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Abstract. This paper describes a symmetrical block cipher family – FlexAEAD. It was 

engineered to be lightweight, consuming less computational resources than other 

ciphers and to work with different block and key sizes. Other important characteristic is 

to integrate the authentication on its basic algorithm. This approach is helps to reduce 

the resource needs. The algorithm capacity to resist against linear and different 

cryptanalysis attacks was evaluated. This algorithm is a variation of the FlexAE 

algorithm presented at IEEE ICC2017 (Paris – France) and SBSEG2018 (Natal – 

Brazil). The FlexAEAD also supports the authentication of the Associated Data (AD). 

 

1. Algorithm Description 

The FleaxAEAD algorithm uses as a main component a key dependable permutation 

function     . On this function, the block is XORed with a key    at the beginning and 

with a key    at the end of the process. This function       is invertible         , so 
the process can be reversed. 

 

Figure 1. The permutation function     diagram 

On the      , after the XOR with   ,  the block is transformed by shuffle layer, where 

a     bytes input is divided in        blocks (                      ) and reordered 

as (                                               . 

 

Figure 2. The BlockShuffle Layer 

After the shuffle, the block is divided into two parts (    . The right part     suffers a 
non-linear transformation using a SBox Layer where each byte is translated by the AES 



  

SBox table generating     .  The left part     and      are XORed resulting in     . The 

     is applied to a SBox Layer generating      . The       and      are XORed together 

generating       which is applied to the SBox Layer to generate      . The pair 

           are combined together        . Although this construction resembles a Feistel 

network, it needs the SBox Layer to be reversible. The main reason for this construction 

is to improve the resistance to cryptanalysis attacks by forcing the combination of two 

input bytes to be applied to an active SBox. 

The SBox Layer can be inverted using the reverse AES SBox. On the appendices the 

AES SBox direct and reverse tables can be found. 

 

Figure 3. The SBox Layer 

The number of rounds     on this construction is           , where   =block size 
in bytes. This number of rounds is the minimum to assure that any bit change on the 

input the block will affect all bits on the output.  The number of rounds grows 

logarithmic with the block size, keeping the number of cpu cycles needed to process 

small even if working with bigger block sizes. 

The key dependable permutation function and its inverse can also be described on the 

pseudo code on the Figure 4. 

 

Figure 4. The key dependable permutation function and its inverse 

The FlexAEAD cipher uses four subkeys (           ). They are created from a bit 
sequence generated by applying the permutation function three times using the main key 

                       

         
  

 
   

      
  

 
         

                 

                  

 

for ( i =1 to log(nb)+2] 
   state = ShuffleLayer(state) 

               
  

 
   

            
  

 
         

                      
            
                      
              
                          

             
  

 
       

          
  

 
              

end for 

 

                       

         
  

 
   

      
  

 
         

                 

                  

 

for ( i =1 to log(nb)+2] 
   state = ShuffleLayer(state) 

               
  

 
   

            
  

 
         

                   
           
                     
              
                       

             
  

 
       

          
  

 
              

end for 

  



  

  (   ) until have enough bits for all subkeys. The initial value is a sequence of zeros 

      ). Each subkey (           ) size is     , which is double the block size in 

bytes (or       in bits). The main key   size is                        . The 

maximum size of the main key is two times the blocksize. This limit was imposed to 

force each subkey to be composed by a sequence that went by the process at least twice. 

The number of times the permutation function is applied has been chosen to have the 

similar resistance to linear and differential cryptanalysis attacks on the subkey 

generation as on encrypting a block.   

The FlexAEAD also uses a sequence of bits (         ). This sequence is the same 

size of the associated data plus the message to be sent. It is generate by applying      
over the NONCE to generate a base counter. The counter is divided in 32 bits chunks of 

data. Each chunk is treated as an unsigned number (little-endian) that is incremented for 

every block of the sequence by the function INC32. If the counter for a 64 bit block has 

the following bytes                                  , after the INC32 function, 

the result is                                  . 

