd∆−1

sd∆+1, . . . , sdN−1

∆

This is just a commitment scheme!

OT-in-the-Head: Commitments

�
N �

How to get an -OT for the VOLE? N−1

15

This is just a commitment scheme!

OT-in-the-Head: Commitments

�
N �

How to get an -OT for the VOLE? N−1

Prover P sd0, . . . , sdN−1 commit Verifer V
(VOLE Sender) (VOLE Receiver) ∆ ∈R {0, . . . , N − 1}

FOT

sd0, . . . , sd∆−1∆ open

sd∆+1, . . . , sdN−1

15

OT-in-the-Head: Commitments

�
N �

How to get an -OT for the VOLE? N−1

Prover P sd0, . . . , sdN−1 commit Verifer V
(VOLE Sender) (VOLE Receiver) ∆ ∈R {0, . . . , N − 1}

FOT

sd0, . . . , sd∆−1∆ open

sd∆+1, . . . , sdN−1

This is just a commitment scheme!

15

All-but-one Random Vector Commitments

0s

PRG1
0

1
1s s

PRG PRG2
0

2
1

2
2

2
3s s s s

G G G G

sd0 sd1 sd2 sd3t0 t1 t2 t3

16

All-but-one Random Vector Commitments

0s

s1 PRG 1s0 1

2 PRG 2 2 PRG 2

G G G G

s0 s1 s2 s3

sd0 sd1 sd2 sd3t0 t1 t2 t3

H

hcom

16

All-but-one Random Vector Commitments

0s

s1 PRG 1s0 1

2 PRG 2 2 PRG 2

G G G G

s0 s1 s2 s3

sd0 sd1 sd2 sd3t0 t1 t2 t3

HCommit: send hcom

hcom

16

All-but-one Random Vector Commitments

0s

s1 PRG 1s0 1

2 PRG 2 2 PRG 2

G G G G

s0 s1 s2 s3

sd0 sd1
sd2 sd3t0 t1 t2 t3

HCommit: send hcom

Open all but sd∆: send co-path (s1
1 , s

2
0 , t1)

hcom

16

All-but-one Random Vector Commitments

0s

s1 PRG 1s0 1

2 PRG 2 2 PRG 2

G G G G

s0 s1 s2 s3

sd0 sd1
sd2 sd3t0 t1 t2 t3

Commit: send hcom H
1 2Open all but sd∆: send co-path (s1 , s0 , t1)

hcomVerify: recompute hcom and check

16

⇝ combine τ small VOLEs into one big VOLE, where Nτ = 2λ. Proof size: τ × witness size.

q⃗0 = w⃗ · ∆0 + v⃗0
...

q⃗τ−1 = w⃗ · ∆τ−1 + v⃗τ−1w�X
i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ ·
X
i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

+
X
i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

Use a consistency check to verify that the same w⃗ was used in every VOLE.

Small VOLE to Big VOLE

1Small VOLE costs O(N) work, but gives only soundness !N

=⇒ need VOLE over a big feld F2λ and ∆ from large set.

17

q⃗0 = w⃗ · ∆0 + v⃗0
...

q⃗τ−1 = w⃗ · ∆τ−1 + v⃗τ−1w�X
i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ ·
X
i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

+
X
i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

Use a consistency check to verify that the same w⃗ was used in every VOLE.

Small VOLE to Big VOLE

1Small VOLE costs O(N) work, but gives only soundness !N

=⇒ need VOLE over a big feld F2λ and ∆ from large set.
⇝ combine τ small VOLEs into one big VOLE, where Nτ = 2λ . Proof size: τ × witness size.

17

w�X
i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ ·
X
i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

+
X
i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

Use a consistency check to verify that the same w⃗ was used in every VOLE.

Small VOLE to Big VOLE

1Small VOLE costs O(N) work, but gives only soundness !N

=⇒ need VOLE over a big feld F2λ and ∆ from large set.
⇝ combine τ small VOLEs into one big VOLE, where Nτ = 2λ . Proof size: τ × witness size.

q⃗0 = w⃗ · ∆0 + v⃗0
. . .

q⃗τ−1 = w⃗ · ∆τ −1 + v⃗τ −1

17

Use a consistency check to verify that the same w⃗ was used in every VOLE.

