Single trace HQC shared key recovery with SASCA Fifth NIST PQC Standardization Conference

**Guillaume Goy**<sup>1,2</sup>

Julien Maillard <sup>1,2</sup> Philippe Gaborit<sup>1</sup> Antoine Loiseau<sup>2</sup>

<sup>1</sup>XLIM, University of Limoges, France

<sup>2</sup>CEA-LETI, Grenoble Alpes University, France

10 April 2024





# Table of Contents



Soft Analytical Side-Channel Attacks

2 Hamming Quasi-Cyclic

Belief Propagation against HQC (Our attacks) 3

- Breaking shuffling countermeasures
- Breaking high order masking countermeasure
- Exploiting re-encryption step
- Countermeasures 5
- 6 Conclusion and Perspectives

| •00     | Hamming Quasi-Cyclic | Our Attacks<br>00000000 | Exploiting re-encryption step | Countermeasures | Conclusion<br>00 |
|---------|----------------------|-------------------------|-------------------------------|-----------------|------------------|
| Table o | f Contents           |                         |                               |                 |                  |

#### 1 Soft Analytical Side-Channel Attacks

- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
  - Breaking shuffling countermeasures
  - Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
- 5 Countermeasures
- 6 Conclusion and Perspectives

## Soft Analytical Side-Channel Attacks (SASCA)

Idea : combine several weak physical leaks to obtain strong information

- Introduced by Veyrat-Chravrillon et al. [VCGS14] to attack AES in 2014
- Application against Kyber [PPM17, PP19, HHP+21, HSST23, AEVR23]
  - $\rightarrow\,$  Information Propagation through NTT

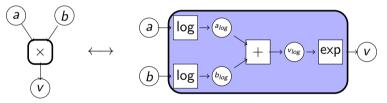
# Soft Analytical Side-Channel Attacks (SASCA)

Idea : combine several weak physical leaks to obtain strong information

- Introduced by Veyrat-Chravrillon et al. [VCGS14] to attack AES in 2014
- Application against Kyber [PPM17, PP19, HHP+21, HSST23, AEVR23]  $\rightarrow$  Information Propagation through NTT
- Attack against hash function Keccak [KPP20] in 2020
- First attack against code-based cryptography [GMGL23]

→ Mainly based on **Belief Propagation** [Mac03, KFL01].

# Message passing with Belief Propagation


Hamming Quasi-Cyclic

000

The goal of Belief Propagation is to compute a **Marginal Distribution** for every **Intermediate values** involved in a given algorithm.

<u>Toy Example</u>: Galois Field Multiplication  $v = a \times b$  (=  $\alpha^{\log(a) + \log(b)}$ ) :

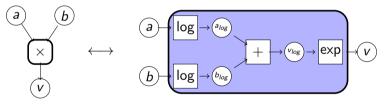
Our Attacks



Exploiting re-encryption step

Figure – Graphical representation of a Galois Field Multiplication

# Message passing with Belief Propagation


Hamming Quasi-Cyclic

000

The goal of Belief Propagation is to compute a **Marginal Distribution** for every **Intermediate values** involved in a given algorithm.

<u>Toy Example</u>: Galois Field Multiplication  $v = a \times b$  (=  $\alpha^{\log(a) + \log(b)}$ ) :

Our Attacks



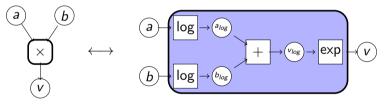
Exploiting re-encryption step

Figure – Graphical representation of a Galois Field Multiplication

The Goal is to compute :  $\mathbb{P}(a \mid b, v)$ ,  $\mathbb{P}(b \mid a, v)$ ,  $\mathbb{P}(v \mid a, b)$ 

Conclusion

# Message passing with Belief Propagation


Hamming Quasi-Cyclic

000

The goal of Belief Propagation is to compute a **Marginal Distribution** for every **Intermediate values** involved in a given algorithm.