The sequence will be unique for every NONCE. The chance of occurring overlapping 

sequences for two different NONCE is nonsignificant. Considering the maximum sie of 

the sequence is    , for a 64 bits NONCE, there are     non-overlapping sequences, so 

the probability of choosing two NONCEs with overlapping sequences is      

(                           ). For a 128 bits NONCE, there are     non-

overlapping sequences, so the probability is      . 

Another important characteristic is the fact that the sequence generation can run in 

parallel for every block. The function INC32 can add an arbitrary number to the base 

counter. On a multi-thread environment, the    can be generate adding 1 to the base 

counter and in a parallel thread the     can be generate adding 11 to the base counter. 

Allow the cipher all available hardware. The sequence can be generated during the 

process of hashing the associate data or encrypting a data block, avoiding unnecessary 

memory allocation. 

 

Figure 5. The K0,K1,K2 and S0S1…Sm generation processes 

To hash the associate data, first the associated data is divided in n blocks 

            . The final block is padded with 0 bits. Each block (     is XORed 

with the correspondent      block and it is submitted to      to generate a intermediate 

state block      . The process that each associated data block goes though is      



  

                 . 

To cipher the plain text message, it is broken into   plaintext blocks          . The 

last block is padded with         , where    is the number of padding bits to complete 
the block.  

Each block (    is XORed with the correspondent      block and it is submitted to 

     to generate a intermediate state block      . The state       is submitted to     , 

XORed again with       and finally submitted to     to generate a ciphertext block 

    . The process that each plaintext block goes though is (                
                         . It is important to observe that if the plaintext 
or associate data blocks are swapped in position, the generated checksum will be 

modified. This characteristic prevents reordering data attacks. 

All intermediate state blocks are XORed together to generate a checksum. If the last 

message block was padded, the checksum is XORed with the bit sequence          . 

If there was no padding it is XORed with the bit sequence           . After it the 

result is submitted to      function to generate the TAG used for authentication. The 

TAG length        can be smaller than the block size, if it is adequate to the 

application. This is done by truncating the TAG on its      more significant bits 

         .   

 

Figure 6. The FlexAEAD encryption diagram 

For decryption, first the Associated Data is submitted to the same process as in 

encryption                       .  The Ciphertext is broken into blocks 
and the TAG is separated (as its size is known, the last part of the ciphertext is the 

TAG).  The cipher text blocks are submitted to a reverse process (           
                              ).  During the process all       are 

XORed together. This checksum is XORed with bit sequence           then 

submitted to        to generate a TAG’. If the TAG’ is equal to the received TAG, the 



  

message is valid and the original plaintext was not padded.  If it is different the 

checksum is XORed with bit sequence           then submitted to        to 

generate a TAG’’. If the TAG’’ is equal to the received TAG, the message is valid and 

the original plaintext was padded. If neither calculated TAGs are equal to the received 

TAG, the message is invalid and it is discarded. 

 

Figure 7. The FlexAEAD decryption diagram 

 

2. Key and Block Size Selection 

Although the FlexAEAD algorithm family allows several block and key size. A few 

variant were selected as concrete examples for this contest.  

The family also allows the user to select the tag, used to validate the message, and 

nonce size. For this contest they will be the maximum allowed, depending on the 

variant. The maximum for them is the same as the block size for each variant.   

The chosen variants are: 

FlexAEAD128b064 – 128 bits key, 64 bits block, 64 bits nonce and 64 bits tag sizes 

FlexAEAD128b128 – 128 bits key, 128 bits block, 128 bits nonce and 128 bits tag sizes 

FlexAEAD256b256 – 256 bits key,  256 bits block, 256 bits nonce and 256 bits tag 

sizes 

These variants were implemented and the NIST test vectors were successfully generated 

for them.   



  

3. Differential Cryptanalysis 

The differential cryptanalysis (BIHAM and SHAMIR, 1991) technique consists on 

analyzing of the probabilities of the differences on the cipher SBoxes inputs and 

outputs.  

The differential and the linear cryptanalysis are almost the same as performed for the 

algorithm FlexAE (NASCIMENTO and XEXEO, 2018).  The difference is the number 

of rounds that were incremented for better security.  

The difference distribution table for AES SBox shows that the maximum probability for 

any pair             is   
 

   
    .  

