
Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH in Hardware

Sanjay Deshpande, James Howe, Jakub Szefer, and
Dongze (Steven) Yue

5th NIST PQC Standardization Conference
April 12, 2024

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Motivation

• Quantum Computing holds tremendous potential that
could solve complex problems that are out of reach for
current high-performance computers

• Life-saving pharmaceuticals

• Green-battery technology

• However, they also pose significant cybersecurity risks

• Can easily break existing standards of public key
cryptography

• Can jeopardize payment systems, encrypted chat, emails,
etc.

• The Quantum Insider’s report from 2022 forecasts the
quantum security market worth $10 billion by 2030

• Currently, we do not have large-scale quantum computers

• In 2023, IBM announced the 1,121-qubit quantum processor
“Condor”

• Hence, there is a need for Quantum-safe Cryptography!

• Post quantum cryptography emerges as a beacon of hope

Condor Image Source: IBM

Image Source: MIT Technology Review

2

https://caslab.io/
https://thequantuminsider.com/2023/01/05/the-quantum-insiders-2022-annual-report/
https://research.ibm.com/blog/quantum-roadmap-2033?sf184414437=1
https://research.ibm.com/blog/quantum-roadmap-2033?sf184414437=1

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

NIST Post Quantum Cryptography Standardization Effort

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

SHA-3

CAESAR

Post-Quantum
(PQC-KEM+PQC-DSA)

Lightweight

69 Public Key Post-Quantum
Cryptography Schemes
➝ multiple winners
➝ further evaluation

56 Lightweight authenticated ciphers & hash
functions
➝ 1 winner

57 authenticated ciphers
➝ multiple winners

Completed

In Progress

2007 2012

2013 2019

2016

2018

Year

TBD

51 hash functions
➝ one winner

23

2023

24

PQC
DSA

TBD2022 40 Post-Quantum
Cryptography Digital
Signature Schemes

[Gaj20]
PQC-KEM: Post Quantum Cryptography-Key Encapsulation Mechanism

PQC-DSA: Post Quantum Cryptography-Digital Signature Algorithm

1

2

3

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Outline

• Introduction
o SDitH Signature Scheme

• Hardware Design and Challenges

• Comparison with Related and Relevant Work

• Conclusion and Future Work

4

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Introduction

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH Parameter Sets

• Two Variants of the Algorithm
• Hypercube

• Threshold

• Three Security Levels

• Two Syndrome Decoding Fields
• GF256 and GF251

• d=2 splits for L3 and L5 Parameter Sets

6

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH Key Generation

ComputeS
Mat Vec

Mult and Add

Sampling Elements for ExpandH

Compute Q Compute P

Sampling
Elements

i_start o_done

ExpandSeed

Variable time due to rejection sampling

Constant time

7

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH Sign

• Only a little scope for parallelism at the
algorithm level

• Processing Message (m) input happens much
later in the algorithm
• Hence, could be divided in to Offline and Online

Parts

8

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH Sign - Offline

TREEPRG

Commit

Sampling

Hash1

ExapandSeed
2D

ExpandMPCChallenge

ComputePlainBroadCast

i_start

τ

τ

o_done

Constant time

9

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH Sign - Online

Constant time

Hash2

PartyComputation

τ x D

ExpandViewChallenge

GenerateSeedSiblingPath

τ

i_start

o_done

10

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH Verify

• Similar to sign_offline and sign_online not so
much scope for the parallelism at the
algorithmic level

• Possibility of parallelism at the
function/module level at cost of additional
hardware

• Unrolling the for loops at the cost of
duplicating modules

11

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Hardware Design and Challenges

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Hardware Design Architecture

13

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Our Contributions

• First parameterizable hardware realization of Hypercube Variant of SDitH Signature Scheme

• Two Variants of Syndrome Decoding Modules
• Sample first, then multiply

• Sample and multiply on the fly

• Split Hardware Implementation of Sign into Offline and Online phases

• Drastic Reduction in terms of Clock Cycles when compared to
• Key Generation – Up to 250x

• Signature Generation – Up to 3.4x

• Signature Verification – Up to 2.2x

14

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Syndrome Computation Module – Key Generation

• Y = sB + H’sA

• Syndrome Computation needs to be done after S (Sa, Sb) is computed by ComputeS module

• Hence, Sample First then Multiply approach (STFM)

ComputeS
Mat Vec

Mult and Add

Sampling Elements for ExpandH

Compute Q Compute P

Sampling
Elements

i_start o_done

ExpandSeed

15

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Syndrome Computation Module – Sign and Verify

• y and Sa are inputs.