<u>Toy Example</u>: Galois Field Multiplication  $v = a \times b$  (=  $\alpha^{\log(a) + \log(b)}$ ) :

Our Attacks



Exploiting re-encryption step

Figure – Graphical representation of a Galois Field Multiplication

The Goal is to compute :  $\mathbb{P}(a \mid b, v)$ ,  $\mathbb{P}(b \mid a, v)$ ,  $\mathbb{P}(v \mid a, b)$ Sum Product Algorithm [KFL01] gives a solver for this problem. Conclusion

| SASCA<br>000 | •0000      | Our Attacks<br>00000000 | Exploiting re-encryption step | Countermeasures | Conclusion<br>00 |
|--------------|------------|-------------------------|-------------------------------|-----------------|------------------|
| Table of     | f Contents |                         |                               |                 |                  |



#### 2 Hamming Quasi-Cyclic

Belief Propagation against HQC (Our attacks)

- Breaking shuffling countermeasures
- Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
- 5 Countermeasures
- 6 Conclusion and Perspectives

| SASCA<br>000 | 0000 | Our Attacks<br>00000000 | Exploiting re-encryption step | Countermeasures | Conclusion |
|--------------|------|-------------------------|-------------------------------|-----------------|------------|
|              |      |                         |                               |                 |            |

| 1 I I I I I I I I I I I I I I I I I I I | 0  | · · · · | $\sim$ 1 |    |
|-----------------------------------------|----|---------|----------|----|
| Hamming                                 | (, | uasi-   | Cvc      | IC |
|                                         |    |         | J        |    |

| Algorithm Keygen                                                                                                                                                                                                                                                   | Algorithm Encrypt                                                                                                                                                                                                                                                  |                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input : param                                                                                                                                                                                                                                                      | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                               | Algorithm Decrypt                                                                                                                                                  |
| Output : (pk, sk)<br>1: $\mathbf{h} \stackrel{\$}{\leftarrow} \mathcal{R}$<br>2: $(\mathbf{x}, \mathbf{y}) \stackrel{\$}{\leftarrow} \mathcal{R}^2_{\omega}$<br>3: $\mathbf{s} = \mathbf{x} + \mathbf{h}\mathbf{y}$<br>4: $\mathbf{pk} = (\mathbf{h}, \mathbf{s})$ | 1: $\mathbf{e} \stackrel{\$}{\leftarrow} \mathcal{R}_{\omega_e}$<br>2: $(\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{R}^2_{\omega_r}$<br>3: $\mathbf{u} = \mathbf{r}_1 + \mathbf{h}\mathbf{r}_2$<br>4: $\mathbf{c} = \text{Encode}(\mathbf{m})$ | Input : (sk, ct)<br>Output : m'<br>1: $\mathbf{c} + \mathbf{e}' = \mathbf{v} - \mathbf{u}\mathbf{y}$<br>2: $\mathbf{m}' = \text{Decode}(\mathbf{c} + \mathbf{e}')$ |
| 5: $sk = (x, y)$                                                                                                                                                                                                                                                   | 5: $\mathbf{v} = \mathbf{c} + \mathbf{sr}_2 + \mathbf{e}$<br>6: $\mathtt{ct} = (\mathbf{u}, \mathbf{v})$                                                                                                                                                           |                                                                                                                                                                    |



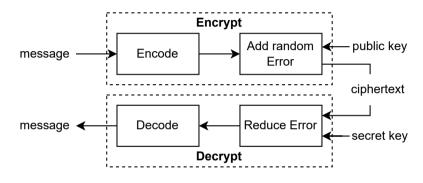



Figure – Hamming Quasi-Cyclic Overview

- Decryption Failure Rate (DFR) is ensured by the error correction capability and analysis of the hamming weight distribution of the error **e**' [AGZ20]
- Most of the Side-Channel Attacks against HQC target the decoding step.

| SASCA<br>000 | 00000        | Our Attacks<br>00000000 | Exploiting re-encryption step | Countermeasures | Conclusion<br>00 |
|--------------|--------------|-------------------------|-------------------------------|-----------------|------------------|
| Conca        | tenated code | structure               |                               |                 |                  |

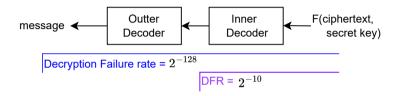



Figure – HQC Concatenated codes structure



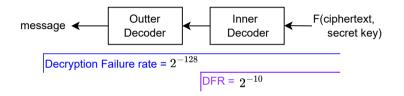
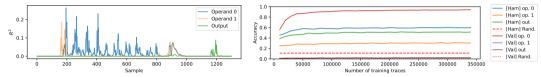



