~ L

pam4: Benchmarking NIST Additional /
Post-Quantum Signature Schemes * ' /.~
on Microcontrollers it lj

Matthias). Kannwischer, Markus Krausz, Richard Petri, and Shang-VYi Yang
matthias@chelpis.com

12 April 2024, Fifth PQC Standardlzat|on Conference Rock;ﬂl‘le.f\/\aryland USA I

mailto:matthias@chelpis.com

Embedded PQC

- Cryptography needs to perform well on a large range of platforms

12 April 2024 Chelpis (19 EERH

Embedded PQC

- Cryptography needs to perform well on a large range of platforms
- NIST Additional Signatures: Small signatures, fast verification

- Fast verification particularly important for smaller platforms
- No performance concerns for Dilithium on large CPUs

12 April 2024 Matthias J. chelpis CEE L

Embedded PQC

- Cryptography needs to perform well on a large range of platforms
- NIST Additional Signatures: Small signatures, fast verification

- Fast verification particularly important for smaller platforms
- No performance concerns for Dilithium on large CPUs

- NIST: Arm Cortex-Mé4 as the primary microcontroller optimization target

- Powerful instruction set = UMAAL and many more multiplication instructions
- Cheap and widely available = $20 dev board unless there is a pandemic
- Huge = cores with 640 KB SRAM available; fits many of the PQC schemes

12 April 2024 Matthias J. Kannwische chelpis EE4 116

Embedded PQC

- Cryptography needs to perform well on a large range of platforms
- NIST Additional Signatures: Small signatures, fast verification
- Fast verification particularly important for smaller platforms
- No performance concerns for Dilithium on large CPUs
- NIST: Arm Cortex-Mé4 as the primary microcontroller optimization target
- Powerful instruction set = UMAAL and many more multiplication instructions
- Cheap and widely available = $20 dev board unless there is a pandemic
- Huge = cores with 640 KB SRAM available; fits many of the PQC schemes
- Fun to optimize for; great for teaching due to simple pipeline

12 April 2024 Matthias J. Kannwischer chelpis EE4 116

Embedded PQC

- Cryptography needs to perform well on a large range of platforms
- NIST Additional Signatures: Small signatures, fast verification

- Fast verification particularly important for smaller platforms
- No performance concerns for Dilithium on large CPUs

- NIST: Arm Cortex-Mé4 as the primary microcontroller optimization target

- Powerful instruction set = UMAAL and many more multiplication instructions
- Cheap and widely available = $20 dev board unless there is a pandemic
- Huge = cores with 640 KB SRAM available; fits many of the PQC schemes
- Fun to optimize for; great for teaching due to simple pipeline
- This talk: Initial benchmarking of NIST Additional Signature Schemes
- Disclaimer: Many schemes have not been optimized for the Cortex-M4 yet

12 April 2024 Matthias J. Kannwischer chelpis EE4 116

My expectations and (sad) reality

Ideal World Real World

- NISTPQC: Cryptographers learned that good
reference code is important

12 April 2024 Matthias) chelpis (9 BV

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World Real World
- NISTPQC: Cryptographers learned that good
reference code is important

- Project like PQClean raised quality bar
= Increase awareness for useful SW-dev tools
— Test automation many platforms
— -Wall -Wextra -Wpedantic -Werror

12 April 2024 Matthias J. Kannwis chelpis EES 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World Real World

- NISTPQC: Cryptographers learned that good
reference code is important

- Project like PQClean raised quality bar
= Increase awareness for useful SW-dev tools
— Test automation many platforms
— -Wall -Wextra -Wpedantic -Werror

- We wrote a paper with lessons learned
— https://eprint.iacr.org/2022/337
— Includes list of recommendations for NIST

12 April 2024 Matthias J. Kannwischer chelpis EE4 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World Real World

- NISTPQC: Cryptographers learned that good - NIST: No changes to SW requirements
reference code is important
- Project like PQClean raised quality bar
= Increase awareness for useful SW-dev tools
— Test automation many platforms
— -Wall -Wextra -Wpedantic -Werror

- We wrote a paper with lessons learned
— https://eprint.iacr.org/2022/337
— Includes list of recommendations for NIST

