
Submission to the NIST Lightweight Cryptography Standardization

ForkAE v.1

Designers/Submitters (listed in alphabetical order)

Elena Andreeva1

elena.andreeva@kuleuven.be

+32 16321800

Virginie Lallemand2

virginie.lallemand@loria.fr

+33 354958659

Antoon Purnal1

antoon.purnal@kuleuven.be

+32 16193375

Reza Reyhanitabar3

reza.reyhanitabar@elektrobit.com

+49 913177016208

Arnab Roy4

arnab.roy@bristol.ac.uk

+44 01179545488

Damian Vizár5

damian.vizar@csem.ch

+41 327205269

Affiliations (of corresponding designers)

1 imec-COSIC, KU Leuven, Kasteelpark Arenberg 10 - bus 2452, 3001 Heverlee, Belgium
2 Université de Lorraine, CNRS, Inria, LORIA-Campus Scientifique - BP, 239, 54506,
Vandoeuvre-les-Nancy, France
3 Elektrobit Automotive GmbH, Am Wolfsmantel 46, 91058 Erlangen, Germany
4 University of Bristol, Wooldland Road, Bristol BS8 1UB, United Kingdom
5 CSEM SA, Jaquet-Droz 1, CH-2002 Neuchâtel, Switzerland

https://www.esat.kuleuven.be/cosic/forkae/

https://www.esat.kuleuven.be/cosic/forkae/

ForkAE: Lightweight AEAD Submission to NIST

Contents

1 Introduction 1

2 ForkSkinny Family 3
2.1 Primary NIST compliant recommendation 4
2.2 Use case recommendations . 4
2.3 Operational limits . 4

3 Notation 4
3.1 Forkcipher . 5
3.2 Authenticated Encryption . 6

4 Specification 7
4.1 ForkSkinny . 7
4.2 Parallel AEAD from a Forkcipher . 13
4.3 Sequential AEAD from a Forkcipher . 14

5 Security Claims 15
5.1 NIST security requirement . 15
5.2 Security for our primary and targeted use cases. 16

6 Security Analysis 17
6.1 Cryptanalysis of ForkSkinny . 17
6.2 Modes . 18

7 Efficiency/Implementation 18

8 Design Rationale 20
8.1 Design Decisions in the Primitive Level . 20
8.2 Design Decisions in the Modes of Operation 23
8.3 Distinct Instances, Advantages and Limitations 24

A Formal Definitions of Forkcipher and Authentiated Encryption 30
A.1 Syntax . 30
A.2 Security Definition of Forkcipher . 31
A.3 Security Definition of Authenticated Encryption 31

B Security Analysis of PAEF 31

C Security Analysis of SAEF 35

1

ForkAE: Lightweight AEAD Submission to NIST

D Security Analysis of ForkSkinny 40
D.1 Arguments deduced from the Security of SKINNY 40
D.2 Differential and Linear analysis . 41
D.3 Impossible Differential . 42
D.4 Boomerang Attack . 44
D.5 Meet-in-the-Middle Attack . 44
D.6 Integral Attack . 45
D.7 Algebraic Attack . 46

E The Sboxes of SKINNY 46

2

ForkAE: Lightweight AEAD Submission to NIST

1 Introduction

This document introduces the ForkAE family of algorithms, our submission to the NIST’s
lightweight cryptography project, for the category of authenticated encryption with as-
sociated data (AEAD). ForkAE is a new family of AEAD schemes optimized for the cost
of handling short messages. Its design combines performance, security and simplicity in
a modular package that is easy to analyze. This is achieved by combining and enhanc-
ing novel provably secure modes of operation with known and well-analyzed lightweight
primitives and operations from [9,14].

Most AEAD schemes are optimized for the cost of handling long messages. How-
ever, an increasingly common scenario is that AEAD algorithms are applied to many
small messages. Examples are Secure Onboard Communication (SecOC) in automotive
systems [6], handling of short data bursts in critical communication and massive IoT
domains of 5G [1], and Narrowband IoT (NB-IoT) [2, 5] systems. For instance, the new
CAN FD standard (ISO 11898-1) for vehicle bus technology [3, 4], which is expected to
be implemented in most cars by 2020, allows for a payload up to 64 bytes. In NB-IoT
standard [2,5] the maximum transport block size (TBS) is 680 bits in downlink and 1000
bits in uplink (the minimum TBS size is 16 bits in both cases). In NB-IoT use cases such
as smart parking lots the actual data to be sent is just a bit (for free or occupied status),
so a minimum allowed TBS size of 2 bytes (16 bits) would suit the application.

In the call for submissions for the lightweight cryptography project, NIST has stressed
as a design requirement that lightweight AEAD submissions shall be “optimized to be
efficient for short messages (e.g., as short as 8 bytes)” [35].

The main design goal for the ForkAE family is to excel at processing short inputs,
while also being able to process arbitrary-length inputs, albeit somewhat less efficiently.
To achieve this goal, the ForkAE family is built based on a novel combination of the
following three well-analyzed ingredients:

• Forkcipher: a symmetric-key building block that is introduced in [9] as an essential
ingredient in the quest for lightweight AEAD for very short inputs.

• SKINNY: a lightweight tweakable blockcipher family from [14] with very appealing
hardware/software performances and strong security guarantees with regards to
known attacks.

• SAEF and PAEF: two provably-secure modes of operation for a forkcipher that are
defined in [9].

Forkcipher. A forkcipher [9] is nearly—but not exactly—a fixed-input-length AEAD
primitive; “nearly” because it produces expanded ciphertexts with a non-trivial redun-
dancy, and not exactly because it has no integrity-checking mechanisms. When keyed
and tweaked, a forkcipher maps an n-bit input block to an output of 2n bits. Intuitively,
evaluating a secure forkcipher on an input M is equivalent to evaluating two independent
tweakable permutations on M but with an amortized computational cost.

1

ForkAE: Lightweight AEAD Submission to NIST

ForkSkinny. This is our concrete instantiation for a forkcipher family based on the
lightweight tweakable blockcipher family SKINNY [14]. Our motivation for the choice
of SKINNY was both its area, throughput, power, efficiency and software advantages in
lightweight applications, as well as extensive analysis with regard to state-of-the-art crypt-
analytic techniques [10, 11, 37, 42, 45, 46]. SKINNY is a SPN (substitution permutation
network) and “AND-rotation-XOR”-mix design with a tweakey schedule following the
TWEAKEY approach of [25] and a linear feedback shift register (LFSR) to minimize
hardware costs. Both SPN and TWEAKEY allow for stronger bounds on the number of
active Sboxes, while the addition of “AND-rotation-XOR” and LFSR allow for efficiency
optimizations.

PAEF and SAEF Modes of Operation. To build our full-fledged AEAD schemes
optimized exclusively for processing short inputs, we use two provably secure modes of
operation for a forkcipher. PAEF (Parallel AEAD from a Forkcipher) is a fully paral-
lelizable mode and is suited for applications where one of the parties is able to perform
parallel computations (e.g., in dedicated hardware). SAEF (Sequential AEAD from a
Forkcipher) has an online encryption, but is not parallelizable. SAEF lends itself well
to low-overhead implementations, as it does not need to store the nonce or any block
counters. Both PAEF and SAEF use a unique nonce input value.

ForkAE family. Our proposed family of variable-input-length (VIL) AEAD schemes
is obtained by applying PAEF and SAEF modes of operation to the ForkSkinny family
of primitives. Our primary recommendation is PAEF-ForkSkinny-128-288 that is fully
compliant with the functional and security requirements set by NIST for the LWC project.
PAEF-ForkSkinny-128-288 is a member of the ForkAE family obtained by plugging the
ForkSkinny-128-288 primitive in the PAEF mode. ForkSkinny-128-288 is a forkcipher with a
128-bit block and 288-bit tweakey. The full-fledged VIL AEAD scheme, PAEF-ForkSkinny-
128-288, supports a 128-bit key, 104-bit nonce and 128-bit tag.

The design of ForkAE family combines security, efficiency and a great deal of flexibility
in a modular package:

The ForkAE family is secure. ForkSkinny is benefiting from security properties of
SKINNY, and lessons learned from an extensive third-party cryptanalysis of ForkAES [12]
(ForkAES was put forth in [9] as an initial proof of concept for a forkcipher based on
AES). The modes are provably secure [9]; PAEF achieves n-bit and SAEF n/2-bit AE
(confidentiality and integrity) security.

The ForkAE family is efficient. Inheriting most of the lightweight implementation
features from SKINNY, it provides excellent throughput per area in hardware with round-
based implementation and facilitates many trade-offs in the speed-resource design space
on a variety of hardware and software platforms.

The ForkAE family is flexible. For a 128-bit key, it supports different block lengths
(64 and 128 bits), nonce lengths (120, 112, 104, 56 and 48 bits), and tag lengths (64 and
128 bits) which allows for a number of performance and security tradeoffs.

2

ForkAE: Lightweight AEAD Submission to NIST

2 ForkSkinny Family

Our ForkAE family comprises of 6 members which output a variable-length ciphertext on
inputs a variable-length plaintext, variable-length associated data and a fixed-length nonce
with a fixed-length key in two modes: PAEF and SAEF, and are based on the forkcipher
family ForkSkinny. All members are externally parameterized by the mode, the block size
n and the tweakey size t (determining the ForkSkinny-n-t primitive instantiation). The
tweakey consists of a tweak and the fixed key where the nonce is an internal parameter and
part of the tweak. The members of our ForkAE family can be instantiated with tunable
nonces of up to a maximal permissible length. We propose ForkAE concrete instances
with fixed nonce sizes in Table 1.

mode primitive block tweakey key nonce tag max. nonce

PAEF

ForkSkinny-64-192 64 192 128 48 64 60
ForkSkinny-128-192 128 192 128 48 128 60
ForkSkinny-128-256 128 256 128 112 128 124

ForkSkinny-128-288 128 288 128 104 128 156

SAEF
ForkSkinny-128-192 128 192 128 56 128 60
ForkSkinny-128-256 128 256 128 120 128 124

Table 1: The ForkAE instances with the mode, the ForkSkinny-n-t primitive, the block, the
tweakey, the key, the nonce, and the tag lengths in bits. Our primary recommendation is
in bold. The max. nonce column indicates the maximum permissible nonce bit size that
may be used in the corresponding mode with ForkSkinny.

The tweakey consists of a tweak and a key. The tweak is a known public value and
for our uses consists of a public nonce (unique per message), a domain separator (DS),
and a block counter (used only in PAEF) as described in the Table 2.

mode ForkSkinny-n-t nonce DS block counter key tweakey

PAEF

64-192 48

3

13

128

192
128-192 48 13 192
128-256 112 13 256
128-288 104 53 288

SAEF
128-192 56

4
no

128
192

128-256 120 no 256

Table 2: Tweakeys for all ForkAE instances in in bits.

3

ForkAE: Lightweight AEAD Submission to NIST

2.1 Primary NIST compliant recommendation

Our primary ForkAE recommendation PAEF-ForkSkinny-128-288 is compliant with
the functional and security requirements set by NIST.

2.2 Use case recommendations

Our primary use case recommendation for all ForkAE members are applications which
process short messages of up to 4 data blocks.

2.3 Operational limits

We summarize the algorithmic or operational limits:
1) the maximum number for AEAD encryption calls with a single key (calls/key), and
2) the data (in bytes) limits per single AEAD call (bytes/message);
for each of the instances in Table 3. We stress that these values reflect only algorithm

specific limits and do not take security into consideration.

mode ForkSkinny-n-t nonce size calls/key bytes/message rnd nonce?

PAEF

64-192 48 248 216 no
128-192 48 248 217 no
128-256 112 2112 217 OK
128-288 104 2104 257 OK

SAEF
128-192 56 256 no limit no
128-256 120 2120 no limit OK

Table 3: The algorithmic limits of the ForkAE family. The column “rnd nonce?” is set to
“no” when the nonce is only used as a counter per message (or equivalent stateful mode)
and to “OK” for instances where we admit the use of a random nonce (the max. number
of encryption calls with a random nonce per message ought to be strictly less than square
root of the “calls/key” value).

3 Notation

This section introduces the notation and conventions used in the following sections.
All strings are binary strings. The set of all strings of length n (for a positive integer n)

is denoted {0, 1}n. We let {0, 1}≤n denote the set of all strings of length at most n.
We let left`(X) denote the ` leftmost bits of X and rightr(X) = X[(|X| − r) . . . (|X| −

1)] the r rightmost bits of X, such that X = leftχ(X)||right|X|−χ(X) for any 0 ≤ χ ≤
|X|. Given a (possibly implicit) positive integer n and an X ∈ {0, 1}∗, we let denote

4

ForkAE: Lightweight AEAD Submission to NIST

X||10n−(|X| mod n)−1 for simplicity. Given an implicit block length n, we let pad10(X) =
X||10∗ return X if |X| ≡ 0 (mod n) and X||10∗ otherwise.

Given a string X and an integer n, we let X1, . . . , Xx, X∗
n←− X denote partitioning

X into n-bit blocks, such that |Xi| = n for i = 1, . . . , x, 0 ≤ |X∗| ≤ n and X =
X1|| . . . ||Xx||X∗, so x = max(0, b(|X| − 1)/nc). We let |X|n = dX/ne. We let (M ′,M∗) =
msplitn(M) (as in message split) denote a splitting of a string M ∈ {0, 1}∗ into two
parts M ′||M∗ = M , such that |M∗| ≡ |M | (mod n) and 0 ≤ |M∗| ≤ n, where |M∗| = 0
if and only if |M | = 0. We let (C ′, C∗, T) = csplitn(C) (as in ciphertext split) denote
splitting a string C of at least n bits into three parts C ′||C∗||T = C, such that |C∗| = n,
|T | ≡ |C| (mod n), and 0 ≤ |T | ≤ n, where |T | = 0 if and only if |C| = n. Finally, we
let C ′1, . . . , C

′
m, C∗, T ← csplit-bn(C) (as in csplit to blocks) denote the result of csplitn(C)

followed by partitioning of C ′ into m = |C ′|n blocks of n bits, such that C ′ = C ′1|| . . . ||C ′m.
The symbol ⊥ denotes an error signal, or an undefined value. We denote by X ←$ X

sampling an element X from a finite set X following the uniform distribution.

3.1 Forkcipher

Figure 1: Illustration of the encryption and decryption by a forkcipher.

Our AEAD schemes use the low-level primitive forkcipher [9]. A forkcipher F is a fixed-
input length and expanding fixed-output length tweakable symmetric key primitive. Sim-
ilarly to a tweakable blockcipher, a forkcipher takes a secret key, a tweak and a plaintext
block, but instead produces two output blocks simultaneously. Informally, applying a
secure forkcipher is equivalent to applying a secure tweakable blockcipher to the same
plaintext, with two independent keys. The forkcipher encryption algorithm F(K,T,M, s)
works as follows:

Encryption algorithm F
Inputs: Outputs:
• a key K of k bits
• a tweak T of τ bits
• a plaintext block M of n bits
• an output selector s

if s = 0: the “left” n-bit ciphertext block C0

if s = 1: the “right” n-bit ciphertext block C1

if s = b: both n-bit ciphertext blocks C0, C1

5

ForkAE: Lightweight AEAD Submission to NIST

The selector chooses whether both, or only one of the output blocks will be computed by
the forkcipher. The values of the selector can be encoded in any way, as long as they are
distinct.

A forkcipher applies two independent permutations to the plaintext block which makes
either of the ciphertext blocks sufficient to compute the original plaintext but also to re-
compute the “other” ciphertext block. The inverse algorithm F−1 works as follows:

Inverse algorithm F−1

Inputs: Outputs:
• a key K of k bits
• a tweak T of τ bits
• a ciphertext block C of n bits
• a binary “side” indicator b
• an output selector s

if s = i: the n-bit plaintext block M (invert only),
if s = o: the “other” n-bit ciphertext block Cb⊕1,
if s = b: both these n-bit blocks M,Cb⊕1.

The side indicator decides whether the block C is treated as the “left” ciphertext block
C0 (if b = 0), or the “right” ciphertext block C1 (if b = 1). The algorithms of a forkcipher
are illustrated in Figure 1.

