
pqm4: Benchmarking NIST Additional
Post-Quantum Signature Schemes

on Microcontrollers

Matthias J. Kannwischer, Markus Krausz, Richard Petri, and Shang-Yi Yang
matthias@chelpis.com

12 April 2024, Fifth PQC Standardization Conference, Rockville, Maryland, USA

mailto:matthias@chelpis.com

Embedded PQC

• Cryptography needs to perform well on a large range of platforms

• NIST Additional Signatures: Small signatures, fast verification

• Fast verification particularly important for smaller platforms

• No performance concerns for Dilithium on large CPUs

• NIST: Arm Cortex-M4 as the primary microcontroller optimization target
• Powerful instruction set =⇒ UMAAL and many more multiplication instructions

• Cheap and widely available =⇒ $20 dev board unless there is a pandemic

• Huge =⇒ cores with 640 KB SRAM available; fits many of the PQC schemes

• Fun to optimize for; great for teaching due to simple pipeline

• This talk: Initial benchmarking of NIST Additional Signature Schemes

• Disclaimer: Many schemes have not been optimized for the Cortex-M4 yet

12 April 2024 Matthias J. Kannwischer 1/16

Embedded PQC

• Cryptography needs to perform well on a large range of platforms

• NIST Additional Signatures: Small signatures, fast verification

• Fast verification particularly important for smaller platforms

• No performance concerns for Dilithium on large CPUs

• NIST: Arm Cortex-M4 as the primary microcontroller optimization target
• Powerful instruction set =⇒ UMAAL and many more multiplication instructions

• Cheap and widely available =⇒ $20 dev board unless there is a pandemic

• Huge =⇒ cores with 640 KB SRAM available; fits many of the PQC schemes

• Fun to optimize for; great for teaching due to simple pipeline

• This talk: Initial benchmarking of NIST Additional Signature Schemes

• Disclaimer: Many schemes have not been optimized for the Cortex-M4 yet

12 April 2024 Matthias J. Kannwischer 1/16

Embedded PQC

• Cryptography needs to perform well on a large range of platforms

• NIST Additional Signatures: Small signatures, fast verification

• Fast verification particularly important for smaller platforms

• No performance concerns for Dilithium on large CPUs

• NIST: Arm Cortex-M4 as the primary microcontroller optimization target
• Powerful instruction set =⇒ UMAAL and many more multiplication instructions

• Cheap and widely available =⇒ $20 dev board unless there is a pandemic

• Huge =⇒ cores with 640 KB SRAM available; fits many of the PQC schemes

• Fun to optimize for; great for teaching due to simple pipeline

• This talk: Initial benchmarking of NIST Additional Signature Schemes

• Disclaimer: Many schemes have not been optimized for the Cortex-M4 yet

12 April 2024 Matthias J. Kannwischer 1/16

Embedded PQC

• Cryptography needs to perform well on a large range of platforms

• NIST Additional Signatures: Small signatures, fast verification

• Fast verification particularly important for smaller platforms

• No performance concerns for Dilithium on large CPUs

• NIST: Arm Cortex-M4 as the primary microcontroller optimization target
• Powerful instruction set =⇒ UMAAL and many more multiplication instructions

• Cheap and widely available =⇒ $20 dev board unless there is a pandemic

• Huge =⇒ cores with 640 KB SRAM available; fits many of the PQC schemes

• Fun to optimize for; great for teaching due to simple pipeline

• This talk: Initial benchmarking of NIST Additional Signature Schemes

• Disclaimer: Many schemes have not been optimized for the Cortex-M4 yet

12 April 2024 Matthias J. Kannwischer 1/16

Embedded PQC

• Cryptography needs to perform well on a large range of platforms

• NIST Additional Signatures: Small signatures, fast verification

• Fast verification particularly important for smaller platforms

• No performance concerns for Dilithium on large CPUs

• NIST: Arm Cortex-M4 as the primary microcontroller optimization target
• Powerful instruction set =⇒ UMAAL and many more multiplication instructions

• Cheap and widely available =⇒ $20 dev board unless there is a pandemic

• Huge =⇒ cores with 640 KB SRAM available; fits many of the PQC schemes

• Fun to optimize for; great for teaching due to simple pipeline

• This talk: Initial benchmarking of NIST Additional Signature Schemes

• Disclaimer: Many schemes have not been optimized for the Cortex-M4 yet

12 April 2024 Matthias J. Kannwischer 1/16

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

My expectations and (sad) reality

Ideal World

• NISTPQC: Cryptographers learned that good
reference code is important

• Project like PQClean raised quality bar
=⇒ Increase awareness for useful SW-dev tools
=⇒ Test automation many platforms
=⇒ -Wall -Wextra -Wpedantic -Werror