Figure – HQC Concatenated codes structure

- (i) **Secret key** recovery attacks : [SHR<sup>+</sup>22, GLG22a, BMG<sup>+</sup>24]
- (ii) Shared key (message) recovery attacks : [GLG22b, GMGL23, BMG<sup>+</sup>24]

Algorithm Compute Syndromes from HQC RS Decoder from [AMAB<sup>+</sup>23]

**Require:** parameters : k, n the dimension and length of the code **Require:** parity check matric  $H \in \mathbb{F}_q^{(n-k,n)}$  **Require:** codeword  $c \in \mathbb{F}_q^{n_1}$  **Ensure:**  $s := H^T \times c$  the syndrome of c1: Initialize s to  $0^{n-k}$ 2: for i from 0 to n - k do 3: for j from 1 to n do 4:  $s[i] = s[i] \oplus c[j] \times H[i, j - 1]$   $\triangleright \times$  is the Galois Field multiplication 5:  $s[i] = s[i] \oplus c[0]$ 

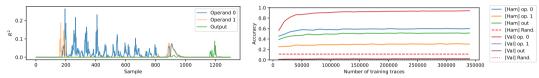

| SASCA<br>000 | Hamming Quasi-Cyclic | ••••• | Exploiting re-encryption step | Countermeasures | Conclusion<br>00 |
|--------------|----------------------|-------|-------------------------------|-----------------|------------------|
| Table        | of Contents          |       |                               |                 |                  |

- - 1 Soft Analytical Side-Channel Attacks
  - 2 Hamming Quasi-Cyclic
  - 8 Belief Propagation against HQC (Our attacks)
    - Breaking shuffling countermeasures
    - Breaking high order masking countermeasure
  - 4 Exploiting re-encryption step
  - 5 Countermeasures
  - 6 Conclusion and Perspectives

# Templates on the Galois field multiplication operands

00000000






Hamming Quasi-Cyclic

# Templates on the Galois field multiplication operands

00000000





|         | Value template accuracy | Hamming weight template accuracy |
|---------|-------------------------|----------------------------------|
| Input 1 | 0.9389                  | 0.5929                           |
| Input 2 | 0.0211                  | 0.3035                           |
| Output  | 0.0221                  | 0.5178                           |

Table – Hamming weight and value templates accuracies on gf\_mul. Each attack has been performed 400 times. 10%/90% validation/training segmentation.

Hamming Quasi-Cyclic



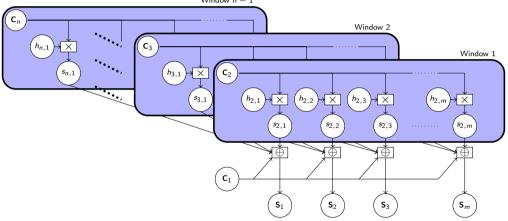
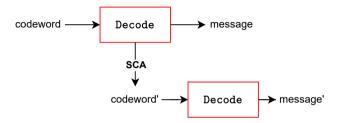




Figure - Graphical representation of the RS syndrome computation from HQC

| SASCA<br>000 | Hamming Quasi-Cyclic | 0000000 | Exploiting re-encryption step | Countermeasures | Conclusion |
|--------------|----------------------|---------|-------------------------------|-----------------|------------|
|              |                      |         |                               |                 |            |

# Re-decoding Strategy



| Security level | HQC parameters |       |    | List decoder |
|----------------|----------------|-------|----|--------------|
| $\lambda$      | $k_1$          | $n_1$ | t  | $	au_{GS}$   |
| HQC-128        | 16             | 46    | 15 | 19           |
| HQC-192        | 24             | 56    | 16 | 19           |
| HQC-256        | 32             | 90    | 29 | 36           |

Table – Reed-Solomon error correction capability of the RS decoder for each HQC set of parameters, given for a classical decoder and the Guruswami-Sudan list decoder.