- Expectation:
My life is going to be much easier than 2018

12 April 2024 Matthias J. Kannwischer chelpis EES 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World Real World
- NISTPQC: Cryptographers learned that good - NIST: No changes to SW requirements
reference code is important - Many compiler warnings;
- Project like PQClean raised quality bar not passing sanitizers
= Increase awareness for useful SW-dev tools = Revealing quite a few bugs

— Test automation many platforms
— -Wall -Wextra -Wpedantic -Werror

- We wrote a paper with lessons learned
— https://eprint.iacr.org/2022/337
— Includes list of recommendations for NIST

- Expectation:
My life is going to be much easier than 2018

12 April 2024 Matthias J. Kannwischer chelpis EES 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World Real World
- NISTPQC: Cryptographers learned that good - NIST: No changes to SW requirements
reference code is important - Many compiler warnings;
- Project like PQClean raised quality bar not passing sanitizers
= Increase awareness for useful SW-dev tools = Revealing quite a few bugs
= Test automation many platforms - Some use of static memory
= ~Wall -Wextra —Wpedantic -Werror Some cheating: Large pre-computation

- We wrote a paper with lessons learned
— https://eprint.iacr.org/2022/337
— Includes list of recommendations for NIST

- Expectation:
My life is going to be much easier than 2018

12 April 2024 Matthias J. Kannwischer chelpis EES 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World Real World

- NISTPQC: Cryptographers learned that good - NIST: No changes to SW requirements
reference code is important - Many compiler warnings;

- Project like PQClean raised quality bar not passing sanitizers
= Increase awareness for useful SW-dev tools = Revealing quite a few bugs
= Test automation many platforms - Some use of static memory
= -Wall -Wextra -Wpedantic -Werror Some cheating: Large pre-computation

- We wrote a paper with lessons learned - 20 out of 40 submissions use dynamic
— https://eprint.iacr.org/2022/337 memory allocations
= Includes list of recommendations for NIST — Often without real need

- Expectation:
My life is going to be much easier than 2018

12 April 2024 Matthias J. Kannwischer chelpis EES 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

12 April 2024 Matthias J. Kannwischer

My expectations and (sad) reality

Ideal World

- NISTPQC: Cryptographers learned that good
reference code is important

- Project like PQClean raised quality bar

— Increase awareness for useful SW-dev tools
— Test automation many platforms

— -Wall -Wextra -Wpedantic -Werror

- We wrote a paper with lessons learned
— https://eprint.iacr.org/2022/337
— Includes list of recommendations for NIST

- Expectation:
My life is going to be much easier than 2018

Real World
- NIST: No changes to SW requirements
- Many compiler warnings;

not passing sanitizers
= Revealing quite a few bugs

- Some use of static memory

Some cheating: Large pre-computation

- 20 out of 40 submissions use dynamic

memory allocations
— Often without real need

- Reality:

No improvement over NIST PQC |

Chelpis (513 YT

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

pgmé: Platform and framework changes

- You may have seen a pgm4 talk before; here are some recent changes

12 April 2024 Matthias chelpis CES OV

https://eprint.iacr.org/2023/773
https://github.com/mupq/pqm4/pull/254

pgmé: Platform and framework changes

- You may have seen a pqm4 talk before; here are some recent changes
- Switched default platform to STM32L4R5ZI

- 640 KB of RAM, 2 MB of flash

- Instruction timing same as STM32F407; except for small differences for memory loads

- Other supported platforms: STM32F407, STM32L476RG, STM32F303RCT7 (ChipWhisperer F3),
MPS2-AN386 (qemu)

12 April 2024 Matthias J. Kannwisch chelpis EE4 3/16

https://eprint.iacr.org/2023/773
https://github.com/mupq/pqm4/pull/254

pgmé4: Platform and framework changes

- You may have seen a pqm4 talk before; here are some recent changes
- Switched default platform to STM32L4R5ZI

- 640 KB of RAM, 2 MB of flash
- Instruction timing same as STM32F407; except for small differences for memory loads
- Other supported platforms: STM32F407, STM32L476RG, STM32F303RCT7 (ChipWhisperer F3),

