SDitH in Hardware @3

Sanjay Deshpande, James Howe, Jakub Szefer, and
Dongze (Steven) Yue

5t NIST PQC Standardization Conference
April 12,2024

Computer Architecture

a“.‘,ﬁ_i;:_i
/ - and Security Lab (CASLAB) s A N D B o x
/

https://caslab.io



https://caslab.io/

Motivation

* Quantum Computing holds tremendous potential that
could solve complex problems that are out of reach for
current high-performance computers

» Life-saving pharmaceuticals
» Green-battery technology

« However, they also pose significant cybersecurity risks
» Can easily break existing standards of public key

cryptography
» Can jeopardize payment systems, encrypted chat, emails,
etc.
« The Quantum Insider’s report from 2022 forecasts the e BB
quantum security market worth $10 billion by 2030 SCALE | YIELD

» Currently, we do not have large-scale quantum computers
* In 2023, IBM announced the 1,121-qubit quantum processor
“Condor”
» Hence, there is a need for Quantum-safe Cryptography!
» Post quantum cryptography emerges as a beacon of hope

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Condor Image Source: IBM S A N D B 0 x



https://caslab.io/
https://thequantuminsider.com/2023/01/05/the-quantum-insiders-2022-annual-report/
https://research.ibm.com/blog/quantum-roadmap-2033?sf184414437=1
https://research.ibm.com/blog/quantum-roadmap-2033?sf184414437=1

NIST Post Quantum Cryptography Standardization Effort

51 hash functions
— one winner

2007 ; ;| 2012 Completed
SHA-3 In Progress
! ! ! ! ! 52013 520i9 i
57 authenticated ciphers ' ' ' ' i
! i— multiple winners CAESAR i
N . L ERT T T by P Guan
Standards and Technology i i i i i i i i b Post-Quantum i O Cryptografphy S.chemes
0004 bbb (PQC-KEM+PQC-DSA) | N — multiple winners
1! ! ! ! — further evaluation
' "'"20'18'?"5"‘:"202‘3 """""""""
56 nghtwelght authentlcated C|phers & hash !
. functions 5 nghtwelght
— 1 winner: T
i L |2022 TBD 40 Post-Quantum
:I PQC Cryptography Digital
:_ DSA Signature Schemes
07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  Year 3

] Computer Architecture H
and Security Lab (CASLAB) [G aJ 2 0]

https://caslab.io PQC-KEM: Post Quantum Cryptography-Key Encapsulation Mechanism
PQC-DSA: Post Quantum Cryptography-Digital Signature Algorithm

SANDBOX


https://caslab.io/

Outline

Introduction
o SDitH Signature Scheme

Hardware Design and Challenges

Comparison with Related and Relevant Work

Conclusion and Future Work

Computer Architecture

E and Security Lab (CASLAB) S A N D B 0 X

https://caslab.io



https://caslab.io/

Introduction

N

Computer Architecture

! 2y
f - and Security Lab (CASLAB) s A N D B o x
/

https://caslab.io



https://caslab.io/

SDitH Parameter Sets

Two Variants of the Algorithm
» Hypercube
» Threshold

Three Security Levels

Two Syndrome Decoding Fields
* GF256 and GF251

d=2 splits for L3 and L5 Parameter Sets

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

SDitH NIST Security Categories
Parameters L1 L3 L5
© % NIST Security Level 143 207 272
% 'q;) A (Security Target) 128 192 256
B & NP (# Secret Shares) 28 28 2
A g 7 (Repetition Rate) 17 26 34
¢ (SD Base Field Size) 951/256  251/256  251/256
% E m (Code Length) 230 352 480
= 18) k (Vector Dimension) 126 193 278
(% o w (Hamming Weight Bound) 79 120 150
d (d Splitting Size) 1 2 2
5 E t (# Random evaluation points) 3 3 4
5% F, (SD base field) F, F, F,
5 é n (Field extension size) 4 4 4
i g Fpoints (Field extension of ) Fyn Fyn Fyn
= O p (False positive probability) g =i g has
2 . pk Size (in Bytes) 120 183 234
g;ﬁ sk Size (in Bytes) 404 616 812
©) Max Signature Size (in Bytes) 8 260 19 206 33 448
SANDBOX


