One Tree to Rule Them All

Optimizing GGM Trees and OWFs for Post-Quantum Signatures

FAEST

FAEST

After Picnic, BBQ, and Banquet ...

FAEST

After Picnic, BBQ, and Banquet ...
... welcome to FAEST! - the VOLE-in-the-Head Post Quantum Signature Scheme.

FAEST

After Picnic, BBQ, and Banquet...
... welcome to FAEST! - the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

- $1 \times$ Zero-knowledge proof for "I know $k \in\{0,1\}^{\lambda}$ such that $\operatorname{AES}_{k}(x)=y$ "

FAEST

After Picnic, BBQ, and Banquet...
... welcome to FAEST! - the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

- $1 \times$ Zero-knowledge proof for "I know $k \in\{0,1\}^{\lambda}$ such that $\operatorname{AES}_{k}(x)=y$ "
- $1 \times$ fresh VOLE (in-the-Head)

FAEST

After Picnic, BBQ, and Banquet...
... welcome to FAEST! - the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

- $1 \times$ Zero-knowledge proof for "I know $k \in\{0,1\}^{\lambda}$ such that $\operatorname{AES}_{k}(x)=y$ "
- $1 \times$ fresh VOLE (in-the-Head)
- A pinch of Fiat-Shamir

FAEST

After Picnic, BBQ, and Banquet...
... welcome to FAEST! - the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

- $1 \times$ Zero-knowledge proof for "I know $k \in\{0,1\}^{\lambda}$ such that $\operatorname{AES}_{k}(x)=y$ "
- $1 \times$ fresh VOLE (in-the-Head)
- A pinch of Fiat-Shamir
\Longrightarrow Delicious Digital Signature Scheme with secret key $k \in\{0,1\}^{\lambda}$ and public key (x, y).

FAEST

After Picnic, BBQ, and Banquet ...
... welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

- $1 \times$ Zero-knowledge proof for "I know $k \in\{0,1\}^{\lambda}$ such that $\operatorname{AES}_{k}(x)=y$ "
- $1 \times$ fresh VOLE (in-the-Head)
- A pinch of Fiat-Shamir
\Longrightarrow Delicious Digital Signature Scheme with secret key $k \in\{0,1\}^{\lambda}$ and public key (x, y).

Our submission to the NIST Call for Post Quantum Signatures.
Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, Peter Scholl.

Identification Schemes Based on Zero-Knowledge Proofs

Verifier \mathcal{V}

Identification Schemes Based on Zero-Knowledge Proofs

Identification Schemes Based on Zero-Knowledge Proofs

Identification Schemes Based on Zero-Knowledge Proofs

I know k s.t. $\mathrm{AES}_{k}(x)=y$!

Identification Schemes Based on Zero-Knowledge Proofs

Security Properties

- Soundness: \mathcal{V} cannot be convinced of a false statement
- Zero-Knowledge: \mathcal{V} does not learn anything new from the interaction

Signature Schemes Based on Zero-Knowledge Proofs

Security Properties

- Soundness: \mathcal{V} cannot be convinced of a false statement
- Zero-Knowledge: \mathcal{V} does not learn anything new from the interaction

If the verifier has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

AES as a ZK-friendly Cipher?

- Picnic used LowMC - tailored to MPC, but less well analyzed than AES

AES as a ZK-friendly Cipher?

- Picnic used LowMC - tailored to MPC, but less well analyzed than AES ...
- AES is \mathbb{F}_{2}-linear except for the S -boxes

$$
x \mapsto y= \begin{cases}0 & \text { if } x=0 \\ x^{-1} \in \mathbb{F}_{2^{8}} & \text { otherwise }\end{cases}
$$

AES as a ZK-friendly Cipher?

- Picnic used LowMC - tailored to MPC, but less well analyzed than AES
- $A E S$ is \mathbb{F}_{2}-linear except for the S-boxes

$$
x \mapsto y= \begin{cases}0 & \text { if } x=0 \\ x^{-1} \in \mathbb{F}_{2^{8}} & \text { otherwise }\end{cases}
$$

\Longrightarrow Sample keys such that no zeros appear in the S-boxes and just check inversions $(x \cdot y=1$ over $\mathbb{F}_{2^{8}}$)
\rightsquigarrow AES-128: 200 quadratic constraints / 1600 bit witness

VOLE-based Zero-Knowledge

Space of Zero-Knowledge Proofs

What are VOLEs?

What are VOLEs?

Vector Oblivious Linear Evaluation (VOLE)

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Linearly Homomorphic Commitments

use $q_{i}=w_{i} \cdot \Delta+v_{i}$ as information-theoretic MAC on w_{i}

- hiding since v_{i} is random
- breaking binding \Longrightarrow guessing $\Delta \Longrightarrow$ prob. $1 /|\mathbb{F}|$
(cf. EC:CatFio13 [EC:CatFio13],

EC:BDOZ11 [EC:BDOZ11])

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Linearly Homomorphic Commitments

use $q_{i}=w_{i} \cdot \Delta+v_{i}$ as information-theoretic MAC on w_{i}

- hiding since v_{i} is random
- breaking binding \Longrightarrow guessing $\Delta \Longrightarrow$ prob. $1 /|\mathbb{F}|$
(cf. EC:CatFio13 [EC:CatFio13],

EC:BDOZ11 [EC:BDOZ11])

Commit \& Prove Zero-Knowledge

I know w s.t. $\mathcal{C}(w)=0$!