MPS2-AN386 (qemu)
- 20% faster Keccak
- Described in An update on Keccak performance on ARMv7-M by Adomnicai

https://eprint.iacr.org/2023/773
+ https://github.com/mupq/pgmé/pull/254

12 April 2024 Matthias J. Kannwischer chelpis EE4 3/16

https://eprint.iacr.org/2023/773
https://github.com/mupq/pqm4/pull/254

Exclusion criteria

- Vulnerable: Brokenness of the scheme

12 April 2024 Chelpis m 4/16

Exclusion criteria

- Vulnerable: Brokenness of the scheme
- PK too big: Public key + private key + signature need to fit in 640 KB of RAM
- Too much memory: Keys + memory consumption needs to fit in 640 KB of RAM

12 April 2024 Matthias J. chelpis CEE BV

Exclusion criteria

- Vulnerable: Brokenness of the scheme
- PK too big: Public key + private key + signature need to fit in 640 KB of RAM
- Too much memory: Keys + memory consumption needs to fit in 640 KB of RAM

- External library: Cannot have any external dependency (e.g., gmp, flint)
— we do replace Keccak, SHA-2, AES with optimized code

- Not portable: Code that is not supported for 32-bit platforms (e.g, __int128)

12 April 2024 Matthias J. Kannwisch chelpis EE4 4/16

Exclusion criteria

- Vulnerable: Brokenness of the scheme
- PK too big: Public key + private key + signature need to fit in 640 KB of RAM
- Too much memory: Keys + memory consumption needs to fit in 640 KB of RAM

- External library: Cannot have any external dependency (e.g., gmp, flint)
— we do replace Keccak, SHA-2, AES with optimized code

- Not portable: Code that is not supported for 32-bit platforms (e.g, __int128)

- Dynamic Memory allocations: Dynamic memory allocations are undesirable
= we try to fix it if it is straightforward

12 April 2024 Matthias J. Kannwischer chelpis EE4 4/16

Scheme inclusion

Code

CROSS

Enhanced pgsigRM
Fuleeca

LESS

MEDS

Wave

Lattice

EagleSign

EHTV3 and EHTv4
HAETAE

HAWK

HuFu

Raccoon
SQUIRRELS

MPCitH
Biscuit
MIRA
MiRitH
MQOM
PERK
RYDE
SDitH

mMQ
3WISE
DME-Sign
HPPC
MAYO
PROV
QR-UOV
SNOVA
TUOV
uov
VOX

Other
AlMer

ALTEQ
Ascon-Sign
eMLE-Sig 2.0
FAEST
KAZ-SIGN
Preon
SPHINCS-alpha
SQlsign
Xifrat1-Sign.|

12 April 2024 Matthias J. Kannwisc Chelpis m 5/16

Scheme inclusion

Code Lattice MPCitH mMQ Other
CROSS FogleSien Biscuit 3WISE AlMer
Enhanced pgsigRM EHFv3-andEHTv4 MIRA PME-Sign ALTEQ
Futeeea HAETAE MiRitH HPPC Ascon-Sign
LESS HAWK MQOM MAYO eMIE-Sig 26
MEDS HuFu PERK PROV FAEST
Wave Raccoon RYDE QR-UOV KAZ-SHGN
SQUIRRELS SDitH SNOVA Preon
TUQV SPHINCS-alpha
uov SQlsign

Vulnerable (9)

12 April 2024 Matthias J. Kannwis chelpis EES 5/16

Scheme inclusion

Code Lattice

CROSS FasteSien

Erhanced-pgsieRM EHRv3-and-EHTv4

Futeeea HAETAE

LESS HAWK

MEDS Hut

Wave Raccoon
SOQUHRRELS

Vulnerable (9) PK too big (4)

MPCitH
Biscuit
MIRA
MIRitH
MQOM
PERK
RYDE
SDitH

MQ

HPPC
MAYO
PROV
QR-UOV
SNOVA
TUOV
uov

Other

AlMer

ALTEQ
Ascon-Sign
eMEE-Sig 2.0
FAEST
KAZ-SHGN
Preon
SPHINCS-alpha
SQlsign

12 April 2024 Matthias J. Kann =EIEIE QSMCll 516

Scheme inclusion

Code Lattice

CROSS FasteSien

ErhanecedpgstieRM EHRS-and-EHFv

Futeeea HAETAE

HESS HAWK

MEDS Hut

Wave Raccoon
SOQUHRRELS

Vulnerable (9) PK too big (4) Too much memory (7)