https://caslab.io/

SDitH Key Generation

Algorithm 1 SDitH — Key Generation

seed oot + {0, 1}

(seedyit, seedy ) < ExpandSeed(salt := 0, seed,oot, 2)
(@Q, S, P) «+ SampleWitness(seed,yit)

s = Serialize(S)

(sa,sp) = Parse(s,Fr, FI—F)

H’ <+ ExpandH(seedp)

y=sp+ H'sy

Q' = TruncateQ(Q)

wit_plain = Serialize(s 4, Q’, P)

return (pk = (seedy,y), sk = (seedy, y, wit_plain))

© PN R

—
<

ExpandSeed

Sampling
Elements

Sampling Elements for ExpandH

Compute Q Compute P
ComputeS

Mat Vec |
Mult and Add

i_start o_done

I:I Variable time due to rejection sampling

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io I:I Constant time

SANDBOX


https://caslab.io/

SDitH Sign

Algorithm 10 SD-in-the-Head — Hypercube Variant — Signature Algorithm

Input: a secret key sk = (seedy, y. wit_plain) and a message m € {0,1}"
1: salt + {0, 1}
2: mseed + {0,1}*

. . _; H' + ExpandH(seed ) ‘ > H' € H,Slrz~k-)x:
* Only a little scope for parallelism at the b ]y ottt .7 e

6: (seed [e] [i]);c(1:90) ¢~ TreePRG(salt, rseed [e])
k+2w-+t(2d+1
acc=0 b acc € Fit2wtt2d+l)y

8: input-mshare[e] [p] = 0 for all (e,p) € [1: 7] x [1: D]
9

* Processing Message (m) input happens much o fori<(1:27]do

algorithm level

> input_mshare [e] [i] € F5+2"+t(2dﬂ)’7

. . 11: if i # 2P then
| aterin 'th e a | g orit h m 12: input_share[e] (] « SampleFieldElements(salt, seed [e] [, k + 2w + £(2d + 1))
13: > input_share [¢] [i] € Fy 2w+
o e o . . 14: acc += input_share[e] []
« Hence, could be divided in to Offline and Online ctotele] 01 = seed(e] i
16: for p € [1: D] : the p' bit of i — 1 is zero, do
Pa rtS 17: input_mshare [e] [p] += input_share[e] [i]
18: else
19: acc_wit, acc_beav_ab, acc_beav_c = acc
20: beav_ab_plain[e] = acc_beav_ab + SampleFieldElements(salt, seed [e] [i], 2dtn)
21: beav_c_plain[e] = beav_c_plain +- InnerProducts(beav_ab_plain) pa-b=c
22: aux[e] = (wit_plain — acc_wit, beav_c_plain[e] — acc_beav_c) > aux[e] € ]FZ““'“"
23: state[e] [i] = (seed [e] [i],aux[e])
24: com[e] [i] = Commit(salt, e, i,state[e] [i])
25: hy = Hash, (seedy, ¥, salt,com[1] [1],..., com[7][2P])
26: (chal[e]).¢1.r) < ExpandMPCChallenge(hy,7)
27: for e € [1: 7] do

28: input_plain [e] = (wit_plain, beav_ab_plain [e], beav_c_plain[e])
29: broad_plain [e] + ComputePlainBroadcast(input_plain[e],chal[el, (H',y))
30: for p € [1: D] do

31 broad_share[e] [p] = PartyComputation(input_mshare [e] [p], chal[e],
32: (H',y), broad_plain [¢],False)
33: & broad_share [e] [p] € F24+1

[34: ho = Hashy(m, salt, hy, {broad_plain [e], {broad_share [e] [p] },c(1.0 beci1r])- )
: {i" el }ee(1:7) ¢ ExpandViewChallenge(ho, 1).

