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Outline: divergence between Kyber and Dilithium 

Kyber/ML-KEM Dilithium/ML-DSA 

 

 

  

  

 

 
 

 
 

     

Lattice Based ✓ 

NTT ✓ 

NTT-friendly primes ✓ 

12 bits 23 bits 

Incomplete NTT Complete NTT 

Pairwise-pointwise Mul Pointwise Mul 

SHAKE ✓ 

Binomial Sampling, 
Rejection Sampling 

Uniform Sampling, 
Rejection Sampling 
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Implementation 
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Number-Theoretic Transform 

Forward: Cooley-Tukey (CT) Inverse: Gentleman-Sande (GS) 
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The Cost of Arithmetic Diversity 

From to 

Designing an architecture Designing an architecture for 
for 32-bit modulus 12-bit and 23-bit moduli 

• Critical path 
• Area cost 
• Verification cost 
• Development cost 
• Design complexity 
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Reconfigurable Butterflies: State of the art [1] 
• KaLi [1]: 
• 1x 23-bit Butterfly for Dilithium • 2x 12-bit butterflies for Kyber 
• 2x 23-bit Butterfly for Dilithium • 1x Pairwise-Pointwise (Karatsuba) mult 

[1] Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, Sujoy Sinha Roy: KaLi: A Crystal for Post-Quantum Security Using Kyber and Dilithium. IEEE Trans. Circuits Syst. I Regul. Pap. 70(2): 747-758 (2023) 
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https://dblp.org/pid/183/5038.html
https://dblp.org/pid/184/5302.html
https://dblp.org/pid/31/10069.html
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More efficient Butterfly Unit 

• 2N-bit wide CT/GS butterfly operation 
• 2N-bit wide multiplication, addition, subtraction, multiply-accumulate, … 
• 4X N-bit wide CT/GS butterfly operations in parallel 
• 4X N-bit wide multiplication, addition, subtraction, multiply-accumulate, … 
• N-bit wide 2X2 Karatsuba polynomial multiplication 

• Optimized for ASIC 
• More efficient use of HW area 
• More efficient use of Memory BW 
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NTT: Tricky Memory Pattern 

Memory re-ordering [2] Multiple Banks [3] 

[2] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, Mehran Mozaffari Kermani: High-Speed NTT-based Polynomial Multiplication Accelerator for Post-Quantum Cryptography. ARITH 2021: 94-101 
[3] Ferhat Yaman, Ahmet Can Mert, Erdinç Öztürk, Erkay Savas: A Hardware Accelerator for Polynomial Multiplication Operation of CRYSTALS-KYBER PQC Scheme. DATE 2021: 1020-1025 
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https://dblp.org/pid/14/7448.html
https://dblp.org/pid/85/5526.html
https://dblp.org/db/conf/arith/arith2021.html
https://dblp.org/pid/183/5038.html
https://dblp.org/pid/24/4753.html
https://dblp.org/pid/99/238.html
https://dblp.org/db/conf/date/date2021.html


 
  

 
 

  

       

        
         

         

NTT State-of-the-art [2] 
4 Kyber butterflies 
working sequentially to 
perform 2 NTT layers 
on 4 coefficients 

• Requires specific memory layout in each round 
• Requires re-ordering of coefficients 

• Kyber last NTT layer uses only ½ of HW 

[2] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, Mehran Mozaffari Kermani: High-Speed NTT-based Polynomial Multiplication Accelerator for Post-Quantum Cryptography. ARITH 2021: 94-101 
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https://dblp.org/pid/14/7448.html
https://dblp.org/pid/85/5526.html
https://dblp.org/db/conf/arith/arith2021.html


More Efficient NTT Datapath 

A 4N-bit wide datapath that can compute 
•1, 2 or 3 NTT layers 
•On 16 Kyber coefficients (4 x 4N-bit) 

/1R1W Shift Register 
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Read B 
(aL/2+3,aL/2+2,aL/2+1,aL/2) 