Informally, a correct forkcipher’s encryption algorithm F implements a pair of permu-
tations of the set {0, 1}n for every K ∈ {0, 1}k and T ∈ T , and its decryption algorithm
consistently inverts and re-applies these permutations. A formal mathematical definition
of a forkcipher can be found in Appendix A.

3.2 Authenticated Encryption

The modes of operation in this proposal follow the AEAD syntax proposed by Rog-
away [36]. A nonce-based AEAD scheme is a triplet Π = (K, E ,D). The key space K is a
finite set endowed with the uniform distribution. The deterministic encryption algorithm
E : K×N×A×M→ C maps a secret key K, a nonce N , an associated data A and a mes-
sage M to a ciphertext C = E(K,N,A,M). The nonce, AD and message domains are all
subsets of {0, 1}∗. The deterministic decryption algorithm D : K×N ×A×C →M∪{⊥}
takes a tuple (K,N,A,C) and either returns a mesage M ∈M, or a distinguished symbol
⊥ to indicate an authentication error.

We require that for every M ∈ M, we have {0, 1}|M | ⊆ M (i.e. for any integer
m, either all or no strings of length m belong to M) and that for all K,N,A,M ∈
K×N ×A×M we have |E(K,N,A,M)| = |M |+θ for some non-negative integer θ called
the stretch of Π. For correctness of Π, we require that for all K,N,A,M ∈ K×N×A×M
we have M = D(K,N,A, E(K,N,A,M)). We let EK(N,A,M) = E(K,N,A,M) and
DK(N,A,M) = D(K,N,A,M).

6

ForkAE: Lightweight AEAD Submission to NIST

4 Specification

Below we give the full detailed specification of our ForkAE members as defined by their
underlying primitive ForkSkinny and PAEF or SAEF mode of operations.

4.1 ForkSkinny

We propose the ForkSkinny cipher family as an underlying primitive or building block for
the modes PAEF and SAEF. ForkSkinny is a slight modification of the SKINNY family [14].
Here, we detail the concrete instantiations, the specification, and transcribe the parts of
SKINNY that we keep unchanged in our design.

SKINNY is a family of lightweight tweakable block ciphers that was presented at Crypto
2016 by Beierle et al. [14] with the objective to have comparable performance but stronger
security guaranties than Simon, a Feistel cipher proposed by the NSA [13]. The 6 variants
described in [14] differ from block size (n = 64 or n = 128 bits) and from the tweakey size
(z × n bits, where z is either 1, 2 or 3). They are denoted as SKINNY-n-zn.

In a similar way, by ForkSkinny-n-zn we denote one variant of our cipher with a block
size of n bits (either 64 or 128) and of z × n tweakey bits. We further consider versions
where the tweakey size is not a multiple of the block size n. In general, ForkSkinny-n-t here
will denote the ForkSkinny with n bit block and t bit tweakey. ForkSkinny has an initial
number of rounds rinit which accounts for the number of rounds before the forking step.
The other two parameters r0 and r1 denote the number of rounds after the forking step
for the left and right branch of the function, respectively. The two branches of ForkSkinny
produce two ciphertexts each of length n bits. Our ForkSkinny primitive instantiations
are defined by the distinct value of the latter parameters which are depicted in Table 4.

Primitive block tweak tweakey rinit r0 r1

ForkSkinny-64-192 64 64 192 17 23 23
ForkSkinny-128-192 128 64 192 21 27 27
ForkSkinny-128-256 128 128 256 21 27 27
ForkSkinny-128-288 128 128 288 25 31 31

Table 4: The ForkSkinny primitives with their internal parameters for round numbers rinit,
r0 and r1 and their corresponding external parameters of block and tweakey sizes (in bits)
for fixed 128 bit keys.

The ciphers have a Substitution-Permutation-Network (SPN) structure, and as in the
AES [8], the internal state is organised as a 4× 4 matrix, where each cell is either a byte
(when n = 128) or a nibble (when n = 64). The n−bit messages are loaded row-wisely in
the internal state IS, as depicted below.

7

ForkAE: Lightweight AEAD Submission to NIST

IS =


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15


In the following, we review the most important aspects of the design of SKINNY, and

refer to the original SKINNY specification [14] for more details.
In Figure 2, we use Enc-Skinnyr(·, ·, j), to denote the r-round of SKINNY encryption

starting with round i and Dec-Skinnyr(·, ·, j), to denote r rounds of SKINNY decryption
which starts with round i+ r − 1, i.e.

Enc-Skinnyr = Rj+r−1 ◦ . . . ◦ Rj (1)

Dec-Skinnyr = R−1
j ◦ . . .R−1

j+r−1, j ≥ 0 (2)

where Ri is defined in Equation (3).
The TKS and TKSr denote the tweakey scheduling function per round and r rounds

respectively and is described in Figure 3.

Round Function ForkSkinny round function (see Figure 4) only differs slightly from
the SKINNY one: it reuses the 5 operations described in SKINNY, but considers different
round constant in the AddConstants step to take into account the fact that more rounds
are iterated.

The round function operations are the following (see Figure 4):

• SubCells (SC): each of the 16 words of the internal state is modified by a 4 × 4
(if n = 64) or 8 × 8 Sbox (if n = 128). The definition of the Sboxes is recalled
in Appendix E. ForkSkinny reuses the Sboxes of SKINNY without any change.

• AddConstants (AC): A LFSR is used to produce constants that are added in the
first 3 cells of the first column. Since in total ForkSkinny iterates more rounds than
SKINNY, we changed the definition of the LFSR to avoid repetitions.

• AddRoundTweakey (ART): Exactly as in SKINNY, the addition of the tweakey material
is done in the first two lines of the state.

• ShiftRows (SR): The second line of the internal state is right rotated by 1 cell, the
third line is right rotated by 2 cells, and the last line is right rotated by 3 cells.

• MixColumns (MC): This operation modifies each column by multiplying it with a
binary matrix M , given by:

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


8

ForkAE: Lightweight AEAD Submission to NIST

algo ForkSkinny-Enc(M,K, T, s)
tk ← K||T
L ← Enc-Skinnyrinit(M, tk, 0)
if s = 1 or s = b then

C1 ← Enc-Skinnyr1(L,TKSrinit(tk), rinit)
end if
if s = 0 or s = b then

tk′ ← TKSrinit+r1(tk)
C0 ← Enc-Skinnyr0(L⊕BC, tk′, rinit)

end if
if s = 0 return C0

if s = 1 return C1

if s = b return C0, C1

end algo

algo Enc-Skinnyr(S, tk, i)
for j ← 0 to r − 1 do

S ← Ri+j(S, tk)
tk ← TKSi+j(tk)

end for
return S

end algo

algo Dec-Skinnyr(S, tk, i)
for j ← 0 to r − 1 do

tk ← TKSi+j(tk)
end for
for j ← r − 1 to 0 do

S ← R−1
i+j(S, tk)

tk ← TKS−1
i+j(tk)

end for
return S

end algo

algo ForkSkinny-Dec(C,K, T, b, s)
tk ← K||T
tk′ ← TKSrinit(tk)
if b = 1 then

L ← Dec-Skinnyr1(C, tk′, rinit)
else if b = 0 then

tk′′ ← TKSr1(tk′)
L←Dec-Skinnyr0(Cb, tk

′′, rinit)⊕BC
end if
if s = i or s = b then

M ← Dec-Skinnyrinit(L, tk, 0)
end if
if s = o or s = b then

tk′ ← TKSr1(tk′)
β ← (b⊕ 1) · r1

L← b ·BC ⊕ L
C ′ ← Enc-Skinnyrb⊕1

(L, tk′, rinit +
β)

end if
if s = i return M
if s = o return C ′

if s = b return M,C ′

end algo

Figure 2: ForkSkinny encryption and decryption algorithms. BC is a so-called branch
constant that is explicited and justified in the following sections. The tweakey scheduling
algorithms (TKS, TKSr) is described in fig. 3

9

ForkAE: Lightweight AEAD Submission to NIST

Note that all the rounds are identical, and in particular that no whitening keys are used.
The ith round function can be described as

Ri = MixColumns ◦ ShiftRows ◦ ARTi ◦ AddConstantsi ◦ SubCells (3)

where the subscript i denotes the corresponding functions at iteration i. The Enc-Skinny
and Dec-Skinny can be described as

Enc-Skinny = Rr−1 ◦ . . . ◦ R0 (4)

Dec-Skinny = R−1
0 ◦ . . . ◦ R−1

r−1 (5)

Round Constants Since the full forking structure requires more iterations of the round
function than in SKINNY, we have changed the AddConstants step. Instead of using
6-bit round constants, we use 7-bit ones. Similarly to what is done for SKINNY, our
implementation uses an affine LFSR to generate these round constants. The update
function is defined as:

(rc6||rc5|| . . . ||rc0)→ (rc5||rc4|| . . . ||rc0||rc6 ⊕ rc5 ⊕ 1)

The 7 rci bits are initialized to 0 and updated before use in the round function. The bits
from the LFSR are used exactly in the same way as in SKINNY. The 4× 4 array

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0


is constructed depending on the size of the internal state, where c2 = 0x2 and

(c0, c1) = (rc3||rc2||rc1||rc0, 0||rc6||rc5||rc4) when each cell is 4 bits

(c0, c1) = (0||0||0||0||rc3||rc2||rc1||rc0, 0||0||0||0||0||rc6||rc5||rc4) when each cell is 8 bits.

Branch Constant As we are going to detail in the design rationale section (Section 8),
we introduce additional constants to be added right after the forking point. Namely, when
each cell is made of 4 bits we add the following state:

BC4 =


1 2 4 9

3 6 d a

5 b 7 f

e c 8 1


right after forking, to the left branch leading to C0. These constants are generated by
clocking a 4-bit LFSR, given by: (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2), and initialised
with x0 = 1, x1 = x2 = x3 = 0.

10

ForkAE: Lightweight AEAD Submission to NIST

Table 5: Constants used in ForkSkinny.

Rounds Constants
1 - 16 01,03,07,0F,1F,3F,7E,7D,7B,77,6F,5F,3E,7C,79,73

17 - 32 67,4F,1E,3D,7A,75,6B,57,2E,5C,38,70,61,43,06,0D

33 - 48 1B,37,6E,5D,3A,74,69,53,26,4C,18,31,62,45,0A,15

49 - 64 2B,56,2C,58,30,60,41,02,05,0B,17,2F,5E,3C,78,71

65 - 80 63,47,0E,1D,3B,76,6D,5B,36,6C,59,32,64,49,12,25

81 - 87 4A,14,29,52,24,48,10

When each cell is a byte we add the following state:

BC8 =


01 02 04 08

10 20 41 82

05 0a 14 28

51 a2 44 88

 ,

generated by the 8-bit LFSR: (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7⊕
x5), again initialised with x0 = 1 and all the other bits equal to 0.

Tweakey Again, the tweakey schedule works similarly to what is done in SKINNY, that
is based on the TWEAKEY framework [25]. The first operation consists in filling the
tweakey state, which is view as a collection of 4× 4 matrices of the same cell-size as the
considered internal state. If the cipher uses material that is not the key (that is, strictly
a tweak), this one is positioned first in TK1, row wisely, and then is set the key (if that
leaves an incomplete matrix we fill it with zeros). We denote these matrices by TK1, TK2
and TK3 (if any). As suggested in the SKINNY specification, when there is some tweak
material, we add an extra 1 in the constant matrix from AddConstants, every round at
line 0, column 2, to the second bit).

If the tweakey size is not a multiple of the state size but leaves 2 empty rows in the last
tweakey matrix (as it is the case for ForkSkinny-128-192), instead of filling the remaining
cells with zeros we simply don’t use these cells, which allows to save some memory, some
LFSR applications and also some XORs.

As can be seen on Figure 5, during the AddRoundTweakey step the first two rows of each
tweakey are exclusive-ored together and then to the internal state. To update the tweakey
arrays for the next round, each tweakey word is first modified by a cell-permutation PT ,
given by:

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

and which effect on the cell positioning is as follows:

11

ForkAE: Lightweight AEAD Submission to NIST


0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

 PT−→


9 15 8 13
10 14 12 11
0 1 2 3
4 5 6 7



Each cell (except the ones in TK1) is then linearly modified by a LFSR, following the
definitions given in Table 6.

Table 6: LFSR used to update TK2 and TK3.

TK cell size LFSR
TK2 4 (x3||x2||x1||x0)→ (x2||x1||x0||x3 ⊕ x2)

8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)
TK3 4 (x3||x2||x1||x0)→ (x0 ⊕ x3||x3||x2||x1)

8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

ForkSkinny-64-192 This member of ForkSkinny has block size n = 64 and tweakey size
t = 3n bits. The 192 bit tweakey contains 64 bit tweak and the rest are key bits.

ForkSkinny-128-192 This has block size n = 128 and tweakey size t = 3n/2 bits. The
192 bit tweakey contains 64 bit tweak and the rest are key bits. Note that the design of
SKINNY allows to use tweakey such that n < t < 2n. In such cases, the 2n− t bits of the
tweakey are set to 0.

ForkSkinny-128-256 For this version of ForkSkinny we use n = 128 with tweakey size
t = 2n. The 256 bit tweakey contains 128 bit tweak and the rest are key bits.

ForkSkinny-128-288 For this version of ForkSkinny we use n = 128, with tweakey size
t = 9n/4. The 288 bit tweakey contains 160 bit tweak and the rest are key bits. Note
that the design of SKINNY allows to use tweakey such that 2n < t < 3n. In such cases,
SKINNY proposal recommends to set the 3n− t bits of the tweakey to 0.

Remark. SKINNY has a security margin of 30% for 64-bit block size and 50% for 128-bit
block size. The existing security analyses of SKINNY, such as algebraic, differential/linear,
and integral attacks, can be applied directly to ForkSkinny. Combining these results
together with our security analysis of ForkSkinny, we believe that a more optimized version
of ForkSkinny-128-192, ForkSkinny-128-256 and ForkSkinny-128-288 can be obtained by
reducing their rinit parameter by 6 rounds while still maintaining the same security levels.

12

ForkAE: Lightweight AEAD Submission to NIST

4.2 Parallel AEAD from a Forkcipher

PAEF is a forkcipher-mode of operation for nonce-based AEAD. It is parameterized by

• a forkcipher F (with key length k, tweak length τ and block length n),

• a nonce length ν such that 0 < ν ≤ τ − 4.

The following characteristics of PAEF[F, ν] are determined by the parameters:

Key length k bits
Maximal #of encryption queries 2ν

Maximal length of a message 2(τ−ν−3) · n/3 bytes

Maximal length of AD 2(τ−ν−3) · n/3 bytes
Ciphertext expansion n bits

The nonce-length ν is a parameter that allows to make a trade-off between the maxi-
mal message length and maximal number of queries with the same key. The encryption
algorithm of PAEF is illustrated in Figure 7 and both the encryption and decryption
algorithms are specified in Figure 6.

Encryption of PAEF. In an encryption query, AD and message are partitioned into
blocks of n bits. Each block is processed with a single call to F using a tweak that is
composed of: (1) the nonce N ; (2) a three-bit flag f0||f1||f2; (3) a (τ − ν− 3)-bit encoding
of the block index i (unique for both AD and message). The flag bits are set as follows:

f0 distinguishes input: 0 for AD and 1 for message,

f1 captures block completeness: 0 for n-bit blocks and 1 for shorter blocks,

f2 marks end of input: 0 for non-final block of an input and 1 for the final block.

The ciphertext blocks are the “left” output blocks of F computed from message blocks,
and a xor-sum of all-but-last “right” output blocks of F is xored to the “left” output block
of the call to F that processes the final message block. The final “right” block is truncated
according to the length of the final message block.

Decryption of PAEF. The decryption proceeds similarly as the encryption, except
that the plaintext blocks and “right” output blocks are computed from ciphertext blocks
(using the inverse algorithm F−1), the xor sum is recomputed and xored to the same
ciphertext block as in the encryption query. Then, the decryption of the final block and
the integrity check are performed. When the final message block is complete, the check
is done solely by comparing the tag. If the final message block is m < n bits long, then
the integrity check is done with m bits of the tag, and verifying that the inverse of the
(unmasked) final ciphertext block has correct padding in final n−m bits.