36: for e € [1: 7] do

37 path [e] < GetSeedSiblingPath(rseed [e],i* [e]).

38 if i*[e] = 2" then

&

39: view [e] = path[e]
40: else
41: view[e] = (path[e],aux[e])

42: 0= (salt | ho | (view[e], broad_plain[e],com [e] [i* [e]] ),kgll:,])
43: return o

Computer Architecture

and Security Lab (CASLAB) s A N D B o x

https://caslab.io



https://caslab.io/

SDitH Sign - Offline

Algorithm 2a SDitH — Hypercube Variant — Signature Generation (Offline Part)

Input: a secret key sk = (seedy, y, wit_plain) and a message m € {0,1}*

1: salt + {0,1}?*, mseed + {0, 1}*
2: H' + ExpandH(seedy)

3: {rseed[e] }.c(1:7] + ExpandSeed(salt, mseed, 7)

4: foree [1:7] do

5 (seed [e] [1]);e1:20) + TreePRG(salt, rseed [e])

6: acc=10

7: input_mshare[e] [p] = 0 for all (e,p) € [1: 7] x [1: D]

8: forie [1:2P] do

9: if i # 2P then

10 input_share[e] [i] < SampleFieldElements(salt, seed [e] [i], k + 2w + t(2d + 1)n)

142

12: acc += input_share[e] [7]

13: state[e] [i] = seed [e] []

14: for p € [1: D] : the p'* bit of i — 1 is zero, do

15: input_mshare[e] [p] += input_share[e] [i]

16: else

17: acc_ wit, acc_beav_ab, acc_beav_c = acc

18: beav_ab_plain[e] = acc_beav_ab + SampleFieldElements(salt, seed [e] [i], 2dtn)

19:

20: beav_c_plain[e] = beav_c_plain < InnerProducts(beav_ab_plain)

T 21: aux[e]l = (wit_plain — acc_ wit, beav_c_plain[e] — acc_beav_c)
PN 22: state[e] [i] = (seed[e] [i],aux[e])
ExapandSeed | 2D 23: com[e] [7] = Commit(salt, e, i, state [e] [i])
TREEPRG I,_)% 24: hy = Hash, (seedp, y,salt,com[1] [1],...,com[7] [2P])
; 25: (challel)ce1:r) + ExpandMPCChallenge(h1, 7)
| Sampling 26: for e € [1: 7] do
Commit 27: input_plain [e] = (wit_plain, beav_ab_ plain [e], beav_c_plain[el)
28: broad_plain[e] < ComputePlainBroadcast(input_plain[e],chal[el, (H',y))
Hash1 =
ExpandMPCChallenge | A 5
ComputePlainBroadCast
| | | >
| | |
1_start
o_done

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

I:I Constant time

SANDBOX


https://caslab.io/

SDitH Sign - Online

Algorithm 2b SDitH — Hypercube Variant — Signature Generation (Online Part)

29: fore€ [1:7| do
30: forpe[l: D] do

31 broad_share[e] [p] = PartyComputation(input_mshare[e] [p], chal[e],
(H',y),broad_plain[e],False)
33: hp = Hashy(m, salt, hy, {broad_plain[e], {broad_share[e] [p] },c1:p] fec(1:7])

34: {i*[e]}ecqii) < ExpandViewChallenge(hg, 1)

32:

35: fore € [1: 7] do

36: path[e] < GetSeedSiblingPath(rseed [e],i* [e])
37: if i* [e] = 2" then

38: view [e] = path [e]
39: else
40: view [e] = (path[el, aux[e])

41: return o = (salt | ho | (view[e], broad_plain[e], com [e] [i* [e]] )ee[l:ﬂ)

™xD
A
s N
PartyComputation
Hash2 T
ExpandViewChallenge A N
GenerateSeedSiblingPath
| | | >
| |
i_start