To encrypt each ciphertext block the     is executed at least 3 times             
                               . The number of rounds depends on 

the block size in bytes (           .  The total of rounds for block sizes of 64, 128 
and 256 bits are respectively 15, 18 and 21.  

Due to the cipher architecture, the minimum number of active SBoxes in each round on 

the     function is 2.  The maximum probability can be calculated by    

              
    and the difficult of an attack based on differential cryptanalysis is 

   
 

  
 (Heys, 2001).   

Table 1. Difficult to perform a differential cryptanalysis attack  

Block Size Rounds (r-1) 
Active 

SBoxes 
      

64 14 28            

128 17 34            

256 20 40            

An attack based on a differential cryptanalysis is more difficult than a brute force attack 

when the cipher uses a 64 bit block size / 128 key size or 128 bit block size / 128 key 

size. 

For the 256 bit block size / 256 key size the attack is easier than a brute force attack 

although it is not feasible.  

4. Linear Cryptanalysis 

The linear cryptanalysis (MATSUI, 1993) technique consists in evaluating the cipher 

using linear expressions to approximate the cipher results and calculating their biases of 

being true or false. The higher the bias, the easier is to uncover the key bits. 

For AES SBox there are a total of 65025 possible linear expressions. The maximum 

bias on these expression is   
  

   
    .  

After calculating the bias for every SBox, the next step is to verify the cipher structure 

effect and determine the best linear expressions for each round. In this stage it is easier 

to represent the linear expressions in graphic way. The following has a graphical 

representation of a linear approximation for all 5 rounds of the     using 64 bits block 
size. 



  

 

Figure 8. The linear expression graphical representation for FlexAEAD   

The complexity of an attack is determined by the number of chosen plaintext pair 

     which can be calculate from the bias    
 

   (HEYS, 2001).  On the linear 

cryptanalysis, if the number of active SBox is known    , the bias     can be 

determined subtracting       from the probability     calculated using the Piling-up 

Lemma    
 

 
           

 

 
  

    (MATSUI,1993):        .   

Table 2. Difficult to perform a linear cryptanalysis attack  

Block Size Rounds (r) Active SBox Maximum Bias    
 

  
 

64 15 45                 

128 18 54                 

256 21 63                 

 

An attack based on a linear cryptanalysis is more difficult than a brute force attack 

making it impractical. 

5. Using the cipher to generate a pseudorandom sequence 

The cipher was used to encrypted a block full of zeros again and again with the same 

key. The resulted were submitted to the dieharder toll.  The sequence passed on all tests 

except on a few that it randomly presented as “WEAK”. If the NONCE or the KEY is 

changed or only that test is repeated, the test returned PASSED. This indicates that it is 

not possible to infer any pattern from the generated sequence. The test was performed 

on all four variants of the cipher presented on this document (FlexAEAD128b064, 

FlexAEAD128b128 and FlexAEAD256b256). The testing results example and the code 

used to generate the sequence for the dieharder tool are on the appendices. 

6. Cipher family performance 

The FlexAEAD family has inherited several functions from the FlexAE family, which 

presented good time performance in CPU cycles and RAM (NASCIMENTO and 

XEXEO,2017), when compared to other cipher.  Although it is expected the FlexAEAD 

performance won’t be as good as to FlexAE, new tests will be necessary to evaluate the 



  

new family performance.  

The main reason for the difference was the inclusion of a second XOR of the encrypting 

block with the    and another execution of the     function. These modifications were 

necessary to avoid a reordering data attack.  

The FlexAEAD cipher family uses only simple function like XOR, lookup table, for 

SBox Layer, or bits reorganization, for block shuffle layer. The block shuffle layer is 

simple to be implemented in hardware and it is expected to have a great performance 

(basically only wires changing the bits positions). The function in software is not 

optimized for large word processors like 64 bits. But these high end processors normally 

have multiples cores that can be used in parallel due to the cipher characteristics, 

compensating the deficiency. 