# Attack Accuracy in Simulation

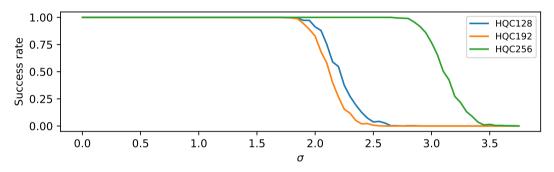
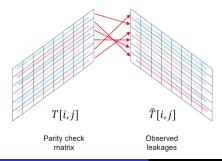




Figure – Simulated success rate of SASCA on the decoder, with re-decoding strategy, depending on the selected security level of HQC

#### 

- Fine Shuffling (Adapted from a Kyber countermeasure)
  - $\rightarrow$  Randomly choose  $a \times b$  or  $b \times a$ .
- Coarse shuffling (Adapted from a Kyber countermeasure)
  - $\rightarrow\,$  Randomly shuffle columns of the parity check matrix
- Window Shuffling (Novelty)
  - $\rightarrow\,$  Randomly shuffle lines of the parity check matrix



$$D[i, i'] = \sum_{j=1}^{256} d\left(\tilde{T}[i, j], T[i', j]\right)$$
  
Instance of the assignment Problem  
 $\rightarrow$  Solver : Hungarian algorithm.

 SASCA
 Hamming Quasi-Cyclic
 Counter

 Breaking Codeword Masking (High Level Masking)

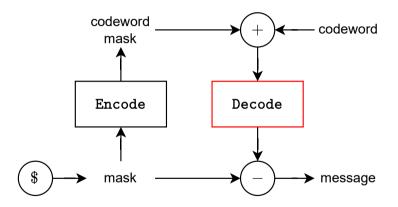



Figure - High level Masking of a decoder (Codeword Masking) [MSS13]

# Encoder Attack Accuracy in Simulation

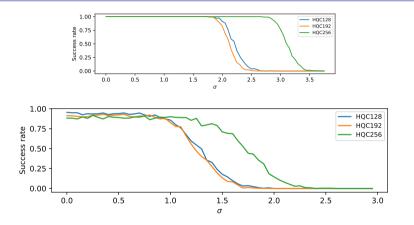



Figure – Simulated success rate of SASCA on the decoder, with re-decoding strategy, depending on the selected security level of HQC

| SASCA<br>000 | Hamming Quasi-Cyclic | Our Attacks | <b>●</b> 00 | Countermeasures<br>00 | Conclusion<br>00 |
|--------------|----------------------|-------------|-------------|-----------------------|------------------|
| Table o      | of Contents          |             |             |                       |                  |

- Soft Analytical Side-Channel Attacks
- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
  - Breaking shuffling countermeasures
  - Breaking high order masking countermeasure
- Exploiting re-encryption step
- Countermeasures
- 6 Conclusion and Perspectives

 SASCA
 Hamming Quasi-Cyclic
 Our Attacks
 Ooo
 Countermeasures
 Conclusion

 re-encryption step from HHK transform

- HQC-KEM is based on HHK transform [HHK17]
- This transform introduces a re-encryption step.

SASCA Hamming Quasi-Cyclic Our Attacks ocooco oo Countermeasures Conclusion oo

# re-encryption step from HHK transform

- HQC-KEM is based on HHK transform [HHK17]
- This transform introduces a re-encryption step.

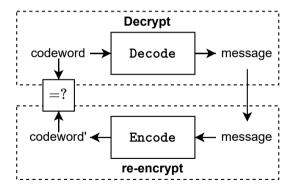



Figure – HQC Structure with HHK transform

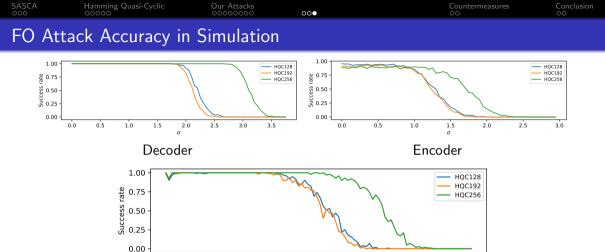



Figure - Simulated success rate of SASCA on the decoder and encoder exploiting re-encryption

σ

2

0

З

5

| SASCA<br>000 | Hamming Quasi-Cyclic | Our Attacks<br>00000000 | Exploiting re-encryption step | •0 | Conclusion<br>00 |
|--------------|----------------------|-------------------------|-------------------------------|----|------------------|
| Table o      | f Contents           |                         |                               |    |                  |

- Soft Analytical Side-Channel Attacks
- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
  - Breaking shuffling countermeasures
  - Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
- Countermeasures
- Conclusion and Perspectives

- The idea is to shuffle the entire matrix, instead of only rows or columns, during the matrix vector multiplication.
  - $\rightarrow$  Even if an attacker exactly recover the shuffled matrix, there exists  $2^{504}$ ,  $2^{614}$  and  $2^{1030}$  different permutations for the three security levels respectively.