• Only need H’ to compute the syndrome.

• “Sample and Multiply On the Fly” (SaMO)
approach

DSP

Block RAM

Time (µs)

Area (Slices)

0

50

100

150

L1 - STFM L1 - SaMO L1 - STFM L1 - SaMO

0 0 4 4

4.5 0.5 4.5 0.5

40
30

70 65

136

104
116

103

Comparison of Syndrome Computation – STFM vs SaMO

DSP Block RAM Time (µs) Area (Slices)
GF256 GF251

16

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Evaluate Module

• Evaluate - takes as input an Fq-vector Q representing the
coefficients of a polynomial Fq[X] and a point r ∈ Fpoints and
computes evaluation as follows:

• Evaluate is used in both sign and verify operations. It
contributes to:

• 99% of cycles of the online part of the signing

• 70%-90% of clock cycles in the verification based on the
parameter set

• ri-1 is a 32-bit modular exponentiation; it is an expensive
operation

• Software implementation (target device Intel Xeon E-2378
CPU) accomplishes this by two large look-up-tables (370 KB
to 1.5 MB for full design - based on parameter set)

• Our lightweight target, Artix 7 FPGA, does not have these
resources. Hence, we take an on-the-fly computation
approach

r0, r1, r2

Modular
Multiplication

Pipeline
Register
Stages

Control
logic

i0, i1, i2

r0
i0, r1

i1, r2
i2

17

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Signature Generation Module

• The block shown is for our area optimized
implementation of SDitH signature generation
scheme

• Signature generation is divided into two
phases offline and online – they can run in
parallel

• SHAKE256 is a hash function that is used in
both the offline and online phases

• However, SHAKE256 is area expensive 31% of
overall hardware design

• Hence, we design an optimized SHAKE
scheduler such that
• the same SHAKE module is switched between

Offline and Online phases without wasting
cycles and additional area

18

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Comparison with Related and Relevant Work

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Clock Cycles Comparison – Optimized Software v/s Our Hardware
Implementation – Hypercube Variant

22.75

59.20
54.40

0.09

17.40

24.90

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Key Generation Sign Verify

C
lo

c
k

 C
yc

le
 (

M
ill

io
n

)
Clock Cycle Comparison for

Security Level 5 – GF256

Optimized Software Implementation

Hardware Implementation (our)

Improvement

15.42

94.80 91.30

0.09

45.2

30.1

0.00

20.00

40.00

60.00

80.00

100.00

Key Generation Sign Verify

C
lo

c
k

 C
yc

le
 (

M
ill

io
n

)

Clock Cycle Comparison for
Security Level 5 – GF251

Optimized Software Implementation

Hardware Implementation (our)

Galois Field New Instructions from Intel are used

~70-99% of the clock cycles are taken in the ‘sign_online’ and ‘verify’
modules by the ‘Evaluate’ module

20

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Time Comparison – Optimized Software v/s Our Hardware
Implementation – Hypercube Variant

8.75
22.86 20.98

0.51

106.60

152.10

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Key Generation Sign Verify

T
im

e
 (

m
s

)
Time Comparison for Security

Level 5 – GF256

Optimized Software Implementation

Hardware Implementation (our)

Improvement

5.93

36.56 35.53

0.52

276.07

183.57

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Key Generation Sign Verify

T
im

e
 (

m
s

)

Time Comparison for Security
Level 5 – GF251

Optimized Software Implementation

Hardware Implementation (our)

~70-99% of the clock cycles are taken in the ‘sign_online’ and ‘verify’
modules by the ‘Evaluate’ module

Decline

Operating Frequency:
Intel Xeon Processor = 2.6 GHz
Xilinx Artix 7 FPGA = 164 MHz

21

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Sign + Verify Time (ms)

Area - LUTs (.10^3)

FlipFlops

BRAM

0

50

100

150

200

L
E

S
S

[B
W

M
+

2
3

]

S
D

it
H

-G
F

2
5

6
(o

u
r)

P
IC

N
IC

*^
[K

R
R

+
2

0
]