13

ForkAE: Lightweight AEAD Submission to NIST

4.3 Sequential AEAD from a Forkcipher

SAEF is a mode of operation of a forkcipher for nonce-based AEAD. It is parameterized
by

• a forkcipher F (with key length k, tweak length τ and block length n),

• a nonce length ν such that 0 < ν ≤ τ − 4.

The following characteristics of SAEF[F, ν] are determined by the parameters:

Key length k bits
Maximal #of encryption queries 2ν

Maximal length of a message not limited by the algorithm
Maximal length of AD not limited by the algorithm
Ciphertext expansion n bits

The encryption algorithm of SAEF is illustrated in Figure 9 and both the encryption and
decryption algorithms are specified in Figure 8.

Encryption of SAEF. In an encryption query, first AD and then message are processed
in blocks of n bits. Each block is processed with a single call to F, using a tweak that is
composed of: (1) the nonce followed by a 1-bit in the initial F call, and the string 0τ−3

otherwise, (2) three-bit flag f . The binary flag f takes different values for processing of
different types of blocks in the encryption algorithm:

value of f type of block processed by the encryption algorithm
000 processing non-final AD block
010 processing final complete AD block
011 processing final incomplete AD block
110 processing final complete AD block to produce tag
111 processing final incomplete AD block to produce tag
001 processing non-final message block
100 processing final complete message block
101 processing final incomplete message block

The right-hand output of every F call is used as a whitening mask for the following F

call, masking either the input (in AD processing) or both the input and the output (in
message processing) of this subsequent call. The initial F call in the query is unmasked.
The “right” output block of the final call is concatenated to the ciphertext and truncated
according to the length of the final message block.

Decryption of SAEF. The decryption proceeds similarly to the encryption, except
that the plaintext blocks and the right-hand output blocks in the message processing part
are computed with the inverse F−1 algorithm. Along with the decryption of the final

14

ForkAE: Lightweight AEAD Submission to NIST

block, the integrity check is performed. When the final message block is complete, the
check is done solely by comparing the tag. If the final message block is m < n bits long,
then the integrity check is done with m bits of the tag, and verifying that the inverse of
the (unmasked) final ciphertext block has correct padding in final n−m bits.

5 Security Claims

In this section we specify the security levels of all ForkAE members in the single key model
(SK). In Table 7 we derive the bit level authenticated encryption (AE) security comprising
of confidentiality of plaintexts andintegrity of ciphertexts, associated data, and nonce and
express it in log2 of number of ForkSkinny evaluations. Throughout this section we denote
the AE security by Secae

Mode (for Mode∈ {PAEF, SAEF}) and the bit level security against
key recovery of F (ForkSkinny) by SecF. Our AE security claims are supported by security
proofs [9] and show full n-bit security for ForkSkinny in PAEF and birthday bound n/2-
bit security on the block size n for SAEF. These security results are applicable under the
provision that the nonce N is a unique value for every distinct message processed with
the fixed key K. We conjecture that the bit level security against key recovery SecF is
at least 112 bits for our choice of key size k = 128 (for all instances). Our conjectured
security is supported by extensive cryptanalysis in Section 6.

Mode-ForkSkinny Secae SecF

PAEF-ForkSkinny n 112

SAEF-ForkSkinny n/2 112

Table 7: ForkAE general security claims.

5.1 NIST security requirement

Our primary recommendation is PAEF-ForkSkinny-128-288. According to the main se-
curity requirement of NIST, for all family members “cryptanalytic attacks on the AEAD
algorithm shall require at least 2112 computations on a classical computer in a single-key
setting”. NIST also mandates that the primary recommendation additionally comes with
“a nonce of at least 96 bits” and “limits on the input sizes (plaintext, associated data,
and the amount of data that can be processed under one key) for this member shall not
be smaller than 250 − 1 bytes.”. Both PAEF-ForkSkinny-128-288 and SAEF-ForkSkinny-
128-256 comply with all of the above NIST requirements. Our two instances also support
secure processing of 250 − 1 bytes in a single query.

In Table 8 we define the AE security Secae
Mode for the PAEF-ForkSkinny-128-288 and

SAEF-ForkSkinny-128-256 instances, respectively.

15

ForkAE: Lightweight AEAD Submission to NIST

Mode Primitive Secae
Mode SecF Max Data Nonce

PAEF ForkSkinny-128-288 128 112 2112+4 104

SAEF ForkSkinny-128-256 64 112 264+4 120

Table 8: PAEF-ForkSkinny-128-288 and SAEF-ForkSkinny-128-256 NIST compliant secu-
rity claims for nonce N of at least 96 bits.

The max data (Column 5) is a measure of the total data complexity determined as the
number of bytes of AD, messages, and ciphertexts that can be securely evaluated (before
rekeying), and is determined as

min{24 · 2SecF , 24 · 2Secae
Mode , 2ν · bytes/message},

where the first two terms are upper bounds on data complexity in bytes (hence multiplying
by the number of bytes per block 2(log2(n)−3)) w.r.t. the security analysis or the modes and
ForkSkinny, respectively, and the third term is an operational limit (the total number of
bytes processed in AEAD evaluations/calls with all possible nonce (of size ν) values, each
with maximal number of bytes in a single message determined by Column 5 in Table 3).

5.2 Security for our primary and targeted use cases.

Our ForkAE family targets applications dealing primarily with short messages. All our
members comply with the main security requirements of NIST as indicated in Table 7.
Below in Table 9, we outline and emphasize that ForkAE instances achieve high security
levels and max data processing abilities for our main target use case when predominantly
data of up to 4 blocks is processed.

Mode ForkSkinny-n-t Secae
Mode SecF Max data Nonce

PAEF

64-192 64 112 248+5 bytes 48
128-192 128 112 248+6 bytes 48
128-256 128 112 2112+4 bytes 112
128-288 128 112 2104+6 bytes 104

SAEF
128-192 64 112 256+6 bytes 56
128-256 64 112 264+4 bytes 120

Table 9: ForkAE security claims for short messages of up to 4 blocks.

The max data (Column 5) here is the maximal data complexity as the total number
of bytes of AD, messages and ciphertexts that can be securely (before rekeying) evaluated
by the AEAD algorithm if all messages have at most 4 blocks, determined as

min{2(log2(n)−3) · 2SecF , 2(log2(n)−3) · 2Secae
Mode , 2ν · 22+(log2(n)−3)},

16

ForkAE: Lightweight AEAD Submission to NIST

where the first two terms are upper bounds on data complexity in bytes (hence multiplying
by the number of bytes per block 2(log2(n)−3)) w.r.t. the security analysis or the modes
and ForkSkinny, respectively, and the third term is an operational limit of the setting
(the total number of bytes processed in messages with all possible nonce values, each of
4 blocks of 2(log2(n)−3) bits).

6 Security Analysis

The design of the AEAS schemes proposed in this document allows for a modular se-
curity analysis: the modes of operation can be analyzed separately from the primitive
(ForkSkinny), and then be easily combined. More precisely, we:

• Analyze the security of ForkSkinny to the state-of-the-art cryptanalysis techniques
for tweakable block ciphers. We additionally analyze the resistance of ForkSkinny
against adaptations of these attacks that exploit the structure of a forkcipher.

• Prove in the most widely used security model for AEAD that when instantiated with
any secure forkcipher, PAEF and SAEF are respectively optimally and birthday
secure. Informally, our provable analysis implies that when the modes are used
correctly, attacking the resulting AEAD scheme will have little-or-no more success
than an attack on ForkSkinny.

6.1 Cryptanalysis of ForkSkinny

The security arguments provided in the SKINNY specification [14] – as for instance the
bounds on the number of active Sboxes – directly transfer to ForkSkinny in the setting
where an attacker has access to only the plaintext M and to C1 (such access translates
to breaking rinit + r1-round SKINNY or full SKINNY for our choice of the parameters). In
that case, the security arguments devised in [14] and in the numerous third-party analyses
that followed (see for instance [10, 30, 37, 40, 42]) support the choice of our parameters.
In a similar vein, finding an attack when only M and C0 are known to the attacker is
equivalent to breaking rinit + r0-round SKINNY with a slightly modified tweakey schedule.

A different type of analysis is required for what we call reconstruction type of attacks
due to the specific forking structure of ForkSkinny. Such attacks correspond to a setting
where the attacker has access to both C0 and C1, and has the freedom to obtain the
value of C1 corresponding to a chosen C0 (or vice versa). In comparison to the previous
scenarios (where M and either of C1 or C0 are provided), the most notable change comes
from the fact that C0 is related to C1 by a series of decryption rounds followed by an
equally long sequence of encryption rounds. In the reconstruction attacks analysis, we
focus on the central rounds, when the operations switch from decryption to encryption.
As shown in the study [12] of ForkAES with rinit = r0 = r1 = 5, distinguishers may be
possible when there is insufficient diffusion in the middle rounds.

17

ForkAE: Lightweight AEAD Submission to NIST

Our analysis, detailed in Appendix D, showed that the cryptanalytic properties around
the forking point could help build a distinguisher for more rounds than in only encryption
or decryption. However, this effect is rather limited (to less than 5 rounds).

It is customary to evaluate any new symmetric-key function against known cryptanal-
ysis techniques to demonstrate the resilience of the function. In addition to the cryptanal-
ysis techniques which can exploit the special structure of ForkSkinny, in Appendix D we
have evaluated ForkSkinny using state-of-the-art cryptanalysis techniques such as integral
attack, meet-in-the-middle attack, impossible differential attack, and algebraic attack. We
have considered both single key and related-tweakey cryptanalysis to evaluate the security
of ForkSkinny. The detailed analysis in Appendix D and the conservative security margins
of SKINNY give us confidence that the chosen ForkSkinny parameters provide the claimed
security for ForkSkinny. Note that for ForkAE it is not essential to have related-key security
of ForkSkinny and we do not claim any RK security of ForkSkinny in this article.

6.2 Modes

Based on the results of cryptanalysis, we assume ForkSkinny to be a pseudo-random tweak-
able forked permutation or indistinguishable from a pair of tweaked permutations drawn
uniformly at random. We show that under this assumption (ForkSkinny is an n-bit pseudo-
random tweakable forked permutation PRTFP), PAEF instantiated with ForkSkinny can-
not be distinguished from an ideal authenticated encryption scheme in up to about 2n

ForkSkinny calls, and SAEF cannot be distinguished from an ideal authenticated encryp-
tion scheme in up to about 2n/2 ForkSkinny calls [9] . That is, we achieve confidentiality
against chosen-plaintext (CPA) attacks and integrity against forgery up to approximately
2n ForkSkinny calls for PAEF and 2n/2 ForkSkinny calls for SAEF. This result means that
under the same key the total amount of associated data and plaintext/ciphertext should
not exceed 2n and 2n/2 blocks for PAEF and SAEF, respectively.

In more detail, we prove the security of PAEF in the standard model under the PRTFP
assumption on ForkSkinny against an AE distinguisher up to the bound qv ·2n

(2n−1)2 , where qv
is the number of allowed decryption queries with authentication error for PAEF [9]. For

SAEF we similarly prove AE security up to the bound 2 · (σ−q+1)2

2n
+ σ(σ−q)

2n
+ qv(q+2)

2n
, where

q is the number of encryption queries, qv is the number of allowed decryption queries with
authentication error, and σ denotes the maximal total data complexity measured in the
total number of blocks of AD, messages, and ciphertexts in all adversarial queries.

We clarify that our security model does not encompass timing and power consumption
attacks.

7 Efficiency/Implementation

SKINNY: efficient and flexible building block. Our designs are based on the
SKINNY tweakable block cipher, whose efficiency and versatility is well documented in the
existing literature where it was compared to other (lightweight) block ciphers [14], such

18

ForkAE: Lightweight AEAD Submission to NIST

as PRESENT, SIMON, and the block cipher AES. Suitable SKINNY implementation strategies
range from 1-bit serial and word-based implementations, which yield a very small hard-
ware footprint, to round-based and fully unrolled implementations. More specifically, the
following highly attractive features should be highlighted:

• SKINNY excels in round-based implementations, which constitute a common imple-
mentation strategy due to their attractive latency-area characteristics. When im-
plemented in this fashion, SKINNY outperforms the Simon contribution [14], which
has impressive performance figures.

• When implementation size or power consumption are of concern, serialized SKINNY

implementations are among the smallest in the literature, while still offering good
throughput.

• The SKINNY rounds can be efficiently fully or partially unrolled in hardware, result-
ing in low-latency/high-throughput characteristics with a comparatively small area
footprint.

• When deployed in a potentially hostile environment, cryptographic devices are sus-
ceptible to side-channel analysis attacks. Fortunately, introducing standard side-
channel countermeasures is very cheap for SKINNY compared to other primitives.

• Software implementations in microcontrollers perform very well too; SKINNY has
excellent performance on embedded microcontrollers, which represent the low-end of
computing devices and are widely deployed in the wild [14].

A primitive that is as well-rounded as SKINNY is very advantageous for our purposes:
it satisfies a wide range of implementation constraints, and covers the needs of a high
number of lightweight cryptography use cases. In addition, adaptability to different sets
of constraints can also be beneficial within a single application of the IoT domain, where
heterogeneous devices with varying optimization goals will routinely have to be inter-
pretable.

Tailored for short AE queries. The ForkSkinny primitive is purposely designed as
a simple forked execution of the SKINNY tweakable block cipher. As a result, ForkSkinny
directly inherits all the attractive implementation properties and trade-offs of SKINNY.
ForkSkinny additionally adapts to short AE queries, achieving lower latency with less
area because the whole ciphertext is produced immediately, within a single primitive call.
Other AE modes fail to achieve this because either they contain a sequential component
(e.g. CCM), or face a significant area cost (e.g. OCB). ForkSkinny hardware implementa-
tions can achieve authenticated encryption of very short messages in a single clock cycle.

ForkSkinny is versatile. In performance-oriented implementations, the post-
fork execution benefits from parallelism, essentially allowing to execute a forkcipher call
with zero latency overhead compared to a block cipher call. In resource-optimized
implementations, the forkcipher can be implemented without area overhead compared

19

ForkAE: Lightweight AEAD Submission to NIST

to a block cipher call; the forking state can be recomputed instead of stored, significantly
reducing the state size and allowing very compact implementations.

Application potential. In light of the previous discussion, ForkSkinny will be an
excellent fit for a wide range of lightweight and IoT applications where short messages
prevail, e.g. automotive and industrial controllers (low latency budget); medical im-
plants and wireless sensor nodes (low power and low energy requirements, achieved
by compact yet fast implementations); single use IoT objects (such as smart medication
dispensers) and RFID tags (cheap and disposable, hence extremely area-constrained).

8 Design Rationale

Highly efficient encryption and authentication of short messages has been identified as an
essential requirement for enabling security in constrained computation and communication
scenarios such as the CAN FD in automotive systems (with maximum message length
of 64 bytes or 4 blocks of 128 bits), massive IoT and critical communication domains of
5G, and Narrowband IoT (NB-IoT), or low energy protocols, such as Bluetooth with a
maximum packet size length of 47 bytes. We believe this type of usage will continue to
grow and modern lightweight AEAD schemes should optimally support it. This is the
design philosophy that underlies the ForkAE family.

The designs of both the ForkSkinny primitive family and of the PAEF and SAEF
modes of operation are primarily driven by this main optimization goal: optimal efficiency
when predominantly processing very short inputs (up to 4 blocks). In the following we
explain the design decisions made in the primitive level, modes of operations and different
parameters used for instantiation of proposed schemes.

8.1 Design Decisions in the Primitive Level

Our underlying building block is a tweakable primitive built upon a tweakable block ci-
pher. Tweakable block ciphers significantly improve and aid simpler security and design
of cryptographic schemes (built upon them) but require careful analysis on the level of
the tweakable block cipher primitive as they open to a class of so-called related-tweakey
attacks. The TWEAKEY framework [25] analyzes secure ways to instantiate tweakable
block ciphers and is our choice for constructing a secure tweakable forkcipher1 together
with the iterate-fork-iterate forkcipher design framework of [9]. We use SKINNY [14], a re-
cently proposed family of tweakable block ciphers, as our starting primitive and transform
it to the ForkSkinny family of forkciphers.

