Preliminary Cryptanalysis of the Biscuit Signature Scheme

Charles Bouillaguet, Julia Sauvage

Sorbonne Université, CNRS, LIP6
April 11, 2024

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature
- Structured algebraic equations

Biscuit

Biscuit signature scheme [Bettale et al., 23]

- Submission to the NIST competition for additional post-quantum signatures
- MPC-in-the-Head-based Signature
- Structured algebraic equations

Biscuit polynomial system

Public Key :

- m quadratic polynomials p_{i} in n variables $(m \approx n)$ over \mathbb{F}_{q}
- $p_{i}(\mathbf{x})=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x})$
- u_{i}, v_{i} and w_{i} affine forms

$$
\left(u_{i}(\mathbf{x})=a_{0} x_{0}+\cdots+a_{n-1} x_{n-1} \text { with } a_{i} \in \mathbb{F}_{q}\right)
$$

Secret Key :

- s with $p_{i}(\mathrm{~s})=0$ for $i \in\{1, \ldots, m\}$

Security of Biscuit Signature Scheme

Attacks

- Key-Recovery: Solving the system (Public Key)
- Forgery: Solving a subsystem + Kales-Zaverucha attack

Security of Biscuit Signature Scheme

Attacks

- Key-Recovery: Solving the system (Public Key)
- Forgery: Solving a subsystem + Kales-Zaverucha attack

Biscuit NIST Specification

- Combinatory algo : $q^{\frac{3}{4} n}$
- Asymptotic complexity Hybrid Method : $2^{2.01 n}$

Security of Biscuit Signature Scheme

Attacks

- Key-Recovery: Solving the system (Public Key)
- Forgery: Solving a subsystem + Kales-Zaverucha attack

Biscuit NIST Specification

- Combinatory algo : $q^{\frac{3}{4} n}$
- Asymptotic complexity Hybrid Method : $2^{2.01 n}$

New algorithms

- Direct : $n^{3} q^{\frac{n}{2}}$
- New hybrid approach: $2^{1.59 n}$

Hybrid Method and New Idea

Hybrid method [Bettale et al., 2012]

(1) Choose an optimal k.
(2) Guess the value of k variables.
(3) Groebner basis algorithm on m polynomials and $n-k$ variables.

- Asymptotic complexity known at m / n and q fixed.

Hybrid Method and New Idea

Hybrid method [Bettale et al., 2012]

(1) Choose an optimal k.
(2) Guess the value of k variables.
(3) Groebner basis algorithm on m polynomials and $n-k$ variables.

- Asymptotic complexity known at m / n and q fixed.

New idea for Biscuit-like systems

$$
p_{i}(\mathbf{x})=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x})
$$

We guess $v_{i}(\mathbf{x})=a \in \mathbb{F}_{q}$. We have now:

$$
\begin{aligned}
p_{i}(\mathbf{x}) & =u_{i}(\mathbf{x})+a \times w_{i}(\mathbf{x}) \\
v_{i}(\mathbf{x}) & =a
\end{aligned}
$$

$\hookrightarrow m-1$ polynomials in $n-2$ variables.

Attacks

Direct attack algorithm

(1) Guess $n / 2$ values
(2) Get the n linear equations
(3) Complexity: $n^{3} q^{\frac{n}{2}}$

- Better than the combinatory algorithm $\left(q^{3 / 4 n}\right)$

Attacks

Direct attack algorithm

(1) Guess $n / 2$ values
(2) Get the n linear equations
(3) Complexity: $n^{3} q^{\frac{n}{2}}$

- Better than the combinatory algorithm $\left(q^{3 / 4 n}\right)$

Modified Hybrid method

(1) Choose an optimal k.
(2) Guess k values.
(3) Groebner basis algorithm on $m-k$ polynomials and $n-2 k$ variables.

- Asymptotic complexity known at m / n and q fixed.

Security Estimations and Asymptotic Complexity

Asymptotic Complexity in $2^{\alpha n}$

	Classical		New	
q	k / n	α	k / n	α
16	0.182	2.01	0.269	1.59
256	0.049	2.39	0.086	2.24

Security Estimations and Asymptotic Complexity

Asymptotic Complexity in $2^{\alpha n}$

	Classical		New	
q	k / n	α	k / n	α
16	0.182	2.01	0.269	1.59
256	0.049	2.39	0.086	2.24

Estimating time cost

- MQ-estimator
\hookrightarrow Use asymptotic complexity, constants $=1$
- Exhaustive search on k

Results on Key-Recovery Cost

Key recovery cost for Biscuit (MQ-estimator v1.1.0, jan 2023)

Version		Parameters				Classical		New	
	Level	q	n	m	sec.	T	k	T	k
v1	I	16	64	67	160	151	11	124	17
	II		87	90	210	201	13	163	26
	III		118	121	276	266	21	215	31
v2	I	256	50	52	143	140	0	133	3
	II		89	92	207	232	3	222	5
	III		127	130	272	326	4	312	9

Forgery Attack

Forgery

- Kales-Zaverucha forgery attack [Kales et al., 20].