Read C 
(aL/4+3,aL/4+2,aL/4+1,aL/4) 

Read D 
(a3L/4+3,a3L/4+2,a3L/4+1,a3L/4) 

… 

(A’,B’)•BFLY(A,B) 

(C’,D’)•BFLY(C,D) 

5 (A”,C”)•BFLY(A’,C’) 

6 (B”,D”)•BFLY(B’,D’) Write A” 

7 … Write B” 

8 Write C” 

9 Write D” 
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More Efficient NTT Datapath 
• Fully utilizes memory bandwidth 

A 4N-bit wide datapath that can compute • Each word is only read/written once per NTT layer 
•1, 2 or 3 NTT layers 
•On 16 Kyber coefficients (4 x 4N-bit) 

•No special memory layout required 
• 4N-bit words contain sequential coefficients 

ex: (a3,a2,a1,a0) 

4N 
• Efficiently deals with odd # NTT layers Kyber 

• Use a fused round of 3 NTT layers 
• Improves performance by 12.5% 
• Reduces memory reads/writes 

1R1W Shift Register / / 
4N 
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  What we liked 
• Everything Kyber & Dilithium have in common (LWE, NTT, SHAKE, …) 

•NTT-friendly primes • efficient Montgomery (and Barrett) reduction 

• No need to store Matrix A • stream SHAKE outputs into arithmetic 
• This is important for memory usage 
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       What we didn’t like are less excited about 
•Arithmetic Diversity 
• Different sizes of moduli 
• Incomplete vs complete NTT 
• Pairwise-pointwise vs pointwise Mul 

• Lots of variations of Sampling 
• FO-transform provides large side-channel attack surface 
• Frequent XOF calls is problematic for module separation / system level integration 
• Probabilistic runtimes make it difficult to test for timing leaks 

• Also difficult to handle in fixed-vs-random TVLA testing 

• Floating-point arithmetic (FALCON) 

17 



 Standardization Process 



            
        

       

         

     A view on standardization efforts so far 
• The open structure of the standardization effort is excellent to build trust 

• The selected algorithms have been thoroughly studied and earned their trust 
• SIKE was broken before it was selected – the process worked as desired 
• We still recommend deploying in a hybrid with ECC 

•ML-KEM and ML-DSA make a good default choice, even in HW 

• SLH-DSA works well with ML-KEM / ML-DSA in HW (hash core reuse) 
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A view on standardization efforts so far 
•Number of candidates put strain on academic HW research 
• Still no masking countermeasure for Falcon / floating point 

• Breaking news! [3] 

• Research on fault attacks still in early stage 

• Last minute changes are bad for adoption 

• Test vector are needed earlier, certification for first products now 
Adoption timelines are outside NIST’s purview but support from NIST is needed 

[3] Keng-Yu Chen, Jiun-Peng Chen: Masking Floating-Point Number Multiplication and Addition of Falcon: First- and Higher-order Implementations and Evaluations. IACR 
Transactions on Cryptographic Hardware and Embedded Systems, 2024(2), 276–303. https://doi.org/10.46586/tches.v2024.i2.276-303 
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     Recommendations for the Remaining PQC efforts 
Security must always come first but once that’s done, we suggest to: 

1. Try to limit arithmetic diversity 
• HW customers want support for all algorithms -- better optimize area for all algorithms together 

than optimizing individual algorithms 
• Example: if possible, reuse ML-DSA / ML-KEM moduli even if it costs a little performance 

2. Limit memory complexity to that of ML-DSA / ML-KEM 

3. Avoid constructions like FO-transform that increase side-channel / FI attack surface 
• Of course, this is not always practical 
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   Recommendations for Future Standardizations 
Request [KEM, Signature] pairs where possible (e.g., lattices) 
• Facilitates component reuse 
• Reduces area overhead 
• Reduces development & verification overhead 

Look to combine single submissions into pairs after, e.g., 2nd round, based on arithmetic 
commonalities 

Similar for other types of standardizations where multiple primitives are considered 
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Thank you 




