Post-Quantum Signatures from Threshold Computation in the Head

Matthieu Rivain

Joint work with Thibauld Feneuil

NIST 5th PQC Standardization Conference
Washington DC, 11 April, 2024
CRYPTOEXPERTS ${ }^{\text {吅 }}$
WE INNOVATE TO SECURE YOUR BUSINESS

Roadmap

- MPC-in-the-Head paradigm
- Threshold Computation in the Head
- Original framework (Asiacrypt 2023) https://ia.cr/2022/1407
- Improved framework (preprint) https://ia.cr/2023/1573

MPC-in-the-Head paradigm

One-way function
$F: x \mapsto y$
E.g. AES, MQ system, Syndrome decoding

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:
$g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of: $g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

Zero-knowledge proof

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:
$g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

Zero-knowledge proof

MPC-in-the-Head paradigm

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

MPC-in-the-Head transform
Zero-knowledge proof

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ℓ-private
- Semi-honest model
$\llbracket x \rrbracket$ is a linear secret sharing of x

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ℓ-private
- Semi-honest model
- Broadcast model
$\llbracket x \rrbracket$ is a linear secret sharing of x

MPCitH transform

Prover
Verifier

MPCitH transform

(1)

Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$

Prover
Verifier

MPCitH transform

Prover

MPCitH transform

(3) Choose a random set of parties $I \subseteq\{1, \ldots, N\}$, s.t. $|I|=\ell$.

Prover

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover

Verifier

MPCitH transform: with additive sharing

Prover
Verifier

MPCitH transform: with additive sharing

Generated using a GGM seed tree [KKW18]:

MPCitH transform: with additive sharing

MPCitH transform: with additive sharing

MPCitH transform: with additive sharing

Verifier

MPCitH transform: with additive sharing

(1) Generate and commit shares
$\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$
$\operatorname{Com}^{\rho_{N}}\left(\llbracket x \rrbracket_{N}\right)$

Only $\log _{2} N$ seeds to be revealed:

MPCitH transform: with threshold sharing

a.k.a. Threshold Computation in the Head (TCitH-1)

MPCitH transform: with threshold sharing

(1) Generate and commit shares

(4) Open parties in I

Prover

Verifier

MPCitH transform: with threshold sharing

MPCitH transform: with threshold sharing

MPCitH transform: with threshold sharing

MPCitH transform: with threshold sharing

```
(1) Generate and commit shares
\(\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)\)
```


Committed using a Merkle tree:

MPCitH transform: with threshold sharing

MPCitH transform: with threshold sharing

Only $\log _{2} N$ labels to be revealed:

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$
Prover runtime		
Verifier runtime		
Size of tree		

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p\left(\frac{N}{2}\right)$

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube [AGHHJY]	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$
Prover runtime	Party emulations(log $N+1)$ Symmetric crypto: OIN	Party emulations: 2 Symmetric crypto: O(N)
Verifier runtime		
Size of tree		

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$
Prover runtime	Party emulations(log $N+1)$ Symmetric crypto: OIN	Party emulation 2 Symmetric cn pto: O(N)
Verifier runtime		fewer party emulations
Size of tree		

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations: $\log N$ Symmetric crypto: $O(N)$	Party emulations: 1 Symmetric crypto: $O(\log N)$
Size of tree		

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations $\log N$ Symmetric crypto: O(IV)	Party emulation : 1 Symmetric chypto: $O(\log N)$
Size of tree		fewer party emulations

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$				
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$				
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$				
Verifier runtime	Party emulations: log N Symmetric crypto $O(N)$	Party emulations: 1 Symmetric crypto $O(\log N)$				
Size of tree		much less symmetric crypto				

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $O(N)$	Party emulations: 2 Symmetric crypto: $O(N)$
Verifier runtime	Party emulations: log N Symmetric crypto: $O(N)$	Party emulations: 1 Symmetric crypto: $O(\log N)$
Size of tree	128-bit security: $\sim 2 \mathrm{~KB}$ 256-bit security: $\sim 8 \mathrm{~KB}$	128-bit security: $\sim 4 \mathrm{~KB}$ 256-bit security: $\sim 16 \mathrm{~KB}$