Property for Biscuit Signature Scheme [Bettale et al., 23]

- \mathbf{s}^{\prime} partial solution for $m-u$ polynomials
- Verifier accepts \mathbf{s}^{\prime} with proba q^{-u}
- Time cost of the Kales-Zaverucha attack depends on this probability
- We solve a sub-system before the Kales-Zaverucha attack
- Problem: Choosing the optimal u

Forgery Attack

Interesting case

If the subsystem is underdetermined $(m-u<n)$:

- $t=n-(m-u)$
- We can freely add t linear dependencies \hookrightarrow We still have a solution (with great probability)

Algorithm in this case

- With $i \in\{1, \ldots, t\}$, we set $v_{i}(\mathbf{x})=0$:
- $p_{i}=u_{i}(\mathbf{x})+v_{i}(\mathbf{x}) \times w_{i}(\mathbf{x})$ becomes:

$$
\begin{aligned}
& u_{i}(\mathbf{x})=0 \\
& v_{i}(\mathbf{x})=0
\end{aligned}
$$

\hookrightarrow We have now $n-2 t$ polynomials in $n-2 t$ variables to solve.

Cost of Forgery

Version			Parameters						KZ attack	
			N	τ	q	n	m	sec.	T	u
v1	I	short	256	18	16	64	67	143	116	4
		fast	16	34					120	4
	II	short	256	30		87	90	208	162	3
		fast	16	54					163	1
	III	short	256	40		118	121	274	215	3
		fast	16	73					215	0
v2	I	short	256	18	256	50	52	143	131	4
		fast	32	28					133	0
	II	short	256	25		89	92	207	199	10
		fast	32	40				210	205	9
	III	short	256	33		127	130	272	265	16
		fast	32	53				275	271	14

Thank you !

Generalization ?

LWE with binary error
$A \times s+e=b$ with

$$
\left(\begin{array}{ccc}
a_{0,0} & \cdots & a_{0, n-1} \\
a_{1,0} & \cdots & a_{1, n-1} \\
\vdots & \ddots & \vdots \\
a_{m-1,0} & \cdots & a_{m-1, n-1}
\end{array}\right) \times\left(\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{n-1}
\end{array}\right)+\left(\begin{array}{c}
e_{0} \\
e_{1} \\
\vdots \\
e_{m-1}
\end{array}\right)=\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{m-1}
\end{array}\right)
$$

- $s \in \mathbb{F}_{q}^{n}$ the secret.
- $e \in\{0,1\}^{m}$ an unknown error vector.
- $A \in \mathbb{F}_{q}^{m \times n}$ and $b \in \mathbb{F}_{q}^{m}$ public.

Generalization ?

LWE with binary error

$A \times s+e=b$ with

$$
\left(\begin{array}{ccc}
a_{0,0} & \cdots & a_{0, n-1} \\
a_{1,0} & \cdots & a_{1, n-1} \\
\vdots & \ddots & \vdots \\
a_{m-1,0} & \cdots & a_{m-1, n-1}
\end{array}\right) \times\left(\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{n-1}
\end{array}\right)+\left(\begin{array}{c}
e_{0} \\
e_{1} \\
\vdots \\
e_{m-1}
\end{array}\right)=\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{m-1}
\end{array}\right)
$$

- $s \in \mathbb{F}_{q}^{n}$ the secret.
- $e \in\{0,1\}^{m}$ an unknown error vector.
- $A \in \mathbb{F}_{q}^{m \times n}$ and $b \in \mathbb{F}_{q}^{m}$ public.

Linear equations

$\alpha_{i}(s)=e_{i}$ with $0 \leq i \leq m-1$
And :
$\alpha_{i}(x)=a_{i, 0} x_{0}+\cdots+a_{i, n-1} x_{n-1}-b_{i}$

Generalization?

Arora Ge

- Arora Ge: $\left(\alpha_{i}(s)\right)\left(\alpha_{i}(s)-1\right)=0$
\hookrightarrow Quadratic polynomial in n variables over \mathbb{F}_{q}.
- Solve with the Hybrid method

Generalization ?

Arora Ge

- Arora Ge: $\left(\alpha_{i}(s)\right)\left(\alpha_{i}(s)-1\right)=0$
\hookrightarrow Quadratic polynomial in n variables over \mathbb{F}_{q}.
- Solve with the Hybrid method

Our idea

- Guess an optimal $k e_{i}$
\hookrightarrow Cost: $\mathbf{2}^{k}$ (independent of the field)
- solve $\mathbf{m}-\mathbf{k}$ polynomials of $\mathbf{n}-\mathbf{k}$ variables over \mathbb{F}_{q}.

Generalization?

Arora Ge

- Arora Ge: $\left(\alpha_{i}(s)\right)\left(\alpha_{i}(s)-1\right)=0$
\hookrightarrow Quadratic polynomial in n variables over \mathbb{F}_{q}.
- Solve with the Hybrid method

Our idea

- Guess an optimal $k e_{i}$
\hookrightarrow Cost : 2^{k} (independent of the field)
- solve $\mathbf{m}-\mathbf{k}$ polynomials of $\mathbf{n}-\mathbf{k}$ variables over \mathbb{F}_{q}.

Interest

- Little improvement of the classical Arora-Ge algorithm
- Exhaustive comparison with lattice-based algorithms needed