Full Shuffling Countermeasure

- The idea is to shuffle the entire matrix, instead of only rows or columns, during the matrix vector multiplication.
  - $\rightarrow$  Even if an attacker exactly recover the shuffled matrix, there exists 2<sup>504</sup>. 2<sup>614</sup> and  $2^{1030}$  different permutations for the three security levels respectively.
- The encoder could be change to a classical multiplication with a generator matrix to benefit from the same countermeasure.

| SASCA<br>000 | Hamming Quasi-Cyclic | Our Attacks<br>00000000 | Exploiting re-encryption step | Countermeasures | •0 |
|--------------|----------------------|-------------------------|-------------------------------|-----------------|----|
| Table o      | f Contents           |                         |                               |                 |    |

- 1 Soft Analytical Side-Channel Attacks
- 2 Hamming Quasi-Cyclic
- 3 Belief Propagation against HQC (Our attacks)
  - Breaking shuffling countermeasures
  - Breaking high order masking countermeasure
- 4 Exploiting re-encryption step
  - Countermeasures

### 6 Conclusion and Perspectives

#### Conclusions

- Soft analytical side-channel attacks are a threat for (code-based) cryptography.
- Efficient countermeasure against these attacks are required.

# Conclusion and Perspectives

#### Conclusions

- Soft analytical side-channel attacks are a threat for (code-based) cryptography.
- Efficient countermeasure against these attacks are required.

### Future Works

- Target other code-based schemes with Belief Propagation Algorithms.
- Secure HQC against side-channel attacks in the *t*-probing model.

00

# Conclusion and Perspectives

#### Conclusions

- Soft analytical side-channel attacks are a threat for (code-based) cryptography.
- Efficient countermeasure against these attacks are required.

## Future Works

- Target other code-based schemes with Belief Propagation Algorithms.
- Secure HQC against side-channel attacks in the *t*-probing model.

Thank you for your attention ! Any questions ? guillaume.goy@unilim.fr





00

| SASCA<br>000 | Hamming Quasi-Cyclic                                                                                                                                                                                                | Our Attacks<br>00000000                      | Exploiting re-encryption step                         | Countermeasures                 | 00  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|---------------------------------|-----|--|--|
| References I |                                                                                                                                                                                                                     |                                              |                                                       |                                 |     |  |  |
|              | Guilhèm Assael, Philippe Elbaz-Vincen<br>Improving single-trace attacks on the r<br>In 2023 IEEE International Symposiun                                                                                            | number-theoretic transfor                    |                                                       | . IEEE, 2023.                   |     |  |  |
|              | Nicolas Aragon, Philippe Gaborit, and Gilles Zémor.<br>HQC-RMRS, an instantiation of the HQC encryption framework with a more efficient auxiliary error-correcting code.<br>arXiv preprint arXiv :2005.10741, 2020. |                                              |                                                       |                                 |     |  |  |
|              | Carlos Aguilar-Melchor, Nicolas Arago<br>Persichetti, and Gilles Zémor.<br>HQC reference implementation, April,<br>https://pqc-hqc.org/implementati                                                                 | 2023.                                        | doux, Olivier Blazy, Jean-Christophe Dener            | wille, Philippe Gaborit, Edoard | Э   |  |  |
|              | Richard P Brent, Pierrick Gaudry, Emr<br>Faster multiplication in GF(2)[x].<br>In Algorithmic Number Theory : 8th In<br>Springer, 2008.                                                                             |                                              | Zimmermann.<br>ANTS-VIII Banff, Canada, May 17-22, 20 | 08 Proceedings 8, pages 153–10  | 56. |  |  |
|              | Chloé Baïsse, Antoine Moran, Guillaun<br>Secret and shared keys recovery on ha<br>Cryptology ePrint Archive, 2024.                                                                                                  | 21 A. C. | licolas Aragon, Philippe Gaborit, Maxime<br>sasca.    | Lecomte, and Antoine Loiseau.   |     |  |  |
|              | Guillaume Goy, Antoine Loiseau, and F                                                                                                                                                                               | Philippe Gaborit.                            |                                                       |                                 |     |  |  |