Small VOLE to Big VOLE

1Small VOLE costs O(N) work, but gives only soundness !N

=⇒ need VOLE over a big feld F2λ and ∆ from large set.
⇝ combine τ small VOLEs into one big VOLE, where Nτ = 2λ . Proof size: τ × witness size.

q⃗0 = w⃗ · ∆0 + v⃗0
. . .

q⃗τ−1 = w⃗ · ∆τ −1 + v⃗τ −1 w� X

i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ · +
X

i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

X

i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

17

Small VOLE to Big VOLE

1Small VOLE costs O(N) work, but gives only soundness !N

=⇒ need VOLE over a big feld F2λ and ∆ from large set.
⇝ combine τ small VOLEs into one big VOLE, where Nτ = 2λ . Proof size: τ × witness size.

q⃗0 = w⃗ · ∆0 + v⃗0
. . .

q⃗τ−1 = w⃗ · ∆τ −1 + v⃗τ −1 w� X

i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ · +
X

i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

X

i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

Use a consistency check to verify that the same w⃗ was used in every VOLE.

17

Because Nτ = 2λ, the co-paths always have λ nodes, so opening costs roughly λ2 bits.

All-but-some Random Vector Commitments

Field element x ∈ [0, 2k) Commitment
0 1 2 3

R
ep

et
iti

on
 i

 ∈
 [
0,

 τ
)

0 sd0,0 sd0,1 sd0,2 sd0,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

1 sd1,0 sd1,1 sd1,2 sd1,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

2 sd2,0 sd2,1 sd2,2 sd2,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

3 sd3,0 sd3,1 sd3,2 sd3,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

18

Because Nτ = 2λ, the co-paths always have λ nodes, so opening costs roughly λ2 bits.

All-but-some Random Vector Commitments

Field element x ∈ [0, 2k) Commitment
0 1 2 3

R
ep

et
iti

on
 i

 ∈
 [
0,

 τ
)

0 sd0,0 sd0,1 sd0,2 sd0,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

1 sd1,0 sd1,1 sd1,2 sd1,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

2 sd2,0 sd2,1 sd2,2 sd2,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

3 sd3,0 sd3,1 sd3,2 sd3,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

18

Because Nτ = 2λ, the co-paths always have λ nodes, so opening costs roughly λ2 bits.

All-but-some Random Vector Commitments

Field element x ∈ [0, 2k) Commitment
0 1 2 3

R
ep

et
iti

on
 i

 ∈
 [
0,

 τ
)

0 sd0,0 sd0,1 sd0,2 sd0,3

PRG

s 0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

1 sd1,0 sd1,1 sd1,2 sd1,3

PRG

s 0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

2 sd2,0 sd2,1 sd2,2 sd2,3

PRG

s0

PRG PRG

s 1
0 s 1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

3 sd3,0 sd3,1 sd3,2 sd3,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

18

All-but-some Random Vector Commitments

Field element x ∈ [0, 2k) Commitment
0 1 2 3

R
ep

et
iti

on
 i

 ∈
 [
0,

 τ
)

0 sd0,0 sd0,1 sd0,2 sd0,3

PRG

s 0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

1 sd1,0 sd1,1 sd1,2 sd1,3

PRG

s 0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

2 sd2,0 sd2,1 sd2,2 sd2,3

PRG

s0

PRG PRG

s 1
0 s 1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

3 sd3,0 sd3,1 sd3,2 sd3,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

Because Nτ = 2λ , the co-paths always have λ nodes, so opening costs roughly λ2 bits. 18

FAEST Rounds

Prover P Verifer V

19

• expand small VOLEs

• combine into big VOLE

FAEST Rounds

Prover P Verifer V

• vector-commit to random strings

19

• combine into big VOLE

FAEST Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

19

FAEST Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

19

FAEST Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

19

FAEST Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

19

FAEST Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

∆⃗

open vector commitments

19

FAEST Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

∆⃗

open vector commitments verify: • vector commitments

• VOLE consistency

• QuickSilver proof
19

Grinding

20

• Prover must generate Θ(τ2kℓ) PRG bits and run Θ(τ2k) hashes.

• Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2w times more expensive (Grinding). Only need to target
2λ−w security level.

• This allows for smaller signatures by reducing τ .

• Counter-intuitively, this can also make signing faster — k can be reduced while preserving
security.