Commit \& Prove Zero-Knowledge

I know w s.t. $\mathcal{C}(w)=0$!

Prover \mathcal{P}

Ingredients:

1. linearly homomorphic commitments [•]

$$
\text { - can compute }[z] \leftarrow a \cdot[x]+[y]+b \square
$$

Commit \& Prove Zero-Knowledge

I know w s.t. $\mathcal{C}(w)=0$!

Prover \mathcal{P}

Ingredients:

1. linearly homomorphic commitments [•]

- can compute $[z] \leftarrow a \cdot[x]+[y]+b \nabla$

2. multiplication check

- given $([a],[b],[c])$, verify $a \cdot b \stackrel{?}{=} c$

Verifying Multiplications - LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given $([a],[b],[c])$, verify that $a \cdot b=c$ in \mathbb{F}

Verifying Multiplications - LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given $([a],[b],[c])$, verify that $a \cdot b=c$ in \mathbb{F}
QuickSilver Check: Convert the three MAC equations $q_{x}=v_{x}+x \cdot \Delta$ for $x \in\{a, b, c\}$ into a polynomial in Δ :

$$
\underbrace{\Delta \cdot q_{c}-q_{a} \cdot q_{b}}_{\text {known by } \mathcal{V}}=\underbrace{\left(-v_{a} \cdot v_{b}\right)}_{\text {known by } \mathcal{P}}+\underbrace{\left(v_{c}-a \cdot v_{b}-b \cdot v_{a}\right)}_{\text {known by } \mathcal{P}} \cdot \Delta+\underbrace{(c-a \cdot b)}_{=0 \text { if } \mathcal{P} \text { honest }} \cdot \Delta^{2}
$$

Verifying Multiplications - LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given $([a],[b],[c])$, verify that $a \cdot b=c$ in \mathbb{F}
QuickSilver Check: Convert the three MAC equations $q_{x}=v_{x}+x \cdot \Delta$ for $x \in\{a, b, c\}$ into a polynomial in Δ :

Verifying Multiplications - LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given $([a],[b],[c])$, verify that $a \cdot b=c$ in \mathbb{F}
QuickSilver Check: Convert the three MAC equations $q_{x}=v_{x}+x \cdot \Delta$ for $x \in\{a, b, c\}$ into a polynomial in Δ :

$$
\underbrace{\Delta \cdot q_{c}-q_{a} \cdot q_{b}}_{\text {known by } \mathcal{V}}=\underbrace{\left(-v_{a} \cdot v_{b}\right)}_{\text {known by } \mathcal{P}}+\underbrace{\left(v_{c}-a \cdot v_{b}-b \cdot v_{a}\right)}_{\text {known by } \mathcal{P}} \cdot \Delta+\underbrace{(c-a \cdot b)}_{=0 \text { if } \mathcal{P} \text { honest }} \cdot \Delta^{2}
$$

Soundness: cheating \mathcal{P} needs to come up with $p(X)=e_{0}+e_{1} \cdot X+e \cdot X^{2}$ such that

Verifying Multiplications - LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given $([a],[b],[c])$, verify that $a \cdot b=c$ in \mathbb{F}
QuickSilver Check: Convert the three MAC equations $q_{x}=v_{x}+x \cdot \Delta$ for $x \in\{a, b, c\}$ into a polynomial in Δ :

$$
\underbrace{\Delta \cdot q_{c}-q_{a} \cdot q_{b}}_{\text {known by } \mathcal{V}}=\underbrace{\left(-v_{a} \cdot v_{b}\right)}_{\text {known by } \mathcal{P}}+\underbrace{\left(v_{c}-a \cdot v_{b}-b \cdot v_{a}\right)}_{\text {known by } \mathcal{P}} \cdot \Delta+\underbrace{(c-a \cdot b)}_{=0 \text { if } \mathcal{P} \text { honest }} \cdot \Delta^{2}
$$

Soundness: cheating \mathcal{P} needs to come up with $p(X)=e_{0}+e_{1} \cdot X+e \cdot X^{2}$ such that

$$
-p(\Delta)=0, \text { and }
$$

Verifying Multiplications - LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given $([a],[b],[c])$, verify that $a \cdot b=c$ in \mathbb{F}
QuickSilver Check: Convert the three MAC equations $q_{x}=v_{x}+x \cdot \Delta$ for $x \in\{a, b, c\}$ into a polynomial in Δ :

$$
\underbrace{\Delta \cdot q_{c}-q_{a} \cdot q_{b}}_{\text {known by } \mathcal{V}}=\underbrace{\left(-v_{a} \cdot v_{b}\right)}_{\text {known by } \mathcal{P}}+\underbrace{\left(v_{c}-a \cdot v_{b}-b \cdot v_{a}\right)}_{\text {known by } \mathcal{P}} \cdot \Delta+\underbrace{(c-a \cdot b)}_{=0 \text { if } \mathcal{P} \text { honest }} \cdot \Delta^{2}
$$

Soundness: cheating \mathcal{P} needs to come up with $p(X)=e_{0}+e_{1} \cdot X+e \cdot X^{2}$ such that

- $p(\Delta)=0$, and
$-e:=c-a \cdot b \neq 0$

Verifying Multiplications - LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21]