MPCitH
Biscuit
MIRA
MIRitH
MQOM
PERK
RYDE
SbitH

MQ

HPPC
MAYO

SNOVA

uov

Other

AlMer

ALFES
Ascon-Sign
eMEE-Sig 2.0
FAEST
KAZ-SIGN
Preohr
SPHINCS-alpha
SQlsign

12 April 2024 Matthias J. Kann chelpis EES 5/16

Scheme inclusion

Code Lattice MPCitH
CROSS EagteSien Biscuit
ErhanecedpgsieRM EHRSandEHRv MIRA
Futeeea HAETAE MIRitH
HESS HAWK MQOM
MEDS HuFt PERK
Wave Raceoon RYDE
SOQUHRRELS SBitH

Other

AlMer

ALFES
Ascon-Sign
eMEE-Sig 2.0
FAEST
KAZ-SIGN
Preohr
SPHINCS-alpha

SQistgn
;E. aE S.g .

Vulnerable (9) PK too big (4) Too much memory (7) External library / Not portable (3)

12 April 2024 Matthias J. Kann chelpis EE4 5/16

Dynamic memory allocations

- Dynamic memory allocations should be avoided in embedded implementations
— expensive, often not well supported

12 April 2024 Matthias) chelpis (9 B

Dynamic memory allocations

- Dynamic memory allocations should be avoided in embedded implementations
— expensive, often not well supported
- Schemes that actually need them (usually > 4 MB memory), not suitable anyway

- pqm4: No dynamic memory allocations allowed

12 April 2024 Matthias J. Kann chelpis EES 6/16

Dynamic memory allocations

- Dynamic memory allocations should be avoided in embedded implementations
— expensive, often not well supported
- Schemes that actually need them (usually > 4 MB memory), not suitable anyway

- pqm4: No dynamic memory allocations allowed

- Schemes with dynamic memory allocations (20): Erhanced-pasieRM, £ESS, Wave,
SOisign, EHFY3and-EHTv4, Hufu, MIRA, MQOM, RYDE, SBitH, PROY, QR-UOY, FUOY, VOX,

AlMer, FAEST, ALFEQ, eMEE-Sig2.6, KAZSIGN, Preon

12 April 2024 Matthias J. Kannwisch chelpis EE4 6/16

Dynamic memory allocations

- Dynamic memory allocations should be avoided in embedded implementations
— expensive, often not well supported

- Schemes that actually need them (usually > 4 MB memory), not suitable anyway
- pqm4: No dynamic memory allocations allowed

- Schemes with dynamic memory allocations (20): Erhanced-pasieRM, £ESS, Wave,
SOisign, EHFY3and-EHTv4, Hufu, MIRA, MQOM, RYDE, SBitH, PROY, QR-UOY, FUOY, VOX,

AlMer, FAEST, ALFEQ, eMEE-Sis 28, KAZSIGN, Preon
- Easily fixed: MQOM, AlMer
- Excluded due to dynamic memory allocations (3): MIRA, RYDE, FAEST

12 April 2024 Matthias J. Kannwischer chelpis EE4 6/16

Included implementations

PR ref | m4f | params | eprint

CROSS #309 | v/ 12/24

MEDS #324 | / 2/6

HAETAE #313 | / v | 3/3 ja.cr/2023/624
HAWK #305 | v/ 3/3

Biscuit #314 | / 3/6

MiRitH #315 | v/ 7 16/32 ia.cr/2023/1666
MQOM #322 | v/ 2/12

PERK #318 | / v 12/12 ja.cr/2024/088
MAYO #302 | v/ v/ | 3/4 ia.cr/2023/1683
SNOVA #311 | v 7/18