The SKINNY choice. Our choice is based on the following observations:

• SKINNY has comfortable security margins in view of the current best attacks: despite
the fact that many cryptanalysts tried to break it, none of the published results pose

1The tweakey framework is used in many ciphers such as Deoxys-BC [22, 26], Joltic-BC [23], Kiasu-
BC [24], Skinny and Mantis [14].

20

ForkAE: Lightweight AEAD Submission to NIST

a serious threat to its security. The fraction of rounds of SKINNY-64 that can be
broken is below 70%, while for SKINNY-128 this fraction drops below 50% (this can be
observed from the review of the existing attacks done in Appendix D). As we detail
in this document, many parts of the security analysis of SKINNY directly transfer to
ForkSkinny.

• SKINNY excels at throughput per area in hardware with a round-based implementa-
tion.

• Offers possibilities for many trade-offs in the speed-resources design space, both in
hardware and software.

• SKINNY is proven to be faster than other algorithms such as Simon on various
embedded systems [14].

• Protection against side-channel analysis which can be added efficiently to ForkSkinny
owing to the decomposability of the SBox. Our forkcipher construction introduces
no additional problems; standard side-channel countermeasures like threshold im-
plementations [34] apply equally well to it.

All of these SKINNY advantages carry over to ForkSkinny.

Design decisions in ForkSkinny. In the following we detail the design decisions
made in the construction of the ForkSkinny family of forkciphers.

Number of rounds. The number of rounds used before and after the forking step
depends on the desired security of the forkcipher. Let us denote by rinit the number of
rounds before forking, and by r0 and r1 the number of rounds leading to C0 and C1 after
forking, respectively. Since we can imagine that an attacker has access to both outputs
of the construction (C0 and C1) we must consider 3 cases: attacks that target the input
message and one of the ciphertext, reconstruction attacks that target the relation between
C0 and C1 and finally, attacks that try to benefit from the knowledge of all the input and
of the two outputs together. Naturally, we aim for the same security levels for attacks
targeting either M and C0 or M and C1, which is why we fix r0 = r1. To facilitate security
analysis the parameters are also chosen so that rinit + r0 is at least equal to the number
of rounds of the corresponding SKINNY cipher. Since the security margins of SKINNY are
proved sufficient after numerous cryptanalysis results [10,14,30,37,40,42], we are confident
that the desired security is met.

Intuitively, one expects that in the reconstruction scenario security is ensured by choos-
ing r0+r1 equal to the number of rounds of the corresponding version of SKINNY. However,
as shown in the cryptanalysis section, certain cryptanalytic properties of the cipher (for
instance the diffusion) are weaker at the forking point than for other choices for sequences
of rounds. Because of this effect, we decided not to fix rinit = r0 = r1 but to set r0 and r1

larger than rinit. For all these reasons we fix the number of rounds as detailed in Section 4.

21

ForkAE: Lightweight AEAD Submission to NIST

Forking step. An important parameter to consider in the forkcipher construction is
the position of the forking step, which is determined by the parameter rinit. It must be
chosen such that the reconstruction is secure, so we fix its value based on the cryptanalysis
we perform in the reconstruction scenario. The position of the forking step also has an
effect on the efficiency of ForkSkinny. If rinit + r0 is fixed, choosing a value of rinit such
that rinit > r0 = r1 makes the forkcipher more efficient. On the other hand, choosing
rinit > r0 = r1 can make the forkcipher insecure if r0 = r1 is too small. Indeed, an attack
such as a related tweakey boomerang could possibly be found by exploiting the existence
of high probability differential on the reduced r0 rounds of SKINNY.

Round constants. As ForkSkinny iterates more rounds than SKINNY and in order to
avoid the repetition of round constants, we made a simple tweak of the round constant
generation of SKINNY. Taking the required number of iterations into account we decided
to use 7-bit round constants generated by an LFSR (original SKINNY uses a 6-bit LFSR).

Branch constants. If we make a straightforward implementation of the forkcipher
structure with the cipher SKINNY, we run into a problem that comes from the order in
which the round operations are processed. More precisely, the fact that the round tweakey
is added after SubCells (and not before as it is done in the AES for instance) implies
that in the reconstruction scenario two SubCells operations cancel each others.

Indeed, the series of operations linking C1 to C0 (we have something similar for the
link between C0 and C1) around the forking point would be:

MC ◦ SR ◦ARTrinit+r1+1 ◦ACrinit+r1+1 ◦ SC ◦ SC−1 ◦AC−1
rinit+1 ◦ART−1

rinit+1 ◦ SR−1 ◦MC−1.

Since the two non-linear operations SC cancel out in the middle, this would imply that
these two rounds would boil down to only linear operations. Furthermore, since the
constant and tweakey additions can switch position with the other linear operations up
to a linear modification of their value, the two rounds can be simplified further and seen
as simply the addition of a value that depends on the constants and tweakeys of these
two rounds.

To avoid this cancellation, we decided to add a so-called branch constant (denoted
BC) right after forking, on the branch leading to C0. Each of the 16 cells of the internal
state is modified. Note that the constants can either be stored or generated on the fly by
running the LFSRs, allowing for more implementation trade-offs.

Additional round tweakey. The two branches in the ForkSkinny together require more
round tweakeys than SKINNY. In order to produce these values we simply iterate further
the SKINNY tweakey schedule. We make this design decision to benefit from the hardware-
friendly SKINNY lightweight tweakey schedule.

22

ForkAE: Lightweight AEAD Submission to NIST

8.2 Design Decisions in the Modes of Operation

The designs of both PAEF and SAEF are optimized the processing of short messages
based on the following principles.

Lowest possible cost for shortest messages. Both PAEF and SAEF are designed
so that complete data processing in AEAD encryption/decryption requires only a single
call to the forkcipher per single block of data. To achieve a rate of 1 (1 forkcipher call per
1 data block) processing the nonce needs be integrated exclusively in the tweak inputs of
the forkcipher.

The average performance of our instances is about 1 SKINNY equivalent evaluation per
block of AD, and approximately 1.6 SKINNY evaluations per block of message. Naturally,
the factor of 1.6 becomes restrictive for processing predominantly long plaintexts, but for
our main target category of use cases where inputs are short, e.g. data (AD and messages)
up to 4 blocks, our instances beat in performance the schemes obtained by applying the
standard GCM [20,32], CCM [44] and OCB [29] modes instantiated with the block cipher
SKINNY (matched to our ForkSkinny block and tweakey sizes).

Simplicity. Both PAEF and SAEF use just a single primitive, the forkcipher, as their
main building block. All remaining operations are simple, and do not add substantial
overhead.

Domain separation flags. Both PAEF and SAEF require constant binary flags to be
included in each tweak. The security of the modes requires that these flags take distinct
values in certain stages of processing. For the purposes of the specification we fix the
particular assignment of values used in the two modes, but a change of that assignment
will not have any particular impact on the security.

Parallelizability and optimal security. PAEF is designed to be fully parallel, al-
lowing for even more efficient HW and SW implementations in when there are available
resources (area resp. multiple computation cores). The parallel nature of PAEF requires
the nonce and a counter to be included in every tweak, which while increasing the footprint
of the implementation, allows to achieve optimal full n-bit security.

On-the-fly processing. PAEF and SAEF process data blocks “on-the-fly” as they
arrive (with no delay) in encryption. PAEF processes data “on-the-fly” also in decryption.

Low overhead implementations. SAEF was designed to reduce the memory footprint
of the implementation: the nonce is only processed in the first forkcipher call, and the
chaining structure allows to dispose of the block counters as well. The same SAEF
structure achieves birthday bound n/2-bit security which is typical for the majority of
the existing standard AEAD modes, such as GCM, CCM and OCB.

23

ForkAE: Lightweight AEAD Submission to NIST

Alignment of tweak components. In a hardware implementation, the organisation
of the tweak components does not impact the performance, but in software it does. The
tweak is organized in a software-friendly way. In particular, the byte-string nonce is left-
aligned and the block counter (if any) is right-aligned. As such, for the majority of the
counter updates in PAEF, there is no interference with the binary flags.

8.3 Distinct Instances, Advantages and Limitations

Our 6 ForkAE members come each with specific advantages and a range of security and
performance tradeoffs, as schematically represented in Table 10.

Mode ForkSkinny-n-t parallel data short N short T latency resources

PAEF

64-192 3 tiny 3 3 lowest +
128-192 3 short 3 7 low ++
128-256 3 short 7 7 low ++
128-288 3 short 7 7 highest +++

SAEF
128-192 7 short 3 7 low +
128-256 7 short 7 7 low ++

Table 10: Lightweight advantages of our ForkAE members. The entries are indicative of
the relative (to each other) characteristics of each member. Here tiny data refers ≤ 64
bits sizes of message and associated data and short to ≤ x× 128 for x = 1 to 4.

As an important efficiency metric for lightweight applications, the resources column
denotes resource utilization for both software and hardware implementations. In software
this is reflected by ROM and RAM size, whereas in hardware it captures implementation
area (which has a large influence on the power consumption). On the one hand, the
resource utilization is influenced by the block size and tweak size of each family member.
On the other hand, it is influenced by the mode. Comparing with PAEF, SAEF comes with
the advantage that the resource utilization is lower. Indeed, the nonce can be discarded
after the first use, and there is no block counter that needs to be stored.

We define latency as the time between taking an input block and producing the cor-
responding output block. A small block size and tweakey size contribute positively to the
latency. Given that the design target is efficiency for short messages, latency is a very
important performance metric in the context of this proposal. Indeed, as the message size
shrinks, the set-up time of a deep pipeline or a bitsliced implementation can no longer be
amortized.

While the latency as we define it is independent of the mode, the overall throughput
depends on whether the mode is parallel (as indicated in the parallel Column). Note that
a fast implementation is not only desirable by itself, but also contributes to a low energy
footprint of the device it will be embedded in. While SAEF only exhibits parallelism at
the level of the forkcipher primitive, PAEF can additionally be parallellised and pipelined

24

ForkAE: Lightweight AEAD Submission to NIST

at the level of the mode. As a result, PAEF is always potentially faster than SAEF,
except for single-block messages, where both are equal (cf. the earlier latency argument).

Members of SAEF can be recommended for constrained applications where minimiz-
ing the footprint is critical (as there is no nonce or counters in the state) and settings
where predominantly short messages (up to a few blocks) occur with an overwhelming
probability. Regarding AE security, SAEF offers birthday type of security, whereas PAEF
achieves full security of n bits (cf. Table 7).

Nonce Lengths. For PAEF, the choice of the nonce length sets an upper limit on both
the number of AEAD evaluations that can be securely made with a single key, and the
amount of data in a individual evaluation/call. The choices for the instances were made
such that:

• the nonce is a byte string

• the maximal byte length of a message (or AD) that can be processed in a single
encryption call shall be lest 1 kB (to allow for occasional large messages) for each
instance except the primary recommendation,

• the maximal byte length of a message (or AD) that can be processed in a single
encryption call shall be lest 250 bytes for the primary recommendation.

For SAEF the choice of the nonce length was simple: the longest byte string that leaves
the final 4 bits of tweak for the binary flags.

As can be seen in Table 3, this leaves long-enough nonces for sufficiently many en-
cryption queries with a single key if the nonce is used in a stateful manner (e.g. counter
per message), and for three instances also supports the use of random nonces.

Limitations. Below we discuss some of the limitations of our design.

• As ForkAE is particularly optimized for short message sizes, our ForkAE members
come at a performance disadvantage when the majority of messages are long.

• Our algorithms give provable security guarantees when the nonces are unique values.
We clarify that we purposefully forgot the strong nonce misuse resistance, due to
the unavoidable doubling of computational cost it incurs for the shortest queries
(due to two-pass processing).

• At present our ForkAE members do not support parametrizable tag sizes. This is
a technical artifact of keeping the ciphertext expansion constant while at the same
time processing single block queries with a single primitive call.

• As the SKINNY encryption and decryption process are not exactly the same, the
forkcipher primitive has a non-negligible overhead with respect to a block cipher
encryption-only module.

25

ForkAE: Lightweight AEAD Submission to NIST

• The forkcipher primitive requires the internal cipher state at the fork to be available
for both branches. Storing this state does introduce some overhead with respect to
the traditional block cipher primitive. However, for many implementation strate-
gies and use cases, this overhead is small enough and is clearly outweighed by the
increased performance. Furthermore, for use cases where low resource utilization
is essential, the forking state can be recomputed from the output of the C1 branch
instead of being stored, eliminating the storage overhead altogether.

References

[1] 3GPP TS 22.261: Service requirements for next generation new services
and markets. https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=3107.

[2] 3GPP TS 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
layer procedures. https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=2427.

[3] CAN FD Standards and Recommendations. https://www.can-cia.org/news/

cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/.

[4] ISO 11898-1:2015: Road vehicles – Controller area network (CAN) – Part 1: Data
link layer and physical signalling. https://www.iso.org/standard/63648.html.

[5] NB-IoT: Enabling New Business Opportunities. http://www.huawei.com/

minisite/iot/img/nb_iot_whitepaper_en.pdf.

[6] Specification of Secure Onboard Communication. https://www.autosar.

org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_

SecureOnboardCommunication.pdf.

[7] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M. Youssef.
MILP modeling for (large) s-boxes to optimize probability of differential character-
istics. IACR Trans. Symm. Cryptol., 2017(4):99–129, 2017.

[8] Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001.

[9] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. Forking a
blockcipher for authenticated encryption of very short messages. Cryptology ePrint
Archive, Report 2018/916, 2018. https://eprint.iacr.org/2018/916.

[10] Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel,
Siang Meng Sim, and Gaoli Wang. Related-key impossible-differential attack on

26

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.iso.org/standard/63648.html
http://www.huawei.com/minisite/iot/img/nb_iot_whitepaper_en.pdf
http://www.huawei.com/minisite/iot/img/nb_iot_whitepaper_en.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://eprint.iacr.org/2018/916

ForkAE: Lightweight AEAD Submission to NIST

reduced-round skinny. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, ed-
itors, ACNS 17, volume 10355 of LNCS, pages 208–228. Springer, Heidelberg, July
2017.

[11] Ralph Ankele and Stefan Kölbl. Mind the gap - A closer look at the security of block
ciphers against differential cryptanalysis. In Carlos Cid and Michael J. Jacobson
Jr:, editors, SAC 2018, volume 11349 of LNCS, pages 163–190. Springer, Heidelberg,
August 2019.

[12] Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan Lucks, Willi Meier,
Mostafizar Rahman, Dhiman Saha, and Yu Sasaki. Cryptanalysis of forkaes. Cryptol-
ogy ePrint Archive, Report 2019/289, 2019. https://eprint.iacr.org/2019/289.

[13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. SIMON and SPECK: Block ciphers for the internet of things.
Cryptology ePrint Archive, Report 2015/585, 2015. http://eprint.iacr.org/

2015/585.

[14] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family
of block ciphers and its low-latency variant MANTIS. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 123–
153. Springer, Heidelberg, August 2016.

[15] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power of Verification
Queries in Message Authentication and Authenticated Encryption. IACR Cryptology
ePrint Archive, 2004:309, 2004.

[16] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Serge Vaudenay, editor, Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, 2006.

[17] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced to
31 rounds using impossible differentials. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 12–23. Springer, Heidelberg, May 1999.

[18] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4(1):3–72, January 1991.

[19] Jannis Bossert, Eik List, and Stefan Lucks. Boomerang and rectangle attacks on
forkaes. personal correspondence, 2018.

27

https://eprint.iacr.org/2019/289
http://eprint.iacr.org/2015/585
http://eprint.iacr.org/2015/585

ForkAE: Lightweight AEAD Submission to NIST

[20] M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter
Mode (GCM) and GMAC. NIST Special Publication 800-38D, November 2007.

[21] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/,
2016.

[22] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1. Submitted to the CAE-
SAR competition, 2014.