• We wrote a paper with lessons learned
=⇒ https://eprint.iacr.org/2022/337
=⇒ Includes list of recommendations for NIST

• Expectation:
My life is going to be much easier than 2018

Real World

• NIST: No changes to SW requirements

• Many compiler warnings;
not passing sanitizers
=⇒ Revealing quite a few bugs

• Some use of static memory
Some cheating: Large pre-computation

• 20 out of 40 submissions use dynamic
memory allocations
=⇒ Often without real need

• Reality:
No improvement over NIST PQC I

12 April 2024 Matthias J. Kannwischer 2/16

https://github.com/PQClean/PQClean
https://eprint.iacr.org/2022/337

pqm4: Platform and framework changes

• You may have seen a pqm4 talk before; here are some recent changes

• Switched default platform to STM32L4R5ZI

• 640 KB of RAM, 2 MB of flash

• Instruction timing same as STM32F407; except for small differences for memory loads

• Other supported platforms: STM32F407, STM32L476RG, STM32F303RCT7 (ChipWhisperer F3),
MPS2-AN386 (qemu)

• 20% faster Keccak

• Described in An update on Keccak performance on ARMv7-M by Adomnicai
https://eprint.iacr.org/2023/773

• https://github.com/mupq/pqm4/pull/254

12 April 2024 Matthias J. Kannwischer 3/16

https://eprint.iacr.org/2023/773
https://github.com/mupq/pqm4/pull/254

pqm4: Platform and framework changes

• You may have seen a pqm4 talk before; here are some recent changes

• Switched default platform to STM32L4R5ZI

• 640 KB of RAM, 2 MB of flash

• Instruction timing same as STM32F407; except for small differences for memory loads

• Other supported platforms: STM32F407, STM32L476RG, STM32F303RCT7 (ChipWhisperer F3),
MPS2-AN386 (qemu)

• 20% faster Keccak

• Described in An update on Keccak performance on ARMv7-M by Adomnicai
https://eprint.iacr.org/2023/773

• https://github.com/mupq/pqm4/pull/254

12 April 2024 Matthias J. Kannwischer 3/16

https://eprint.iacr.org/2023/773
https://github.com/mupq/pqm4/pull/254

pqm4: Platform and framework changes

• You may have seen a pqm4 talk before; here are some recent changes

• Switched default platform to STM32L4R5ZI

• 640 KB of RAM, 2 MB of flash

• Instruction timing same as STM32F407; except for small differences for memory loads

• Other supported platforms: STM32F407, STM32L476RG, STM32F303RCT7 (ChipWhisperer F3),
MPS2-AN386 (qemu)

• 20% faster Keccak

• Described in An update on Keccak performance on ARMv7-M by Adomnicai
https://eprint.iacr.org/2023/773

• https://github.com/mupq/pqm4/pull/254

12 April 2024 Matthias J. Kannwischer 3/16

https://eprint.iacr.org/2023/773
https://github.com/mupq/pqm4/pull/254

Exclusion criteria

• Vulnerable: Brokenness of the scheme

• PK too big: Public key + private key + signature need to fit in 640 KB of RAM

• Too much memory: Keys + memory consumption needs to fit in 640 KB of RAM

• External library: Cannot have any external dependency (e.g., gmp, flint)
=⇒ we do replace Keccak, SHA-2, AES with optimized code

• Not portable: Code that is not supported for 32-bit platforms (e.g., __int128)
• Dynamic Memory allocations: Dynamic memory allocations are undesirable
=⇒ we try to fix it if it is straightforward

12 April 2024 Matthias J. Kannwischer 4/16

Exclusion criteria

• Vulnerable: Brokenness of the scheme

• PK too big: Public key + private key + signature need to fit in 640 KB of RAM

• Too much memory: Keys + memory consumption needs to fit in 640 KB of RAM

• External library: Cannot have any external dependency (e.g., gmp, flint)
=⇒ we do replace Keccak, SHA-2, AES with optimized code

• Not portable: Code that is not supported for 32-bit platforms (e.g., __int128)
• Dynamic Memory allocations: Dynamic memory allocations are undesirable
=⇒ we try to fix it if it is straightforward

