

PQC Standardization
A Vendor’s Perspective

Mike Hamburg

10 April 2024

Recap

Standardization Process Portfolio Implementation

2

Outline

Standardization Process Portfolio Implementation

3

Outline: divergence between Kyber and Dilithium

Kyber/ML-KEM Dilithium/ML-DSA

Lattice Based ✓

NTT ✓

NTT-friendly primes ✓

12 bits 23 bits

Incomplete NTT Complete NTT

Pairwise-pointwise Mul Pointwise Mul

SHAKE ✓

Binomial Sampling,
Rejection Sampling

Uniform Sampling,
Rejection Sampling

4

Implementation

CPUCPUCPU

Rambus Quantum-Safe Engine
RAM NVM

System Bus (AHB)

Host CPU

Host App

AHB
Subordinate I/F

SHA-3

IR
Q

Host Interface

Po
ly

/V
ec

to
r

Sa
m

pl
er

H

as
h

RISC-V CPU
w/ QSE FW

Prog. Memory

Data RAM

Compute

QSE-IP-86

SHAKE

Uniform

Rejection

Binomial

NTT, NTT-1

Pairwise

Vector Ops

Scratchpad

6

Number-Theoretic Transform

Forward: Cooley-Tukey (CT) Inverse: Gentleman-Sande (GS)

7

The Cost of Arithmetic Diversity

From to

Designing an architecture Designing an architecture for
for 32-bit modulus 12-bit and 23-bit moduli

• Critical path
• Area cost
• Verification cost
• Development cost
• Design complexity

8

Reconfigurable Butterflies: State of the art [1]
• KaLi [1]:
• 1x 23-bit Butterfly for Dilithium • 2x 12-bit butterflies for Kyber
• 2x 23-bit Butterfly for Dilithium • 1x Pairwise-Pointwise (Karatsuba) mult

[1] Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, Sujoy Sinha Roy: KaLi: A Crystal for Post-Quantum Security Using Kyber and Dilithium. IEEE Trans. Circuits Syst. I Regul. Pap. 70(2): 747-758 (2023)

9

https://dblp.org/pid/183/5038.html
https://dblp.org/pid/184/5302.html
https://dblp.org/pid/31/10069.html
https://dblp.org/pid/31/9547.html
https://dblp.org/db/journals/tcasI/tcasI70.html

More efficient Butterfly Unit

• 2N-bit wide CT/GS butterfly operation
• 2N-bit wide multiplication, addition, subtraction, multiply-accumulate, …
• 4X N-bit wide CT/GS butterfly operations in parallel
• 4X N-bit wide multiplication, addition, subtraction, multiply-accumulate, …
• N-bit wide 2X2 Karatsuba polynomial multiplication

• Optimized for ASIC
• More efficient use of HW area
• More efficient use of Memory BW

10

NTT: Tricky Memory Pattern

Memory re-ordering [2] Multiple Banks [3]

[2] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, Mehran Mozaffari Kermani: High-Speed NTT-based Polynomial Multiplication Accelerator for Post-Quantum Cryptography. ARITH 2021: 94-101
[3] Ferhat Yaman, Ahmet Can Mert, Erdinç Öztürk, Erkay Savas: A Hardware Accelerator for Polynomial Multiplication Operation of CRYSTALS-KYBER PQC Scheme. DATE 2021: 1020-1025

11

https://dblp.org/pid/14/7448.html
https://dblp.org/pid/85/5526.html
https://dblp.org/db/conf/arith/arith2021.html
https://dblp.org/pid/183/5038.html
https://dblp.org/pid/24/4753.html
https://dblp.org/pid/99/238.html
https://dblp.org/db/conf/date/date2021.html

NTT State-of-the-art [2]
4 Kyber butterflies
working sequentially to
perform 2 NTT layers
on 4 coefficients

• Requires specific memory layout in each round
• Requires re-ordering of coefficients

• Kyber last NTT layer uses only ½ of HW

[2] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, Mehran Mozaffari Kermani: High-Speed NTT-based Polynomial Multiplication Accelerator for Post-Quantum Cryptography. ARITH 2021: 94-101

12

https://dblp.org/pid/14/7448.html
https://dblp.org/pid/85/5526.html
https://dblp.org/db/conf/arith/arith2021.html