[23] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1. Submitted to the CAESAR
competition, 2014.

[24] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Kiasu v1. Submitted to the CAESAR
competition, 2014.

[25] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ci-
phers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part II, volume 8874 of LNCS, pages 274–288. Springer, Heidelberg,
December 2014.

[26] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys v1. 41
(2016).

[27] Lars Knudsen. Deal-a 128-bit block cipher. complexity, 258(2):216, 1998.

[28] Thorsten Kranz, Gregor Leander, and Friedrich Wiemer. Linear cryptanalysis: Key
schedules and tweakable block ciphers. IACR Trans. Symm. Cryptol., 2017(1):474–
505, 2017.

[29] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages
306–327. Springer, 2011.

[30] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY under
related-tweakey settings (long paper). IACR Trans. Symm. Cryptol., 2017(3):37–72,
2017.

[31] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, EUROCRYPT’93, volume 765 of LNCS, pages 386–397. Springer, Heidelberg,
May 1994.

[32] David A. McGrew and John Viega. The security and performance of the ga-
lois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee Viswanathan,
editors, Progress in Cryptology - INDOCRYPT 2004, 5th International Conference
on Cryptology in India, Chennai, India, December 20-22, 2004, Proceedings, volume
3348 of Lecture Notes in Computer Science, pages 343–355. Springer, 2004.

28

https://www.iacr.org/authors/tikz/

ForkAE: Lightweight AEAD Submission to NIST

[33] AmirHossein E. Moghaddam and Zahra Ahmadian. New automatic search method for
truncated-differential characteristics: Application to midori and skinny. Cryptology
ePrint Archive, Report 2019/126, 2019. https://eprint.iacr.org/2019/126.

[34] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implementa-
tions against side-channel attacks and glitches. In Information and Communications
Security, 8th International Conference, ICICS 2006, Raleigh, NC, USA, December
4-7, 2006, Proceedings, pages 529–545, 2006.

[35] NIST. DRAFT Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process. https://csrc.nist.gov/

Projects/Lightweight-Cryptography, 2018.

[36] Phillip Rogaway. Authenticated-Encryption with Associated-Data. In ACM CCS
2002, pages 98–107, 2002.

[37] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis of re-
duced round SKINNY block cipher. IACR Trans. Symm. Cryptol., 2018(3):124–162,
2018.

[38] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu. Pro-
gramming the Demirci-Selçuk meet-in-the-middle attack with constraints. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of
LNCS, pages 3–34. Springer, Heidelberg, December 2018.

[39] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revisited. Cryp-
tology ePrint Archive, Report 2019/146, 2019. https://eprint.iacr.org/2019/

146.

[40] Siwei Sun, David Gerault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo, Kexin
Qiao, and Lei Hu. Analysis of AES, SKINNY, and others with constraint program-
ming. IACR Trans. Symm. Cryptol., 2017(1):281–306, 2017.

[41] Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of
LNCS, pages 287–314. Springer, Heidelberg, April 2015.

[42] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible differential
cryptanalysis of reduced-round SKINNY. In Marc Joye and Abderrahmane Nitaj,
editors, AFRICACRYPT 17, volume 10239 of LNCS, pages 117–134. Springer, Hei-
delberg, May 2017.

[43] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE’99, volume
1636 of LNCS, pages 156–170. Springer, Heidelberg, March 1999.

[44] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). IETF
RFC 3610 (Informational), September 2003.

29

https://eprint.iacr.org/2019/126
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://eprint.iacr.org/2019/146
https://eprint.iacr.org/2019/146

ForkAE: Lightweight AEAD Submission to NIST

[45] Pei Zhang and Wenying Zhang. Differential cryptanalysis on block cipher skinny with
MILP program. Security and Communication Networks, 2018:3780407:1–3780407:11,
2018.

[46] Wenying Zhang and Vincent Rijmen. Division cryptanalysis of block ciphers with
a binary diffusion layer. Cryptology ePrint Archive, Report 2017/188, 2017. http:

//eprint.iacr.org/2017/188.

A Formal Definitions of Forkcipher and Authenti-

ated Encryption

The following formalization of the forkcipher is taken from [9]

A.1 Syntax

A forkcipher is a pair of deterministic algorithms, the encryption algorithm

F : {0, 1}k × T × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n

and the inversion algorithm

F−1{0, 1}k × T × {0, 1}n × {0, 1} × {i, o, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n.

The encryption algorithm takes a key K, a tweak T, a plaintext block X and an output
selector s, and outputs the “left” n-bit ciphertext block C0 if s = 0, the “right” n-bit
ciphertext block C1 if s = 1, and a both blocks C0, C1 if s = b. We write F(K,T,M, s) =
FK(T,M, s) = FT

K(M, s) = FT,s
K (M) interchangeably. The decryption algorithm takes a

key K, a tweak T, a ciphertext block C, an indicator b of whether this is the left or the
right ciphertext block and an output selector s, and outputs the plaintext (or inverse)
block X if s = i, the other ciphertext block C ′ if s = o, and both blocks X,C ′ if s = b. We
write F−1(K,T,M, b, s) = F−1

K(T,M, b, s) = F−1T
K(M, b, s) = FT,b,s

K (M) interchangeably.
We call k, n and T the keysize, blocksize and tweak space of F, respectively.

A tweakable forkcipher F meets the correctness condition, if for every K ∈ {0, 1}k,T ∈
T , X ∈ {0, 1}n and β ∈ {0, 1} all of the following conditions are met:

1. F−1(K,T,F(K,T, X, β), β, i) = X

2. F−1(K,T,F(K,T, X, β), β, o) = F(K,T, X, β ⊕ 1)

3. (F(K,T, X, 0),F(K,T, X, 1)) = F(K,T, X, b)

4. (F−1(K,T, X, β, i),F−1(K,T, X, β, o)) = F−1(K,T, X, β, b)

In other words, for each pair of key and tweak, the forkcipher applies two independent
permutations to the input to produce the two output blocks.

30

http://eprint.iacr.org/2017/188
http://eprint.iacr.org/2017/188

ForkAE: Lightweight AEAD Submission to NIST

A.2 Security Definition of Forkcipher

An adversaryA that aims at breaking a tweakable forkcipher F plays the games prtfp-real
and prtfp-ideal and define the advantage of A at distinguishing F from a pair of random
tweakable permutations in a chosen ciphertext attack as

Advprtfp
F (A) = Pr[Aprtfp-realF ⇒ 1]− Pr[Aprtfp-idealF ⇒ 1].

A.3 Security Definition of Authenticated Encryption

We use the two-requirement definition of AE security. We model a chosen plaintext attack
of an adversary A against the confidentiality of a nonce-based AE scheme Π with the help
of the security games priv-real and priv-ideal in Figure 11. We define the advantage
of A in breaking the confidentiality of Π as

Advpriv
Π (A) = Pr[Apriv-realΠ ⇒ 1]− Pr[Apriv-idealΠ ⇒ 1].

We model a chosen ciphertext attack against the integrity of Π with help of the game
auth in Figure 11. We define the advantage of A in breaking the integrity of Π as

Advpriv
Π (A) = Pr[AauthΠforges]

where “A forges” denotes a decryption query that returns a value 6= ⊥.

B Security Analysis of PAEF

Theorem 1. Let F be a tweakable forkcipher with T = {0, 1}τ , and let 0 < ν ≤ τ − 4.
Then for any nonce-respecting adversary A whose queries lie in the proper domains of the
encryption and decryption algorithms and who makes at most qv decryption queries, we
have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B)

and

Advauth
PAEF[F,ν](A) ≤ Advprfp

F (C) +
qv · 2n

(2n − 1)2

for some adversaries B and C who make at most twice as many queries in total as is the
total number of blocks in all encryption, respectively all encryption and decryption queries
made by A, and who run in time given by the running time of A plus an overhead that is
linear in the total number of blocks in all A’s queries.

Proof. Below we prove the confidentiality and authenticity of the PAEF mode. For both
confidentiality and authenticity, we first replace F with a pair of independent random

31

ForkAE: Lightweight AEAD Submission to NIST

tweakable permutations π0, π1, i.e. π0 = (πT,0 ←$ Permn)T∈{0,1}τ is a collection of inde-
pendent uniform elements of Permn indexed by the elements of T ∈ {0, 1}τ (and similarly
π1 = (πT,1 ←$ Permn)T∈{0,1}τ). We let PAEF[(π0, π1), ν] denote the PAEF mode that
uses π0, π1 instead of F. We have that

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) + Advpriv
PAEF[(π0,π1),ν](A)

because a distinguisher B for F can perfectly simulate the games priv-realPAEF[F,ν] and
priv-realPAEF[(π0,π1),ν] for A using its own oracles. In place of any Fρ call, B has to make a
decryption query followed by an encryption query. By copying A’s output, B can achieve
the same advantage as A does, with the same data complexity as A and a very similar
running time. This implies that the gap between these games is bounded by Advprtfp

F (B).
By a similar argument, we have that

Advauth
PAEF[F,ν](A) ≤ Advprtfp

F (C) + Advpriv
PAEF[(π0,π1),ν](A).

For confidentiality, it is easy to see that in a nonce-respecting attack, every message block
is processed with a unique tweak. Every ciphertext block and every tag is produced as the
only image under and independent random permutation (or a substring of such), and thus
uniformly distributed. The final block C∗ of every ciphertext is produced as a xor-sum of
outputs of π0 and π1, each produced with a unique tweak, and thus uniformly distributed.
Since all ciphertexts are uniformly distributed we get perfect confidentiality and hence
our result.

For authenticity, we analyse the probability of forgery for an adversary that makes a single
decryption query against PAEF[(π0, π1), ν] and then use a result of Bellare [15] to extend
our result to multiple queries (still against PAEF[(π0, π1), ν]).

We will denote the encryption queries ofA and the corresponding replies as (N i, Ai,M i)
and Ci for i = 1, . . . , q, where q is the number of encryption queries made by A. For each
i we let Ci

1, . . . , C
i
m, C

i
∗, T = csplit-bn(Ci). We let (N,A,C) denote the only decryption

query of A and we let C1, . . . , Cm, C∗, T = csplit-bn(C). When the forgery (N,A,C) is
made, we have two base cases. If the nonce N is fresh, then the forgery attempt is equiva-
lent to guessing the value of a uniform string of n bits, and thus succeeds with probability
2−n. This holds even if |T | < n, because the rightmost (n − |T |) bits of the preimage of
C∗ under π0 must have a specific value.

If N is reused, i.e. if N = N i for some N i ∈ {N1, . . . , N q}, then we perform a case
analysis. Note that we can disregard all encryption queries except the ith, because their
ciphertetxts are computed using independent random permutations. Every case assumes
the negation of all previous case-conditions.

Case 1, |C|n 6= |Ci|n: We have several subcases.

• If |C| = n, then C is equal to a xor-sum of πT,1 images from the associated data
(denoted as TA in Figure 7), such that we can possibly have Ai = A. However,
due to the assumption in this case, we must have |M i| > 0, so the xor-sum TAi

32

ForkAE: Lightweight AEAD Submission to NIST

computed in the ith encryption query is xor-masked with uniform bits produced
by the processing of M i

∗. Therefore TAi is statistically independent of Ci, and
the adversary has no information when trying to guess the value of the TA sum.
The probability of a successful forgery is 2−n.

• When |C| > n, regardless if C has more or less blocks than Ci, the successful
forgery is equivalent to guessing the value of an image under π1 (respectively the
value of n out of 2n bits produced by π−1

T,0(leftn(T∗)) and πT,1(π−1
T,0(leftn(T∗))))

such that the tweak T = N||110||〈m + 1〉τ−ν−3 (respectively T = N||111||〈m +
1〉τ−ν−3) was not used before. The probability of this event is 2−n.

The probability of a successful forgery in Case 1 is at most 2−n. In the following
cases, |C|n = |Ci|n.

Case 2, |A|n 6= |Ai|n: Again, we have a few subcases to consider.

• If |A|n > |Ai|n, a successful forgery is equivalent to guessing an output value
of πT,1 with a previously unused tweak (T = N||0b1||〈a+1〉τ−ν−3 for b ∈ {0, 1})
thanks to a > ai, succeeding with probability of 2−n.

• If 0 < |A|n < |Ai|n, then a successful forgery is still equivalent to guessing an
output value of πT,1 with a previously unused tweak (T = N||0b1||〈a+ 1〉τ−ν−3

for b ∈ {0, 1}), thanks to the three-bit domain-separation flag (which was set
to 000 in the ith encryption query). This succeeds with probability 2−n.

• Finally if |A| = 0, then |A|n 6= |Ai|n implies that |Ai|n > 0. Forging in this
case is either equivalent to guessing the image π(N||011||1),1(10n−1) such that the
random permutation π(N||011||1),1 was evaluated on no more than a single other
input Ai∗||10∗ 6= 10n−1 in the whole game (if |C| = n), or to guessing the correct
value for C∗. The former succeeds with probability at most 1/(2n−1), and the
latter with probability at most 2−n (because the corresponding output of πT,0
was masked by TAi).

Thus the probability of a successful forgery in this case is at most 1/(2n − 1). In
the remaining cases, we have |C|n = |Ci|n > 1 and |A|n = |Ai|n > 0.

Case 3, |C| 6= |Ci| and |T | = n or |T i| = n: In this case, the forgery verification will
use πT,1 with a fresh tweak T because the “incomplete-block” bit of the three-bit
flag will have different values in the processing of the decryption query, and in the
processing of the ith encryption query. The forgery succeeds with probability 2−n.

Case 4, |A| 6= |Ai| and |A∗| = n or |Ai∗| = n: This is analogous with the previous case;
the probability of forgery is 2−n. In the remaining cases, we have |C|n = |Ci|n > 1,
|A|n = |Ai|n > 0 and |T | > 0, |T i| > 0, |A∗| > 0, |Ai∗| > 0.

Case 5, |C| 6= |Ci| and |T | < n and |T i| < n: In this case, both the encryption query
and the decryption query use the same tweak T to process M i

∗ and C∗, T , respec-
tively. There are two conditions for the forgery to succeed. First, the preimage

33

ForkAE: Lightweight AEAD Submission to NIST

X = π−1
T,0(C∗ ⊕ S) (as per line 29 in Figure 6) must be equal to W ||10n−|T |−1 6=

M i
∗||10n−|T

i|−1 (noting that the case condition implies |T | 6= |T i|) for some W ∈
{0, 1}|T |. This is no easier than finding a fresh value whose preimage falls into a set
of size 2|T |. With a single image of π−1

T,0 already used, this succeeds with probability

bounded by (2|T |)/(2n − 1). Secondly, the image Y = πT,1(X) must be equal to
T ||Z for some Z ∈ {0, 1}n−|T |, conditioned on X having the correct format. This
is equivalent to guessing a fresh image under πT,1 with (n − |T |) free bits. As a
single image of πT,1 has been used already, this happens with probability at most
(2n−|T |)/(2n − 1). The probability of a successful forgery in this case is therefore
bounded by (2|T |)/(2n − 1) · (2n−|T |)/(2n − 1) = 2n/(2n − 1)2.

Case 6, |A| 6= |Ai| and |Aa| < n and |Aia| < n: In this case, the final blocks A∗ and
Ai∗ are processed by the same random permutation πT,1, but as A∗||10n−|A∗| 6=
Ai∗||10n−|A

i
∗|, successfully forging in this case is equivalent to guessing the yet unsam-

pled image πT,1(A∗||10n−|A∗|). With a single image of πT,1 used before, this happens
with probability at most 1/(2n − 1).

Case 7, |C| = |Ci| and |A| = |Ai|: In this case, there must be at least a single block of
either AD or ciphertext where the two queries differ. We investigate the following
subcases.

• If the forgery N,A,C differs from N,Ai, Ci only in C∗||T , then , if we ran the
decryption algorithm on N,Ai, Ci and N,A,C in parallel, the values Si and S
used on the line 29 of the decryption algorithm in Figure 6 would be the same,
and thus necessarily (C∗⊕S)||T 6= (Ci

∗⊕Si)||T i. The probability of a successful
forgery is at (2n− 1)−1 if |T | = n (inverse of C∗⊕S has not yet been sampled)
and at most 2n/(2n − 1)2 otherwise (by a similar argument as in Case 5).