For the FlexAE, the FELICS framework from CRYPTOLUX research group were used, 

but it was compared to non-authenticated block ciphers like AES. This time the 

SUPERCOP tool (BERNSTEIN and LANGE) was used and the FlexAEAD 

implementations were compared to the following CAESAR (BERNSTEIN) finalist 

implementations that were available at the SUPERCOP package: ascon128v11 

(ASCON cipher), acorn128v3 (ACORN cipher), aegis128l (AEGIS-128 cipher) and 
deoxysi128v141 (Deoxys-II cipher).  

To perform the tests, a Linux Ubuntu 18.04.2 LTS machine with the processor Intel(R) 

Core(TM) i5-5200U CPU @ 2.20GHz were used. The results have shown that the 

actual FlexAEAD implementation uses more CPU cycles than the other ciphers. 

 

6. Conclusion and future works 

This paper describes the FlexAEAD cipher family. This cipher was tailored to be 

lightweight and flexible. Its security was analyzed for three variants with concrete 

values against linear and differential cryptanalysis attacks. The result is summarized on 

Table 3. Their capacity to generate a pseudorandom sequence was also confirmed. 

Table 3. Variant parameters and cryptanalysis difficulty 

Variant 
Parameters sizes (in bits) Cryptanalysis difficulty 

Key Block Nonce Tag Linear Differential 

FlexAEAD128b064 128 64 64 64           

FlexAEAD128b128 128 128 128 128           

FlexAEAD256b256  256 256 256 256           

An optimized version of the cipher will be implemented to compare its performance 

against the other participants. One performance advantage is its capacity to allow 

parallel computing, each block can be calculated by a different thread in any order. This 

characteristic is an advantage when using multicore processors. 
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APPENDICE A – Direct and Inverse AES SBox 

Table 3. Direct AES SBox 

  0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 

0x0 0x63 0x7C 0x77 0x7B 0xF2 0x6B 0x6F 0xC5 0x30 0x01 0x67 0x2B 0xFE 0xD7 0xAB 0x76 

0x1 0xCA 0x82 0xC9 0x7D 0xFA 0x59 0x47 0xF0 0xAD 0xD4 0xA2 0xAF 0x9C 0xA4 0x72 0xC0 

0x2 0xB7 0xFD 0x93 0x26 0x36 0x3F 0xF7 0xCC 0x34 0xA5 0xE5 0xF1 0x71 0xD8 0x31 0x15 

0x3 0x04 0xC7 0x23 0xC3 0x18 0x96 0x05 0x9A 0x07 0x12 0x80 0xE2 0xEB 0x27 0xB2 0x75 

0x4 0x09 0x83 0x2C 0x1A 0x1B 0x6E 0x5A 0xA0 0x52 0x3B 0xD6 0xB3 0x29 0xE3 0x2F 0x84 

0x5 0x53 0xD1 0x00 0xED 0x20 0xFC 0xB1 0x5B 0x6A 0xCB 0xBE 0x39 0x4A 0x4C 0x58 0xCF 

0x6 0xD0 0xEF 0xAA 0xFB 0x43 0x4D 0x33 0x85 0x45 0xF9 0x02 0x7F 0x50 0x3C 0x9F 0xA8 

0x7 0x51 0xA3 0x40 0x8F 0x92 0x9D 0x38 0xF5 0xBC 0xB6 0xDA 0x21 0x10 0xFF 0xF3 0xD2 

0x8 0xCD 0x0C 0x13 0xEC 0x5F 0x97 0x44 0x17 0xC4 0xA7 0x7E 0x3D 0x64 0x5D 0x19 0x73 

0x9 0x60 0x81 0x4F 0xDC 0x22 0x2A 0x90 0x88 0x46 0xEE 0xB8 0x14 0xDE 0x5E 0x0B 0xDB 

0xA 0xE0 0x32 0x3A 0x0A 0x49 0x06 0x24 0x5C 0xC2 0xD3 0xAC 0x62 0x91 0x95 0xE4 0x79 

0xB 0xE7 0xC8 0x37 0x6D 0x8D 0xD5 0x4E 0xA9 0x6C 0x56 0xF4 0xEA 0x65 0x7A 0xAE 0x08 

0xC 0xBA 0x78 0x25 0x2E 0x1C 0xA6 0xB4 0xC6 0xE8 0xDD 0x74 0x1F 0x4B 0xBD 0x8B 0x8A 

