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. . . welcome to FAEST! — the VOLE-in-the-Head Post Quantum Signature Scheme.

Ingredients:

• 1× Zero-knowledge proof for “I know k ∈ {0, 1}λ such that AESk(x) = y ”

• 1× fresh VOLE (in-the-Head)

• A pinch of Fiat-Shamir

=⇒ Delicious Digital Signature Scheme with secret key k ∈ {0, 1}λ and public key (x , y).

Our submission to the NIST Call for Post Quantum Signatures.

Chefs: Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Christian Majenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian
Rechberger, Lawrence Roy, Peter Scholl.
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Security Properties

• Soundness: V cannot be convinced of a false statement

• Zero-Knowledge: V does not learn anything new from the interaction

If the verifer has no secrets (i.e., is public-coin), can convert into a signature using Fiat-Shamir.

Identifcation Schemes Based on Zero-Knowledge Proofs 

Prover P Verifer V 
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Signature Schemes Based on Zero-Knowledge Proofs 

I know k s. t. AESk (x) = y ! 

Prover P Verifer V 

Yes, you are 
pk = (x , y). 
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• AES is F2-linear except for the S-boxes

x 7→ y =

(
0 if x = 0

x−1 ∈ F28 otherwise
(⋆)

=⇒ Sample keys such that no zeros appear in the
S-boxes and just check inversions (x · y = 1 over
F28)

⇝ AES-128: 200 quadratic constraints / 1600 bit
witness

AES as a ZK-friendly Cipher? 

• Picnic used LowMC – tailored to MPC, but less well 
analyzed than AES . . . 
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VOLE-based Zero-Knowledge 
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Space of Zero-Knowledge Proofs 

Proof size 

Prover runtime 

7 



Space of Zero-Knowledge Proofs 

Proof size 

Ligero 

STARK 

Groth16 

Prover runtime 

7 



Space of Zero-Knowledge Proofs 

Proof size 

Ligero 

STARK 

Groth16 

MPC-in-the-Head 

VOLE-ZK 

Prover runtime 

7 



Space of Zero-Knowledge Proofs 
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Prover runtime 
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Space of Zero-Knowledge Proofs 

Proof size 

Ligero 

STARK 

Groth16 

MPC-in-the-Head 

VOLE-ZK 

VOLE-in-the-Head 
size: Θ(λ/ log(λ)) · ℓ 
public-coin 

Prover runtime 
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What are VOLEs? 
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What are VOLEs? 
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as Homomorphic Commitments

Linearly Homomorphic Commitments
use qi = wi · ∆ + vi as information-theoretic MAC on wi

• hiding since vi is random

• breaking binding =⇒ guessing ∆ =⇒ prob. 1/|F|
(cf. EC:CatFio13 [EC:CatFio13],
EC:BDOZ11 [EC:BDOZ11])

Vector Oblivious Linear Evaluation (VOLE) 

Prover P Verifer V 
(VOLE Sender) (VOLE Receiver) 

w⃗ ∈ Fn 

v⃗ ∈ Fn 

∆ ∈ F 

FVOLE q⃗ = ∆ · w⃗ + v⃗

v 

p(X ) = w · X + v 

q 

∆ 
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Commit & Prove Zero-Knowledge 

w1 w2 · · · wnI know w s. t. C(w) = 0! 

Prover P 

+ 

×C 

wout 
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2. multiplication check

– given ([a], [b], [c]), verify a · b ?
= c

Commit & Prove Zero-Knowledge 

[w1] [w2] · · · [wn]I know w s. t. C(w) = 0! 

Prover P 

+ 

×C 

[wi ] 

[wj ] 

Ingredients: 

1. linearly homomorphic commitments [ · ] 

– can compute [z] ← a · [x ] + [y ] + b 

[wout] 
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QuickSilver Check: Convert the three MAC equations qx = vx + x · ∆ for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb| {z }
known by V

= (−va · vb)| {z }
known by P

+ (vc − a · vb − b · va)| {z }
known by P

· ∆ + (c − a · b)| {z }
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X ) = e0 + e1 · X + e · X 2 such that

– p ( ∆ ) = 0, and

– e := c − a · b ̸= 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

use a random linear combination to
verify many multiplications

Verifying Multiplications – LPZK [ITC:DIO21], QuickSilver [CCS:YSWW21] 

Goal: Given ([a], [b], [c]), verify that a · b = c in F 
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VOLE-in-the-Head 
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• If the prover P knows ∆, the commitments are no longer binding!