uov #300 | v/ | sl ia.cr/2023/059
AlMer #323 | v/ 3/12

Ascon-Sign #308 | / 8/8

SPHINCS-alpha | #312 | v/ 6/24

14 5

12 April 2024 Matthias J. Ka chelpis EE4 7116

https://github.com/mupq/pqm4/pull/309
https://github.com/mupq/pqm4/pull/324
https://github.com/mupq/pqm4/pull/313
https://ia.cr/2023/624
https://github.com/mupq/pqm4/pull/305
https://github.com/mupq/pqm4/pull/314
https://github.com/mupq/pqm4/pull/315
https://ia.cr/2023/1666
https://github.com/mupq/pqm4/pull/322
https://github.com/mupq/pqm4/pull/318
https://ia.cr/2024/088
https://github.com/mupq/pqm4/pull/302
https://ia.cr/2023/1683
https://github.com/mupq/pqm4/pull/311
https://github.com/mupq/pqm4/pull/300
https://ia.cr/2023/059
https://github.com/mupq/pqm4/pull/323
https://github.com/mupq/pqm4/pull/308
https://github.com/mupq/pqm4/pull/312

HAETAE

- Both reference and M4-optimized code has been integrated
- Contributed by the HAETAE team = Thank you!

12 April 2024 Chelpis (9 BERH

https://eprint.iacr.org/2023/624

HAETAE

- Both reference and M4-optimized code has been integrated
- Contributed by the HAETAE team = Thank you!

- Described in HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures, by Cheon, Choe,
Devevey, Guneysu, Hong, Krausz, Land, Moller, Stehle, and Vi
https://eprint.iacr.org/2023/624

- Supported parameter sets: HAETAE-{2,3,5}

12 April 2024 Matthias J. Kannwis chelpis EES 8/16

https://eprint.iacr.org/2023/624

HAETAE

- Both reference and M4-optimized code has been integrated
- Contributed by the HAETAE team = Thank you!

- Described in HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures, by Cheon, Choe,
Devevey, Guneysu, Hong, Krausz, Land, Moller, Stehle, and Vi
https://eprint.iacr.org/2023/624

- Supported parameter sets: HAETAE-{2,3,5}
- Incompatible with the original specification

12 April 2024 Matthias J. Kannwisc chelpis EE4 /16

https://eprint.iacr.org/2023/624

MiRitH

- Both reference and M4-optimized code has been integrated

12 Apil 2024 chetpis CEIS [0S

https://eprint.iacr.org/2023/1666

MiRitH

- Both reference and M4-optimized code has been integrated

- Described in MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head
by Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, and Zweydinger
https://eprint.iacr.org/2023/1666

12 April 2024 Matthias J. Ka chelpis EE4 9/16

https://eprint.iacr.org/2023/1666

MiRitH

- Both reference and M4-optimized code has been integrated

- Described in MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head
by Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, and Zweydinger
https://eprint.iacr.org/2023/1666

- Reference: 16 out of 32 parameter sets are working

- M4-optimized: mirith_hypercube_Ia_{fast,short}

12 April 2024 Matthias J. Kannwis chelpis EES 9/16

https://eprint.iacr.org/2023/1666

PERK

- Both reference and M4-optimized code has been integrated
- Contributed by the PERK team = Thank you!

12 April 2024 crelpis CEIE [ROEE

https://eprint.iacr.org/2024/088

PERK

- Both reference and M4-optimized code has been integrated
- Contributed by the PERK team = Thank you!

- Described in Enabling PERK on Resource-Constrained Devices by Bettaieb, Bidoux,
Budroni, Palumbi, and Lucas Pandolfo Perin
https://eprint.iacr.org/2024/088

- All 12 parameter sets are supported by the M4 implementation

12 April 2024 Matthias J. Kann chelpis EES 1016

https://eprint.iacr.org/2024/088

MAYO

- Both reference and M4-optimized code has been integrated

- Described in Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-Mé4 by
Beullens, Campos, Celi, Hess, and Kannwischer
https://eprint.iacr.org/2023/1683

12 April 2024 Matthias J. Ka chelpis EE4 1/16

https://eprint.iacr.org/2023/1683

MAYO

- Both reference and M4-optimized code has been integrated
- Described in Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-Mé4 by

Beullens, Campos, Celi, Hess, and Kannwischer
https://eprint.iacr.org/2023/1683

- Supported parameter sets: MAY0{1,2,3} (MAYO5 requires too much RAM as of now)