Goal: Given $([a],[b],[c])$, verify that $a \cdot b=c$ in \mathbb{F}
QuickSilver Check: Convert the three MAC equations $q_{x}=v_{x}+x \cdot \Delta$ for $x \in\{a, b, c\}$ into a polynomial in Δ :

$$
\underbrace{\Delta \cdot q_{c}-q_{a} \cdot q_{b}}_{\text {known by } \mathcal{V}}=\underbrace{\left(-v_{a} \cdot v_{b}\right)}_{\text {known by } \mathcal{P}}+\underbrace{\left(v_{c}-a \cdot v_{b}-b \cdot v_{a}\right)}_{\text {known by } \mathcal{P}} \cdot \Delta+\underbrace{(c-a \cdot b)}_{=0 \text { if } \mathcal{P} \text { honest }} \cdot \Delta^{2}
$$

Soundness: cheating \mathcal{P} needs to come up with $p(X)=e_{0}+e_{1} \cdot X+e \cdot X^{2}$ such that

- $p(\Delta)=0$, and
- $e:=c-a \cdot b \neq 0$
$\Longrightarrow p$ has degree $2 \Longrightarrow p$ has at most 2 roots \Longrightarrow soundness error ${ }^{2} /|\mathbb{F}|$

VOLE-in-the-Head

VOLE-in-the-Head - The Idea

Observation: Why are VOLE-ZK protocols not public coin?

VOLE-in-the-Head - The Idea

Observation: Why are VOLE-ZK protocols not public coin?

- If the prover \mathcal{P} knows Δ, the commitments are no longer binding!

VOLE-in-the-Head - The Idea

Observation: Why are VOLE-ZK protocols not public coin?

- If the prover \mathcal{P} knows Δ, the commitments are no longer binding!
- But: At the end of the protocol, it is fine for \mathcal{P} to learn Δ.

VOLE-in-the-Head - The Idea

Observation: Why are VOLE-ZK protocols not public coin?

- If the prover \mathcal{P} knows Δ, the commitments are no longer binding!
- But: At the end of the protocol, it is fine for \mathcal{P} to learn Δ.
\Longrightarrow commit \mathcal{P} to its messages and delay \mathcal{V} 's choice Δ to the end of the protocol

VOLE-in-the-Head - The Idea

Observation: Why are VOLE-ZK protocols not public coin?

- If the prover \mathcal{P} knows Δ, the commitments are no longer binding!
- But: At the end of the protocol, it is fine for \mathcal{P} to learn Δ.
\Longrightarrow commit \mathcal{P} to its messages and delay \mathcal{V} 's choice Δ to the end of the protocol

VOLE-in-the-Head - The Idea

Observation: Why are VOLE-ZK protocols not public coin?

- If the prover \mathcal{P} knows Δ, the commitments are no longer binding!
- But: At the end of the protocol, it is fine for \mathcal{P} to learn Δ.
\Longrightarrow commit \mathcal{P} to its messages and delay \mathcal{V} 's choice Δ to the end of the protocol

Implement $\mathcal{F}_{\text {Vole }}$ with SoftSpoken VOLE [C:Roy22].

Small-Field SoftSpoken VOLE

Input: $\operatorname{An}\binom{N}{N-1}$-OT, for $N=2^{k} \leq \operatorname{poly}(\lambda)$:
\mathcal{P} has seeds $s d_{x}$ for all $x \in \mathbb{F}_{2^{k}}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^{k}}$ and all seeds except sd d_{Δ}.

Small-Field SoftSpoken VOLE

Input: $\operatorname{An}\binom{N}{N-1}$-OT, for $N=2^{k} \leq \operatorname{poly}(\lambda)$:
\mathcal{P} has seeds sd_{x} for all $x \in \mathbb{F}_{2^{k}}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^{k}}$ and all seeds except sd s_{Δ}.

Small-Field SoftSpoken VOLE

Input: $\operatorname{An}\binom{N}{N-1}$-OT, for $N=2^{k} \leq \operatorname{poly}(\lambda)$:
\mathcal{P} has seeds sd_{x} for all $x \in \mathbb{F}_{2^{k}}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^{k}}$ and all seeds except sd s_{Δ}.

Small-Field SoftSpoken VOLE

Input: An $\binom{N}{N-1}$-OT, for $N=2^{k} \leq \operatorname{poly}(\lambda)$:
\mathcal{P} has seeds sd_{x} for all $x \in \mathbb{F}_{2^{k}}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^{k}}$ and all seeds except sd s_{Δ}.

Small-Field SoftSpoken VOLE

Input: An $\binom{N}{N-1}$-OT, for $N=2^{k} \leq \operatorname{poly}(\lambda)$:
\mathcal{P} has seeds sd_{x} for all $x \in \mathbb{F}_{2^{k}}$. \mathcal{V} has $\Delta \in \mathbb{F}_{2^{k}}$ and all seeds except sd s_{Δ}.

Derandomization: \mathcal{P} sends $\vec{d}=\vec{w}-\vec{u} . \mathcal{V}$ updates $\vec{q}^{\prime}=\vec{q}+\Delta \vec{d}$.

OT-in-the-Head: Commitments

How to get an $\binom{N}{N-1}$-OT for the VOLE?

OT-in-the-Head: Commitments

How to get an $\binom{N}{N-1}$-OT for the VOLE?

OT-in-the-Head: Commitments

How to get an $\binom{N}{N-1}$-OT for the VOLE?

This is just a commitment scheme!