• But: At the end of the protocol, it is fne for P to learn ∆.

=⇒ commit P to its messages and delay V’s choice ∆ to the end of the protocol

FVOLE

commit

open

Prover P
(VOLE Sender)

Verifer V
(VOLE Receiver)

w⃗ ∈ Fn

v⃗ ∈R Fn ∆ ∈R F

q⃗ = ∆ · w⃗ + v⃗∆

Implement FVOLE with SoftSpoken VOLE [C:Roy22].

VOLE-in-the-Head – The Idea 

Observation: Why are VOLE-ZK protocols not public coin? 
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u⃗ = −
X
x∈F2k

G (sdx) =
X
x∈F2k

û(x)G (sdx)

v⃗ =
X
x∈F2k

xG (sdx) =
X
x∈F2k

v̂(x)G (sdx)

q⃗ =
X
x∈F2k

(x −∆)G (sdx)

=
X
x∈F2k

q̂(x)G (sdx)

q⃗ − v⃗ =
X
x∈F2k

(−∆)G (sdx) = ∆u⃗

1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

0
0

x

û(x)

v̂(x)

q̂(x)
∆

∆û(x)

Derandomization: P sends d⃗ = w⃗ − u⃗. V updates q⃗′ = q⃗ +∆d⃗ .

Small-Field SoftSpoken VOLE � 
N � 

Input: An -OT, for N = 2k ≤ poly(λ):N−1 

P has seeds sdx for all x ∈ F2k . V has ∆ ∈ F2k and all seeds except sd∆. 
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⇝ combine τ small VOLEs into one big VOLE, where Nτ = 2λ. Proof size: τ × witness size.

q⃗0 = w⃗ · ∆0 + v⃗0
...

q⃗τ−1 = w⃗ · ∆τ−1 + v⃗τ−1w�X
i∈[τ ]

q⃗i · X i

| {z }
q⃗∈Fℓ

qτ

= w⃗ ·
X
i∈[τ ]

∆i · X i

| {z }
∆∈Fqτ

+
X
i∈[τ ]

v⃗i · X i

| {z }
v⃗∈Fℓ

qτ

Use a consistency check to verify that the same w⃗ was used in every VOLE.

Small VOLE to Big VOLE 

1Small VOLE costs O(N) work, but gives only soundness !N 

=⇒ need VOLE over a big feld F2λ and ∆ from large set. 
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Because Nτ = 2λ, the co-paths always have λ nodes, so opening costs roughly λ2 bits.
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• Prover must generate Θ(τ2kℓ) PRG bits and run Θ(τ2k) hashes.

• Lower bound is based on a single Fiat-Shamir hash evaluation.

Fix: make the Fiat-Shamir hash 2w times more expensive (Grinding). Only need to target
2λ−w security level.

• This allows for smaller signatures by reducing τ .

• Counter-intuitively, this can also make signing faster — k can be reduced while preserving
security.

Grinding: Overview 

Mismatch: cost of generating a proof ≫ per-trial attack cost lowerbound in the security 
argument. 
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What if ∆τ−1 = 0?
The last small vole correlation is now trivial, and can be removed to save communication.

Grinding: Correlation 

q⃗0 = w⃗ · ∆0 + v⃗0 

q⃗τ−2 = w⃗ · ∆τ −2 + v⃗τ −2 

q⃗τ−1 = w⃗ · ∆τ −1 + v⃗τ −1 w� X 

i∈[τ ] 

q⃗i · X i 

| {z } 
q⃗∈Fℓ 

qτ 

= w⃗ · 
X 

i∈[τ ] 

∆i · X i 

| {z } 
∆∈Fqτ 

+ 

... 