12 April 2024 Matthias J. Kann chelpis EES 116

https://eprint.iacr.org/2023/1683

MAYO

- Both reference and M4-optimized code has been integrated

- Described in Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-Mé4 by
Beullens, Campos, Celi, Hess, and Kannwischer
https://eprint.iacr.org/2023/1683

- Supported parameter sets: MAY0{1,2,3} (MAYO5 requires too much RAM as of now)
- Current pgm4 implementation is compatible with round-1 specification
- Can be slightly faster when using different representation (see Nibbling MAYO talk)

12 April 2024 Matthias J. Kannwische chelpis EE4 1/16

https://eprint.iacr.org/2023/1683

uov

- Both reference and M4-optimized code has been integrated

- Described in Qil and Vinegar: Modern Parameters and Implementations by Beullens,
Chen, Hung, Kannwischer, Peng, Shih, and Yang
https://eprint.iacr.org/2023/059

12 April 2024 Matthias J. Ka chelpis EE4 12/16

https://eprint.iacr.org/2023/059

uov

- Both reference and M4-optimized code has been integrated

- Described in Oil and Vinegar: Modern Parameters and Implementations by Beullens,
Chen, Hung, Kannwischer, Peng, Shih, and Yang
https://eprint.iacr.org/2023/059

- Supported parameter sets: ov-Ip-{,pkc,pkc-skc}
- ov-Is requires offloading keys to flash to fit within 640 KB of RAM (see paper)
- ov-III and ov-V is out of reach due to public key sizes

12 April 2024 Matthias J. Kannwisc chelpis EE4 12/16

https://eprint.iacr.org/2023/059

Performance

- Let's look at some performance numbers
- As always: Downclock device to avoid wait states for flash access (20 MHz)

12 April 2024 Mat chelpis (53 BYH

https://github.com/mupq/pqm4/blob/master/benchmarks.md

Performance

- Let's look at some performance numbers
- As always: Downclock device to avoid wait states for flash access (20 MHz)

- Only very limited selection here

- Full results in the paper and https://github.com/mupq/pqm4/blob/master/benchmarks .md
- Warning: Early in the competition; reference implementation performance is meaningless

12 April 2024 Matthias J. Ka chelpis EE4 1316

https://github.com/mupq/pqm4/blob/master/benchmarks.md

Performance

- Let's look at some performance numbers
- As always: Downclock device to avoid wait states for flash access (20 MHz)
- Only very limited selection here
- Full results in the paper and https://github.com/mupq/pqm4/blob/master/benchmarks .md
- Warning: Early in the competition; reference implementation performance is meaningless
- Selection criteria
- For each submission: Fastest parameter set

- May not be the same for signing and verification
- Mostly security level 1 (exception: sphincs-a-sha2-192f)

12 April 2024 Matthias J. Kannwisc chelpis EE4 1316

https://github.com/mupq/pqm4/blob/master/benchmarks.md

Performance

- Let's look at some performance numbers
- As always: Downclock device to avoid wait states for flash access (20 MHz)
- Only very limited selection here
- Full results in the paper and https://github.com/mupq/pqm4/blob/master/benchmarks .md
- Warning: Early in the competition; reference implementation performance is meaningless
- Selection criteria
- For each submission: Fastest parameter set
- May not be the same for signing and verification
- Mostly security level 1 (exception: sphincs-a-sha2-192f)
- Addition: SQISign verification
- Work in progress by Décio Luiz Gazzoni Filho and Krijn Reijnders

12 April 2024 Matthias J. Kannwische chelpis EE4 1316

https://github.com/mupq/pqm4/blob/master/benchmarks.md

Performance: Signing

1e9 Sign
1.75 . .
- Finally a scheme that is slower than SPHINCS+: MEDS
1.50
NeNC SPHINCS-alpha and Ascon-sign slower than SPHINCS+
NN Hawk, UQV, Dilithium, MAYO are basically for free

Scheme-Implementation

12 April 2024 Chelpis (9 EMWH

Performance: Signing

le7 Sign

- Hawk is much faster than Falcon and everything else
2.0
- UOV and MAYO competitive with Dilithium

1.5 - HAETAE, SNOVA competitive with Falcon
8
<
9
1.0
0.5
0.0"
& & W & & & &
& & S NS & o &
& s & & x5 s &
< 6\\'\59 <& f;{v & '\,’\:\,
b\&(\ ,bfib
< S

Scheme-Implementation

12 AP Chelpis (519 EWE

Performance: Verification

1e9 Verify

175 . M . .