All-but-one Random Vector Commitments

All-but-one Random Vector Commitments

All-but-one Random Vector Commitments

All-but-one Random Vector Commitments

All-but-one Random Vector Commitments

Small VOLE to Big VOLE

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!
\Longrightarrow need VOLE over a big field $\mathbb{F}_{2^{\lambda}}$ and Δ from large set.

Small VOLE to Big VOLE

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!
\Longrightarrow need VOLE over a big field $\mathbb{F}_{2^{\lambda}}$ and Δ from large set.
\rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau}=2^{\lambda}$. Proof size: $\tau \times$ witness size.

Small VOLE to Big VOLE

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!
\Longrightarrow need VOLE over a big field $\mathbb{F}_{2^{\lambda}}$ and Δ from large set.
\rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau}=2^{\lambda}$. Proof size: $\tau \times$ witness size.

$$
\begin{aligned}
\vec{q}_{0} & =\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
\vec{q}_{\tau-1} & =\vec{w} \cdot \Delta_{\tau-1}+\vec{v}_{\tau-1}
\end{aligned}
$$

Small VOLE to Big VOLE

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!
\Longrightarrow need VOLE over a big field $\mathbb{F}_{2^{\lambda}}$ and Δ from large set.
\rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau}=2^{\lambda}$. Proof size: $\tau \times$ witness size.

$$
\begin{aligned}
& \vec{q}_{0}=\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
& \vec{q}_{\tau-1}=\vec{w} \cdot \Delta_{\tau-1}+\vec{v}_{\tau-1} \\
& \Downarrow \\
& \underbrace{\sum_{i \in[\tau]} \vec{q}_{i} \cdot X^{i}}_{\vec{q} \in \mathbb{F}_{q^{\tau}}}=\vec{w} \cdot \underbrace{\sum_{i \in[\tau]} \Delta_{i} \cdot X^{i}}_{\Delta \in \mathbb{F}_{q^{\tau}}}+\underbrace{\sum_{i \in[\tau]} \vec{v}_{i} \cdot X^{i}}_{\vec{v} \in \mathbb{F}_{q^{\tau}}^{\ell}}
\end{aligned}
$$

Small VOLE to Big VOLE

Small VOLE costs $\mathcal{O}(N)$ work, but gives only soundness $\frac{1}{N}$!
\Longrightarrow need VOLE over a big field $\mathbb{F}_{2^{\lambda}}$ and Δ from large set.
\rightsquigarrow combine τ small VOLEs into one big VOLE, where $N^{\tau}=2^{\lambda}$. Proof size: $\tau \times$ witness size.

$$
\begin{aligned}
& \vec{q}_{0}=\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
& \vec{q}_{\tau-1}=\vec{w} \cdot \Delta_{\tau-1}+\vec{v}_{\tau-1} \\
& \Downarrow \\
& \underbrace{\sum_{i \in[\tau]} \vec{q}_{i} \cdot X^{i}}_{\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell}}=\vec{w} \cdot \underbrace{\sum_{i \in[\tau]} \Delta_{i} \cdot X^{i}}_{\Delta \in \mathbb{F}_{q^{\tau}}}+\underbrace{\sum_{i \in[\tau]} \vec{v}_{i} \cdot X^{i}}_{\vec{v} \in \mathbb{F}_{q^{\tau}}^{\ell}}
\end{aligned}
$$

Use a consistency check to verify that the same \vec{w} was used in every VOLE.

All-but-some Random Vector Commitments

Because $N^{\tau}=2^{\lambda}$, the co-paths always have λ nodes, so opening costs roughly λ^{2} bits.

FAEST Rounds

Prover \mathcal{P}
Verifier \mathcal{V}

FAEST Rounds

Prover \mathcal{P}
 - vector-commit to random strings

Verifier V
\qquad

FAEST Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs

FAEST Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE

FAEST Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
VOLE consistency proof

FAEST Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
VOLE consistency proof
random challenge
QuickSilver proof

FAEST Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
VOLE consistency proof
random challenge
\qquad
QuickSilver proof
$\vec{\Delta}$
open vector commitments

FAEST Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
$\xrightarrow[\text { VOLE consistency proof }]{\text { random challenge }}$
$\vec{\Delta}$
$\xrightarrow{\text { open vector commitments }}$ verify: • vector commitments
- VOLE consistency
- QuickSilver proof

Grinding

Grinding: Overview

Mismatch: cost of generating a proof \gg per-trial attack cost lowerbound in the security argument.

Grinding: Overview

Mismatch: cost of generating a proof \gg per-trial attack cost lowerbound in the security argument.

- Prover must generate $\Theta\left(\tau 2^{k} \ell\right)$ PRG bits and run $\Theta\left(\tau 2^{k}\right)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

Grinding: Overview

Mismatch: cost of generating a proof \gg per-trial attack cost lowerbound in the security argument.

- Prover must generate $\Theta\left(\tau 2^{k} \ell\right)$ PRG bits and run $\Theta\left(\tau 2^{k}\right)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2^{w} times more expensive (Grinding). Only need to target $2^{\lambda-w}$ security level.

Grinding: Overview

Mismatch: cost of generating a proof \gg per-trial attack cost lowerbound in the security argument.

- Prover must generate $\Theta\left(\tau 2^{k} \ell\right)$ PRG bits and run $\Theta\left(\tau 2^{k}\right)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2^{w} times more expensive (Grinding). Only need to target $2^{\lambda-w}$ security level.

- This allows for smaller signatures by reducing τ.