Grinding: Overview

Mismatch: cost of generating a proof ≫ per-trial attack cost lowerbound in the security
argument.

21

Fix: make the Fiat-Shamir hash 2w times more expensive (Grinding). Only need to target
2λ−w security level.

• This allows for smaller signatures by reducing τ .

• Counter-intuitively, this can also make signing faster — k can be reduced while preserving
security.

Grinding: Overview

Mismatch: cost of generating a proof ≫ per-trial attack cost lowerbound in the security
argument.

• Prover must generate Θ(τ2k ℓ) PRG bits and run Θ(τ 2k) hashes.

• Lower bound is based on a single Fiat-Shamir hash evaluation.

21

• This allows for smaller signatures by reducing τ .

• Counter-intuitively, this can also make signing faster — k can be reduced while preserving
security.

Grinding: Overview

Mismatch: cost of generating a proof ≫ per-trial attack cost lowerbound in the security
argument.

• Prover must generate Θ(τ2k ℓ) PRG bits and run Θ(τ 2k) hashes.

• Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2w times more expensive (Grinding). Only need to target
2λ−w security level.

21

• Counter-intuitively, this can also make signing faster — k can be reduced while preserving
security.

Grinding: Overview

Mismatch: cost of generating a proof ≫ per-trial attack cost lowerbound in the security
argument.

• Prover must generate Θ(τ2k ℓ) PRG bits and run Θ(τ 2k) hashes.

• Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2w times more expensive (Grinding). Only need to target
2λ−w security level.

• This allows for smaller signatures by reducing τ .

21

Grinding: Overview

Mismatch: cost of generating a proof ≫ per-trial attack cost lowerbound in the security
argument.

• Prover must generate Θ(τ2k ℓ) PRG bits and run Θ(τ 2k) hashes.

• Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2w times more expensive (Grinding). Only need to target
2λ−w security level.

• This allows for smaller signatures by reducing τ .

• Counter-intuitively, this can also make signing faster — k can be reduced while preserving
security.

21

What if ∆τ−1 = 0?
The last small vole correlation is now trivial, and can be removed to save communication.

Grinding: Correlation

q⃗0 = w⃗ · ∆0 + v⃗0

q⃗τ−2 = w⃗ · ∆τ −2 + v⃗τ −2

q⃗τ−1 = w⃗ · ∆τ −1 + v⃗τ −1 w� X

i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ ·
X

i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

+

...

X

i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

22

The last small vole correlation is now trivial, and can be removed to save communication.

Grinding: Correlation

What if ∆τ−1 = 0?

q⃗0 =
. . .

w⃗ · ∆0 + v⃗0

q⃗τ−2 = w⃗ · ∆τ −2 + v⃗τ −2

q⃗τ−1 = w�

w⃗ · ∆τ −1 + v⃗τ −1

= w⃗ · +
X

i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

X

i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

X

i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

22

The last small vole correlation is now trivial, and can be removed to save communication.

Grinding: Correlation

What if ∆τ−1 = 0?

q⃗0 =
. . .

w⃗ · ∆0 + v⃗0

q⃗τ−2 = w⃗ · ∆τ −2 + v⃗τ −2

q⃗τ−1 = w�

w⃗ · 0 + v⃗τ−1

= w⃗ · +
X

i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

X

i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

X

i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

22

and can be removed to save communication.

Grinding: Correlation

What if ∆τ−1 = 0?
The last small vole correlation is now trivial,

q⃗0 = w⃗ · ∆0 + v⃗0
. . .

q⃗τ−2 = w⃗ · ∆τ −2 + v⃗τ −2

0 = w⃗ · 0 + 0 w� X

i∈[τ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ ·
X

i∈[τ]

∆i · X i

| {z }
∆∈Fqτ

+
X

i∈[τ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

22

Grinding: Correlation

What if ∆τ−1 = 0?
The last small vole correlation is now trivial, and can be removed to save communication.

q⃗0 = w⃗ · ∆0 + v⃗0
. . .

q⃗τ−2 = w⃗ · ∆τ −2 + v⃗τ −2

0 = w⃗ · 0 + 0 w� X

i∈[τ −1]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ ·
X

i∈[τ −1]