0xD 0x70 0x3E 0xB5 0x66 0x48 0x03 0xF6 0x0E 0x61 0x35 0x57 0xB9 0x86 0xC1 0x1D 0x9E 

0xE 0xE1 0xF8 0x98 0x11 0x69 0xD9 0x8E 0x94 0x9B 0x1E 0x87 0xE9 0xCE 0x55 0x28 0xDF 

0xF 0x8C 0xA1 0x89 0x0D 0xBF 0xE6 0x42 0x68 0x41 0x99 0x2D 0x0F 0xB0 0x54 0xBB 0x16 

Table 4. Reverse AES SBox 

  0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 

0x0 0x52 0x09 0x6A 0xD5 0x30 0x36 0xA5 0x38 0xBF 0x40 0xA3 0x9E 0x81 0xF3 0xD7 0xFB 

0x1 0x7C 0xE3 0x39 0x82 0x9B 0x2F 0xFF 0x87 0x34 0x8E 0x43 0x44 0xC4 0xDE 0xE9 0xCB 

0x2 0x54 0x7B 0x94 0x32 0xA6 0xC2 0x23 0x3D 0xEE 0x4C 0x95 0x0B 0x42 0xFA 0xC3 0x4E 

0x3 0x08 0x2E 0xA1 0x66 0x28 0xD9 0x24 0xB2 0x76 0x5B 0xA2 0x49 0x6D 0x8B 0xD1 0x25 

0x4 0x72 0xF8 0xF6 0x64 0x86 0x68 0x98 0x16 0xD4 0xA4 0x5C 0xCC 0x5D 0x65 0xB6 0x92 

0x5 0x6C 0x70 0x48 0x50 0xFD 0xED 0xB9 0xDA 0x5E 0x15 0x46 0x57 0xA7 0x8D 0x9D 0x84 

0x6 0x90 0xD8 0xAB 0x00 0x8C 0xBC 0xD3 0x0A 0xF7 0xE4 0x58 0x05 0xB8 0xB3 0x45 0x06 

0x7 0xD0 0x2C 0x1E 0x8F 0xCA 0x3F 0x0F 0x02 0xC1 0xAF 0xBD 0x03 0x01 0x13 0x8A 0x6B 

0x8 0x3A 0x91 0x11 0x41 0x4F 0x67 0xDC 0xEA 0x97 0xF2 0xCF 0xCE 0xF0 0xB4 0xE6 0x73 

0x9 0x96 0xAC 0x74 0x22 0xE7 0xAD 0x35 0x85 0xE2 0xF9 0x37 0xE8 0x1C 0x75 0xDF 0x6E 

0xA 0x47 0xF1 0x1A 0x71 0x1D 0x29 0xC5 0x89 0x6F 0xB7 0x62 0x0E 0xAA 0x18 0xBE 0x1B 

0xB 0xFC 0x56 0x3E 0x4B 0xC6 0xD2 0x79 0x20 0x9A 0xDB 0xC0 0xFE 0x78 0xCD 0x5A 0xF4 

0xC 0x1F 0xDD 0xA8 0x33 0x88 0x07 0xC7 0x31 0xB1 0x12 0x10 0x59 0x27 0x80 0xEC 0x5F 

0xD 0x60 0x51 0x7F 0xA9 0x19 0xB5 0x4A 0x0D 0x2D 0xE5 0x7A 0x9F 0x93 0xC9 0x9C 0xEF 

0xE 0xA0 0xE0 0x3B 0x4D 0xAE 0x2A 0xF5 0xB0 0xC8 0xEB 0xBB 0x3C 0x83 0x53 0x99 0x61 

0xF 0x17 0x2B 0x04 0x7E 0xBA 0x77 0xD6 0x26 0xE1 0x69 0x14 0x63 0x55 0x21 0x0C 0x7D 

 

  



  

APPENDICE B – encrypt-dieharder.c code to generate pseudorandom sequence 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include "encript.c" 