12 April 2024 Matthias J. Kannwischer 4/16

Exclusion criteria

• Vulnerable: Brokenness of the scheme

• PK too big: Public key + private key + signature need to fit in 640 KB of RAM

• Too much memory: Keys + memory consumption needs to fit in 640 KB of RAM

• External library: Cannot have any external dependency (e.g., gmp, flint)
=⇒ we do replace Keccak, SHA-2, AES with optimized code

• Not portable: Code that is not supported for 32-bit platforms (e.g., __int128)
• Dynamic Memory allocations: Dynamic memory allocations are undesirable
=⇒ we try to fix it if it is straightforward

12 April 2024 Matthias J. Kannwischer 4/16

Exclusion criteria

• Vulnerable: Brokenness of the scheme

• PK too big: Public key + private key + signature need to fit in 640 KB of RAM

• Too much memory: Keys + memory consumption needs to fit in 640 KB of RAM

• External library: Cannot have any external dependency (e.g., gmp, flint)
=⇒ we do replace Keccak, SHA-2, AES with optimized code

• Not portable: Code that is not supported for 32-bit platforms (e.g., __int128)
• Dynamic Memory allocations: Dynamic memory allocations are undesirable
=⇒ we try to fix it if it is straightforward

12 April 2024 Matthias J. Kannwischer 4/16

Scheme inclusion

Code Lattice MPCitH MQ Other
CROSS EagleSign Biscuit 3WISE AIMer
Enhanced pqsigRM EHTv3 and EHTv4 MIRA DME-Sign ALTEQ
FuLeeca HAETAE MiRitH HPPC Ascon-Sign
LESS HAWK MQOM MAYO eMLE-Sig 2.0
MEDS HuFu PERK PROV FAEST
Wave Raccoon RYDE QR-UOV KAZ-SIGN

SQUIRRELS SDitH SNOVA Preon
TUOV SPHINCS-alpha
UOV SQIsign
VOX Xifrat1-Sign.I

Vulnerable (9) PK too big (4) Too much memory (7) External library / Not portable (3)

12 April 2024 Matthias J. Kannwischer 5/16

Scheme inclusion

Code Lattice MPCitH MQ Other
CROSS EagleSign Biscuit 3WISE AIMer
Enhanced pqsigRM EHTv3 and EHTv4 MIRA DME-Sign ALTEQ
FuLeeca HAETAE MiRitH HPPC Ascon-Sign
LESS HAWK MQOM MAYO eMLE-Sig 2.0
MEDS HuFu PERK PROV FAEST
Wave Raccoon RYDE QR-UOV KAZ-SIGN

SQUIRRELS SDitH SNOVA Preon
TUOV SPHINCS-alpha
UOV SQIsign
VOX Xifrat1-Sign.I

Vulnerable (9) PK too big (4) Too much memory (7) External library / Not portable (3)

12 April 2024 Matthias J. Kannwischer 5/16

Scheme inclusion

Code Lattice MPCitH MQ Other
CROSS EagleSign Biscuit 3WISE AIMer
Enhanced pqsigRM EHTv3 and EHTv4 MIRA DME-Sign ALTEQ
FuLeeca HAETAE MiRitH HPPC Ascon-Sign
LESS HAWK MQOM MAYO eMLE-Sig 2.0
MEDS HuFu PERK PROV FAEST
Wave Raccoon RYDE QR-UOV KAZ-SIGN

SQUIRRELS SDitH SNOVA Preon
TUOV SPHINCS-alpha
UOV SQIsign
VOX Xifrat1-Sign.I

Vulnerable (9) PK too big (4) Too much memory (7) External library / Not portable (3)

12 April 2024 Matthias J. Kannwischer 5/16

Scheme inclusion

Code Lattice MPCitH MQ Other
CROSS EagleSign Biscuit 3WISE AIMer
Enhanced pqsigRM EHTv3 and EHTv4 MIRA DME-Sign ALTEQ
FuLeeca HAETAE MiRitH HPPC Ascon-Sign
LESS HAWK MQOM MAYO eMLE-Sig 2.0
MEDS HuFu PERK PROV FAEST
Wave Raccoon RYDE QR-UOV KAZ-SIGN

SQUIRRELS SDitH SNOVA Preon
TUOV SPHINCS-alpha
UOV SQIsign
VOX Xifrat1-Sign.I

Vulnerable (9) PK too big (4) Too much memory (7) External library / Not portable (3)

12 April 2024 Matthias J. Kannwischer 5/16

Scheme inclusion

Code Lattice MPCitH MQ Other
CROSS EagleSign Biscuit 3WISE AIMer
Enhanced pqsigRM EHTv3 and EHTv4 MIRA DME-Sign ALTEQ
FuLeeca HAETAE MiRitH HPPC Ascon-Sign
LESS HAWK MQOM MAYO eMLE-Sig 2.0
MEDS HuFu PERK PROV FAEST
Wave Raccoon RYDE QR-UOV KAZ-SIGN