A new key recovery side-channel attack on HQC with chosen ciphertext. In International Conference on Post-Quantum Cryptography, pages 353–371. Springer, 2022.

| SASCA<br>000  | Hamming Quasi-Cyclic                                                                                                                                                                                                                                                                                  | Our Attacks<br>00000000                                                                                                                                                                                                                                                                                                                                       | Exploiting re-encryption step                                                                                                                                      | Countermeasures<br>00 | 00 |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|--|--|
| References II |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |                       |    |  |  |
|               | In WCC 2022 : The Twelfth Interna<br>Guillaume Goy, Julien Maillard, Phili<br>Single trace HQC shared key recover<br>Cryptology ePrint Archive, 2023.<br>https://ia.cr/2023/1590.<br>Dennis Hofheinz, Kathrin Hövelman<br>A modular analysis of the fujisaki-ok<br>In Theory of Cryptography Conferen | I correlation attacks in t<br>tional Workshop on Coc<br>ippe Gaborit, and Antoin<br>ry with SASCA.<br>amoto transformation.<br>toe, pages 341–371. Spri<br>obert Primas, Simona S.<br>In masked CCA2 secure I<br>c Hardware and Embedd<br>nuele Strieder, and Katl<br>ter shuffling of NTTs.<br>c Hardware and Embedd<br>exy, and H-A Loeliger.<br>algorithm. | nger, 2017.<br>amardjiska, Thomas Schamberger, Silvan<br>xyber.<br>ed Systems, pages 88–113, 2021.<br>harina Thieme.<br><sup>ied</sup> Systems, pages 60–88, 2023. | aper_48, 2022.        |    |  |  |

Goy G., Maillard J., Gaborit P. & Loiseau A.

Single trace HQC shared key recovery with SASCA

10 April 2024 25 / 25

| 000   | 00000                | 00000000    | 000                           | 00              | 00  |
|-------|----------------------|-------------|-------------------------------|-----------------|-----|
| SASCA | Hamming Quasi-Cyclic | Our Attacks | Exploiting re-encryption step | Countermeasures | ~~~ |

#### References III

Matthias J Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks on keccak. *Cryptology ePrint Archive*, 2020.



David JC MacKay.

Information theory, inference and learning algorithms. Cambridge university press, 2003.



Dominik Merli, Frederic Stumpf, and Georg Sigl.

Protecting PUF error correction by codeword masking. Cryptology ePrint Archive, 2013.



Peter Pessl and Robert Primas.

More practical single-trace attacks on the number theoretic transform.

In Progress in Cryptology–LATINCRYPT 2019 : 6th International Conference on Cryptology and Information Security in Latin America, Santiago de Chile, Chile, October 2–4, 2019, Proceedings 6, pages 130–149. Springer, 2019.



Robert Primas, Peter Pessl, and Stefan Mangard.

Single-trace side-channel attacks on masked lattice-based encryption.

In Cryptographic Hardware and Embedded Systems-CHES 2017 : 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 513-533. Springer, 2017.



Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, and Georg Sigl.

A power side-channel attack on the reed-muller reed-solomon version of the HQC cryptosystem. In International Conference on Post-Quantum Cryptography, pages 327–352. Springer, 2022.

| SASCA  | Hamming Quasi-Cyclic | Our Attacks | Exploiting re-encryption step | Countermeasures | 00 |  |  |
|--------|----------------------|-------------|-------------------------------|-----------------|----|--|--|
| 000    | 00000                | 00000000    | 000                           | 00              |    |  |  |
| Refere | References IV        |             |                               |                 |    |  |  |

#### Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.

#### Soft analytical side-channel attacks.

In Advances in Cryptology–ASIACRYPT 2014 : 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014. Proceedings, Part I 20, pages 282–296. Springer, 2014.