 

int main (  ) { 

 unsigned char *npub; 

 unsigned char *k; 

 unsigned char *state; 

 struct FlexAEADv1 flexaeadv1; 

 k = malloc(KEYSIZE); 

 memset( k, 0x00, KEYSIZE); 

 npub = malloc(BLOCKSIZE); 

 memset( npub, 0x00, BLOCKSIZE); 

 FlexAEADv1_init( &flexaeadv1, k ); 

 fprintf(stderr, "FlexAEADv1 ZERO %d %d\n", BLOCKSIZE*8, KEYSIZE*8 ); 

 // ### reset the counter and checksum 

 memcpy( flexaeadv1.counter, npub, NONCESIZE); 

 dirPFK( flexaeadv1.counter, flexaeadv1.nBytes, (flexaeadv1.subkeys + 
(4*flexaeadv1.nBytes)),  flexaeadv1.nRounds, flexaeadv1.state ); 

 state = malloc(BLOCKSIZE); 

 while(1) 

 { 

  memset( state, 0x00, BLOCKSIZE ); 

  inc32( flexaeadv1.counter, flexaeadv1.nBytes, 1 ); 

  encryptBlock( &flexaeadv1, state); 

  fwrite(state, 1, flexaeadv1.nBytes, stdout); 

 } 

 free(state); 

} 

 

// execution example: ./encrypt-dieharder | dieharder -a -g 200 

 

APPENDICE C – dieharder tool results example for FlexAEADv256b256 
#=============================================================================# 
#            dieharder version 3.31.1 Copyright 2003 Robert G. Brown          # 
#=============================================================================# 
   rng_name    |rands/second|   Seed   | 
stdin_input_raw|  5.91e+05  |3518119865| 
#=============================================================================# 
        test_name   |ntup| tsamples |psamples|  p-value |Assessment 
#=============================================================================# 
   diehard_birthdays|   0|       100|     100|0.53243263|  PASSED 
      diehard_operm5|   0|   1000000|     100|0.92541253|  PASSED 
  diehard_rank_32x32|   0|     40000|     100|0.15594265|  PASSED 
    diehard_rank_6x8|   0|    100000|     100|0.97400698|  PASSED 
   diehard_bitstream|   0|   2097152|     100|0.34139275|  PASSED 
        diehard_opso|   0|   2097152|     100|0.32834173|  PASSED 
        diehard_oqso|   0|   2097152|     100|0.91056284|  PASSED 
         diehard_dna|   0|   2097152|     100|0.38464814|  PASSED 
diehard_count_1s_str|   0|    256000|     100|0.34100720|  PASSED 
diehard_count_1s_byt|   0|    256000|     100|0.96884054|  PASSED 
 diehard_parking_lot|   0|     12000|     100|0.96913730|  PASSED 
    diehard_2dsphere|   2|      8000|     100|0.20717814|  PASSED 
    diehard_3dsphere|   3|      4000|     100|0.09572503|  PASSED 



  

