Preliminary Cryptanalysis of the Biscuit Signature Scheme

Charles Bouillaguet, Julia Sauvage

Sorbonne Université, CNRS, LIP6

April 11, 2024

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature
- Structured algebraic equations

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature
- Structured algebraic equations

Biscuit polynomial system

Public Key :

- *m* quadratic polynomials p_i in *n* variables $(m \approx n)$ over \mathbb{F}_q
- $\blacktriangleright p_i(\mathbf{x}) = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x})$
- ▶ u_i , v_i and w_i affine forms $(u_i(\mathbf{x}) = a_0x_0 + \cdots + a_{n-1}x_{n-1}$ with $a_i \in \mathbb{F}_q)$

Secret Key :

• s with $p_i(\mathbf{s}) = 0$ for $i \in \{1, \ldots, m\}$

Security of Biscuit Signature Scheme

Attacks

- Key-Recovery: Solving the system (Public Key)
- Forgery: Solving a subsystem + Kales-Zaverucha attack

Security of Biscuit Signature Scheme

Attacks

- Key-Recovery: Solving the system (Public Key)
- Forgery: Solving a subsystem + Kales-Zaverucha attack

Biscuit NIST Specification

- Combinatory algo : $q^{\frac{3}{4}n}$
- Asymptotic complexity Hybrid Method : 2^{2.01n}

Security of Biscuit Signature Scheme

Attacks

- Key-Recovery: Solving the system (Public Key)
- Forgery: Solving a subsystem + Kales-Zaverucha attack

Biscuit NIST Specification

- Combinatory algo : $q^{\frac{3}{4}n}$
- Asymptotic complexity Hybrid Method : 2^{2.01n}

New algorithms

- Direct : $n^3 q^{\frac{n}{2}}$
- New hybrid approach: 2^{1.59n}

Hybrid Method and New Idea

Hybrid method [Bettale et al., 2012]

- 1 Choose an optimal k.
- **2** Guess the value of k variables.
- **3** Groebner basis algorithm on m polynomials and n k variables.
- Asymptotic complexity known at m/n and q fixed.

Hybrid Method and New Idea

Hybrid method [Bettale et al., 2012]

- 1 Choose an optimal k.
- Q Guess the value of k variables.
- **8** Groebner basis algorithm on m polynomials and n k variables.
- Asymptotic complexity known at m/n and q fixed.

New idea for Biscuit-like systems

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x})$$

We guess $v_i(\mathbf{x}) = a \in \mathbb{F}_q$. We have now:

$$p_i(\mathbf{x}) = u_i(\mathbf{x}) + a \times w_i(\mathbf{x})$$

 $v_i(\mathbf{x}) = a$

 \hookrightarrow *m* – 1 polynomials in *n* – 2 variables.

Attacks

Direct attack algorithm

- **1** Guess n/2 values
- 2 Get the *n* linear equations
- **3** Complexity : $n^3 q^{\frac{n}{2}}$

• Better than the combinatory algorithm $(q^{3/4n})$

Attacks

Direct attack algorithm

- **1** Guess n/2 values
- Ø Get the n linear equations
- **3** Complexity : $n^3 q^{\frac{n}{2}}$

• Better than the combinatory algorithm $(q^{3/4n})$

Modified Hybrid method

- 1 Choose an optimal k.
- Q Guess k values.
- **3** Groebner basis algorithm on m k polynomials and n 2k variables.
- Asymptotic complexity known at m/n and q fixed.

Security Estimations and Asymptotic Complexity

Asymptotic Complexity in $2^{\alpha n}$

	Class	sical	New		
q	k/n	α	k/n	α	
16	0.182	2.01	0.269	1.59	
256	0.049	2.39	0.086	2.24	

Security Estimations and Asymptotic Complexity

Asymptotic Complexity in $2^{\alpha n}$

	Class	sical	New		
q	k/n	α	k/n	α	
16	0.182	2.01	0.269	1.59	
256	0.049	2.39	0.086	2.24	

Estimating time cost

MQ-estimator

 \hookrightarrow Use asymptotic complexity, constants = 1

Exhaustive search on k

Results on Key-Recovery Cost

Key recovery cost for Biscuit (MQ-estimator v1.1.0, jan 2023)

Version		Parameters				Classical		New	
	Level	q	n	m	sec.	Т	k	Т	k
v1	I	16	64	67	160	151	11	124	17
			87	90	210	201	13	163	26
			118	121	276	266	21	215	31
v2	I	256	50	52	143	140	0	133	3
			89	92	207	232	3	222	5
	- 111		127	130	272	326	4	312	9

Forgery Attack

Forgery

Kales-Zaverucha forgery attack [Kales et al., 20].