• If A,C||T and Ai, Ci||T i differ in a single block, such that C∗||T = Ci
∗||T i, a

forgery is impossible (because πT,0 and πT,1 are all permutations).

• If there are at least two blocks in A1, . . . Aa, A∗, C1, . . . , Cm, C∗, T that differ
from the corresponding blocks in Ai1, . . . A

i
a, A

i
∗, C

i
1, . . . , C

i
m, C

i
∗, T

i, then the
forgery can succeed in two ways. The first is if (C∗ ⊕ S)||T = (Ci

∗ ⊕ Si)||T i.
This happens with probability at most 1/(2n− 1), as there will be at least one
index j for which Aj 6= Aij (or Cj 6= Ci

j), and for which πT,1(Aj) ⊕ πT,1(Aij)

(respectively πT,1(π−1
T,0(Cj)) ⊕ πT,1(π−1

T,1(Ci
j))) would have to take a particular

value. The probability follows from the fact that whatever T, the random
permutations πT,1 and π−1

T,1 were sampled only once. The second way is if

(C∗⊕S)||T 6= (Ci
∗⊕Si)||T i but the verification still succeeds. This is analogous

to Case 5.

The probability of a successful forgery in this case is bounded by 2n/(2n − 1)2.

34

ForkAE: Lightweight AEAD Submission to NIST

Thus a single forgery succeeds with probability no greater than 2n/(2n−1)2. By applying
the result of Bellare [15], we can bound the probability of a successful forgery among qv
decryption queries as (qv · 2n)/(2n − 1)2.

C Security Analysis of SAEF

Theorem 2. Let F be a tweakable forkcipher with T = {0, 1}τ . Then for any nonce-
respecting adversary A whose makes at most q encryption queries, at most qv decryption
queries such that the total number of forkcipher calls induced by all the queries is at most
σ, with σ ≤ 2n/2, we have

Advpriv
SAEF[F](A) ≤Advprtfp

F (B) + 2 · (σ − q)2

2n
,

Advauth
SAEF[F](A) ≤Advprtfp

F (C) +
(σ − q + 1)2

2n
+
σ(σ − q)

2n
+
qv(q + 2)

2n

for some adversaries B and C who make at most 2σ queries, and who run in time given
by the running time of A plus γ · σ for some constant γ.

Proof of SAEF. The security analysis of SAEF is slightly more involved than in the case
of PAEF. We first tackle confidentiality and then integrity.

Confidentiality of SAEF. We first replace the forkcipher F with a pair of tweakable
permutations π0 and π1. I.e. π0 = (πT,0 ←$ Permn)T∈{0,1}τ is a collection of independent
uniform elements of Permn indexed by the elements of T ∈ {0, 1}τ (and similarly for
π1 = (πT,1 ←$ Permn)T∈{0,1}τ). We let SAEF[π0, π1] denote the SAEF mode that uses
π0, π1 instead of F. This replacement implies the following inequality:

Advpriv
SAEF[F](A) ≤ Advprtfp

F (B) + Advpriv
SAEF[π0,π1](A)

by a similar argument as in the proof of Theorem 1.

We now further replace the two families of random permutations π0 and π1 with families of
random functions f0 and f1 with the same signature. I.e. fb = (fT,b ←$ Func(n))T∈{0,1}τ
for b ∈ {0, 1}. Denoting the SAEF mode using these random functions by SAEF[f0, f1],
we have that

Advpriv
SAEF[π0,π1](A) ≤ Advpriv

SAEF[f0,f1](A) + 2 · (σ − q)2

2n+1

because all but the first block (be it AD or message) of each query are processed using
a tweak of the form 0τ−3||b0b1b2 with b0, b1, b2 ∈ {0, 1}. As there are no more than
σ blocks of data in total, each of the permutations πT,0 and πT,1 processes σT blocks
with

∑
T∈{0,1}τ σT = σ. Replacing each πT,0 by fT,0 augments the bound by at most

σT(σT − 1) · 2−n−1 by the RP-RF switching lemma [16] and a standard hybrid argument.
A sum of all these augmentations is upper bounded by (σ − q)2/2n+1, noting that there

35

ForkAE: Lightweight AEAD Submission to NIST

are at least q tweak values T for which πT,0 is applied to at most a single block. Another
term (σ − q)2/2n+1 needs to be added to account for the replacement of πT,1 for all T.

We now bound Advpriv
SAEF[f0,f1](A). For this, we use the games G0 and G1 defined in

Figure 12. In both games, the set DT collects the domain points, on which the functions
fT,0 and fT,1 were already evaluated. It is easy to verify that G0 actually implements
priv-realSAEF[f0,f1], as the flag bad and the sets DT have no influence on the outputs of
Enc. It is also possible to verify that Pr[Apriv-idealSAEF[f0,f1] ⇒ 1] = Pr[AG1 ⇒ 1]: unless
bad is set, every ciphertext block Ci is an xor of images of a distinct input to two random
functions, and T is simply produced by applying a random function to a fresh input.
Thus, all the output bits of Enc are uniform. Once bad is set, all the ciphertext blocks
and each value of ∆ is replaced by a uniform string, so the simulation is perfect. Thus
we have Advpriv

SAEF[f0,f1](A) ≤ Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1].
We also have that G0 and G1 are identical until bad, so by the Fundamental lemma of

gameplaying [16] we have that Advpriv
SAEF[f0,f1](A) ≤ Pr[AG0 sets bad], where AG0 sets bad

denotes the event that bad = true whenA issues its final output. We bound Pr[AG0 sets bad]
by union bound, iterating over the probability that the ith query sets bad, given that bad
was not set before.

For an encryption query (N,A,M), the initial block of that query is processed with
a tweak N||1b0b1b2, with the corresponding set DN||1b0b1b2 empty, making it impossible to
set bad. Each remaining block (be it AD or message) is masked with the ∆ value before
it is fed to fT,b (for b ∈ {0, 1} and some T). If bad has not been set before, ∆ is a uniform
n-bit string. Thus each such block can set bad with probability |DT,b|/2n for b ∈ {0, 1}
and some T will be uniformly distributed due to the ∆ mask produced by fN||1b0b1b2,1.
There are almost (σ − q) blocks that can set bad when fed to fT,b, and for each we have
|DT,b| ≤ (σ − q). The total probability of setting bad is thus no more than (σ − q)/2n,
completing the proof of the confidentiality bound.

Integrity of SAEF. We again replace the forkcipher F with a pair of tweakable per-
mutations π0 = (πT,0 ←$ Permn)T∈{0,1}τ and π1 = (πT,1 ←$ Permn)T∈{0,1}τ , such that we
have

Advauth
SAEF[F](A) ≤ Advprtfp

F (C) + Advauth
SAEF[π0,π1](A)

by a similar argument as in the proof of Theorem 1.
We additionally replace the tweakable permutation π1 by a tweakable function f1 with

the same signature, yielding

Advauth
SAEF[π0,π1](A) ≤ Advauth

SAEF[π0,f1](A) +
(σ − q + 1)2

2n+1

by a similar argument as in the proof of SAEF’s confidentiality; the difference here is
that A may force a permutation πN||b0b1b2,1 to be used σ− q + 1 by making all decryption
queries with N .

To bound Advauth
SAEF[π0,f1](A), we consider the games G2 and G3 in Figures 13 and 14. It

is easy to see that the game G2 actually implements the game authSAEF[π0,f1], because the

36

ForkAE: Lightweight AEAD Submission to NIST

sets DT for T ∈ {0, 1}τ and the flag bad have no effect on the outputs of the game. More-
over, unless bad is set to true, the games G2 and G3 execute the same code. Thus, by the
Fundamental lemma of gameplaying [16], we have that Pr[AG2 forges]−Pr[AG3 forges] ≤
Pr[AG2 sets bad] and consequently Advauth

SAEF[π0,f1](A) ≤ Pr[AG2 sets bad]+Pr[AG3 forges].

Transition from G2 to G3. The flag bad being set means that for some T ∈ {0, 1}τ ,
the permutation πT,0 and the function fT,1 were used twice on the same input in an
encryption query, beyond a trivial prefix of the two queries. Informally speaking, this
event may allow the adversary to forge trivially by simply truncating the ciphertext, or
the associated data used in an encryption query with such a collision. We disallow this
kind of victory in the game G3.

Some of the conditions that can set bad use predicates P i
A(W,Q), P ∗A(W,Q) and

P i
M(W,Q). These predicates return true if the current query is, up to the currently pro-

cessed block, not a blockwise prefix of some previous query. More precisely, the predicate
P i

A(W,Q) (with W = (N,A,C) or (N,A)) returns false if and only if(1) Q(N) 6= ∅ and
(2) there is a tuple (N,A′) or (N,A′, C ′) such that Aj = A′j for j = 1, . . . , i. The predicate
P ∗A(W,Q) is the same as the predicate P i

A(W,Q) except condition (2) becomes that there
is a tuple (N,A′) or (N,A′, C ′) such that Aj = A′j for j = 1, . . . , a and A∗ = A′∗. Finally
the predicate P i

A(W,Q) returns false if and only if P ∗A(W,Q) is false, and if additionally
Cj = C ′j for j = 1, . . . , i. Note that the three predicates generate a monotonic sequence
when a query is processed; once one predicate returns true, all will return true in the same
query. Note also that in the decrytpion queries, checking the collisions in the domain of
any πT,0 is equivalent with checking the collisions in the range, as each πT,0 is a permu-
tation. Similarly as in the proof of confidentiality bound, we bound Pr[AG2 sets bad] by
the union bound, iterating over the probability that the ith query sets bad, given that bad
was not set before.

In an encryption query (N,A,M), the flag bad can be set during AD processing only
after P i

A(W,Q) (or P ∗A(W,Q)) are returning true. The first block Ai (or A∗), for which the
predicate is true comes right after the longest blockwise prefix with previous queries, so the
current mask ∆ = ∆′ for the corresponding ∆′ in the previous query (N,A′) that yields
the common prefix, but Ai 6= A′i (or A∗ 6= A′∗). The value of ∆′ is statistically independent
of the ciphertexts returned to A, and so Ai⊕∆ ∈ DT (or pad10(A∗)⊕∆ ∈ DT) falls into
DT with probability |DT|/2n ≤ (σ− q)/2n by a similar argument as in the confidentiality
proof of SAEF. For all the consequent blocks B of AD or message, if bad is not set before
B is being processed, the ∆ value that is used to mask B is a uniformly distributed string,
so B ⊕∆ ∈ DT with probability |DT|/2n ≤ (σ − q)/2n as well.

In a decryption query (N,A,C), bad can only be set after the first time P i
A(W,Q),

P ∗A(W,Q), or P i
M(W,Q) return true. Similarly as in an encryption query, the first block

B for which this occurs will be masked by a reused ∆, but this ∆ will be independent of
the observed ciphertexts (even if B is a message block, because ¬bad implies that each
ciphertext block was computed with a fresh uniform mask). For the consequent blocks,
¬bad implies that ∆ is fresh and uniformly distributed. Thus B⊕∆ ∈ DT with probability
|DT|/2n ≤ (σ − q)/2n.

37

ForkAE: Lightweight AEAD Submission to NIST

By summing over all σ blocks, we get Pr[AG2 sets bad] ≤ σ(σ − q)/2n.

Forgery in G3. We proceed to bounding Pr[AG3 forges]. We carry out the analysis for
an adversary A′ that makes a single verification query, and then obtain Pr[AG3 forges] ≤
qv ·Pr[A′G3 forges], referring to a result by Bellare to support the claim [15]. We establish
the bound by the means of a case analysis.

In what follows, we let (N i, Ai,M i), Ci denote the ith encryption query made by A′,
and (N,A,C) denote the only decryption query. For each i, we let Ci

1, . . . , C
i
m, C

i
∗, T

i ←
csplit-bn(Ci) and we let C1, . . . , Cm, C∗, T ← csplit-bn(C). Additionally, we will refer to
the values of the ∆ variable. We will indicate by ∆A,j the jth value that the variable
∆ takes when processing the jth block of A from the decryption query (N,A,C), and
by ∆M,j the jth value that the variable ∆ takes when processing the jth block of the
ciphertext C. We note that we can have j = ∗ and that ∆A,1 = 0n. We define ∆i

A,j and
∆i
M,j in a similar way for (N i, Ai,M i).

Case 1, A = ε and |C|n ≤ 2, or |A|n = 1 and |C|n = 1: We have two sub-cases.

Case 1.1, @N i such that N = N i: In this case, the forgery equals to guessing n random
bits, as the verification uses πN||b0b1b2,0 and fN||b0b1b2,0, which have not been sampled
before because of the freshness of the nonce.

Case 1.2, ∃N i such that N = N i but |A|n + |C|n > 2: Also in this case, the forgery
equals to guessing n random bits, as the verification uses πN||b0b1b2,0 and fN||b0b1b2,0,
which have not been sampled before because the N was not used with the binary
flags b0b1b2.

Case 1.3, ∃N i such that N = N i and |A|n + |C|n ≤ 2: A′ knows a at most a single
image under each πN||b0b1b2,0 (C∗) and fN||b0b1b2,0 (T). If the forgery attempt is with an
AD block, or a ciphertext corresponding to a complete message block, the adversary
has to guess a fresh image under fN||b0b1b2,0, succeeding with probability 2−n. If A′
tries to forge with a ciphertext corresponding to an incomplete message block, the
freshly sampled preimage M∗ = π−1

N||101,0(C∗ ⊕ ∆M,∗) will need to be of the form

X = Z||10∗ for some Z ∈ {0, 1}|T | and simultaneously, the first |T | bits of the
freshly sampled image Y = fN||101,1(M∗) will need to be equal to T . This happens
with probability no greater than ((2|T | − 1) · (2n−|T |))/((2n − 1) · 2n) ≤ 1/(2n − 1).

The probability of forgery in this case is no more than 1/(2n − 1).
The following cases assume the negation of the condition in Case 1 (i.e., the forgery

attempt consist of more than a single block in total).

Case 2: The tag computation is not done right after the trivial prefix with (N,Ai, Ci).
More formally, we have the following subcases:

Case 2.1, |C|n = 1 and P a
A(W,Q) = true: In this case, the tag is verified in AD pro-

cessing using A∗ and a mask ∆A,∗. Due to the condition in this case (and the fact
that a domain collision on fT,1 sets bad and ends the game), ∆ is computed as an

38

ForkAE: Lightweight AEAD Submission to NIST

image of fT,1 evaluated on a fresh input, and thus uniform. The forgery can either
succeed if A∗ ⊕∆A,∗ equals to a value Aj∗ ⊕∆j

A,∗ that has already been fed to fT,1
in the jth encryption query (then A′ can reuse Cj

∗). As j ∈ {1, . . . , q} (T is used at
most once per query), this happens with probability at most q/2n. If this collision
does not succeed, then the adversary must guess a fresh image under fT,1, which
succeeds with probability 2−n. The total forgery probability in this case is bounded
by (q + 1)/2n.

Case 2.2, |C|n > 1 and Pm
M (W,Q) = true: In this case, the tag is verified in message

processing using C∗, tweak T ∈ {0τ−3||100, 0τ−3||101} and a mask ∆M,∗. Similarly as
in Case 2.1, the ∆ mask is a uniform string, and the forgery can either succeed if
C∗⊕∆M,∗ is equal to an already-used range point Cj

∗ ⊕∆j
M,∗ of πT,0 (allowing A′ to

reuse the corresponding tag), or by guessing a correct value and length of the tag.
The former succeeds with probability at most q/2n. For the latter, we explore two
brief subcases.
Case 2.2.1, |T | = n. In this case, the fact that C∗ ⊕ ∆M,∗ is fresh implies that
M∗⊕∆M,∗ has not been fed to fT,1 before, and a successful forgery equals to guessing
a value of a uniform n-bit string. This happens with probability at most 2−n.
Case 2.2.2, |T | < n. In this case, the yet unknown preimage M∗ = π−1

T,0(C∗⊕∆M,∗)

must have the form M∗ = Z||10n−|T |−1 for some Z ∈ {0, 1}|T |, and the yet unknown
image fT,1(M∗ ⊕ ∆M,∗) has to be equal to T ||Y for some Y ∈ {0, 1}n−|T |. This
happens with probability at most (2|T |/(2n − σ)) · (2n−|T |/2n) ≤ 2/2n.
The total probability of forgery in Case 2.2 is bounded by (q + 2)/2n.