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$
Prover runtime	Party emulations: $\log N+1$ Symmetric crypto: $\mathrm{O}(\mathrm{N})$	Party emulations: 2 Symmetric crypto: $\mathrm{O}(\mathrm{N})$
Verifier runtime	Party emulations: $\log N$ Symmetric crypto: $\mathrm{O}(\mathrm{N})$	Party emulations: 1 Symmetric crypto: $O(\log N)$
Size of tree		$\begin{array}{ll} \hline \text { 128-bit security } & \sim 4 \mathrm{~KB} \\ \text { 256-bit security } & \sim 16 \mathrm{~KB} \end{array}$

factor 2

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees +hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N}+p$	$\approx \frac{1}{N}+p \cdot\left(\frac{N}{2}\right)$

TCitH vs. (additive-sharing) MPCitH

TCitH with GGM trees

Step 1: Generate a
replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

TCitH with GGM trees

Step 1: Generate a
replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

TCitH with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2: Convert it into a Shamir's secret sharing [CDIO5]

$$
\text { Let } P(X)=\sum_{j} r_{j} P_{j}(X)
$$

with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$

TCitH with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2: Convert it into a Shamir's secret sharing [CDIO5]

Let $P(X)=\sum_{j} r_{j} P_{j}(X)$
with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\bigcirc \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a
valid Shamir's secret sharing of x

TCitH with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2: Convert it into a Shamir's secret sharing [CDIO5]

Let $P(X)=\sum_{j} r_{j} P_{j}(X)$
with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\bigcirc \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a
valid Shamir's secret sharing of x

Party i can compute
$\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
(since $\left.P_{i}\left(e_{i}\right)=0\right)$

TCitH with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

Step 2: Convert it into a Shamir's secret sharing [CDIO5]

$$
\text { Let } P(X)=\sum_{j} r_{j} P_{j}(X)
$$

with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\bigcirc \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir's secret sharing of x

Party i can compute

$$
\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)
$$

(since $\left.P_{i}\left(e_{i}\right)=0\right)$

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

:

ロロロロロロロロロロロロロロロ \rightarrow Party N

Step 2：Convert it into a Shamir＇s secret sharing［CDI05］

$$
\text { Let } P(X)=\sum_{j} r_{j} P_{j}(X)
$$

$$
\text { with } P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X
$$

$\vee \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir＇s secret sharing of x

Party i can compute

$$
\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)
$$

（since $\left.P_{i}\left(e_{i}\right)=0\right)$
＊Can be
adapted to $\ell>1$

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

\vdots
ロロロロロロロロロロロロロロロ \rightarrow Party N

Step 2：Convert it into a Shamir＇s secret sharing［CDI05］

Let $P(X)=\sum_{j} r_{j} P_{j}(X)$
with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\bigcirc \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir＇s secret sharing of x

Party i can compute
$\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
（since $\left.P_{i}\left(e_{i}\right)=0\right)$
＊Can be adapted to $\ell>1$
（ Size of GGM tree

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

 ：
ロロロロロロロロロロロロロロロ \rightarrow Party N

Step 2：Convert it into a
Shamir＇s secret sharing［CDI05］
Let $P(X)=\sum_{j} r_{j} P_{j}(X)$
with $P_{j}(X)=1-\left(1 / e_{j}\right) \cdot X$
$\bigcirc \llbracket x \rrbracket=\left(P\left(e_{1}\right), \ldots, P\left(e_{N}\right)\right)$ is a valid Shamir＇s secret sharing of x

Party i can compute $\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)$
（since $\left.P_{i}\left(e_{i}\right)=0\right)$
＊Can be adapted to $\ell>1$
（ Size of GGM tree
（3）Good soundness （only valid sharings）

TCitH with GGM trees

Step 1：Generate a replicated secret sharing［ISN89］

$$
x=r_{1}+r_{2}+\cdots+r_{N}
$$

 かっロロロロロロロロロロロロロロ \rightarrow Party 1 ロ\％ロロロロロロロロロロロロロロ \rightarrow Party 2 ロロロロロロロロロロロロロロロ 4 Party N