SQUIRRELS SDitH SNOVA Preon
TUOV SPHINCS-alpha
UOV SQIsign
VOX Xifrat1-Sign.I

Vulnerable (9) PK too big (4) Too much memory (7) External library / Not portable (3)

12 April 2024 Matthias J. Kannwischer 5/16

Dynamic memory allocations

• Dynamic memory allocations should be avoided in embedded implementations
=⇒ expensive, often not well supported

• Schemes that actually need them (usually > 4 MB memory), not suitable anyway

• pqm4: No dynamic memory allocations allowed

• Schemes with dynamic memory allocations (20): Enhanced pqsigRM, LESS, Wave,
SQIsign, EHTv3 and EHTv4, HuFu, MIRA, MQOM, RYDE, SDitH, PROV, QR-UOV, TUOV, VOX,
AIMer, FAEST, ALTEQ, eMLE-Sig 2.0, KAZ-SIGN, Preon

• Easily fixed: MQOM, AIMer
• Excluded due to dynamic memory allocations (3): MIRA, RYDE, FAEST

12 April 2024 Matthias J. Kannwischer 6/16

Dynamic memory allocations

• Dynamic memory allocations should be avoided in embedded implementations
=⇒ expensive, often not well supported

• Schemes that actually need them (usually > 4 MB memory), not suitable anyway

• pqm4: No dynamic memory allocations allowed

• Schemes with dynamic memory allocations (20): Enhanced pqsigRM, LESS, Wave,
SQIsign, EHTv3 and EHTv4, HuFu, MIRA, MQOM, RYDE, SDitH, PROV, QR-UOV, TUOV, VOX,
AIMer, FAEST, ALTEQ, eMLE-Sig 2.0, KAZ-SIGN, Preon

• Easily fixed: MQOM, AIMer
• Excluded due to dynamic memory allocations (3): MIRA, RYDE, FAEST

12 April 2024 Matthias J. Kannwischer 6/16

Dynamic memory allocations

• Dynamic memory allocations should be avoided in embedded implementations
=⇒ expensive, often not well supported

• Schemes that actually need them (usually > 4 MB memory), not suitable anyway

• pqm4: No dynamic memory allocations allowed

• Schemes with dynamic memory allocations (20): Enhanced pqsigRM, LESS, Wave,
SQIsign, EHTv3 and EHTv4, HuFu, MIRA, MQOM, RYDE, SDitH, PROV, QR-UOV, TUOV, VOX,
AIMer, FAEST, ALTEQ, eMLE-Sig 2.0, KAZ-SIGN, Preon

• Easily fixed: MQOM, AIMer
• Excluded due to dynamic memory allocations (3): MIRA, RYDE, FAEST

12 April 2024 Matthias J. Kannwischer 6/16

Dynamic memory allocations

• Dynamic memory allocations should be avoided in embedded implementations
=⇒ expensive, often not well supported

• Schemes that actually need them (usually > 4 MB memory), not suitable anyway

• pqm4: No dynamic memory allocations allowed

• Schemes with dynamic memory allocations (20): Enhanced pqsigRM, LESS, Wave,
SQIsign, EHTv3 and EHTv4, HuFu, MIRA, MQOM, RYDE, SDitH, PROV, QR-UOV, TUOV, VOX,
AIMer, FAEST, ALTEQ, eMLE-Sig 2.0, KAZ-SIGN, Preon

• Easily fixed: MQOM, AIMer
• Excluded due to dynamic memory allocations (3): MIRA, RYDE, FAEST

12 April 2024 Matthias J. Kannwischer 6/16

Included implementations

PR ref m4f params eprint
CROSS #309 3 12/24
MEDS #324 3 2/6

HAETAE #313 3 3 3/3 ia.cr/2023/624
HAWK #305 3 3/3

Biscuit #314 3 3/6
MiRitH #315 3 3 16/32 ia.cr/2023/1666
MQOM #322 3 2/12
PERK #318 3 3 12/12 ia.cr/2024/088

MAYO #302 3 3 3/4 ia.cr/2023/1683
SNOVA #311 3 7/18
UOV #300 3 3 3/12 ia.cr/2023/059

