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Motivation

• Quantum Computing holds tremendous potential that 
could solve complex problems that are out of reach for 
current high-performance computers   

• Life-saving pharmaceuticals

• Green-battery technology

• However, they also pose significant cybersecurity risks

• Can easily break existing standards of public key 
cryptography

• Can jeopardize payment systems, encrypted chat, emails, 
etc.

• The Quantum Insider’s report from 2022 forecasts the 
quantum security market worth $10 billion by 2030

• Currently, we do not have large-scale quantum computers

• In 2023, IBM announced the 1,121-qubit quantum processor 
“Condor”

• Hence, there is a need for Quantum-safe Cryptography!

• Post quantum cryptography emerges as a beacon of hope

Condor Image Source: IBM

Image Source: MIT Technology Review
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NIST Post Quantum Cryptography Standardization Effort
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functions
➝ 1 winner

57 authenticated ciphers
➝ multiple winners

Completed

In Progress

2007 2012

2013 2019

2016

2018

Year

TBD

51 hash functions
➝ one winner

23

2023

24

PQC
DSA

TBD2022 40 Post-Quantum 
Cryptography Digital 
Signature Schemes

[Gaj20]
PQC-KEM: Post Quantum Cryptography-Key Encapsulation Mechanism

PQC-DSA: Post Quantum Cryptography-Digital Signature Algorithm
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Outline

• Introduction
o SDitH Signature Scheme

• Hardware Design and Challenges

• Comparison with Related and Relevant Work

• Conclusion and Future Work
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SDitH Parameter Sets

• Two Variants of the Algorithm
• Hypercube

• Threshold

• Three Security Levels

• Two Syndrome Decoding Fields
• GF256 and GF251

• d=2 splits for L3 and L5 Parameter Sets
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SDitH Key Generation

ComputeS
Mat Vec 

Mult and Add 

Sampling Elements for ExpandH

Compute Q Compute P

Sampling 
Elements

i_start o_done

ExpandSeed

Variable time due to rejection sampling

Constant time
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SDitH Sign

• Only a little scope for parallelism at the 
algorithm level

• Processing Message (m) input happens much 
later in the algorithm
• Hence, could be divided in to Offline and Online 

Parts
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SDitH Sign - Offline
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SDitH Sign - Online
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SDitH Verify

• Similar to sign_offline and sign_online not so 
much scope for the parallelism at the 
algorithmic level

• Possibility of parallelism at the 
function/module level at cost of additional 
hardware 

• Unrolling the for loops at the cost of 
duplicating modules 
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Hardware Design Architecture
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Our Contributions

• First parameterizable hardware realization of Hypercube Variant of SDitH Signature Scheme

• Two Variants of Syndrome Decoding Modules
• Sample first, then multiply

• Sample and multiply on the fly

• Split Hardware Implementation of Sign into Offline and Online phases

• Drastic Reduction in terms of Clock Cycles when compared to 
• Key Generation – Up to 250x

• Signature Generation – Up to 3.4x

• Signature Verification – Up to 2.2x
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Syndrome Computation Module – Key Generation 

• Y = sB + H’sA

• Syndrome Computation needs to be done after S (Sa, Sb) is computed by ComputeS module

• Hence, Sample First then Multiply  approach (STFM) 

ComputeS
Mat Vec 

Mult and Add 

Sampling Elements for ExpandH

Compute Q Compute P

Sampling 
Elements

i_start o_done

ExpandSeed
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Syndrome Computation Module – Sign and Verify

• y and Sa are inputs.

• Only need H’ to compute the syndrome.

• “Sample and Multiply On the Fly” (SaMO) 
approach
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Evaluate Module

• Evaluate - takes as input an Fq-vector Q representing the 
coefficients of a polynomial Fq[X] and a point r ∈ Fpoints and 
computes evaluation as follows:

• Evaluate is used in both sign and verify operations. It 
contributes to: 

• 99% of cycles of the online part of the signing

• 70%-90% of clock cycles in the verification based on the 
parameter set

• ri-1  is a 32-bit modular exponentiation; it is an expensive 
operation

• Software implementation (target device Intel Xeon E-2378 
CPU) accomplishes this by two large look-up-tables (370 KB 
to 1.5 MB for full design - based on parameter set)

• Our lightweight target, Artix 7 FPGA, does not have these 
resources. Hence, we take an on-the-fly computation 
approach

r0, r1, r2

Modular
Multiplication

Pipeline 
Register
Stages

Control 
logic

i0, i1, i2

r0
i0, r1

i1, r2
i2
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Signature Generation Module

• The block shown is for our area optimized 
implementation of SDitH signature generation 
scheme

• Signature generation is divided into two 
phases offline and online – they can run in 
parallel

• SHAKE256 is a hash function that is used in 
both the offline and online phases 

• However, SHAKE256 is area expensive 31% of 
overall hardware design

• Hence, we design an optimized SHAKE 
scheduler such that 
• the same SHAKE module is switched between 

Offline and Online phases without wasting 
cycles and additional area
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Clock Cycles Comparison – Optimized Software v/s Our Hardware 
Implementation – Hypercube Variant
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Time Comparison – Optimized Software v/s Our Hardware 
Implementation – Hypercube Variant 
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Sign + Verify Time (ms)
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Conclusion

• This work presents first hardware realization of SDitH Signature Scheme.
• Parameterizable across three Security Levels and Two Arithmetic Fields.

• SDitH could be realized as a light-weight implementation. However, the memory consumption is 
higher.
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Future Work

• The lower-level modules implemented as part of this work could be used to construct the 
‘threshold’ variant of SDitH easily.

• Module level parallelism could be exploited to build a high-performance design which could 
speed-up the sign and verify operations.

• The MPC hardware modules’ components could be reused outside SDitH.

25

https://caslab.io/


Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

References

[Gaj20] Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum
Cryptography Standardization Process Using FPGAs, NIST Seminars, Oct 2020.

[BWM+23] Luke Beckwith, Robert Wallace, Kamyar Mohajerani, and Kris Gaj. A high-performance
hardware implementation of the less digital signature scheme. In Thomas Johansson and Daniel Smith-
Tone, editors, Post-Quantum Cryptography, pages 57–90, Cham, 2023. Springer Nature Switzerland.

[KRR+20] Daniel Kales, Sebastian Ramacher, Christian Rechberger, Roman Walch, and Mario Werner.
Efficient FPGA implementations of lowmc and picnic. In Stanislaw Jarecki, editor, Topics in Cryptology –
CT-RSA 2020, pages 417–441, Cham, 2020. Springer International Publishing.

[ZZW+23] Cankun Zhao, Neng Zhang, Hanning Wang, Bohan Yang, Wenping Zhu, Zhengdong Li, Min Zhu,
Shouyi Yin, Shaojun Wei, and Leibo Liu. A compact and high-performance hardware architecture for
CRYSTALS-Dilithium. IACR Transactions on Cryptographic Hardware and Embedded
Systems,2022(1):270–295, Nov. 2021.

[ALC+20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. Fpga-based sphincs+
implementations: Mind the glitch. In 2020 23rd Euromicro Conference on Digital System Design (DSD),
pages 229–237, 2020.

26

https://caslab.io/


Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Thank you!

Sanjay Deshpande, James Howe, Jakub Szefer, and Dongze Yue, "SDitH in 
Hardware", in Transactions on Cryptographic Hardware and Embedded Systems 
(TCHES), September 2024.
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