Grinding: Overview

Mismatch: cost of generating a proof \gg per-trial attack cost lowerbound in the security argument.

- Prover must generate $\Theta\left(\tau 2^{k} \ell\right)$ PRG bits and run $\Theta\left(\tau 2^{k}\right)$ hashes.
- Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2^{w} times more expensive (Grinding). Only need to target $2^{\lambda-w}$ security level.

- This allows for smaller signatures by reducing τ.
- Counter-intuitively, this can also make signing faster - k can be reduced while preserving security.

Grinding: Correlation

$$
\begin{aligned}
\vec{q}_{0} & =\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
\vec{q}_{\tau-2} & =\vec{w} \cdot \Delta_{\tau-2}+\vec{v}_{\tau-2} \\
\vec{q}_{\tau-1} & =\vec{w} \cdot \Delta_{\tau-1}+\vec{v}_{\tau-1} \\
& \Downarrow \\
\underbrace{\sum_{i \in[\tau]} \vec{q}_{i} \cdot X^{i}}_{\vec{q} \in \mathbb{F}_{q^{\tau}}^{e}} & =\vec{w} \cdot \underbrace{\sum_{i \in[\tau]} \Delta_{i} \cdot X^{i}}_{\Delta \in \mathbb{F}_{q^{\tau}}}+\underbrace{\sum_{i \in[\tau]} \vec{v}_{i} \cdot X^{i}}_{\vec{v} \in \mathbb{F}_{q^{\tau}}^{e}}
\end{aligned}
$$

Grinding: Correlation

What if $\Delta_{\tau-1}=0$?

$$
\begin{aligned}
& \vec{q}_{0}=\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
& \vec{q}_{\tau-2}=\vec{w} \cdot \Delta_{\tau-2}+\vec{v}_{\tau-2} \\
& \vec{q}_{\tau-1}=\vec{w} \cdot \Delta_{\tau-1}+\vec{v}_{\tau-1} \\
& \Downarrow \\
& \underbrace{\sum_{i \in[\tau]} \vec{q}_{i} \cdot X^{i}}_{\vec{q} \in \mathbb{F}_{q^{\tau}}^{e}}=\vec{w} \cdot \underbrace{\sum_{i \in[\tau]} \Delta_{i} \cdot X^{i}}_{\Delta \in \mathbb{F}_{q^{\tau}}}+\underbrace{\sum_{i \in[\tau]} \vec{v}_{i} \cdot X^{i}}_{\vec{v} \in \mathbb{F}_{q^{\tau}}^{e}}
\end{aligned}
$$

Grinding: Correlation

What if $\Delta_{\tau-1}=0$?

$$
\begin{aligned}
\vec{q}_{0} & =\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
\vec{q}_{\tau-2} & =\vec{w} \cdot \Delta_{\tau-2}+\vec{v}_{\tau-2} \\
\vec{q}_{\tau-1} & =\vec{w} \cdot 0+\vec{v}_{\tau-1} \\
& \Downarrow \\
\underbrace{\sum_{i \in[\tau]} \vec{q}_{i} \cdot X^{i}}_{\vec{q} \in \mathbb{F}_{q^{\tau}}^{e}} & =\vec{w} \cdot \underbrace{\sum_{i \in[\tau]} \Delta_{i} \cdot X^{i}}_{\Delta \in \mathbb{F}_{q^{\tau}}}+\underbrace{\sum_{i \in[\tau]} \vec{v}_{i} \cdot X^{i}}_{\vec{v} \in \mathbb{F}_{q^{\tau}}^{e}}
\end{aligned}
$$

Grinding: Correlation

What if $\Delta_{\tau-1}=0$?
The last small vole correlation is now trivial,

$$
\begin{aligned}
\vec{q}_{0} & =\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
\vec{q}_{\tau-2} & =\vec{w} \cdot \Delta_{\tau-2}+\vec{v}_{\tau-2} \\
0 & =\vec{w} \cdot 0+0 \\
& \Downarrow \\
\underbrace{\sum_{i \in[\tau]} \vec{q}_{i} \cdot X^{i}}_{\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell}} & =\vec{w} \cdot \underbrace{\sum_{i \in[\tau]} \Delta_{i} \cdot X^{i}}_{\Delta \in \mathbb{F}_{q^{\tau}}}+\underbrace{\sum_{i \in[\tau]} \vec{v}_{i} \cdot X^{i}}_{\vec{v} \in \mathbb{F}_{q^{\tau}}^{\ell}}
\end{aligned}
$$

Grinding: Correlation

What if $\Delta_{\tau-1}=0$?
The last small vole correlation is now trivial, and can be removed to save communication.

$$
\begin{aligned}
\vec{q}_{0} & =\vec{w} \cdot \Delta_{0}+\vec{v}_{0} \\
& \vdots \\
\vec{q}_{\tau-2} & =\vec{w} \cdot \Delta_{\tau-2}+\vec{v}_{\tau-2} \\
0 & =\vec{w} \cdot 0+0 \\
& \Downarrow \\
\underbrace{\sum_{i \in[\tau-1]} \vec{q}_{i} \cdot X^{i}}_{\vec{q} \in \mathbb{F}_{q^{\tau}}^{\ell}} & =\vec{w} \cdot \underbrace{\sum_{i \in[\tau-1]} \Delta_{i} \cdot X^{i}}_{\Delta \in \mathbb{F}_{q^{\tau}}}+\underbrace{\sum_{i \in[\tau-1]} \vec{v}_{i} \cdot X^{i}}_{\vec{v} \in \mathbb{F}_{q^{\tau}}^{\ell}}
\end{aligned}
$$