∆i · X i

| {z }
∆∈Fqτ

+
X

i∈[τ −1]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

22

Grinding: Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

Retry index

∆⃗
verify: • vector commitments

open vector commitments • VOLE consistency

• QuickSilver proof
23

Grinding: Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

Retry index

Retry if
∆⃗ verify: • vector commitments

∆τ −1 ̸= 0. open vector commitments • VOLE consistency

• QuickSilver proof
23

Grinding: Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

Retry index

Retry if
∆⃗ verify: • vector commitments

∆τ −1 ̸= 0. open vector commitments • VOLE consistency

• QuickSilver proof
23

Grinding: Rounds

Prover P Verifer V

• vector-commit to random strings

• expand small VOLEs

• combine into big VOLE

random challenge

VOLE consistency proof

random challenge

QuickSilver proof

Retry index

Retry if last w
bits of ∆⃗ aren’t
all zero.

∆⃗

open vector commitments

verify: • vector commitments

• VOLE consistency

• QuickSilver proof
23

One Tree to Rule Them All

24

Because Nτ = 2λ, the co-paths always have λ nodes, so opening costs roughly λ2 bits.

All-but-some Random Vector Commitments

Field element x ∈ [0, 2k) Commitment
0 1 2 3

R
ep

et
iti

on
 i

 ∈
 [
0,

 τ
)

0 sd0,0 sd0,1 sd0,2 sd0,3

PRG

s 0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

1 sd1,0 sd1,1 sd1,2 sd1,3

PRG

s 0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

2 sd2,0 sd2,1 sd2,2 sd2,3

PRG

s0

PRG PRG

s 1
0 s 1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

3 sd3,0 sd3,1 sd3,2 sd3,3

PRG

s0

PRG PRG

s1
0 s1

1

G G G G

s2
0 s2

1 s2
2 s2

3

sd0 sd1 sd2 sd3t0 t1 t2 t3

25

One Tree to Bind Them

0s

G
s1
0 s1

1

G G
s2
0 s2

1 s2
2 s2

3

G G G G3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7s s s s s s s s

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

4 4 4 4 4 4s s s s s s s s s s s s s s s s10 11 12 13 14 15

G G G G G G G G G G G G G G G G

G G G G G G G G

sd0 sd1 sd2 sd3 sd4 sd5 sd6 sd7 sd8 sd9 sd10 sd11 sd12 sd13 sd14 sd15

26

One Tree to Bind Them

0s

s0 s1

2s0
G G 2s3

G G G G G G G G G G G G G G G G

G3 3s s0 1

G G
4 4 4 4s s s s0 1 2 3

G1 1

2 2s s1 2

G G3 3 3 3s s s s2 3 4 5

G G G G
4 4 4 4 4 4 4 4s s s s s s s s4 5 6 7 8 9 10 11

G3 3s s6 7

G G
4 4 4 4s s s s12 13 14 15

sd0,0 sd0,1 sd0,2 sd0,3 sd1,0 sd1,1 sd1,2 sd1,3 sd2,0 sd2,1 sd2,2 sd2,3 sd3,0 sd3,1 sd3,2 sd3,3

26

One Tree to Bind Them

0s

G1 1s s0 1

2 2s s1 2

G G3 3s s3 4 s3
5

G G

s3
2

2s0
G G 2s3

G

G

s3
0 s3

1
G

G

s3
6 s3

7

G
s4
0 s4

1

G G
s4
6 s4

7 s4
8 s4

9

G
s4
12 s4

13s4
2 s4

3 s4
4 s4

5 s4
10 s4

11 s4
14 s4

15

G G G G G G G G G G G G G G G G

sd0,0 0sd 1, sd0,2 sd0,3 sd1,0 sd1,1 1sd 2, sd1,3 2sd 0, sd2,1 sd2,2 sd2,3 sd3,0 3sd 1, sd3,2 sd3,3

26

One Tree to Bind Them

0s

G1 1s s0 1

2 2s s1 2

G G3 3s s3 4s3
2 s3

5

2s0
G G 2s3

G
s3
0 s3

1
G3s6 s3

7

G
4s13 s4

14 s4
15

G
s4
0

G
4s1 s4

2 s4
3

G
s4
4 s4

5

G
s4
7

G
4 4s s6 8 s4

10 s4
11

G
s4
9

G
s4
12

G G G G G G G G G G G G G G G G

sd0,0 0sd 1, sd0,2 sd0,3 sd1,0 sd1,1 1sd 2, sd1,3 2sd 0, sd2,1 sd2,2 sd2,3 sd3,0 3sd 1, sd3,2 sd3,3