AIMer #323 3 3/12
Ascon-Sign #308 3 8/8
SPHINCS-alpha #312 3 6/24

14 5

12 April 2024 Matthias J. Kannwischer 7/16

https://github.com/mupq/pqm4/pull/309
https://github.com/mupq/pqm4/pull/324
https://github.com/mupq/pqm4/pull/313
https://ia.cr/2023/624
https://github.com/mupq/pqm4/pull/305
https://github.com/mupq/pqm4/pull/314
https://github.com/mupq/pqm4/pull/315
https://ia.cr/2023/1666
https://github.com/mupq/pqm4/pull/322
https://github.com/mupq/pqm4/pull/318
https://ia.cr/2024/088
https://github.com/mupq/pqm4/pull/302
https://ia.cr/2023/1683
https://github.com/mupq/pqm4/pull/311
https://github.com/mupq/pqm4/pull/300
https://ia.cr/2023/059
https://github.com/mupq/pqm4/pull/323
https://github.com/mupq/pqm4/pull/308
https://github.com/mupq/pqm4/pull/312

HAETAE

• Both reference and M4-optimized code has been integrated

• Contributed by the HAETAE team =⇒ Thank you!
• Described in HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures, by Cheon, Choe,
Devevey, Güneysu, Hong, Krausz, Land, Möller, Stehlé, and Yi
https://eprint.iacr.org/2023/624

• Supported parameter sets: HAETAE-{2,3,5}

• Incompatible with the original specification

12 April 2024 Matthias J. Kannwischer 8/16

https://eprint.iacr.org/2023/624

HAETAE

• Both reference and M4-optimized code has been integrated

• Contributed by the HAETAE team =⇒ Thank you!
• Described in HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures, by Cheon, Choe,
Devevey, Güneysu, Hong, Krausz, Land, Möller, Stehlé, and Yi
https://eprint.iacr.org/2023/624

• Supported parameter sets: HAETAE-{2,3,5}

• Incompatible with the original specification

12 April 2024 Matthias J. Kannwischer 8/16

https://eprint.iacr.org/2023/624

HAETAE

• Both reference and M4-optimized code has been integrated

• Contributed by the HAETAE team =⇒ Thank you!
• Described in HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures, by Cheon, Choe,
Devevey, Güneysu, Hong, Krausz, Land, Möller, Stehlé, and Yi
https://eprint.iacr.org/2023/624

• Supported parameter sets: HAETAE-{2,3,5}

• Incompatible with the original specification

12 April 2024 Matthias J. Kannwischer 8/16

https://eprint.iacr.org/2023/624

MiRitH

• Both reference and M4-optimized code has been integrated

• Described in MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head
by Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, and Zweydinger
https://eprint.iacr.org/2023/1666

• Reference: 16 out of 32 parameter sets are working

• M4-optimized: mirith_hypercube_Ia_{fast,short}

12 April 2024 Matthias J. Kannwischer 9/16

https://eprint.iacr.org/2023/1666

MiRitH

• Both reference and M4-optimized code has been integrated

• Described in MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head
by Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, and Zweydinger
https://eprint.iacr.org/2023/1666

• Reference: 16 out of 32 parameter sets are working

• M4-optimized: mirith_hypercube_Ia_{fast,short}

12 April 2024 Matthias J. Kannwischer 9/16

https://eprint.iacr.org/2023/1666

MiRitH

• Both reference and M4-optimized code has been integrated

• Described in MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head
by Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, and Zweydinger
https://eprint.iacr.org/2023/1666

• Reference: 16 out of 32 parameter sets are working

• M4-optimized: mirith_hypercube_Ia_{fast,short}

12 April 2024 Matthias J. Kannwischer 9/16

https://eprint.iacr.org/2023/1666

PERK

• Both reference and M4-optimized code has been integrated

• Contributed by the PERK team =⇒ Thank you!
• Described in Enabling PERK on Resource-Constrained Devices by Bettaieb, Bidoux,
Budroni, Palumbi, and Lucas Pandolfo Perin
https://eprint.iacr.org/2024/088

• All 12 parameter sets are supported by the M4 implementation

12 April 2024 Matthias J. Kannwischer 10/16

https://eprint.iacr.org/2024/088

PERK

• Both reference and M4-optimized code has been integrated

• Contributed by the PERK team =⇒ Thank you!
• Described in Enabling PERK on Resource-Constrained Devices by Bettaieb, Bidoux,
Budroni, Palumbi, and Lucas Pandolfo Perin
https://eprint.iacr.org/2024/088

• All 12 parameter sets are supported by the M4 implementation

12 April 2024 Matthias J. Kannwischer 10/16

https://eprint.iacr.org/2024/088

MAYO

• Both reference and M4-optimized code has been integrated

• Described in Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4 by
Beullens, Campos, Celi, Hess, and Kannwischer
https://eprint.iacr.org/2023/1683