Grinding: Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
VOLE consistency proof
random challenge
QuickSilver proof

- VOLE consistency
- QuickSilver proof

Grinding: Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
VOLE consistency proof
$\xrightarrow{\text { random challenge }}$
Retry if
$\Delta_{\tau-1} \neq 0$.

open vector commitments verify: • vector commitments

Grinding: Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
VOLE consistency proof
$\xrightarrow[\text { Retry index }]{\text { random challenge }}$

Retry if			
$\Delta_{\tau-1} \neq 0$.	$\vec{\Delta}$		
	open vector commitments		verify: • vector commitments
:---			
- VOLE consistency			

Grinding: Rounds

Prover \mathcal{P}

Verifier \mathcal{V}

- vector-commit to random strings
- expand small VOLEs \qquad
- combine into big VOLE
random challenge
VOLE consistency proof
$\xrightarrow[\text { Retry index }]{\text { RuickSilver proof challenge }}$

Retry if last w
bits of $\vec{\Delta}$ aren't
all zero.

One Tree to Rule Them All

All-but-some Random Vector Commitments

One Tree to Bind Them

All-but-some Random Vector Commitments

		Field element $x \in\left[0,2^{k}\right)$			
		0	1	2	3
	0	$\mathrm{sd}_{0,0}$	50, 1	$\mathrm{sd}_{0,2}$	$\mathrm{sd}_{0,3}$
	1	$\mathrm{sd}_{1,0}$	$\mathrm{sd}_{1,1}$	sch	$\mathrm{sd}_{1,3}$
	2	Sche	$\mathrm{sd}_{2,1}$	$\mathrm{sd}_{2,2}$	$\mathrm{sd}_{2,3}$
	3	$\mathrm{sd}_{3,0}$	5 SO 51	$\mathrm{sd}_{3,2}$	$\mathrm{sd}_{3,3}$

All-but-some Random Vector Commitments

		Repetition $i \in[0, \tau)$			
		0	1	2	3
$\stackrel{1}{\sim}$	0	$\mathrm{sd}_{0,0}$	$\mathrm{sd}_{1,0}$	Sche	$\mathrm{sd}_{3,0}$
$\underset{\times}{\underset{x}{x}}$	1	Scolo 1	$\mathrm{sd}_{1,1}$	$\mathrm{sd}_{2,1}$	5 Sd 51
$\begin{gathered} \frac{E}{0} \\ \hline \mathbb{O} \end{gathered}$	2	$\operatorname{sd}_{0,2}$	Sch	$\mathrm{sd}_{2,2}$	$\operatorname{sd}_{3,2}$
는	3	$\mathrm{sd}_{0,3}$	$\mathrm{sd}_{1,3}$	$\mathrm{sd}_{2,3}$	$\mathrm{sd}_{3,3}$

One Tree to Bind Them

Note: only 7 seeds to open, not 8 .

One Tree to Bind Them

Note: only 7 seeds to open, not 8 .
In general, the opening size depends on Δ.
\rightsquigarrow Set a limit $T_{\text {open }}$ on seeds in the opening, and retry if it's exceeded.

FAESTER

Size-time Tradeoff

(a) FAESTER-128.

(b) FAESTER-EM-128.

Parameter Choices

Signature Scheme	OWF $E_{s k}(x)$	1	w	$\mathrm{T}_{\text {open }}$	τ	τ_{0}	τ_{1}	k_{0}	k_{1}	sk size	pk size	sig. size
FAEST-128s	AES128 ${ }_{\text {sk }}(x)$	1600	-	-	11	7	4	12	11	16	32	5006
FAEST-128 ${ }_{\mathrm{f}}$	AES128 ${ }_{\text {sk }}(x)$	1600	-	-	16	0	16	8	8	16	32	6336
FAEST-EM-128 ${ }_{\text {s }}$	$\mathrm{AES128}_{x}(s k) \oplus$ sk	1280	-	-	11	7	4	12	11	16	32	4566
FAEST-EM-128f	$\mathrm{AESS128}_{\times}(s k) \oplus$ sk	1280	-	-	16	0	16	8	8	16	32	5696
FAESTER-128s	AES128 ${ }_{\text {sk }}(x)$	1600	7	102	11	0	11	11	11	16	32	4594
FAESTER-128f	AES128 ${ }_{\text {sk }}(x)$	1600	8	110	16	8	8	8	7	16	32	6052
FAESTER-EM-128 ${ }_{\text {s }}$	AES128 ${ }_{\text {x }}(s k) \oplus$ sk	1280	7	103	11	0	11	11	11	16	32	4170
FAESTER-EM-128f	$\mathrm{AES128}_{\times}(s k) \oplus s k$	1280	8	112	16	8	8	8	7	16	32	5444

Performance Comparison

Scheme	Runtime in ms			Size in bytes			
	Keygen	Sign	Verify	sk	pk	Signature	
FAEST-128 $_{\mathrm{s}}$	0.0006	4.381	4.102	16	32	5006	
FAEST-128 $_{\mathrm{f}}$	0.0005	0.404	0.395	16	32	6336	
FAEST-EM-128 $_{\mathrm{s}}$	0.0005	4.151	4.415	16	32	4566	
FAEST-EM-128 $_{\mathrm{f}}$	0.0005	0.446	0.474	16	32	5696	
FAESTER-128	0.0006	3.282	4.467	16	32	4594	
FAESTER-128 $_{\mathrm{f}}$	0.0005	0.433	0.610	16	32	6052	
FAESTER-EM-128	0.0005	3.005	4.386	16	32	4170	
FAESTER-EM-128	f	0.0005	0.422	0.609	16	32	
5444							

Signing time (ms), verification time (ms), and signature size (bytes).