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

I:I Constant time

o_done

SANDBOX

10


https://caslab.io/

SDitH Verify

Similar to sign_offline and sign_online not so
much scope for the parallelism at the
algorithmic level

Possibility of parallelism at the
function/module level at cost of additional
hardware

Unrolling the for loops at the cost of
duplicating modules

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

Algorithm 7 SDitH — Hypercube Variant — Verification Algorithm

Input: a public key pk = (seedy, y), a signature o and a message m € {0,1}*
1: Parse o as (salt | ha | (view [e], broad_plain[e], com[e] [i* [e]] )E,E[,:T])
2: H' + ExpandH(seed)

3 {i* [e) eep:r) + ExpandViewChallenge(ha, 1)

4: foree [1:7| do

5: (seed [e] [i])ic(1:00\i 11 ¢ GetLeavesFromSiblingPath(i* [e],salt, path [e])
6:  forie {2P0\i*[e]} do

T if i # 2P then

8: state[e] [i] = seed[e] [i]

9: else

10: state[e] [i] = (seed [e] [i], aux[e])
11: com [e] [i] = Commit(salt, ¢, i, state [e] [i])
12: hy = Hash; (seed;, y, salt,com [1]1 [1], ..., com[7] [QD])

13: chal < ExpandMPCChallenge(hy, 7)

14: for e € [1:7] do

15: input_mshare” [¢] [p] = 0 for all (e,p) € [1: 7] x [L: D]
16: for i € [1:2P\i*[e]] do

17 if i # 2P then

18: input_share [e] [i] + SampleFieldElements(salt, seed [e] [i], k + 2w + t(2d + 1)n)

19:

20: else

21: beav_ab_plain [¢] [2P] = SampleFieldElements(salt, seed [e] [27], 2dtn)

22:

23: input_share [e] [2P] = (aux[e] | beav_ab_plain[e] [27])

24: for p € [1: D] : the p*™ bit of i — 1 and i* [e] are different do

25: input_mshare’ [¢] [p] += input_share[e] [i]

26: for pe[1: D] do

27: if the p™ bit of i* [e] is 1 then

28: broad_share[¢] [p] = PartyComputation(input_mshare’ [e] [p], chal,

29: (H',y), broad_plain, False)

30: else

31: broad_share[e] [p] = broad_plain [e] — PartyComputation(input_mshare’ [¢] [p]. chal,
32: (H',y), broad_plain, True)
33:

34: hy = Hasha(m, salt, iy, {broad_plain[e], {broad_share[e] [p] }pe(1:p) Feei:r])-

35: return ho = bl

11
SANDBOX


https://caslab.io/

Hardware Design and Challenges

N

Computer Architecture

! 2y
f - and Security Lab (CASLAB) s A N D B o x
/

https://caslab.io



https://caslab.io/

Hardware Design Architecture

_ . 13
@ ComputerArchztecture ) \
dS ity Lab (CASLAB
" :tiupfsl:ty[[c:slab.io § S A N D B ox AQ


https://caslab.io/

Our Contributions

First parameterizable hardware realization of Hypercube Variant of SDitH Signature Scheme

Two Variants of Syndrome Decoding Modules
« Sample first, then multiply
« Sample and multiply on the fly

Split Hardware Implementation of Sign into Offline and Online phases

Drastic Reduction in terms of Clock Cycles when compared to
» Key Generation — Up to 250x
» Signature Generation — Up to 3.4x
« Signature Verification — Up to 2.2x

14

Computer Architecture

4 | and Security Lab (CASLAB) S A N D B o X

https://caslab.io



https://caslab.io/

Syndrome Computation Module — Key Generation

| ExpandSeed
R Sampling Elements for ExpandH
Compute Q Compute P
ComputeS
Mat Vec
Mult and Add
I | | | s
! | | ! !
i_start o_done