• Supported parameter sets: MAYO{1,2,3} (MAYO5 requires too much RAM as of now)
• Current pqm4 implementation is compatible with round-1 specification

• Can be slightly faster when using different representation (see Nibbling MAYO talk)

12 April 2024 Matthias J. Kannwischer 11/16

https://eprint.iacr.org/2023/1683

MAYO

• Both reference and M4-optimized code has been integrated

• Described in Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4 by
Beullens, Campos, Celi, Hess, and Kannwischer
https://eprint.iacr.org/2023/1683

• Supported parameter sets: MAYO{1,2,3} (MAYO5 requires too much RAM as of now)
• Current pqm4 implementation is compatible with round-1 specification

• Can be slightly faster when using different representation (see Nibbling MAYO talk)

12 April 2024 Matthias J. Kannwischer 11/16

https://eprint.iacr.org/2023/1683

MAYO

• Both reference and M4-optimized code has been integrated

• Described in Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4 by
Beullens, Campos, Celi, Hess, and Kannwischer
https://eprint.iacr.org/2023/1683

• Supported parameter sets: MAYO{1,2,3} (MAYO5 requires too much RAM as of now)
• Current pqm4 implementation is compatible with round-1 specification

• Can be slightly faster when using different representation (see Nibbling MAYO talk)

12 April 2024 Matthias J. Kannwischer 11/16

https://eprint.iacr.org/2023/1683

UOV

• Both reference and M4-optimized code has been integrated

• Described in Oil and Vinegar: Modern Parameters and Implementations by Beullens,
Chen, Hung, Kannwischer, Peng, Shih, and Yang
https://eprint.iacr.org/2023/059

• Supported parameter sets: ov-Ip-{,pkc,pkc-skc}

• ov-Is requires offloading keys to flash to fit within 640 KB of RAM (see paper)
• ov-III and ov-V is out of reach due to public key sizes

12 April 2024 Matthias J. Kannwischer 12/16

https://eprint.iacr.org/2023/059

UOV

• Both reference and M4-optimized code has been integrated

• Described in Oil and Vinegar: Modern Parameters and Implementations by Beullens,
Chen, Hung, Kannwischer, Peng, Shih, and Yang
https://eprint.iacr.org/2023/059

• Supported parameter sets: ov-Ip-{,pkc,pkc-skc}

• ov-Is requires offloading keys to flash to fit within 640 KB of RAM (see paper)
• ov-III and ov-V is out of reach due to public key sizes

12 April 2024 Matthias J. Kannwischer 12/16

https://eprint.iacr.org/2023/059

Performance

• Let’s look at some performance numbers

• As always: Downclock device to avoid wait states for flash access (20 MHz)
• Only very limited selection here

• Full results in the paper and https://github.com/mupq/pqm4/blob/master/benchmarks.md

• Warning: Early in the competition; reference implementation performance is meaningless

• Selection criteria

• For each submission: Fastest parameter set
• May not be the same for signing and verification

• Mostly security level 1 (exception: sphincs-a-sha2-192f)
• Addition: SQISign verification

• Work in progress by Décio Luiz Gazzoni Filho and Krijn Reijnders

12 April 2024 Matthias J. Kannwischer 13/16

https://github.com/mupq/pqm4/blob/master/benchmarks.md

Performance

• Let’s look at some performance numbers

• As always: Downclock device to avoid wait states for flash access (20 MHz)
• Only very limited selection here

• Full results in the paper and https://github.com/mupq/pqm4/blob/master/benchmarks.md

• Warning: Early in the competition; reference implementation performance is meaningless

• Selection criteria

• For each submission: Fastest parameter set
• May not be the same for signing and verification

• Mostly security level 1 (exception: sphincs-a-sha2-192f)
• Addition: SQISign verification

• Work in progress by Décio Luiz Gazzoni Filho and Krijn Reijnders

12 April 2024 Matthias J. Kannwischer 13/16

https://github.com/mupq/pqm4/blob/master/benchmarks.md

Performance

• Let’s look at some performance numbers

• As always: Downclock device to avoid wait states for flash access (20 MHz)
• Only very limited selection here

• Full results in the paper and https://github.com/mupq/pqm4/blob/master/benchmarks.md

• Warning: Early in the competition; reference implementation performance is meaningless

• Selection criteria

• For each submission: Fastest parameter set
• May not be the same for signing and verification