The probability of forgery in Case 2 is at most (q + 2)/2n.

Case 3: In the final case, the tag verification is done right after the trivial prefix with
(N,Ai, Ci). More formally, we have the following subcases:

Case 3.1, |C|n = 1 and P a
A(W,Q) = false: In this case, the tag is verified in AD pro-

cessing using A∗, right after the trivial prefix with the ith encryption query, using
a tweak T ∈ {0τ−3||110, 0τ−3||111} and a mask ∆A,∗ = ∆i

A,∗ (for the corresponding
mask in the ith encryption query). We must have that A∗ 6= Ai∗ (otherwise the
forgery attempt would be invalid), so Ci

∗ can’t be reused (as necessarily C∗ 6= Ci
∗).

A′ may attempt to force A∗ ⊕ ∆A,∗ = Aj∗ ⊕ ∆A,∗ and reuse Cj
∗ for j 6= i, but

this happens with probability at most q/2n, similarly as in Case 2.1. This is be-
cause ∆A,∗ = ∆j

A,∗ is statistically independent of the ciphertexts observed by the
adversary. Otherwise A′ can forge by guessing the correct value for C∗ succeeding
with probability 2−n. The total probability of forgery in this case is no more than
(q + 1)/2n.

Case 3.2, |C|n > 1 and Pm
M (W,Q) = false: In this case, the tag is verified in message

processing right after the trivial prefix with the ith encryption query, using C∗,
tweak T ∈ {0τ−3||100, 0τ−3||101} and a mask ∆M,∗. This case is analogous to Case
2.2, except that ∆M,∗ = ∆i

M,∗ has already been used before. Yet, ∆M,∗ = ∆i
M,∗

39

ForkAE: Lightweight AEAD Submission to NIST

is statistically independent from the observed ciphertexts (if bad is not set, every
ciphertext block is equal to an image of πT,0 masked with an independent uniform
string). Thus the argumentation of Case 2.2 carries over, and the probability of
forgery in Case 3.2 is no more than (q + 2)/2n.

By taking the maximum over all cases, the probability that a single-decryption-query
adversary A′ forgers in the game G3 is at most (q + 2)/2n. The adversary A making
qv decryption queries thus forges with probability bounded by qv · (q + 2)/2n. By back-
substituting all the previous equalities, we obtain the claimed result.

D Security Analysis of ForkSkinny

D.1 Arguments deduced from the Security of SKINNY

As noted previously, the security analyses of SKINNY directly transfer to ForkSkinny in the
scenario where an attacker try to attack the cipher from the knowledge of both M and
C1. Consequently, to justify the security of our construction we give an overview of the
main attacks published so far: Table 11 details how many rounds can be reached together
with the complexities of the attacks (note that we focus our review on the versions of
SKINNY with the same parameters as in our ForkSkinny candidates).

Table 11: Complexities of the main previous cryptanalyses of SKINNY-64-192, SKINNY-
128-256 and SKINNY-128-384. The letters indicate if it is in the Related (R) or Single (S)
tweakey scenario.

Version Technique Rounds Time Data Memory ref.

SKINNY-64-192 Rect.(R) 27/40 2165.5 263.5 280 [30]

SKINNY-64-192 Impossib.(S) 22/40 2183.97 247.84 274.84 [42]

SKINNY-128-256 Impossib.(R) 23/48 2251.47 2124.47 2248 [30]

SKINNY-128-256 Impossib.(S) 20/48 2245.72 292.1 2147.1 [42]

SKINNY-128-384 Rect.(R) 27/56 2331 2123 2155 [30]

SKINNY-128-384 Impossib.(S) 22/56 2373.48 292.22 2147.22 [42]

SKINNY-128-384 DS-MITM.(S) 22/56 2382.46 296 2330.99 [38]

Other previous works discussed distinguishers only, without converting them into at-
tacks. We summarize them in Table 12.

40

ForkAE: Lightweight AEAD Submission to NIST

Table 12: Probabilities of the main previous distinguishers of SKINNY-64-192, SKINNY-
128-256 and SKINNY-128-384. The letters indicate if it is in the Related (R) or Single (S)
tweakey scenario.

Version Type of distinguisher Rounds Probability ref.

SKINNY-64-192 Boomerang (R) 22/40 2−42.98 [39]

SKINNY-64-192 Differential (S) 20/40 2−176.74 [11]

SKINNY-64 Truncated (S) 10/40 2−40 [33]

SKINNY-64 Integral (S) 10/40 n/a [46]

SKINNY-64 zero-correlation (S) 10/40 n/a [37]

SKINNY-128-256 Boomerang (R) 18/48 2−77.83 [39]

SKINNY-128 zero-correlation (S) 10/48 n/a [37]

SKINNY-128-384 Boomerang (R) 22/56 2−48.30 [39]

SKINNY-128 zero-correlation (S) 10/56 n/a [37]

D.2 Differential and Linear analysis

Arguments in favor of the resistance of ForkSkinny to differential [18] and linear [31]
crypanalysis can easily be deduced from the analysis that has been done on SKINNY. First,
we recall in Table 13 the bounds on the number of active Sboxes that were provided
in SKINNY specification document. These bounds were later refined, and for instance
Abdelkhalek et al. [7] showed that in the single key scenario there are no differential
characteristics of probability higher than 2−128 for 14 rounds or more of SKINNY-128.

These previous results transfer to the case where we look at a trail covering the path
from the input message up to C1. Due to the change in the tweakey schedule we expect
different bounds in the related-tweakey for the path from the input message up to C0. A
rough estimate of the minimal number of active Sboxes on this trail can be obtained by
summing the bound on rinit rounds and the bound on r0 rounds. For ForkSkinny-64-192
in the TK3 setting, the 17 rounds of rinit ensure 31 active Sboxes, so already before the
forking point the probability of the characteristic is close to 2−64. For ForkSkinny-128-192
and ForkSkinny-128-256 (both in TK2 model), 21 rounds activate at least 59 Sboxes. If we
consider that the branch starting from the forking point is independent and can start from
any internal state difference and tweakey difference (this is the very pessimistic case), only
8 rounds after forking are necessary to go below the characteristic probability of 2−128. In
a similar way 25 rounds in the TK3 model ensure 60 Sboxes, and already 10 rounds after
forking give a characteristic probability under 2−128.

The last case that needs to be evaluated is the reconstruction scenario. An estimate
can be computed following the same idea as before: the number of active Sboxes can be
upper bounded by the bound obtained by summing the one for r0 rounds and the one for

41

ForkAE: Lightweight AEAD Submission to NIST

Table 13: Lower bounds on the number of active Sboxes in SKINNY, in the single key
(SK) and Related-tweakey (TK1, TK2 and TK3) models, as given in [14].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66

TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49
TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35
TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
SK 75 82 88 92 96 102 108 (114) (116) (124) (132) (138) (136) (148) (158)

TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)
TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96
TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

r1 rounds. If we consider that r0 = r1 as for our concrete instances, we obtain that 32
Sboxes are active after 12 rounds (r0 = r1 = 6) in the single key setting, while 26 rounds
are required in TK3 (r0 = r1 = 13) for ForkSkinny-64-192. For the 128-bit block versions,
in the single key setting, 16 rounds are required to get more than 64 active Sboxes. For
ForkSkinny-128-192 and ForkSkinny-128-256, in TK2 model, 30 rounds are required to get
more than 64 active Sboxes. For ForkSkinny-128-288 we need 36 rounds (TK3).

With respect to the parameters we chose, these (optimistic for the attacker) evaluations
make us believe that the differential attacks pose no threat to our proposal.

Similar arguments lead to the same conclusion for linear attacks. Also, we refer to the
FSE 2017 paper [28] by Kranz et al. that looks at the linear hull of a tweakable block cipher
and shows that the addition of a tweak does not introduce new linear characteristics, so
that no additional precaution should be taken in comparison to a key-only cipher.

Observations on the differentials. One of the disadvantages of the forking structure
comes from the improved differentials one can observe in the reconstruction scenario in
comparison to the normal cipher. If there exists a differential going from a difference of
δin to δout over s rounds of encryption, the probability of the differential going from δout

to δout over 2s rounds in the reconstruction scenario is at least equal to the square of the
probability (this is Proposition 2 in [12]), while a smallest probability would have been
expected for a ”common” cipher with a good diffusion.

We also recall here that the clustering effect is rather important in SKINNY [11] and
that it might widen the gap between what is expected from the number of active Sboxes
analysis and what is observed for ForkSkinny in the reconstruction scenario.

D.3 Impossible Differential

Impossible differential attacks [17,27] make use of a couple of differences (α, β) that verifies
that for all possible keys two messages with a Xor difference equal to α cannot produce
two messages that differ by β after a given number of rounds r of encryption.

42

ForkAE: Lightweight AEAD Submission to NIST

To turn this distinguisher into a key recovery, an attacker appends some rounds before
and after the impossible differential. She then makes a guess on the value of some key bits
to check if the differences α and β are observed together. If this is the case, the guess is
wrong for sure (since it leads to a situation that is impossible), so the corresponding keys
are discarded. Once the search space has been sufficiently reduced, the attack is usually
finalised with an exhaustive search.

In case the impossible differential is of the truncated type, we can easily give an upper
bound on its number of rounds. This study was provided in the SKINNY specification,
where it was shown that a miss-in-the-middle (in the special case where the contradiction
is that one cell is active for sure from one direction but inactive from the other direction)
can at most reach 11 rounds in the single-tweakey model.

In following works, the study was extended to the related-tweakey scenario, and for
this the number of rounds covered by the distinguisher was extended to 12 rounds for
TK1, 14 rounds for TK2 and 16 rounds for TK3 [30].

What remains to be done is the study of the case where the impossible differential is
positioned around the forking point. A good first estimate consists in looking at the single
key truncated impossible differential case, where the contradiction comes from one active
cell obtained from one direction and one inactive cell coming from the other direction. We
start by looking for the maximum number of rounds for which one word at least remains
inactive or active, both for the cases:

1. decryption rounds only (corresponding to going from C0 or C1 up to before the
forking point)

2. decryption rounds followed by encryption rounds (corresponding to going from C0

or C1 and decrypting and then continuing over the forking point with encryption.)

To evaluate the second case, we look at all the possibilities for the number of rounds
before the forking point.

The results are provided in Table 14. If we leave out the necessary requirement that
the position of the active cell of one path has to correspond to the position of the inactive
path of the other cell, we obtain that no truncated impossible differential can cover more
than 7 + 5 = 6 + 6 = 12 rounds.

Table 14: Maximum number of rounds covered with a truncated differential path until
we lose all information.

information case 1 case 2
inactive 5 6
active 6 7

Since this approximation (that is optimistic for the attacker) is close to what was

43

ForkAE: Lightweight AEAD Submission to NIST

obtained for SKINNY (and that SKINNY has comfortable security margins), we are confident
about the resistance of ForkSkinny against this type of attacks.

In the related tweakey scenario, an attacker can easily increase the number of rounds
of the distinguisher by creating blank rounds (that is with no differences at all), simply
by choosing carefully the value of the tweakey difference. However, this trick is limited
by the properties of SKINNY Tweakey Schedule, namely the p − 1 cancellation property
of [25]: only a single difference cancellation can happen every 15 rounds for TK2, and
only two difference cancellations can happen for TK3. Since only half of the tweakey
material is used every round this implies that at most 3 consecutive rounds with no
tweakey differences can be constructed every 30 rounds for TK2, and 5 for TK3. Even in
the case where these free rounds can be exploited both at the beginning and at the end,
the securiy margins chosen in SKINNY are sufficient.

D.4 Boomerang Attack

In the classical boomerang attack [43] the adversary produces a quartet of plaintexts/ciphertexts
{(Pi)}4

i=0 such that
⊕

Pi = 0, satisfying
⊕

E(Pi) = 0, where E is typically a block ci-
pher. Boomerang attack can also be adapted in the related-key model, which is known
as the related-key boomerang attack. The success of classic boomerang attack depends
on the probability of differential propagation in a block cipher. Usually a boomerang at-
tack combines two high probability differentials which exist on reduced number of rounds.
Suppose that in a block cipher two differentials exist with probabilities p and q on r1 and
r2 round respectively. Then the probability of the boomerang distinguisher for r1 + r2

rounds of Er2 ◦ Er1 is p2q2, where Er denotes the r round of the encryption function E.
In ForkSkinny such attack can not be applied for the full round due to the large number
of active Sboxes. For ForkSkinny the related-key boomerang attack is more relevant, since
it may lead to a forgery attack against the AE scheme. In ForkSkinny, we can always find
a difference between the round-tweakeys (immediately after the forking step) which are
used in the two different branches of the forkcipher. Using such related round-tweakeys
if an adversary can find RTK boomerang attack then it will lead to the forgery of the AE
scheme. The idea of such attack is depicted in the Fig 15. Such an attack [19] was also
found on an earlier forkcipher instantation. However, it is not possible to find a similar
boomerang attack on ForkSkinny which may lead to forgery attack.

D.5 Meet-in-the-Middle Attack

In a (basic) Meet-in-the-Middle attack, the attacker looks for a decomposition of the
cipher in two parts so that the computation of each part only requires a fraction of the
master key. She then computes a part of the internal state from the plaintext up to the
end of the first part of the cipher, and computes the same part from the ciphertext up to
the beginning of the second part. The correct value for the guessed key bits is among the
hypotheses that lead to a match.

44

ForkAE: Lightweight AEAD Submission to NIST

A good starting point to obtain a first approximation of the resistance of a cipher to
Meet-in-the-Middle attacks consists in looking at its diffusion.

The diffusion of a cipher corresponds to the number of rounds d that are required for
any input bit to influence all the bits of the internal state. In case the key size corresponds
to the block size and that all the key material is used in every rounds, having a cipher with
diffusion equal to d means that any output bit after d rounds is an expression depending on
all the key bits, which prevents the previous MitM attacks when more than (d−1)+(d−1)
rounds are used.

For SKINNY the diffusion delay is equal to 6, which would lead to a first estimate of
10 rounds for a partial matching. However, we must take into account the fact that only
half of the tweakey material is used in each round, that the key addition is made after
the non-linear operation and that the forking point in a reconstruction operation has a
lower diffusion2), which adds some rounds to the first estimate.

In any case the obtained numbers are far from the chosen number of rounds. Moreover,
recent results by Shi et al. [38] showed that with the improvements resulting from the
Demirci-Selçuk techniques a total of 22 rounds out of the 56 of SKINNY-128-384 can be
attacked. This supports that the number of rounds we chose are sufficient to thwart these
types of attacks.

D.6 Integral Attack

ForkSkinny has two components ForkSkinny0 and ForkSkinny1 which produce C0 and C1,
respectively from M . The security of these components follow directly from the analysis of
SKINNY. The integral cryptanalysis against SKINNY can be directly applied to ForkSkinny0

and ForkSkinny1. SKINNY specification describes an integral distinguisher for 10 rounds.
This can be applied to both reduced round ForkSkinny0 and ForkSkinny1. When applied
to these components, the integral distinguisher can only cover less than rinit rounds prior
to forking step. For the key recovery attack, it is possible to add 4 rounds to this integral
distinguisher which allows an adversary to mount an attack against 14 rounds of SKINNY.
Again, this key recovery attack can only cover less than rinit rounds, prior to forking
in different ForkSkinny-n-t. In the reconstruction, an adversary has to cover at least 27
rounds in the encryption direction (following the forking point). Hence, it is not possible
to use the integral attack against the full reconstruction in ForkSkinny. Complexities of
the integral attacks against round reduced ForkSkinny remain the same as described in
the specification of SKINNY [14].