26

All-but-some Random Vector Commitments

Field element x ∈ [0, 2k)

R
ep

et
iti

on
 i

 ∈
 [
0,
τ)

 0

1

2

3

0

sd0,0

sd1,0

sd2,0

sd3,0

1

sd0,1

sd1,1

sd2,1

sd3,1

2 3

sd0,2 sd0,3

sd1,2 sd1,3

sd2,2 sd2,3

sd3,2 sd3,3

27

All-but-some Random Vector Commitments

Repetition i ∈ [0, τ)
0 1 2 3

Fi
el

d
el

em
en

t
x
∈
[0
, 2

k
) 0 sd0,0 sd1,0 sd2,0 sd3,0

1 sd0,1 sd1,1 sd2,1 sd3,1

2 sd0,2 sd1,2 sd2,2 sd3,2

3 sd0,3 sd1,3 sd2,3 sd3,3

27

Note: only 7 seeds to open, not 8.
In general, the opening size depends on ∆.
⇝ Set a limit Topen on seeds in the opening, and retry if it’s exceeded.

One Tree to Bind Them

0s

G3 3s s0 1

G G
4 4 4 4s s s s0 1 2 3

G1 1

2 2s s1 2

G G3 3 3 3s s s s2 3 4 5

G G G G
4 4 4 4 4 4 4 4s s s s s s s s4 5 6 7 8 9 10 11

s0 s1

2s0
G G 2s3

G G G G G G G G G G G G G G G G

sd0,0 sd0,1 sd0,2 sd0,3 sd1,0 sd1,1 sd1,2 sd1,3 sd2,0 sd2,1 sd2,2 sd2,3 sd3,0 sd3,1 sd3,2 sd3,3

G3 3s s6 7

G G
4 4 4 4s s s s12 13 14 15

28

Note: only 7 seeds to open, not 8.
In general, the opening size depends on ∆.
⇝ Set a limit Topen on seeds in the opening, and retry if it’s exceeded.

One Tree to Bind Them

0s

G3 3s s0 1

G G
4 4 4 4s s s s0 1 2 3

G1 1

2 2s s1 2

G G3 3 3 3s s s s2 3 4 5

G G G G
4 4 4 4 4 4 4 4s s s s s s s s4 5 6 7 8 9 10 11

s0 s1

2s0
G G 2s3

G G G G G G G G G G G G G G G G

sd0,0 sd1,0 sd2,0 sd3,0 sd0,1 sd1,1 sd2,1 sd3,1 sd0,2 sd1,2 sd2,2 sd3,2 sd0,3 sd1,3 sd2,3 sd3,3

G3 3s s6 7

G G
4 4 4 4s s s s12 13 14 15

28

Note: only 7 seeds to open, not 8.
In general, the opening size depends on ∆.
⇝ Set a limit Topen on seeds in the opening, and retry if it’s exceeded.

One Tree to Bind Them

0s

G1 1s s0 1

G G
s2
3

2s0
2 2s s1 2

G
s3
0 s3

1
G G G

s3
5

3s2
3 3s s3 4

3s6
3s7

4 4 4s s s0 1 2

G
s4
3

G G G G

G G
s4 s5 6

4
G G G

4 4 4 4 4 4 4 4 4s s s s s s s s s4 7 9 10 11 12 13 14 15

G
s4
8

G

sd0,0 sd1,0 2sd 0, sd3,0 sd0,1 sd1,1 sd2,1 3sd 1, sd0,2 1sd 2, sd2,2 sd3,2 sd0,3 sd1,3 sd2,3 sd3,3

G G G G G G G G G G G G

28

Note: only 7 seeds to open, not 8.
In general, the opening size depends on ∆.
⇝ Set a limit Topen on seeds in the opening, and retry if it’s exceeded.