More Efficient NTT Datapath

A 4N-bit wide datapath that can compute
•1, 2 or 3 NTT layers
•On 16 Kyber coefficients (4 x 4N-bit)

/1R1W Shift Register

4N
/

4N

0 Read A
(a3,a2,a1,a0)

1

2

3

4

Read B
(aL/2+3,aL/2+2,aL/2+1,aL/2)

Read C
(aL/4+3,aL/4+2,aL/4+1,aL/4)

Read D
(a3L/4+3,a3L/4+2,a3L/4+1,a3L/4)

…

(A’,B’)•BFLY(A,B)

(C’,D’)•BFLY(C,D)

5 (A”,C”)•BFLY(A’,C’)

6 (B”,D”)•BFLY(B’,D’) Write A”

7 … Write B”

8 Write C”

9 Write D”

13

More Efficient NTT Datapath
• Fully utilizes memory bandwidth

A 4N-bit wide datapath that can compute • Each word is only read/written once per NTT layer
•1, 2 or 3 NTT layers
•On 16 Kyber coefficients (4 x 4N-bit)

•No special memory layout required
• 4N-bit words contain sequential coefficients

ex: (a3,a2,a1,a0)

4N
• Efficiently deals with odd # NTT layers Kyber

• Use a fused round of 3 NTT layers
• Improves performance by 12.5%
• Reduces memory reads/writes

1R1W Shift Register / /
4N

14

Portfolio

 What we liked
• Everything Kyber & Dilithium have in common (LWE, NTT, SHAKE, …)

•NTT-friendly primes • efficient Montgomery (and Barrett) reduction

• No need to store Matrix A • stream SHAKE outputs into arithmetic
• This is important for memory usage

16

 What we didn’t like are less excited about
•Arithmetic Diversity
• Different sizes of moduli
• Incomplete vs complete NTT
• Pairwise-pointwise vs pointwise Mul

• Lots of variations of Sampling
• FO-transform provides large side-channel attack surface
• Frequent XOF calls is problematic for module separation / system level integration
• Probabilistic runtimes make it difficult to test for timing leaks

• Also difficult to handle in fixed-vs-random TVLA testing

• Floating-point arithmetic (FALCON)

17

 Standardization Process

 A view on standardization efforts so far
• The open structure of the standardization effort is excellent to build trust

• The selected algorithms have been thoroughly studied and earned their trust
• SIKE was broken before it was selected – the process worked as desired
• We still recommend deploying in a hybrid with ECC

•ML-KEM and ML-DSA make a good default choice, even in HW

• SLH-DSA works well with ML-KEM / ML-DSA in HW (hash core reuse)

19

A view on standardization efforts so far
•Number of candidates put strain on academic HW research
• Still no masking countermeasure for Falcon / floating point

• Breaking news! [3]

• Research on fault attacks still in early stage

• Last minute changes are bad for adoption

• Test vector are needed earlier, certification for first products now
Adoption timelines are outside NIST’s purview but support from NIST is needed

[3] Keng-Yu Chen, Jiun-Peng Chen: Masking Floating-Point Number Multiplication and Addition of Falcon: First- and Higher-order Implementations and Evaluations. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2024(2), 276–303. https://doi.org/10.46586/tches.v2024.i2.276-303

20

https://doi.org/10.46586/tches.v2024.i2.276-303

 Recommendations for the Remaining PQC efforts
Security must always come first but once that’s done, we suggest to:

1. Try to limit arithmetic diversity
• HW customers want support for all algorithms -- better optimize area for all algorithms together

than optimizing individual algorithms
• Example: if possible, reuse ML-DSA / ML-KEM moduli even if it costs a little performance

2. Limit memory complexity to that of ML-DSA / ML-KEM

3. Avoid constructions like FO-transform that increase side-channel / FI attack surface
• Of course, this is not always practical

21

 Recommendations for Future Standardizations
Request [KEM, Signature] pairs where possible (e.g., lattices)
• Facilitates component reuse
• Reduces area overhead
• Reduces development & verification overhead

Look to combine single submissions into pairs after, e.g., 2nd round, based on arithmetic
commonalities

Similar for other types of standardizations where multiple primitives are considered

22

Thank you