     diehard_squeeze|   0|    100000|     100|0.49830589|  PASSED 
        diehard_sums|   0|       100|     100|0.42558220|  PASSED 
        diehard_runs|   0|    100000|     100|0.03886906|  PASSED 
        diehard_runs|   0|    100000|     100|0.38309375|  PASSED 
       diehard_craps|   0|    200000|     100|0.11990794|  PASSED 
       diehard_craps|   0|    200000|     100|0.71676496|  PASSED 
 marsaglia_tsang_gcd|   0|  10000000|     100|0.54813906|  PASSED 
 marsaglia_tsang_gcd|   0|  10000000|     100|0.96626464|  PASSED 
         sts_monobit|   1|    100000|     100|0.99996188|   WEAK 
            sts_runs|   2|    100000|     100|0.24298167|  PASSED 
          sts_serial|   1|    100000|     100|0.77122722|  PASSED 
          sts_serial|   2|    100000|     100|0.98176924|  PASSED 
          sts_serial|   3|    100000|     100|0.69443393|  PASSED 
          sts_serial|   3|    100000|     100|0.26827062|  PASSED 
          sts_serial|   4|    100000|     100|0.68843008|  PASSED 
          sts_serial|   4|    100000|     100|0.43152701|  PASSED 
          sts_serial|   5|    100000|     100|0.70013670|  PASSED 
          sts_serial|   5|    100000|     100|0.92175886|  PASSED 
          sts_serial|   6|    100000|     100|0.63596468|  PASSED 
          sts_serial|   6|    100000|     100|0.63897130|  PASSED 
          sts_serial|   7|    100000|     100|0.36519471|  PASSED 
          sts_serial|   7|    100000|     100|0.87776520|  PASSED 
          sts_serial|   8|    100000|     100|0.78504105|  PASSED 
          sts_serial|   8|    100000|     100|0.68670977|  PASSED 
          sts_serial|   9|    100000|     100|0.53458473|  PASSED 
          sts_serial|   9|    100000|     100|0.96686776|  PASSED 
          sts_serial|  10|    100000|     100|0.93208301|  PASSED 
          sts_serial|  10|    100000|     100|0.41830759|  PASSED 
          sts_serial|  11|    100000|     100|0.44154753|  PASSED 
          sts_serial|  11|    100000|     100|0.04949517|  PASSED 
          sts_serial|  12|    100000|     100|0.50092968|  PASSED 
          sts_serial|  12|    100000|     100|0.19714967|  PASSED 
          sts_serial|  13|    100000|     100|0.69263841|  PASSED 
          sts_serial|  13|    100000|     100|0.84095563|  PASSED 
          sts_serial|  14|    100000|     100|0.24424891|  PASSED 
          sts_serial|  14|    100000|     100|0.88271258|  PASSED 
          sts_serial|  15|    100000|     100|0.38119541|  PASSED 
          sts_serial|  15|    100000|     100|0.66073910|  PASSED 
          sts_serial|  16|    100000|     100|0.68054873|  PASSED 
          sts_serial|  16|    100000|     100|0.75566807|  PASSED 
         rgb_bitdist|   1|    100000|     100|0.06100868|  PASSED 
         rgb_bitdist|   2|    100000|     100|0.33521314|  PASSED 
         rgb_bitdist|   3|    100000|     100|0.96149073|  PASSED 
         rgb_bitdist|   4|    100000|     100|0.52070848|  PASSED 
         rgb_bitdist|   5|    100000|     100|0.98851270|  PASSED 
         rgb_bitdist|   6|    100000|     100|0.13418091|  PASSED 
         rgb_bitdist|   7|    100000|     100|0.13906705|  PASSED 
         rgb_bitdist|   8|    100000|     100|0.51265948|  PASSED 
         rgb_bitdist|   9|    100000|     100|0.73103752|  PASSED 
         rgb_bitdist|  10|    100000|     100|0.57102500|  PASSED 
         rgb_bitdist|  11|    100000|     100|0.56515679|  PASSED 
         rgb_bitdist|  12|    100000|     100|0.99917966|   WEAK 
rgb_minimum_distance|   2|     10000|    1000|0.53587905|  PASSED 
rgb_minimum_distance|   3|     10000|    1000|0.34210762|  PASSED 
rgb_minimum_distance|   4|     10000|    1000|0.58613763|  PASSED 
rgb_minimum_distance|   5|     10000|    1000|0.19434753|  PASSED 
    rgb_permutations|   2|    100000|     100|0.68699976|  PASSED 
    rgb_permutations|   3|    100000|     100|0.17402171|  PASSED 
    rgb_permutations|   4|    100000|     100|0.38105709|  PASSED 
    rgb_permutations|   5|    100000|     100|0.93408952|  PASSED 
      rgb_lagged_sum|   0|   1000000|     100|0.71633791|  PASSED 
      rgb_lagged_sum|   1|   1000000|     100|0.82789524|  PASSED 
      rgb_lagged_sum|   2|   1000000|     100|0.82437890|  PASSED 
      rgb_lagged_sum|   3|   1000000|     100|0.80529476|  PASSED 
      rgb_lagged_sum|   4|   1000000|     100|0.21479258|  PASSED 
      rgb_lagged_sum|   5|   1000000|     100|0.02661369|  PASSED 
      rgb_lagged_sum|   6|   1000000|     100|0.63510522|  PASSED 
      rgb_lagged_sum|   7|   1000000|     100|0.51597148|  PASSED 
      rgb_lagged_sum|   8|   1000000|     100|0.67268338|  PASSED 
      rgb_lagged_sum|   9|   1000000|     100|0.29814160|  PASSED 
      rgb_lagged_sum|  10|   1000000|     100|0.73545520|  PASSED 
      rgb_lagged_sum|  11|   1000000|     100|0.94261731|  PASSED 
      rgb_lagged_sum|  12|   1000000|     100|0.56493673|  PASSED 
      rgb_lagged_sum|  13|   1000000|     100|0.32623547|  PASSED 
      rgb_lagged_sum|  14|   1000000|     100|0.86849070|  PASSED 
      rgb_lagged_sum|  15|   1000000|     100|0.20498726|  PASSED 
      rgb_lagged_sum|  16|   1000000|     100|0.71300651|  PASSED 
      rgb_lagged_sum|  17|   1000000|     100|0.10728202|  PASSED 
      rgb_lagged_sum|  18|   1000000|     100|0.66967662|  PASSED 
      rgb_lagged_sum|  19|   1000000|     100|0.87808186|  PASSED 
      rgb_lagged_sum|  20|   1000000|     100|0.01152262|  PASSED 
      rgb_lagged_sum|  21|   1000000|     100|0.53744897|  PASSED 
      rgb_lagged_sum|  22|   1000000|     100|0.41257966|  PASSED 