Property for Biscuit Signature Scheme [Bettale et al., 23]

- \mathbf{s}' partial solution for m u polynomials
- Verifier accepts \mathbf{s}' with proba q^{-u}
- Time cost of the Kales-Zaverucha attack depends on this probability
- We solve a sub-system before the Kales-Zaverucha attack
- Problem: Choosing the optimal u

Forgery Attack

Interesting case

If the subsystem is underdetermined (m - u < n):

$$\blacktriangleright$$
 $t = n - (m - u)$

We can freely add t linear dependencies → We still have a solution (with great probability)

Algorithm in this case

• With
$$i \in \{1, \ldots, t\}$$
, we set $v_i(\mathbf{x}) = 0$:

$$\blacktriangleright p_i = u_i(\mathbf{x}) + v_i(\mathbf{x}) \times w_i(\mathbf{x}) \text{ becomes }:$$

$$u_i(\mathbf{x}) = 0$$
$$v_i(\mathbf{x}) = 0$$

 \hookrightarrow We have now n - 2t polynomials in n - 2t variables to solve.

Cost of Forgery

Version		Parameters						KZ attack		
		N	τ	q	n	т	sec.	Т	и	
v1	I	short	256	18	16	64	67	143	116	4
		fast	16	34					120	4
	11	short	256	30		87	90	208	162	3
		fast	16	54					163	1
	111	short	256	40		118	121	274	215	3
		fast	16	73					215	0
v2	I	short	256	18	256	50	52	143	131	4
		fast	32	28					133	0
	11	short	256	25		89	92	207	199	10
		fast	32	40				210	205	9
	111	short	256	33		127	130	272	265	16
		fast	32	53				275	271	14

Thank you !

LWE with binary error

 $A \times \mathbf{s} + \mathbf{e} = b$ with

$$\begin{pmatrix} a_{0,0} & \dots & a_{0,n-1} \\ a_{1,0} & \dots & a_{1,n-1} \\ \vdots & \ddots & \vdots \\ a_{m-1,0} & \dots & a_{m-1,n-1} \end{pmatrix} \times \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{m-1} \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{m-1} \end{pmatrix}$$

•
$$s \in \mathbb{F}_q^n$$
 the secret.

• $e \in \{0,1\}^m$ an unknown error vector.

▶ $A \in \mathbb{F}_q^{m \times n}$ and $b \in \mathbb{F}_q^m$ public.

LWE with binary error

 $A \times \mathbf{s} + \mathbf{e} = b$ with

$$\begin{pmatrix} a_{0,0} & \dots & a_{0,n-1} \\ a_{1,0} & \dots & a_{1,n-1} \\ \vdots & \ddots & \vdots \\ a_{m-1,0} & \dots & a_{m-1,n-1} \end{pmatrix} \times \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{m-1} \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{m-1} \end{pmatrix}$$

•
$$s \in \mathbb{F}_q^n$$
 the secret.

• $e \in \{0,1\}^m$ an unknown error vector.

▶ $A \in \mathbb{F}_q^{m \times n}$ and $b \in \mathbb{F}_q^m$ public.

Linear equations

$$\begin{array}{l} \alpha_i(\boldsymbol{s}) = \boldsymbol{e}_i \text{ with } 0 \leq i \leq m-1 \\ \text{And} : \\ \alpha_i(\boldsymbol{x}) = \boldsymbol{a}_{i,0} \boldsymbol{x}_0 + \dots + \boldsymbol{a}_{i,n-1} \boldsymbol{x}_{n-1} - \boldsymbol{b}_i \end{array}$$

Arora Ge

- Arora Ge: (α_i(s))(α_i(s) − 1) = 0 → Quadratic polynomial in *n* variables over 𝔽_q.
- Solve with the Hybrid method

Arora Ge

- Arora Ge: (α_i(s))(α_i(s) − 1) = 0 → Quadratic polynomial in n variables over ℝ_q.
- Solve with the Hybrid method

Our idea

► Guess an optimal k e_i → Cost : 2^k (independent of the field)

▶ solve $\mathbf{m} - \mathbf{k}$ polynomials of $\mathbf{n} - \mathbf{k}$ variables over \mathbb{F}_q .

Arora Ge

- Arora Ge: (α_i(s))(α_i(s) − 1) = 0 → Quadratic polynomial in n variables over ℝ_q.
- Solve with the Hybrid method

Our idea

Guess an optimal k e_i → Cost : 2^k (independent of the field)

▶ solve $\mathbf{m} - \mathbf{k}$ polynomials of $\mathbf{n} - \mathbf{k}$ variables over \mathbb{F}_q .

Interest

- Little improvement of the classical Arora-Ge algorithm
- Exhaustive comparison with lattice-based algorithms needed