S
P

H
IN

C
S

+
*

[A
L

C
+

2
0

]

C
R

Y
S

T
A

L
S

-
D

il
it

h
iu

m
[Z

Z
W

+
2

1
]

51.8

94.02

0.49
12.47

0.34

54.80
16.50

90.33

48.23
29.99

39.90
14.96 23.11

72.51

10.34

59.50

164.50

52.50

11.50 11.00

Sign + Verify Time (ms) Area - LUTs (.10^3) FlipFlops BRAM

Comparison with other PQC-DSA candidates – Security Level 1

Latest NIST
Competition
Candidates

Old NIST
Competition
Candidates

*No KeyGen
^Low Multiplication Complexity

22

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Conclusion and Future Work

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Conclusion

• This work presents first hardware realization of SDitH Signature Scheme.
• Parameterizable across three Security Levels and Two Arithmetic Fields.

• SDitH could be realized as a light-weight implementation. However, the memory consumption is
higher.

24

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Future Work

• The lower-level modules implemented as part of this work could be used to construct the
‘threshold’ variant of SDitH easily.

• Module level parallelism could be exploited to build a high-performance design which could
speed-up the sign and verify operations.

• The MPC hardware modules’ components could be reused outside SDitH.

25

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

References

[Gaj20] Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum
Cryptography Standardization Process Using FPGAs, NIST Seminars, Oct 2020.

[BWM+23] Luke Beckwith, Robert Wallace, Kamyar Mohajerani, and Kris Gaj. A high-performance
hardware implementation of the less digital signature scheme. In Thomas Johansson and Daniel Smith-
Tone, editors, Post-Quantum Cryptography, pages 57–90, Cham, 2023. Springer Nature Switzerland.

[KRR+20] Daniel Kales, Sebastian Ramacher, Christian Rechberger, Roman Walch, and Mario Werner.
Efficient FPGA implementations of lowmc and picnic. In Stanislaw Jarecki, editor, Topics in Cryptology –
CT-RSA 2020, pages 417–441, Cham, 2020. Springer International Publishing.

[ZZW+23] Cankun Zhao, Neng Zhang, Hanning Wang, Bohan Yang, Wenping Zhu, Zhengdong Li, Min Zhu,
Shouyi Yin, Shaojun Wei, and Leibo Liu. A compact and high-performance hardware architecture for
CRYSTALS-Dilithium. IACR Transactions on Cryptographic Hardware and Embedded
Systems,2022(1):270–295, Nov. 2021.

[ALC+20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. Fpga-based sphincs+
implementations: Mind the glitch. In 2020 23rd Euromicro Conference on Digital System Design (DSD),
pages 229–237, 2020.

26

https://caslab.io/

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Thank you!

Sanjay Deshpande, James Howe, Jakub Szefer, and Dongze Yue, "SDitH in
Hardware", in Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), September 2024.

Sanjay Deshpande
email: sanjay.deshpande@yale.edu

https://ia.cr/2024/069

https://caslab.io/
https://ia.cr/2024/069

	Slide 1: SDitH in Hardware
	Slide 2: Motivation
	Slide 3: NIST Post Quantum Cryptography Standardization Effort
	Slide 4: Outline
	Slide 5: Introduction
	Slide 6: SDitH Parameter Sets
	Slide 7: SDitH Key Generation
	Slide 8: SDitH Sign
	Slide 9: SDitH Sign - Offline
	Slide 10: SDitH Sign - Online
	Slide 11: SDitH Verify
	Slide 12: Hardware Design and Challenges
	Slide 13: Hardware Design Architecture
	Slide 14: Our Contributions
	Slide 15: Syndrome Computation Module – Key Generation
	Slide 16: Syndrome Computation Module – Sign and Verify
	Slide 17: Evaluate Module
	Slide 18: Signature Generation Module
	Slide 19: Comparison with Related and Relevant Work
	Slide 20: Clock Cycles Comparison – Optimized Software v/s Our Hardware Implementation – Hypercube Variant
	Slide 21: Time Comparison – Optimized Software v/s Our Hardware Implementation – Hypercube Variant
	Slide 22: Comparison with other PQC-DSA candidates – Security Level 1
	Slide 23: Conclusion and Future Work
	Slide 24: Conclusion
	Slide 25: Future Work
	Slide 26: References
	Slide 27: Thank you!