One Tree to Bind Them

0s

G1 1s s0 1

G G
s2
3

2s0
2 2s s1 2

G
s3
0 s3

1
G G3 3 3s s s2 3 4 s3

5
G

s3
6 s3

7

G
s4
0 s4

1
4s2

G
s4
3

G G
s4 s5 6

4
G G G

4 4 4s s s4 7 9 s4
10 s4

11 s4
12 s4

13 s4
14 s4

15

G
s4
8

G G G G G G G G G G G G G G G G

sd0,0 sd1,0 2sd 0, sd3,0 sd0,1 sd1,1 sd2,1 3sd 1, sd0,2 1sd 2, sd2,2 sd3,2 sd0,3 sd1,3 sd2,3 sd3,3

28

In general, the opening size depends on ∆.
⇝ Set a limit Topen on seeds in the opening, and retry if it’s exceeded.

One Tree to Bind Them

0s

G1 1s s0 1

G G
s2
3

2s0
2 2s s1 2

G
s3
0 s3

1
G G3 3 3s s s2 3 4 s3

5
G

s3
6 s3

7

G
s4
0 s4

1

G
s4
3

G G G
4 4 4

G G
s4 s5 6

4 4s s s s2 4 7 9 s4
10 s4

11 s4
12 s4

13 s4
14 s4

15

G
s4
8

G G G G G G G G G G G G G G G G

sd0,0 sd1,0 2sd 0, sd3,0 0sd 1, sd1,1 sd2,1 3sd 1, sd0,2 1sd 2, sd2,2 sd3,2 sd0,3 sd1,3 sd2,3 sd3,3

Note: only 7 seeds to open, not 8.

28

One Tree to Bind Them

0s

G1 1s s0 1

G G
s2
3

2s0
2 2s s1 2

G
s3
0 s3

1
G G3 3 3s s s2 3 4 s3

5
G

s3
6 s3

7

G
s4
0 s4

1
4s2

G
s4
3

G G
s4 s5 6

4
G

4 4 4s s s4 7 9 s4
10 s4

11

G
s4
8

G G
s4
12 s4

13 s4
14 s4

15

G G G G G G G G G G G G G G G G

sd0,0 sd1,0 2sd 0, sd3,0 0sd 1, sd1,1 sd2,1 3sd 1, sd0,2 1sd 2, sd2,2 sd3,2 sd0,3 sd1,3 sd2,3 sd3,3

Note: only 7 seeds to open, not 8.
In general, the opening size depends on ∆.
⇝ Set a limit Topen on seeds in the opening, and retry if it’s exceeded. 28

FAESTER

29

Size-time Tradeof

(a) FAESTER-128. (b) FAESTER-EM-128.

30

Parameter Choices

Signature Scheme OWF Esk (x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size

FAEST-128s AES128sk (x) 1600 – – 11 7 4 12 11 16 32 5006
FAEST-128f AES128sk (x) 1600 – – 16 0 16 8 8 16 32 6336

FAEST-EM-128s AES128x (sk) ⊕ sk 1280 – – 11 7 4 12 11 16 32 4566
FAEST-EM-128f AES128x (sk) ⊕ sk 1280 – – 16 0 16 8 8 16 32 5696

FAESTER-128s AES128sk (x) 1600 7 102 11 0 11 11 11 16 32 4594
FAESTER-128f AES128sk (x) 1600 8 110 16 8 8 8 7 16 32 6052

FAESTER-EM-128s AES128x (sk) ⊕ sk 1280 7 103 11 0 11 11 11 16 32 4170
FAESTER-EM-128f AES128x (sk) ⊕ sk 1280 8 112 16 8 8 8 7 16 32 5444

31

Benchmarking system: AMD Ryzen 9 7900X 12-Core CPU running Ubuntu 22.04.

Performance Comparison

Scheme Runtime in ms
Keygen Sign Verify sk

Size in bytes
pk Signature

FAEST-128s

FAEST-128f

0.0006 4.381 4.102
0.0005 0.404 0.395

16
16

32 5006
32 6336

FAEST-EM-128s

FAEST-EM-128f

0.0005 4.151 4.415
0.0005 0.446 0.474

16
16

32 4566
32 5696

FAESTER-128s

FAESTER-128f

0.0006 3.282 4.467
0.0005 0.433 0.610

16
16

32 4594
32 6052

FAESTER-EM-128s

FAESTER-EM-128f

0.0005 3.005 4.386
0.0005 0.422 0.609

16
16

32 4170
32 5444

Signing time (ms), verifcation time (ms), and signature size (bytes).