  

      rgb_lagged_sum|  23|   1000000|     100|0.57216229|  PASSED 
      rgb_lagged_sum|  24|   1000000|     100|0.88346704|  PASSED 
      rgb_lagged_sum|  25|   1000000|     100|0.41339647|  PASSED 
      rgb_lagged_sum|  26|   1000000|     100|0.71925925|  PASSED 
      rgb_lagged_sum|  27|   1000000|     100|0.75322746|  PASSED 
      rgb_lagged_sum|  28|   1000000|     100|0.63884993|  PASSED 
      rgb_lagged_sum|  29|   1000000|     100|0.98819306|  PASSED 
      rgb_lagged_sum|  30|   1000000|     100|0.33043748|  PASSED 
      rgb_lagged_sum|  31|   1000000|     100|0.10463550|  PASSED 
      rgb_lagged_sum|  32|   1000000|     100|0.46124090|  PASSED 
     rgb_kstest_test|   0|     10000|    1000|0.18623770|  PASSED 
     dab_bytedistrib|   0|  51200000|       1|0.71777194|  PASSED 
             dab_dct| 256|     50000|       1|0.01985939|  PASSED 
Preparing to run test 207.  ntuple = 0 
        dab_filltree|  32|  15000000|       1|0.17292794|  PASSED 
        dab_filltree|  32|  15000000|       1|0.35405515|  PASSED 
Preparing to run test 208.  ntuple = 0 
       dab_filltree2|   0|   5000000|       1|0.68458837|  PASSED 
       dab_filltree2|   1|   5000000|       1|0.04958262|  PASSED 
Preparing to run test 209.  ntuple = 0 
        dab_monobit2|  12|  65000000|       1|0.34004526|  PASSED 
 
### dieharder rerun sts_monobit test 
 
#=============================================================================# 
#            dieharder version 3.31.1 Copyright 2003 Robert G. Brown          # 
#=============================================================================# 
   rng_name    |rands/second|   Seed   | 
stdin_input_raw|  4.13e+05  |3345856669| 
#=============================================================================# 
        test_name   |ntup| tsamples |psamples|  p-value |Assessment 
#=============================================================================# 
         rgb_bitdist|  12|    100000|     100|0.85373615|  PASSED 
 
### dieharder rerun rgb_bitdist test 
 
#=============================================================================# 
#            dieharder version 3.31.1 Copyright 2003 Robert G. Brown          # 
#=============================================================================# 
   rng_name    |rands/second|   Seed   | 
stdin_input_raw|  4.15e+05  |3664988861| 
#=============================================================================# 
        test_name   |ntup| tsamples |psamples|  p-value |Assessment 
#=============================================================================# 
         sts_monobit|   1|    100000|     100|0.35268451|  PASSED 
 
 

 

 