Performance Comparison

Scheme	Runtime in ms			Size in bytes			
	Keygen	Sign	Verify	sk	pk	Signature	
FAEST-128 $_{\mathrm{s}}$	0.0006	4.381	4.102	16	32	5006	
FAEST-128 $_{\mathrm{f}}$	0.0005	0.404	0.395	16	32	6336	
FAEST-EM-128 $_{\mathrm{s}}$	0.0005	4.151	4.415	16	32	4566	
FAEST-EM-128 $_{\mathrm{f}}$	0.0005	0.446	0.474	16	32	5696	
FAESTER-128 $_{\mathrm{s}}$	0.0006	3.282	4.467	16	32	4594	
FAESTER-128 $_{\mathrm{f}}$	0.0005	0.433	0.610	16	32	6052	
FAESTER-EM-128	0.0005	3.005	4.386	16	32	4170	
FAESTER-EM-128	f	0.0005	0.422	0.609	16	32	
5444							

Signing time (ms), verification time (ms), and signature size (bytes).
Benchmarking system: AMD Ryzen 9 7900X 12-Core CPU running Ubuntu 22.04.

Zeroes in S-boxes

- AES S-boxes:

$$
x \mapsto y= \begin{cases}0 & \text { if } x=0 \\ x^{-1} \in \mathbb{F}_{2^{8}} & \text { otherwise }\end{cases}
$$

- Constraint: $x \cdot y=1$. This requires $x \neq 0$.

Zeroes in S-boxes

- AES S-boxes:

$$
x \mapsto y= \begin{cases}0 & \text { if } x=0 \\ x^{-1} \in \mathbb{F}_{2^{8}} & \text { otherwise }\end{cases}
$$

- Constraint: $x \cdot y=1$. This requires $x \neq 0$.
- $(\star) \Longleftrightarrow x^{2} \cdot y=x \wedge x \cdot y^{2}=y$
- observe that $x \mapsto x^{2}$ is \mathbb{F}_{2}-linear.
$\rightsquigarrow 2$ quadratic constraints per S-box.

Zeroes in S-boxes

- AES S-boxes:

$$
x \mapsto y= \begin{cases}0 & \text { if } x=0 \tag{*}\\ x^{-1} \in \mathbb{F}_{2^{8}} & \text { otherwise }\end{cases}
$$

- Constraint: $x \cdot y=1$. This requires $x \neq 0$.
- $(\star) \Longleftrightarrow x^{2} \cdot y=x \wedge x \cdot y^{2}=y$
- observe that $x \mapsto x^{2}$ is \mathbb{F}_{2}-linear.
$\rightsquigarrow 2$ quadratic constraints per S-box.
- Can use any AES key! No rejection sampling.

MandaRain

Rain Cipher

Rain Cipher

- $x, k, y \in \mathbb{F}_{2^{\lambda}}$.
- M_{i} is a \mathbb{F}_{2}-linear transformations.

Rain Cipher

- $x, k, y \in \mathbb{F}_{2^{\lambda}}$.
- M_{i} is a \mathbb{F}_{2}-linear transformations.
- Fewer rounds \Longrightarrow smaller witness.

Size-time Tradeoff

(a) MandaRain-3-128.

(b) MandaRain-4-128.

Performance Comparison

Scheme	Runtime in ms			Size in bytes			
	Keygen	Sign	Verify	sk	pk	Signature	
FAEST-128 $_{\mathrm{s}}$	0.0006	4.381	4.102	16	32	5006	
FAEST-128 $_{\mathrm{f}}$	0.0005	0.404	0.395	16	32	6336	
FAEST-EM-128 $_{\mathrm{s}}$	0.0005	4.151	4.415	16	32	4566	
FAEST-EM-128 $_{\mathrm{f}}$	0.0005	0.446	0.474	16	32	5696	
FAESTER-128 $_{\mathrm{s}}$	0.0006	3.282	4.467	16	32	4594	
FAESTER-128 $_{\mathrm{f}}$	0.0005	0.433	0.610	16	32	6052	
FAESTER-EM-128							
FAESTER-EM-128	0.0005	3.005	4.386	16	32	4170	
MandaRain-3-128	0.0005	0.422	0.609	16	32	5444	
MandaRain-3-128	0.0018	2.800	5.895	16	32	2890	
MandaRain-4-128	0.0018	0.346	0.807	16	32	3588	
MandaRain-4-128	0.0026	2.876	6.298	16	32	3052	

Signing time (ms), verification time (ms), and signature size (bytes).