32

Performance Comparison

Scheme Runtime in ms
Keygen Sign Verify

Size in bytes
sk pk Signature

FAEST-128s

FAEST-128f

0.0006 4.381 4.102
0.0005 0.404 0.395

16 32 5006
16 32 6336

FAEST-EM-128s

FAEST-EM-128f

0.0005 4.151 4.415
0.0005 0.446 0.474

16 32 4566
16 32 5696

FAESTER-128s

FAESTER-128f

0.0006 3.282 4.467
0.0005 0.433 0.610

16 32 4594
16 32 6052

FAESTER-EM-128s

FAESTER-EM-128f

0.0005 3.005 4.386
0.0005 0.422 0.609

16 32 4170
16 32 5444

Signing time (ms), verifcation time (ms), and signature size (bytes).

Benchmarking system: AMD Ryzen 9 7900X 12-Core CPU running Ubuntu 22.04.

32

• (⋆) ⇐⇒ x2 · y = x ∧ x · y2 = y

– observe that x 7→ x2 is F2-linear.
⇝ 2 quadratic constraints per S-box.

• Can use any AES key! No rejection sampling.

Zeroes in S-boxes

• AES S-boxes: (
0 if x = 0

x 7→ y = (⋆)
x−1 ∈ F28 otherwise

• Constraint: x · y = 1. This requires x ≠ 0.

33

• Can use any AES key! No rejection sampling.

Zeroes in S-boxes

• AES S-boxes: (
0

x 7→ y =
x−1 ∈ F28

if x = 0

otherwise
(⋆)

• Constraint: x · y = 1. This requires x ̸= 0.

2 2• (⋆) ⇐⇒ x · y = x ∧ x · y = y

– observe that x 7→ x 2 is F2-linear.
⇝ 2 quadratic constraints per S-box.

33

Zeroes in S-boxes

• AES S-boxes: (
0

x 7→ y =
x−1 ∈ F28

if x = 0

otherwise
(⋆)

• Constraint: x · y = 1. This requires x ̸= 0.

2 2• (⋆) ⇐⇒ x · y = x ∧ x · y = y

– observe that x 7→ x 2 is F2-linear.
⇝ 2 quadratic constraints per S-box.

• Can use any AES key! No rejection sampling.

33

MandaRain

34

• x , k, y ∈ F2λ .

• Mi is a F2-linear transformations.

• Fewer rounds =⇒ smaller witness.

Rain Cipher

x x−1 M1 x−1 M2 x−1 y

k ⊕ c1 k ⊕ c2 k ⊕ c3 k

3-round Rain.

35

• Fewer rounds =⇒ smaller witness.

Rain Cipher

x x−1 M1 x−1 M2 x−1 y

k ⊕ c1 k ⊕ c2 k ⊕ c3 k

3-round Rain.

• x , k, y ∈ F2λ .

• Mi is a F2-linear transformations.

35

Rain Cipher

x x−1 M1 x−1 M2 x−1 y

k ⊕ c1 k ⊕ c2 k ⊕ c3 k

3-round Rain.

• x , k, y ∈ F2λ .

• Mi is a F2-linear transformations.

• Fewer rounds =⇒ smaller witness.

35

Size-time Tradeof

(a) MandaRain-3-128. (b) MandaRain-4-128.

36

Performance Comparison

Scheme Runtime in ms
Keygen Sign Verify sk

Size in bytes
pk Signature

FAEST-128s

FAEST-128f

0.0006 4.381 4.102
0.0005 0.404 0.395

16
16

32 5006
32 6336

FAEST-EM-128s

FAEST-EM-128f

0.0005 4.151 4.415
0.0005 0.446 0.474

16
16

32 4566
32 5696

FAESTER-128s

FAESTER-128f

0.0006 3.282 4.467
0.0005 0.433 0.610

16
16

32 4594
32 6052

FAESTER-EM-128s

FAESTER-EM-128f

0.0005 3.005 4.386
0.0005 0.422 0.609

16
16

32 4170
32 5444

MandaRain-3-128s

MandaRain-3-128f

0.0018 2.800 5.895
0.0018 0.346 0.807

16
16

32 2890
32 3588

MandaRain-4-128s

MandaRain-4-128f

0.0026 2.876 6.298
0.0026 0.371 0.817

16
16

32 3052
32 3876

Signing time (ms), verifcation time (ms), and signature size (bytes).