X 

i∈[τ ] 

v⃗i · X i 

| {z } 
v⃗∈Fℓ 

qτ 
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Grinding: Rounds 

Prover P Verifer V 

• vector-commit to random strings 

• expand small VOLEs 

• combine into big VOLE 

random challenge 

VOLE consistency proof 

random challenge 

QuickSilver proof 

Retry index 

∆⃗ 
verify: • vector commitments 

open vector commitments • VOLE consistency 

• QuickSilver proof 
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Prover P Verifer V 

• vector-commit to random strings 

• expand small VOLEs 

• combine into big VOLE 
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One Tree to Rule Them All 

24 



Because Nτ = 2λ, the co-paths always have λ nodes, so opening costs roughly λ2 bits.
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One Tree to Bind Them 
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One Tree to Bind Them 
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All-but-some Random Vector Commitments 
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All-but-some Random Vector Commitments 
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Note: only 7 seeds to open, not 8.
In general, the opening size depends on ∆.
⇝ Set a limit Topen on seeds in the opening, and retry if it’s exceeded.
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FAESTER 
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Size-time Tradeof 

(a) FAESTER-128. (b) FAESTER-EM-128. 
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Parameter Choices 

Signature Scheme OWF Esk (x) l w Topen τ τ0 τ1 k0 k1 sk size pk size sig. size 

FAEST-128s AES128sk (x) 1600 – – 11 7 4 12 11 16 32 5006 
FAEST-128f AES128sk (x) 1600 – – 16 0 16 8 8 16 32 6336 

FAEST-EM-128s AES128x (sk) ⊕ sk 1280 – – 11 7 4 12 11 16 32 4566 
FAEST-EM-128f AES128x (sk) ⊕ sk 1280 – – 16 0 16 8 8 16 32 5696 

FAESTER-128s AES128sk (x) 1600 7 102 11 0 11 11 11 16 32 4594 
FAESTER-128f AES128sk (x) 1600 8 110 16 8 8 8 7 16 32 6052 

FAESTER-EM-128s AES128x (sk) ⊕ sk 1280 7 103 11 0 11 11 11 16 32 4170 
FAESTER-EM-128f AES128x (sk) ⊕ sk 1280 8 112 16 8 8 8 7 16 32 5444 
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Benchmarking system: AMD Ryzen 9 7900X 12-Core CPU running Ubuntu 22.04.

Performance Comparison 

Scheme Runtime in ms 
Keygen Sign Verify sk 

Size in bytes 
pk Signature 

FAEST-128s 

FAEST-128f 

0.0006 4.381 4.102 
0.0005 0.404 0.395 

16 
16 

32 5006 
32 6336 

FAEST-EM-128s 

FAEST-EM-128f 

0.0005 4.151 4.415 
0.0005 0.446 0.474 

16 
16 

32 4566 
32 5696 

FAESTER-128s 

FAESTER-128f 

0.0006 3.282 4.467 
0.0005 0.433 0.610 

16 
16 

32 4594 
32 6052 

FAESTER-EM-128s 

FAESTER-EM-128f 

0.0005 3.005 4.386 
0.0005 0.422 0.609 

16 
16 

32 4170 
32 5444 

Signing time (ms), verifcation time (ms), and signature size (bytes). 
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Signing time (ms), verifcation time (ms), and signature size (bytes). 

Benchmarking system: AMD Ryzen 9 7900X 12-Core CPU running Ubuntu 22.04. 
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• (⋆) ⇐⇒ x2 · y = x ∧ x · y2 = y

– observe that x 7→ x2 is F2-linear.
⇝ 2 quadratic constraints per S-box.

• Can use any AES key! No rejection sampling.

Zeroes in S-boxes 

• AES S-boxes: (
0 if x = 0 

x 7→ y = (⋆) 
x−1 ∈ F28 otherwise 

• Constraint: x · y = 1. This requires x ≠ 0. 
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MandaRain 

34 



• x , k, y ∈ F2λ .

• Mi is a F2-linear transformations.

• Fewer rounds =⇒ smaller witness.

Rain Cipher 

x x−1 M1 x−1 M2 x−1 y 

k ⊕ c1 k ⊕ c2 k ⊕ c3 k 

3-round Rain. 
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Rain Cipher 

x x−1 M1 x−1 M2 x−1 y 

k ⊕ c1 k ⊕ c2 k ⊕ c3 k 

3-round Rain. 