KuMQuat

Unstructured Multivariate-Quadratic

Sample $\mathrm{A}_{i} \in \mathbb{F}_{q}^{n \times n}, b_{i} \in \mathbb{F}_{q}^{n}$, and $x \in \mathbb{F}_{q}^{n}$.
Public key: seeds for A and b, and $y \in \mathbb{F}_{q}^{n}$ where

$$
y_{i}=x^{\top} \mathrm{A}_{i} x+b_{i}^{\top} x_{j}
$$

Unstructured Multivariate-Quadratic

Sample $\mathrm{A}_{i} \in \mathbb{F}_{q}^{n \times n}, b_{i} \in \mathbb{F}_{q}^{n}$, and $x \in \mathbb{F}_{q}^{n}$.
Public key: seeds for A and b, and $y \in \mathbb{F}_{q}^{n}$ where

$$
y_{i}=x^{\top} \mathrm{A}_{i} x+b_{i}^{\top} x_{j}
$$

Witness: $x \in \mathbb{F}_{q}^{n}$
Constraints:

$$
y_{i}=\sum_{j k} \mathrm{~A}_{i j k} x_{j} x_{k}+\sum_{j} b_{i j} x_{j}-y_{i} \quad \forall i \in[n]
$$

Unstructured Multivariate-Quadratic

Sample $\mathrm{A}_{i} \in \mathbb{F}_{q}^{n \times n}, b_{i} \in \mathbb{F}_{q}^{n}$, and $x \in \mathbb{F}_{q}^{n}$.
Public key: seeds for A and b, and $y \in \mathbb{F}_{q}^{n}$ where

$$
y_{i}=x^{\top} \mathrm{A}_{i} x+b_{i}^{\top} x_{j}
$$

Witness: $x \in \mathbb{F}_{q}^{n}$
Constraints:

$$
y_{i}=\sum_{j k} \mathrm{~A}_{i j k} x_{j} x_{k}+\sum_{j} b_{i j} x_{j}-y_{i} \quad \forall i \in[n]
$$

- Witness size is minimal (assuming only quadratic constraints).

Unstructured Multivariate-Quadratic

Sample $\mathrm{A}_{i} \in \mathbb{F}_{q}^{n \times n}, b_{i} \in \mathbb{F}_{q}^{n}$, and $x \in \mathbb{F}_{q}^{n}$.
Public key: seeds for A and b, and $y \in \mathbb{F}_{q}^{n}$ where

$$
y_{i}=x^{\top} \mathrm{A}_{i} x+b_{i}^{\top} x_{j}
$$

Witness: $x \in \mathbb{F}_{q}^{n}$
Constraints:

$$
y_{i}=\sum_{j k} \mathrm{~A}_{i j k} x_{j} x_{k}+\sum_{j} b_{i j} x_{j}-y_{i} \quad \forall i \in[n]
$$

- Witness size is minimal (assuming only quadratic constraints).
- Optimization: pack multiple \mathbb{F}_{q} constraints together into a $\mathbb{F}_{2^{\lambda}}$ constraint.

Instance	Security Level	\mathbb{F}_{q}	n
MQ-2 ${ }^{1}$-L1	L1	$\mathbb{F}_{2^{1}}$	152
MQ-2 8-L1	L1	$\mathbb{F}_{2^{8}}$	48
MQ-2 ${ }^{1}$-L3	L3	$\mathbb{F}_{2^{1}}$	224
MQ-2 2^{8}-L3	L3	$\mathbb{F}_{2^{8}}$	72
MQ-2 2^{1}-L5	L5	$\mathbb{F}_{2^{1}}$	320
MQ-2 2^{8}-L5	L5	$\mathbb{F}_{2^{8}}$	96

Size-time Tradeoff

(a) KuMQuat-2 ${ }^{1}$-L1.

(b) KuMQuat- 2^{8}-L1.

Performance Comparison

Scheme	Runtime in ms			Size in bytes		
	Keygen	Sign	Verify	sk	pk	Signature
FAEST-128s	0.0006	4.381	4.102	16	32	5006
FAEST-128 ${ }_{\text {f }}$	0.0005	0.404	0.395	16	32	6336
FAEST-EM-128s	0.0005	4.151	4.415	16	32	4566
FAEST-EM-128f	0.0005	0.446	0.474	16	32	5696
FAESTER-128 ${ }_{\text {s }}$	0.0006	3.282	4.467	16	32	4594
FAESTER-128 ${ }_{\text {f }}$	0.0005	0.433	0.610	16	32	6052
FAESTER-EM-128 ${ }_{\text {s }}$	0.0005	3.005	4.386	16	32	4170
FAESTER-EM-128 ${ }_{\mathrm{f}}$	0.0005	0.422	0.609	16	32	5444
MandaRain-3-128s	0.0018	2.800	5.895	16	32	2890
MandaRain-3-128f	0.0018	0.346	0.807	16	32	3588
MandaRain-4-128s	0.0026	2.876	6.298	16	32	3052
MandaRain-4-128f	0.0026	0.371	0.817	16	32	3876
KuMQuat-2 ${ }^{1}$-L1 ${ }_{\text {s }}$	0.173	4.305	4.107	19	35	2555
KuMQuat-2 ${ }^{1}-\mathrm{L} 1_{f}$	0.172	0.539	0.736	19	35	3028
KuMQuat-2 ${ }^{8}$-L1 ${ }_{\text {s }}$	0.174	3.599	4.053	48	64	2890
KuMQuat-2 ${ }^{8}-\mathrm{L1} 1_{\text {f }}$	0.172	0.400	0.623	48	64	3588

Signing time (ms), verification time (ms), and signature size (bytes).

Performance Graph

(a) Signing time - signature size trade-off.

(b) Verification time - signature size trade-off.

Additional Graphs

(a) L1 Signing.

(b) L1 Verify.