• Mostly security level 1 (exception: sphincs-a-sha2-192f)
• Addition: SQISign verification

• Work in progress by Décio Luiz Gazzoni Filho and Krijn Reijnders

12 April 2024 Matthias J. Kannwischer 13/16

https://github.com/mupq/pqm4/blob/master/benchmarks.md

Performance

• Let’s look at some performance numbers

• As always: Downclock device to avoid wait states for flash access (20 MHz)
• Only very limited selection here

• Full results in the paper and https://github.com/mupq/pqm4/blob/master/benchmarks.md

• Warning: Early in the competition; reference implementation performance is meaningless

• Selection criteria

• For each submission: Fastest parameter set
• May not be the same for signing and verification

• Mostly security level 1 (exception: sphincs-a-sha2-192f)
• Addition: SQISign verification

• Work in progress by Décio Luiz Gazzoni Filho and Krijn Reijnders

12 April 2024 Matthias J. Kannwischer 13/16

https://github.com/mupq/pqm4/blob/master/benchmarks.md

ha
wk2

56
-re

f

ov-
Ip-

m4f

dili
thi

um
2-m

4f

may
o1

-m
4f

fal
con

-51
2-t

ree
-op

t-c
t

ha
eta

e2
-m

4f

sno
va

-28
-17

-16
-2-

esk
-re

f

cro
ss-

sha
3-r

-sd
pg

-1-
fas

t-re
f

aim
er-

l1-
pa

ram
1-r

ef

mirit
h_h

yp
erc

ub
e_I

a_f
ast

-op
t

mqo
m_ca

t1_
gf2

51
_fa

st-
ref

pe
rk-

12
8-f

ast
-5-

m4

bis
cui

t12
8f-

ref

sph
inc

s-s
ha

2-1
28

f-si
mple

-cle
an

sph
inc

s-a
-sh

a2
-12

8f-
ref

asc
on

-sig
n-1

28
f-si

mple
-re

f

med
s13

22
0-r

ef

Scheme-Implementation

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

cy
cle

s

1e9 Sign

Performance: Signing

• Finally a scheme that is slower than SPHINCS+: MEDS

• SPHINCS-alpha and Ascon-sign slower than SPHINCS+

• Hawk, UOV, Dilithium, MAYO are basically for free

12 April 2024 Matthias J. Kannwischer 14/16

ha
wk2

56
-re

f

ov-
Ip-

m4f

dili
thi

um
2-m

4f

may
o1

-m
4f

fal
con

-51
2-t

ree
-op

t-c
t

ha
eta

e2
-m

4f

sno
va

-28
-17

-16
-2-

esk
-re

f

Scheme-Implementation

0.0

0.5

1.0

1.5

2.0

cy
cle

s

1e7 Sign

Performance: Signing

• Hawk is much faster than Falcon and everything else

• UOV and MAYO competitive with Dilithium

• HAETAE, SNOVA competitive with Falcon

12 April 2024 Matthias J. Kannwischer 14/16

Performance: Verification

fal
con

-51
2-o

pt-
ct

ha
wk2

56
-re

f

ha
eta

e2
-m

4f

ov-
Ip-

m4f

dili
thi

um
2-m

4f

may
o1

-m
4f

sph
inc

s-s
ha

2-1
28

s-s
im

ple
-cle

an

sno
va

-28
-17

-16
-2-

ssk
-re

f

cro
ss-

sha
3-r

-sd
pg

-1-
fas

t-re
f

aim
er-

l1-
pa

ram
1-r

ef

asc
on

-sig
n-1

28
s-s

im
ple

-re
f

sph
inc

s-a
-sh

a2
-19

2f-
ref

mirit
h_h

yp
erc

ub
e_I

a_f
ast

-op
t

pe
rk-

12
8-f

ast
-5-

m4

mqo
m_ca

t1_
gf2

51
_fa

st-
ref

bis
cui

t12
8f-

ref

sqi
sig

n-1

med
s13

22
0-r

ef

Scheme-Implementation

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

cy
cle

s

1e9 Verify

• MEDS is “superior” to everything else

• SQISign is a close contender (not in pqm4)