- MEDS is “superior” to everything else
1.50

- SQISign is a close contender (not in pqm4)
1.25

Dhami ° Even SPHINCS+ is for free in comparison
B
0.75
0.50
0.25
0.00 X N 3 3 3 3 N S N N X > T N ~ N
£ ©) Q 2 O Q N e e & e g e e
,LOQ‘ ",?b‘ Q’,V@ \Q@ é@@ <& S (}e? l}_(& 5 (@,(& &s,(@‘}p 06‘ @(},('ﬁ’KA \e\é\ ’1:‘9,&
N W & B & & &F % N g N o > & ~N N S N
& @ & & & 5 I S i a2 < ° & > >)
S & & 2 A X & AP o - N §' © &
@ I T e s e 1 ety oy
¥ & < & SN & < %
5 IS & & By e~ s
_\(&9 < & & s &
&

Scheme-Implementation

Performance: Verification

le7 Verify

3.0 - SPHINCS-alpha and Ascon-sign much slower than SPHINCS+
25 - SNOVA, CROSS, Aimer also quite a bit slower than SPHINCS+

820
]
>
9

1S

1.0

(05

0.0

K
é,év %(é '@u‘ I@&\ & @u‘ & & &8 & = & v‘é
S) ¥ S ¥ & P 3 N 5
0% 5 2 > & & & i S Q N
) & 5 S S) & v o <& N A
o & & & & o ~° & < o @
\‘9(\ & N & s ol & & Vg 'o'é\
. N 5 2l S N &
o g & ») R
< & N
& & & & Q
e & & < B
& & ©
&
K

Scheme-Implementation

12860 =EIE] QSMC Il 15/16

Performance: Verification

1e6 Verify

Z - No scheme has faster verification than Falcon (mission failed?)
- Hawk, HAETAE, UOV faster than Dilithium
- MAYO somewhere between Dilithium and SPHINCS+

cycles

Scheme-Implementation

12 April 2024 Matthias J chelpis CES BT

Conclusion and next steps

- Some cryptographers have weird understanding of fast verification

12 April 2024 Matt chelpis CEE BN

Conclusion and next steps

- Some cryptographers have weird understanding of fast verification
- We are very early in the competition
- Still many low-hanging cycles to be eliminated

12 April 2024 Matthias J chelpis CES AL

Conclusion and next steps

- Some cryptographers have weird understanding of fast verification
- We are very early in the competition
- Still many low-hanging cycles to be eliminated
- Interesting question: Can we make schemes fit that are not yet included
- Eliminate dynamic memory allocations
- Replace external libraries
- Reduce memory consumption

12 April 2024 Matthias J. Kann chelpis EES 16/16

Conclusion and next steps

- Some cryptographers have weird understanding of fast verification
- We are very early in the competition
- Still many low-hanging cycles to be eliminated
- Interesting question: Can we make schemes fit that are not yet included
- Eliminate dynamic memory allocations
- Replace external libraries
- Reduce memory consumption
- If your favorite scheme is not included or slow
- Do not send angry e-mails to the mailing list
- Instead: Write a fast implementation and submit a pull request

12 April 2024 Matthias J. Kannwische chelpis EE4 16/16

Conclusion and next steps

- Some cryptographers have weird understanding of fast verification
- We are very early in the competition
- Still many low-hanging cycles to be eliminated
- Interesting question: Can we make schemes fit that are not yet included
- Eliminate dynamic memory allocations
- Replace external libraries
- Reduce memory consumption
- If your favorite scheme is not included or slow
- Do not send angry e-mails to the mailing list
- Instead: Write a fast implementation and submit a pull request
- Work in progress: Partial scheme benchmarking (e.g., SQISign verification)
- NIST: Please significantly lower the number of candidates

12 April 2024 Matthias J. Kannwischer chelpis EE4 16/16

Thank you very much for your attention!
ia.cr/2024/112

12 April 2024 SEY QSMC

https://ia.cr/2024/112

	Appendix