Party i can compute

$$
\llbracket x \rrbracket_{i}=\sum_{j \neq i} r_{j} P_{j}\left(e_{i}\right)
$$

$$
\left(\text { since } P_{i}\left(e_{i}\right)=0\right)
$$

＊Can be adapted to $\ell>1$
（ Size of GGM tree
（3）Good soundness （only valid sharings）
＠Loose fast verification

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

Ky Party emulations $=1+\left\lceil\frac{\log _{2} N}{\log _{2}|\mathbb{F}|}\right\rceil$

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	2	

$$
\mathcal{F} \text { Party emulations }=1+\left\lceil\frac{\log _{2} N}{\log _{2}|\mathbb{F}|}\right\rceil= \begin{cases}2 & \text { if }|\mathbb{F}| \geq N \\ 1+\log _{2} N & \text { if }|\mathbb{F}|=2\end{cases}
$$

Speedups for MPCitH candidates

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1+\log _{2} N$	$1+\left[\frac{\log _{2} N}{\log _{2}\|\mathbb{F}\|}\right]$	
AlMer	4.53	3.22	3.22	-0%
Biscuit	17.71	4.65	4.24	-16%
MIRA	384.26	20.11	9.89	-51%
MiRitH-la	54.15	6.60	5.42	-18%
MiRitH-lb	89.50	8.66	6.66	-23%
MOOM-31	96.41	11.27	8.74	-21%
MQOM-251	44.11	7.56	5.97	-21%
RYDE	12.41	4.65	4.65	-0%
SDitH-256	78.37	7.23	5.31	-27%
SDitH-251	19.15	7.53	6.44	-14%

- Comparison based on a generic MPCitH library ($\mathbf{(l i b m p c i t h) ~}$
- Code for MPC protocols fetched from the submission packages

Speedups for MPCitH candidates

- Comparison based on a generic MPCitH library ($\boldsymbol{(l i b m p c i t h) ~}$
- Code for MPC protocols fetched from the submission packages

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)=0$
- parties locally compute

$$
\llbracket \alpha \rrbracket=\llbracket v \rrbracket+\sum_{j=1}^{m} \gamma_{j} \cdot f_{j}(\llbracket w \rrbracket)
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)$
- parties locally compute

$$
\left.\llbracket \alpha \rrbracket=\llbracket v \rrbracket+\sum_{j=1}^{m} \gamma_{j}\right) f_{j}(\llbracket w \rrbracket)
$$

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)$
- parties locally compute

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)$
- parties locally compute
check $\alpha=0$
false positive proba $1 /|\mathbb{F}|$

randomness from the verifier

Using multiplication homomorphism

- Shamir's secret sharing satisfies:

$$
\llbracket x \rrbracket^{(d)} \cdot \llbracket y \rrbracket^{(d)}=\llbracket x \cdot y \rrbracket^{(2 d)}
$$

- Simple protocol to verify polynomial constraints
- w valid $\Leftrightarrow f_{1}(w)=0, \ldots, f_{m}(w)$
- parties locally compute

$$
\llbracket \alpha \rrbracket=\llbracket v \rrbracket+\sum_{j=1}^{m} \gamma_{j} \cdot f_{j}(\llbracket w \rrbracket)
$$

- Tweaking MPCitH-based candidates \Rightarrow smaller signatures

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	4048 B	-15%
MIRA	5640 B	5340 B	-5%
MiRitH-la	5665 B	4694 B	-17%
MiRitH-Ib	6298 B	5245 B	-17%
MQOM-31	6328 B	4027 B	-37%
MQOM-251	6575 B	4257 B	-35%
RYDE	5956 B	5281 B	-11%
SDitH	8241 B	7335 B	-27%

MQ over GF(4)	8609 B	3858 B	-55%
SD over GF(2)	11160 B	7354 B	-34%
SD over GF(2)	12066 B	6974 B	-42%

$$
\star N=256
$$

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	3431 B	
MIRA	5640 B	4314 B	
MiRitH-la	5665 B	3873 B	
MiRitH-Ib	6298 B	4250 B	
MQOM-31	6328 B	3567 B	
MQOM-251	6575 B	3418 B	
RYDE	5956 B	4274 B	
SDitH	8241 B	5673 B	