• Even SPHINCS+ is for free in comparison

12 April 2024 Matthias J. Kannwischer 15/16

Performance: Verification

fal
con

-51
2-o

pt-
ct

ha
wk2

56
-re

f

ha
eta

e2
-m

4f

ov-
Ip-

m4f

dili
thi

um
2-m

4f

may
o1

-m
4f

sph
inc

s-s
ha

2-1
28

s-s
im

ple
-cle

an

sno
va

-28
-17

-16
-2-

ssk
-re

f

cro
ss-

sha
3-r

-sd
pg

-1-
fas

t-re
f

aim
er-

l1-
pa

ram
1-r

ef

asc
on

-sig
n-1

28
s-s

im
ple

-re
f

sph
inc

s-a
-sh

a2
-19

2f-
ref

Scheme-Implementation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

cy
cle

s

1e7 Verify

• SPHINCS-alpha and Ascon-sign much slower than SPHINCS+

• SNOVA, CROSS, Aimer also quite a bit slower than SPHINCS+

12 April 2024 Matthias J. Kannwischer 15/16

fal
con

-51
2-o

pt-
ct

ha
wk2

56
-re

f

ha
eta

e2
-m

4f

ov-
Ip-

m4f

dili
thi

um
2-m

4f

may
o1

-m
4f

sph
inc

s-s
ha

2-1
28

s-s
im

ple
-cle

an

Scheme-Implementation

0

1

2

3

4

5

6

7

cy
cle

s

1e6 Verify

Performance: Verification

• No scheme has faster verification than Falcon (mission failed?)

• Hawk, HAETAE, UOV faster than Dilithium

• MAYO somewhere between Dilithium and SPHINCS+

12 April 2024 Matthias J. Kannwischer 15/16

Conclusion and next steps

• Some cryptographers have weird understanding of fast verification
• We are very early in the competition

• Still many low-hanging cycles to be eliminated

• Interesting question: Can we make schemes fit that are not yet included
• Eliminate dynamic memory allocations

• Replace external libraries

• Reduce memory consumption

• If your favorite scheme is not included or slow
• Do not send angry e-mails to the mailing list
• Instead: Write a fast implementation and submit a pull request

• Work in progress: Partial scheme benchmarking (e.g., SQISign verification)
• NIST: Please significantly lower the number of candidates

12 April 2024 Matthias J. Kannwischer 16/16

Conclusion and next steps

• Some cryptographers have weird understanding of fast verification
• We are very early in the competition

• Still many low-hanging cycles to be eliminated

• Interesting question: Can we make schemes fit that are not yet included
• Eliminate dynamic memory allocations

• Replace external libraries

• Reduce memory consumption

• If your favorite scheme is not included or slow
• Do not send angry e-mails to the mailing list
• Instead: Write a fast implementation and submit a pull request

• Work in progress: Partial scheme benchmarking (e.g., SQISign verification)
• NIST: Please significantly lower the number of candidates

12 April 2024 Matthias J. Kannwischer 16/16

Conclusion and next steps

• Some cryptographers have weird understanding of fast verification
• We are very early in the competition

• Still many low-hanging cycles to be eliminated

• Interesting question: Can we make schemes fit that are not yet included
• Eliminate dynamic memory allocations

• Replace external libraries

• Reduce memory consumption

• If your favorite scheme is not included or slow
• Do not send angry e-mails to the mailing list
• Instead: Write a fast implementation and submit a pull request

• Work in progress: Partial scheme benchmarking (e.g., SQISign verification)
• NIST: Please significantly lower the number of candidates

12 April 2024 Matthias J. Kannwischer 16/16

Conclusion and next steps

• Some cryptographers have weird understanding of fast verification
• We are very early in the competition

• Still many low-hanging cycles to be eliminated

• Interesting question: Can we make schemes fit that are not yet included
• Eliminate dynamic memory allocations

• Replace external libraries

• Reduce memory consumption

• If your favorite scheme is not included or slow
• Do not send angry e-mails to the mailing list
• Instead: Write a fast implementation and submit a pull request

• Work in progress: Partial scheme benchmarking (e.g., SQISign verification)
• NIST: Please significantly lower the number of candidates

12 April 2024 Matthias J. Kannwischer 16/16

Conclusion and next steps

• Some cryptographers have weird understanding of fast verification
• We are very early in the competition

• Still many low-hanging cycles to be eliminated

• Interesting question: Can we make schemes fit that are not yet included
• Eliminate dynamic memory allocations

• Replace external libraries

• Reduce memory consumption

• If your favorite scheme is not included or slow
• Do not send angry e-mails to the mailing list
• Instead: Write a fast implementation and submit a pull request

• Work in progress: Partial scheme benchmarking (e.g., SQISign verification)
• NIST: Please significantly lower the number of candidates

12 April 2024 Matthias J. Kannwischer 16/16

Thank you very much for your attention!
ia.cr/2024/112

12 April 2024 Matthias J. Kannwischer

https://ia.cr/2024/112

	Appendix