* Y=s5+H'’s,
« Syndrome Computation needs to be done after S (Sa, Sb) is computed by ComputeS module
« Hence, Sample First then Multiply approach (STFM)

15

Computer Architecture

- and Security Lab (CASLAB) S A N D B 0 X
: https://caslab.io



https://caslab.io/

Syndrome Computation Module — Sign and Verify

Algorithm 2a SDitH — Hypercube Variant — Signature Generation (Offline Part)

Input: a secret key sk = (seedy, y, wit_plain) and a message m € {0,1}*
L salt « {0.1}** mseed « {0.1}*

I 2: H' + ExpandH(seeds) I

Algorithm 4 ComputePlainBroadcast

Input: input_plain := (wit_plain, beav_ab_plain, beav_c_plain), chal, (H',y)
Output: broad_plain

: (s4,Q, P) + Parse(wit_plain, ]Fff,, (F;J/d)d, (]F:;'/d)‘l)

. (@, b) « Parse(beav_ab_plain, (F{,)")

: ¢ ¢ Parse(beav_c_plain, Ft, )

: (r,e) « Parse(chal, F?,, (F4,)t)

cs=(sa|y+ H'sa) |
. @ = CompleteQ(Q', 1)

S « Parse(s, (Fi"/")?)

: for je[l:t] do

for v € [1:d| do

10: ali1 ] = elj1 [v] ® Evaluate(Q [v1,7[j1) + a[j1 [»]

11: A1 [v] = Evaluate(S [+, r[j1) + b[j]1 [v]

12: broad_plain = Serialize(a, 3)

13: return broad_plain

o - O[T W o =

@

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

« yand S, are inputs.
* Only need H’to compute the syndrome.

 “Sample and Multiply On the Fly” (SaMO)
approach

Comparison of Syndrome Computation — STFM vs SaMO

103
150
100
Area (Slices)
50 4.5 05 Time (ps)
A A Block RAM
0 4 Ay DSP

L1-STFM L1-SaMO L1-STFM L1-SaMO

GF256 GF251
mDSP mBlock RAM ® Time (ps) Area (Slices)

16
SANDBOX


https://caslab.io/

Evaluate Module

- Evaluate - takes as input an F-vector Q representing the

coefficients of a polynomial F [X] and a point r € F,; s and

computes evaluation as follows:

U|Q‘(F(])|Q| x Fqn — ]qu,n

Evaluate : Q! . i—1
(@Q.7) =25 QU -t

i — 1 times

« Evaluate is used in both sign and verify operations. It
contributes to:

* 99% of cycles of the online part of the signing

» 70%-90% of clock cycles in the verification based on the
parameter set

« 11 is a 32-bit modular exponentiation; it is an expensive
operation

« Software implementation (target device Intel Xeon E-2378
CPU) accomplishes this by two large look-up-tables (370 KB
to 1.5 MB for full design - based on parameter set)

* Our lightweight target, Artix 7 FPGA, does not have these
resources. Hence, we take an on-the-fly computation
approach

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

where " l=r@re..-@r .
S— ———

I, Iy, I3 N

Modular
| Multiplication

Pipeline
—— Register
Stages

v

g, Iqh, Tk

17
SANDBOX


https://caslab.io/

Signature Generation Module

. »done sign offline
start — control logic o=
) »done sign online

A
i memory

 The block shown is for our area optimized | buffer
implementation of SDitH signature generation  sait ’ —

> h2

— 11

SCheme wit  plain—
 Signature generation is divided into two Seed—h——l
phases offline and online — they can run in ¥

input__

; Online
1 1\

Sign mshare Sign
parallel Ofine ' :
« SHAKE256 is a hash function that is used in | >broad_plain
both the offline and online phases ceed ]
* However, SHAKE256 is area expensive 31% of SHAKE SCHEDULER
overall hardware design t
* Hence, we design an optimized SHAKE
scheduler such that | SHARE
* the same SHAKE module is switched between .\ o N e
Offline and Online phases without wasting sgn_ofine Cm X me Y e Y ma )Y e Y
cycles and additional area = === )i
shake_scheduler X sign_offline X sign_offline Xsign_onlineX sign_offline Xsign_onlinex 18