37

KuMQuat

38

Witness: x ∈ Fn
q

Constraints:
yi =

X
jk

Aijk xjxk +
X
j

bij xj − yi ∀i ∈ [n]

• Witness size is minimal (assuming only quadratic constraints).

• Optimization: pack multiple Fq constraints together into a F2λ constraint.

Unstructured Multivariate-Quadratic

Sample Ai ∈ Fn×n , bi ∈ Fn , and x ∈ Fn .q q q

Public key: seeds for A and b, and y ∈ Fn whereq

yi = x TAi x + bi
T xj

39

• Witness size is minimal (assuming only quadratic constraints).

• Optimization: pack multiple Fq constraints together into a F2λ constraint.

Unstructured Multivariate-Quadratic

Sample Ai ∈ Fn×n , bi ∈ Fn , and x ∈ Fn .q q q

Public key: seeds for A and b, and y ∈ Fn whereq

yi = x TAi x + bT xji

Witness: x ∈ Fn
q

Constraints: X X
yi = Aijk xj xk + bij xj − yi ∀i ∈ [n]

jk j

39

• Optimization: pack multiple Fq constraints together into a F2λ constraint.

Unstructured Multivariate-Quadratic

Sample Ai ∈ Fn×n , bi ∈ Fn , and x ∈ Fn .q q q

Public key: seeds for A and b, and y ∈ Fn whereq

yi = x TAi x + bi
T xj

Witness: x ∈ Fn
q

Constraints: X X
yi = Aijk xj xk + bij xj − yi ∀i ∈ [n]

jk j

• Witness size is minimal (assuming only quadratic constraints).

39

Unstructured Multivariate-Quadratic

Sample Ai ∈ Fn×n , bi ∈ Fn , and x ∈ Fn .q q q

Public key: seeds for A and b, and y ∈ Fn whereq

yi = x TAi x + bi
T xj

Witness: x ∈ Fn
q

Constraints: X X
yi = Aijk xj xk + bij xj − yi ∀i ∈ [n]

jk j

• Witness size is minimal (assuming only quadratic constraints).

• Optimization: pack multiple Fq constraints together into a F2λ constraint.

39

MQ Parameters

Instance Security Level Fq n

MQ-21-L1 L1 F21 152

MQ-28-L1 L1 F28 48

MQ-21-L3 L3 F21 224

MQ-28-L3 L3 F28 72

MQ-21-L5 L5 F21 320

MQ-28-L5 L5 F28 96

40

Size-time Tradeof

(a) KuMQuat-21-L1. (b) KuMQuat-28-L1.

41

Performance Comparison

Scheme Runtime in ms Size in bytes
Keygen Sign Verify sk pk Signature

FAEST-128s 0.0006 4.381 4.102 16 32 5006
FAEST-128f 0.0005 0.404 0.395 16 32 6336

FAEST-EM-128s 0.0005 4.151 4.415 16 32 4566
FAEST-EM-128f 0.0005 0.446 0.474 16 32 5696

FAESTER-128s 0.0006 3.282 4.467 16 32 4594
FAESTER-128f 0.0005 0.433 0.610 16 32 6052

FAESTER-EM-128s 0.0005 3.005 4.386 16 32 4170
FAESTER-EM-128f 0.0005 0.422 0.609 16 32 5444

MandaRain-3-128s 0.0018 2.800 5.895 16 32 2890
MandaRain-3-128f 0.0018 0.346 0.807 16 32 3588

MandaRain-4-128s 0.0026 2.876 6.298 16 32 3052
MandaRain-4-128f 0.0026 0.371 0.817 16 32 3876

KuMQuat-21-L1s 0.173 4.305 4.107 19 35 2555
KuMQuat-21-L1f 0.172 0.539 0.736 19 35 3028

KuMQuat-28-L1s 0.174 3.599 4.053 48 64 2890
KuMQuat-28-L1f 0.172 0.400 0.623 48 64 3588

Signing time (ms), verifcation time (ms), and signature size (bytes).
42

Performance Graph

(a) Signing time - signature size trade-of. (b) Verifcation time - signature size trade-of.

43

44

Additional Graphs

(a) L1 Signing. (b) L1 Verify.

45

	FAEST
	Introduction
	VOLE-based Zero-Knowledge
	VOLE-in-the-Head

	Grinding
	One Tree to Rule Them All
	FAESTER
	MandaRain
	KuMQuat