• x , k, y ∈ F2λ . 

• Mi is a F2-linear transformations. 

• Fewer rounds =⇒ smaller witness. 
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Size-time Tradeof 

(a) MandaRain-3-128. (b) MandaRain-4-128. 
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Performance Comparison 

Scheme Runtime in ms 
Keygen Sign Verify sk 

Size in bytes 
pk Signature 

FAEST-128s 

FAEST-128f 

0.0006 4.381 4.102 
0.0005 0.404 0.395 

16 
16 

32 5006 
32 6336 

FAEST-EM-128s 

FAEST-EM-128f 

0.0005 4.151 4.415 
0.0005 0.446 0.474 

16 
16 

32 4566 
32 5696 

FAESTER-128s 

FAESTER-128f 

0.0006 3.282 4.467 
0.0005 0.433 0.610 

16 
16 

32 4594 
32 6052 

FAESTER-EM-128s 

FAESTER-EM-128f 

0.0005 3.005 4.386 
0.0005 0.422 0.609 

16 
16 

32 4170 
32 5444 

MandaRain-3-128s 

MandaRain-3-128f 

0.0018 2.800 5.895 
0.0018 0.346 0.807 

16 
16 

32 2890 
32 3588 

MandaRain-4-128s 

MandaRain-4-128f 

0.0026 2.876 6.298 
0.0026 0.371 0.817 

16 
16 

32 3052 
32 3876 

Signing time (ms), verifcation time (ms), and signature size (bytes). 
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KuMQuat 
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Witness: x ∈ Fn
q

Constraints:
yi =

X
jk

Aijk xjxk +
X
j

bij xj − yi ∀i ∈ [n]

• Witness size is minimal (assuming only quadratic constraints).

• Optimization: pack multiple Fq constraints together into a F2λ constraint.

Unstructured Multivariate-Quadratic 

Sample Ai ∈ Fn×n , bi ∈ Fn , and x ∈ Fn .q q q 

Public key: seeds for A and b, and y ∈ Fn whereq 

yi = x TAi x + bi 
T xj 
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MQ Parameters 

Instance Security Level Fq n 

MQ-21-L1 L1 F21 152 

MQ-28-L1 L1 F28 48 

MQ-21-L3 L3 F21 224 

MQ-28-L3 L3 F28 72 

MQ-21-L5 L5 F21 320 

MQ-28-L5 L5 F28 96 
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Size-time Tradeof 

(a) KuMQuat-21-L1. (b) KuMQuat-28-L1. 
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Performance Comparison 

Scheme Runtime in ms Size in bytes 
Keygen Sign Verify sk pk Signature 

FAEST-128s 0.0006 4.381 4.102 16 32 5006 
FAEST-128f 0.0005 0.404 0.395 16 32 6336 

FAEST-EM-128s 0.0005 4.151 4.415 16 32 4566 
FAEST-EM-128f 0.0005 0.446 0.474 16 32 5696 

FAESTER-128s 0.0006 3.282 4.467 16 32 4594 
FAESTER-128f 0.0005 0.433 0.610 16 32 6052 

FAESTER-EM-128s 0.0005 3.005 4.386 16 32 4170 
FAESTER-EM-128f 0.0005 0.422 0.609 16 32 5444 

MandaRain-3-128s 0.0018 2.800 5.895 16 32 2890 
MandaRain-3-128f 0.0018 0.346 0.807 16 32 3588 

MandaRain-4-128s 0.0026 2.876 6.298 16 32 3052 
MandaRain-4-128f 0.0026 0.371 0.817 16 32 3876 

KuMQuat-21-L1s 0.173 4.305 4.107 19 35 2555 
KuMQuat-21-L1f 0.172 0.539 0.736 19 35 3028 

KuMQuat-28-L1s 0.174 3.599 4.053 48 64 2890 
KuMQuat-28-L1f 0.172 0.400 0.623 48 64 3588 

Signing time (ms), verifcation time (ms), and signature size (bytes). 
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Performance Graph 

(a) Signing time - signature size trade-of. (b) Verifcation time - signature size trade-of. 
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Additional Graphs 

(a) L1 Signing. (b) L1 Verify. 
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