Computer Architecture

and Security Lab (CASLAB) S A N D B 0 X
https://caslab.io



https://caslab.io/

Comparison with Related and Relevant Work

N

Computer Architecture

! 2y
f - and Security Lab (CASLAB) s A N D B o x
/

https://caslab.io



https://caslab.io/

Clock Cycles Comparison — Optimized Software v/s Our Hardware
Implementation — Hypercube Variant

Clock Cycle Comparison for Clock Cycle Comparison for
Security Level 5 — GF256 Security Level 5 — GF251
70.00 100.00 94.80 91.30
= 60.00 >9-20 54.40 =
S ' S 80.00
§ 50.00 E
= £ 60.00
5 40.00 P
(@) (@)
& 30.00 @ & 40.00
% 20.00 ,Lgs* x
-2 S 20.00
© 0.09 ©
0.00 0.00
Key Generation Sign Verify Key Generation Sign Verify
m Optimized Software Implementation m Optimized Software Implementation
m Hardware Implementation (our) m Hardware Implementation (our)

O Galois Field New Instructions from Intel are used

Improvement
R Comouter Architectre ~70-99% of the clock cycles are taken in the ‘sign_online’ and ‘verify’ 20
and Security Lab ( ) ! ’
SecurityLab (CASLAZ modules by the ‘Evaluate’ module SANDBOX



https://caslab.io/

Time Comparison — Optimized Software v/s Our Hardware
Implementation — Hypercube Variant Operating Frequency:

Intel Xeon Processor = 2.6 GHz
Xilinx Artix 7 FPGA = 164 MHz

Time Comparison for Security N Time Comparison for Security
Level 5 - GF256 o Level 5 — GF251
160.00 G 300.00 ABh
140.00 ot Q- A+
' 250.00 0.
120.00 106.60
Z 100.00 - % 200.00
£ ' =
g 80.00 g 150.00
= 0000 AN = 100.00 e
gg'gg 8.75 ; - 2098 50.00 W 3656 35.53
' ' ~0.51 9.930.52
0.00 [ . . 0.00 R— . .
Key Generation Sign Verify Key Generation Sign Verify
m Optimized Software Implementation m Optimized Software Implementation
m Hardware Implementation (our) m Hardware Implementation (our)

Improvement

R0 comoue Arhectre ~70-99% of the clock cycles are taken in the ‘sign_online’ and ‘verify’ Decline 21
and Security Lab (CASLAB) modules by the ‘Evaluate’ module SANDBOX

https://caslab.io



https://caslab.io/

Comparison with other PQC-DSA candidates — Security Level 1

200
150
100

50

*No KeyGen
ALow Multiplication Complexity

Computer Architecture
and Security Lab (CASLAB)

https://caslab.io

m Sign + Verify Time (ms) mArea-LUTs (.10*3)  mFlipFlops BRAM

' ‘ BRAM
* FlipFlops
Area - LUTs (.1073)

12.47
—' - —' Sign + Verify Time (ms)

'('T" o 5 .6‘ .k [p— / [p—
o & 5 g &% JET
ns o) Zx Sh <25
L O 5 O 20 = 5 ;
- 2 = o X T - PER

Q = = a < xAaN

a 7] o
1 ?
J \ J
Y Y
Latest NIST Old NIST
Competition Competition

Candidates Candidates

-

22
*. SANDBOXAC:


https://caslab.io/

Conclusion and Future Work

N

Computer Architecture

! 2y
f - and Security Lab (CASLAB) s A N D B o x
/

https://caslab.io



https://caslab.io/

Conclusion

« This work presents first hardware realization of SDitH Signature Scheme.
« Parameterizable across three Security Levels and Two Arithmetic Fields.