MQ over GF(4)	8609 B	3301 B	
SD over GF(2)	11160 B	7354 B	-34%
SD over GF(2)	12066 B	6974 B	-42%

$$
\star N=256 \quad * N=2048
$$

Shorter signatures for MPCitH-based candidates

Two very recent works:

- Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. https://ia.cr/2024/490
- General techniques to reduce the size of GGM trees
- Apply to TCitH-GGM (gain of ~ 500 B at 128-bit security)
- Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541
- New MPC protocols for TCitH / VOLEitH signatures based on MinRank \& Rank SD

Other results

- Improvements for TCitH-MT
- Degree-enforcing commitment scheme
- Packed secret sharing
- Other applications
- Post-quantum ring signatures
- For any one-way function
- $|\sigma| \leq 10 \mathrm{kB}\left(\sim 5 \mathrm{kB}\right.$ with MQ) for \mid ring $\mid=2^{20}$
- ZKP for lattices
- Smallest with MPCitH paradigm
- Competitive to lattice-based ZKP
- Improvement of Ligero for general arithmetic circuits
- Connections to VOLEitH and Ligero proof systems

Thank you for listening d

Original TCitH framework
(Asiacrypt'23)

Improved TCitH framework
(preprint)

References

[AGHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (EUROCRYPT 2023)
[BBMORRRS24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl: "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures" https://ia.cr/2024/490
[BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. "Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank" https://ia.cr/2024/541
[CDIO5] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)
[FR22] Thibauld Feneuil, Matthieu Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" https://ia.cr/2022/1407 (ASIACRYPT 2023)
[FR23] Thibauld Feneuil, Matthieu Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" https://ia.cr/ 2023/1573
[ISN89] Ito, Saito, Nishizeki: "Secret sharing scheme realizing general access structure" (Electronics and Communications in Japan 1989)
[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

Connections to other proof systems

$N=256$	TCitH-GGM		VOLEitH	
	Size	Comput. Field	Size	Computat. Field
AIMer [$\left.\mathrm{CCH}^{+} 23\right]$	4352 B	$19 \times G F\left(2^{8}\right)$	3938 B	$G F\left(2^{128}\right)$
Biscuit [BKPV23]	4048 B	$19 \times G F\left(16^{2}\right)$	3682 B	$G F\left(16^{2 \times 16}\right)$
MIRA $\mathrm{ABB}^{+} 23 \mathrm{~d}$	5340 B	$19 \times G F\left(16^{2}\right)$	4770 B	$G F\left(16^{2 \times 16}\right)$
MiRitH-Ia $\left.\mathrm{ABB}^{+} 23 \mathrm{~b}\right]$	4694 B	$19 \times G F\left(16^{2}\right)$	4226 B	$G F\left(16^{2 \times 16}\right)$
MiRitH-Ib $\mathrm{ABB}^{+} 23 \mathrm{~b}$]	5245 B	$19 \times G F\left(16^{2}\right)$	4690 B	$G F\left(16^{2 \times 16}\right)$
MQOM (over \mathbb{F}_{251}) [FR23a]	4257 B	$19 \times G F(251)$	3858 B	$G F\left(251^{16}\right)$
MQOM (over \mathbb{F}_{31}) [FR23a]	4027 B	$19 \times G F\left(31^{2}\right)$	3660 B	$G F\left(31^{2 \times 16}\right)$
RYDE $\left.\mathrm{ABB}^{+} 23 \mathrm{c}\right]$	5281 B	$\begin{array}{\|c} \hline 19 \times G F\left(2^{8}\right) \\ \hline 19 \times G F\left(2^{31}\right) \\ \hline \end{array}$	4720 B	$G F\left(2^{128}\right)$
SDitH (over \mathbb{F}_{251}) $\mathrm{AFG}^{+} 23$	7335 B	$19 \times G F(251)$	6450 B	$G F\left(251^{16}\right)$
SDitH (over \mathbb{F}_{256}) $\left.\mathrm{AFG}^{+} 23\right]$	7335 B	$19 \times G F(256)$	6450 B	$G F\left(256^{16}\right)$

$N=2048$		TCitH-GGM		VOLEitH	
AIMer $\left[\mathrm{CCH}^{+} 23\right]$					