« SDitH could be realized as a light-weight implementation. However, the memory consumption is
higher.

24

Computer Architecture

/(= .§ | and Security Lab (CASLAB) S A N D B 0 X

https://caslab.io



https://caslab.io/

Future Work

* The lower-level modules implemented as part of this work could be used to construct the
‘threshold’ variant of SDitH easily.

« Module level parallelism could be exploited to build a high-performance design which could
speed-up the sign and verify operations.

* The MPC hardware modules’ components could be reused outside SDitH.

25

Computer Architecture

4 | and Security Lab (CASLAB) S A N D B o X

https://caslab.io



https://caslab.io/

References

[Gaj20] Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum
Cryptography Standardization Process Using FPGAs, NIST Seminars, Oct 2020.

[BWM+23] Luke Beckwith, Robert Wallace, Kamyar Mohajerani, and Kris Gaj. A high-performance
hardware implementation of the less digital signature scheme. In Thomas Johansson and Daniel Smith-
Tone, editors, Post-Quantum Cryptography, pages 57-90, Cham, 2023. Springer Nature Switzerland.

[KRR+20] Daniel Kales, Sebastian Ramacher, Christian Rechberger, Roman Walch, and Mario Werner.
Efficient FPGA implementations of lowmc and picnic. In Stanislaw Jarecki, editor, Topics in Cryptology —
CT-RSA 2020, pages 417-441, Cham, 2020. Springer International Publishing.

[ZZW+23] Cankun Zhao, Neng Zhang, Hanning Wang, Bohan Yang, Wenping Zhu, Zhengdong Li, Min Zhu,
Shouyi Yin, Shaojun Wei, and Leibo Liu. A compact and high-performance hardware architecture for
CRYSTALS-Dilithium. IACR  Transactions on  Cryptographic = Hardware and Embedded
Systems,2022(1):270-295, Nov. 2021.

[ALC+20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden. Fpga-based sphincs+
implementations: Mind the glitch. In 2020 23rd Euromicro Conference on Digital System Design (DSD),
pages 229-237, 2020.

26

Computer Architecture

and Security Lab (CASLAB) S A N D B o x

https://caslab.io



https://caslab.io/

Sanjay Deshpande, James Howe, Jakub Szefer, and Dongze Yue, "SDitH in
Hardware", in Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), September 2024.

https://ia.cr/2024/069

Thank you!

Sanjay Deshpande
email: sanjay.deshpande@yale.edu

Computer Architecture

*‘ and Security Lab (CASLAB) s A N D B o x

https://caslab.io



https://caslab.io/
https://ia.cr/2024/069

	Slide 1: SDitH in Hardware
	Slide 2: Motivation
	Slide 3: NIST Post Quantum Cryptography Standardization Effort
	Slide 4: Outline
	Slide 5: Introduction
	Slide 6: SDitH Parameter Sets
	Slide 7: SDitH Key Generation
	Slide 8: SDitH Sign
	Slide 9: SDitH Sign - Offline
	Slide 10: SDitH Sign - Online
	Slide 11: SDitH Verify
	Slide 12: Hardware Design and Challenges
	Slide 13: Hardware Design Architecture
	Slide 14: Our Contributions
	Slide 15: Syndrome Computation Module – Key Generation 
	Slide 16: Syndrome Computation Module – Sign and Verify
	Slide 17: Evaluate Module
	Slide 18: Signature Generation Module
	Slide 19: Comparison with Related and Relevant Work
	Slide 20: Clock Cycles Comparison – Optimized Software v/s Our Hardware Implementation – Hypercube Variant
	Slide 21: Time Comparison – Optimized Software v/s Our Hardware Implementation – Hypercube Variant 
	Slide 22: Comparison with other PQC-DSA candidates – Security Level 1
	Slide 23: Conclusion and Future Work
	Slide 24: Conclusion
	Slide 25: Future Work
	Slide 26: References
	Slide 27: Thank you!