Division Property The division property was introduced as a generalization of the
integral property by Todo [41]. SKINNY specification analyses show that the division
property has significant margin against an attack that uses it. The generic analysis of SPN
ciphers described in [41] leads to only 6 round of division property. Taking the resistance

2The diffusion delay could also increase if the forking point chains two tweakeys that depend on the
same half of the tweakey material. To avoid this we opted for values of r1 that are odd.

45

ForkAE: Lightweight AEAD Submission to NIST

of SKINNY against division property into account, we are confident that ForkSkinny has
sufficient security margin against the same type of attacks.

D.7 Algebraic Attack

ForkSkinny is resilient against algebraic attacks. Following the analysis of SKINNY we can
reason that algebraic attacks do not apply against full ForkSkinny. ForkSkinny uses the
same Sboxes of sizes 4 bits and 8 bits with algebraic degree a = 3 and a = 6, respec-
tively, as in SKINNY. In a single key setting, consecutive 7 rounds of SKINNY encryption
and decryption have 26 and 27 active Sboxes respectively. For all variants of r rounds
ForkSkinny, we obtain a · 26 · b r

7
c≫ n. Like SKINNY, ForkSkinny is also described by a

large number of quadratic equations which contains a large number of variables. Overall,
we conclude that ForkSkinny offers the same security as SKINNY against algebraic attacks.

E The Sboxes of SKINNY

/* SKINNY-64 Sbox */

const unsigned char S4[16] = {12,6,9,0,1,10,2,11,3,8,5,13,4,14,7,15};

/* SKINNY-128 Sbox */

uint8_t S8 [256] = {

0x65, 0x4c, 0x6a, 0x42, 0x4b, 0x63, 0x43, 0x6b, 0x55, 0x75, 0x5a, 0x7a, 0x53, 0x73, 0x5b, 0x7b,

0x35, 0x8c, 0x3a, 0x81, 0x89, 0x33, 0x80, 0x3b, 0x95, 0x25, 0x98, 0x2a, 0x90, 0x23, 0x99, 0x2b,

0xe5, 0xcc, 0xe8, 0xc1, 0xc9, 0xe0, 0xc0, 0xe9, 0xd5, 0xf5, 0xd8, 0xf8, 0xd0, 0xf0, 0xd9, 0xf9,

0xa5, 0x1c, 0xa8, 0x12, 0x1b, 0xa0, 0x13, 0xa9, 0x05, 0xb5, 0x0a, 0xb8, 0x03, 0xb0, 0x0b, 0xb9,

0x32, 0x88, 0x3c, 0x85, 0x8d, 0x34, 0x84, 0x3d, 0x91, 0x22, 0x9c, 0x2c, 0x94, 0x24, 0x9d, 0x2d,

0x62, 0x4a, 0x6c, 0x45, 0x4d, 0x64, 0x44, 0x6d, 0x52, 0x72, 0x5c, 0x7c, 0x54, 0x74, 0x5d, 0x7d,

0xa1, 0x1a, 0xac, 0x15, 0x1d, 0xa4, 0x14, 0xad, 0x02, 0xb1, 0x0c, 0xbc, 0x04, 0xb4, 0x0d, 0xbd,

0xe1, 0xc8, 0xec, 0xc5, 0xcd, 0xe4, 0xc4, 0xed, 0xd1, 0xf1, 0xdc, 0xfc, 0xd4, 0xf4, 0xdd, 0xfd,

0x36, 0x8e, 0x38, 0x82, 0x8b, 0x30, 0x83, 0x39, 0x96, 0x26, 0x9a, 0x28, 0x93, 0x20, 0x9b, 0x29,

0x66, 0x4e, 0x68, 0x41, 0x49, 0x60, 0x40, 0x69, 0x56, 0x76, 0x58, 0x78, 0x50, 0x70, 0x59, 0x79,

0xa6, 0x1e, 0xaa, 0x11, 0x19, 0xa3, 0x10, 0xab, 0x06, 0xb6, 0x08, 0xba, 0x00, 0xb3, 0x09, 0xbb,

0xe6, 0xce, 0xea, 0xc2, 0xcb, 0xe3, 0xc3, 0xeb, 0xd6, 0xf6, 0xda, 0xfa, 0xd3, 0xf3, 0xdb, 0xfb,

0x31, 0x8a, 0x3e, 0x86, 0x8f, 0x37, 0x87, 0x3f, 0x92, 0x21, 0x9e, 0x2e, 0x97, 0x27, 0x9f, 0x2f,

0x61, 0x48, 0x6e, 0x46, 0x4f, 0x67, 0x47, 0x6f, 0x51, 0x71, 0x5e, 0x7e, 0x57, 0x77, 0x5f, 0x7f,

0xa2, 0x18, 0xae, 0x16, 0x1f, 0xa7, 0x17, 0xaf, 0x01, 0xb2, 0x0e, 0xbe, 0x07, 0xb7, 0x0f, 0xbf,

0xe2, 0xca, 0xee, 0xc6, 0xcf, 0xe7, 0xc7, 0xef, 0xd2, 0xf2, 0xde, 0xfe, 0xd7, 0xf7, 0xdf, 0xff

};

46

ForkAE: Lightweight AEAD Submission to NIST

algo TKS(tk)
TK1, TK2, TK3← TK-Matrix(tk, z)
for i← 0 to 16 do

TK1i ← TK1PT [i]

TK2i ← TK2PT [i]

TK3i ← TK3PT [i]

end for
TK2← LFSR(TK2)
TK3 ← LFSR(TK3) B The LFSR

is applied as per SKINNY specification
return tk ← TK1, TK2, TK3

end algo

algo TKSr(tk)
for i← 1 to r do

tk ← TKS(tk)
end for

end algo

algo TK-Matrix(tk, z)
if z = 1 then

for i← 0 to 15 do
TK1← tki

end for
else if z = 2 then

for i← 0 to 15 do
TK1← tki, TK2← tki+16

end for
else if z = 3 then

for i← 0 to 15 do
TK1← tki
TK2← tki+16, TK3← tki+32

end for
end if B TK1, TK2, TK3 are

matrices
return TK1, TK2, TK3

end algo

Figure 3: The tweakey scheduling algorithms for ForkSkinny.

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 4: Structure of every round in ForkSkinny, made of the five operations SubCells

(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC),
as it is done in SKINNY. (Figure credits: [21]).

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 5: Tweakey schedule of ForkSkinny, replicating the one of SKINNY. (Figure credits:
[21])

47

ForkAE: Lightweight AEAD Submission to NIST

1: algo E(K,N,A,M)

2: A1, . . . , Aa, A∗
n←− A

3: M1, . . . ,Mm,M∗
n←−M

4: S ← 0n; c← (τ − ν − 3)
5: for i← 1 to a do
6: T← N||000||〈i〉
7: S ← S ⊕ FT,1

K (Ai)
8: end for
9: if |A∗| = n then

10: T← N||001||〈a+ 1〉c
11: S ← S ⊕ FT,1

K (A∗)
12: else if |A∗| > 0 or |M | = 0 then
13: T← N||011||〈a+ 1〉c
14: S ← S ⊕ FT,1

K (A∗||10∗)
15: end if B Do nothing if A = ε,M 6= ε
16: for i← 1 to m do
17: T← N||100||〈i〉c
18: Ci, S

′ ← FT,b
K (Mi)

19: S ← S ⊕ S′
20: end for
21: if |M∗| = n then
22: T← N||101||〈m+ 1〉c
23: else if |M∗| > 0 then
24: T← N||111||〈m+ 1〉c
25: else
26: return S
27: end if
28: C∗, T ← FT,b

K (pad10(M∗))
29: C∗ ← C∗ ⊕ S
30: return C1|| . . . ||Cm||C∗||left|M∗|(T)
31: end algo

1: algo D(K,N,A,C)

2: A1, . . . , Aa, A∗
n←− A

3: C1, . . . , Cm, C∗, T ← csplit-bn(C)
4: S ← 0n; c← (τ − ν − 3)
5: for i← 1 to a do
6: T← N||000||〈i〉c
7: S ← S ⊕ FT,1

K (Ai)
8: end for
9: if |A∗| = n then

10: T← N||001||〈a+ 1〉c
11: S ← S ⊕ FT,1

K (A∗)
12: else if |A∗| > 0 or |T | = 0 then
13: T← N||011||〈a+ 1〉c
14: S ← S ⊕ FT,1

K (A∗||10∗)
15: end if B Do nothing if A = ε,M 6= ε
16: for i← 1 to m do
17: T← N||100||〈i〉c
18: Mi, S

′ ← F−1
T,0,b
K (Ci)

19: S ← S ⊕ S′
20: end for
21: if |T | = n then
22: T← N||101||〈m+ 1〉c
23: else if |T | > 0 then
24: T← N||111||〈m+ 1〉c
25: else
26: if C∗ 6= S then return ⊥
27: return ε
28: end if
29: M∗, T

′ ← F−1
T,0,b
K (C∗ ⊕ S)

30: T ′ ← left|T |(T
′); P ← rightn−|T |(M∗)

31: if T ′ 6= T return ⊥
32: if P 6= leftn−|T |(10n−1) return ⊥
33: return M1|| . . . ||Mm||left|T |(M∗)
34: end algo

Figure 6: The PAEF[F, ν] AEAD scheme. Here 〈i〉` is the cannonical encoding of an
integer i as an `-bit string.

48

ForkAE: Lightweight AEAD Submission to NIST

A1

0
n

N‖000‖〈1〉

FK

A2

N‖000‖〈2〉

FK
b b b

Aa

000‖N‖〈a〉

FK

TA

A1

0
n

N‖000‖〈1〉

FK

A2

N‖000‖〈2〉

FK
b b b

Aa

N‖000‖〈a〉

FK

TA

A∗‖10
∗

N‖011‖〈a〉

FK

M1

N‖100‖〈1〉

FK

M2

N‖100‖〈2〉

FK
b b b

Mm

N‖100‖〈m〉

FK FK FK
b b b

FK

TA

M∗‖10
∗

N‖111‖〈m〉

FK

M1 M2 Mm

N‖100‖〈m〉N‖100‖〈2〉N‖100‖〈1〉

C1 C2 Cm C1 C2 Cm

A∗

N‖001‖〈a + 1〉

FK

M∗

N‖101‖〈m + 1〉

FK

|M∗|

C∗

T

n

TA

C∗ T

n

Figure 7: The encryption algorithm of PAEF[F] mode. The picture illustrates the pro-
cessing of AD when length of AD is a multiple of n (top left) and when the length of
AD is not a multiple of n (top right), and the processing of the message when length
of the message is a multiple of n (bottom left) and when the length of message is not
a multiple of n (bottom right). The tweak inputs to the forkcipher F are of the form
T = N||f||ctr, where f ∈ {0, 1}3 is a three-bit domain separation flag and ctr = 〈i〉 is a
(τ − |N | − 3)-bit encoding of the block counter.

49

ForkAE: Lightweight AEAD Submission to NIST

1: algo E(K,N,A,M)

2: A1, . . . , Aa, A∗
n←− A

3: M1, . . . ,Mm,M∗
n←−M

4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← N||0τ−4−ν||1
7: for i← 1 to a do
8: T← T||000

9: ∆← FT,1
K (Ai ⊕∆)

10: T← 0τ−3

11: end for
12: if |A∗| = n then
13: T← T||noM||10

14: ∆← FT,1
K (A∗ ⊕∆)

15: T← 0τ−3

16: else if |A∗| > 0 or |M | = 0 then
17: T← T||noM||11

18: ∆← FT,1
K ((A∗||10∗)⊕∆)

19: T← 0τ−3

20: end if B Do nothing if A = ε,M 6= ε
21: for i← 1 to m do
22: T← T||001

23: Ci,∆← FT,b
K (Mi ⊕∆)⊕ (∆, 0n)

24: T← 0τ−3

25: end for
26: if |M∗| = n then
27: T← T||100
28: else if |M∗| > 0 then
29: T← T||101
30: else
31: return ∆
32: end if
33: C∗, T ← FT,b

K (pad10(M∗)⊕∆)⊕ (∆||0n)
34: return C1|| . . . ||Cm||C∗||left|M∗|(T)
35: end algo

1: algo D(K,N,A,C)

2: A1, . . . , Aa, A∗
n←− A

3: C1, . . . , Cm, C∗, T ← csplit-bnC
4: noM← 0
5: if |C| = n then noM← 1
6: ∆← 0n; T← N||0τ−4−ν||1
7: for i← 1 to a do
8: T← T||000

9: ∆← FT,1
K (Ai ⊕∆)

10: T← 0τ−3

11: end for
12: if |A∗| = n then
13: T← T||noM||10

14: ∆← FT,1
K (A∗ ⊕∆)

15: T← 0τ−3

16: else if |A∗| > 0 or |T | = 0 then
17: T← T||noM||11

18: ∆← FT,1
K ((A∗||10∗)⊕∆)

19: T← 0τ−3

20: end if B Do nothing if A = ε,M 6= ε
21: for i← 1 to m do
22: T← T||001

23: Mi,∆← F−1
T,0,b
K (Ci ⊕∆)⊕ (∆, 0n)

24: T← 0τ−3

25: end for
26: if |T | = n then
27: T← T||100
28: else if |T | > 0 then
29: T← T||101
30: else
31: if C∗ 6= ∆ then return ⊥
32: return ε
33: end if
34: M∗, T

′ ← F−1
T,0,b
K (C∗ ⊕∆)⊕ (∆, 0n)

35: T ′ ← left|T |(T
′); P ← rightn−|T |(M∗)

36: if T ′ 6= T return ⊥
37: if P 6= leftn−|T |(10n−1) return ⊥
38: return M1|| . . . ||Mm||left|T |(M∗)
39: end algo

Figure 8: The SAEF[F] AEAD scheme.

50

ForkAE: Lightweight AEAD Submission to NIST

A1

N‖1000

FK

A2

0τ

FK

b b b

A∗

0τ−3‖noM‖10

FK

if noM: T

A∗‖10
∗

FK

M1

FK

M2

FK b b b

M∗

FK FK FK FK

M∗‖10
∗

FK

M1 M2 Mm

C1 C2 C∗ C∗

A1

N‖1000

FK

A2

FK

b b b

Aa

0τ−3‖noM‖11

FK

else: TA

if noM: T

else: TA

N‖1001

TA or 0
n

0τ−1‖1 0τ−3‖100

T C1 C2 Cm

b b b

0τ−3‖101

T

0τ 0τ

TA or 0
n

N‖1001

0τ

FK

Aa

M2

FK

Cm

|M∗|

0τ−1‖1 0τ−1‖1 0τ−1‖1

Figure 9: The encryption algorithm of SAEF[F] mode when |N | = τ−4. The bit noM = 1
iff |M | = 0. The picture illustrates the processing of AD when length of AD is a multiple
of n (top left) and when the length of AD is not a multiple of n (top right), and the
processing of the message when length of the message is a multiple of n (bottom left)
and when the length of message is not a multiple of n (bottom right). The tweak inputs
to the forkcipher F are of the form T = N||0τ−|N |−4||1||f or T = 0τ−4||0||f , where f ∈ {0, 1}3

is a three-bit domain separation flag (The zero padding of the nonce is not present in the
figure as |N | = τ − 4).

Game prtfp-realF

K ←$ {0, 1}k
b← AEnc,Dec

return b

Oracle Enc(T,M, s)
return F(K,T,M, s)

Oracle Dec(T, C, β, s)
return F−1(K,T, C, β, s)

Game prtfp-idealF

for T ∈ T do πT,0, πT,1 ←$ Permn
b← AEnc,Dec

return b

Oracle Enc(T,M, s)
if s = 0 then return πT,0(M)
if s = 1 then return πT,1(M)
if s = b then return πT,0(M), πT,1(M)

Oracle Dec(T, C, β, s)
if s = i then return π−1

T,β(C)

if s = o then return πT,(β⊕1)(π
−1
T,β(C))

if s = b then return π−1
T,β(C), πT,(β⊕1)(π

−1
T,β(C))

Figure 10: Games prtfp-real and prtfp-ideal defining the security of a (strong) forkci-
pher.

51

ForkAE: Lightweight AEAD Submission to NIST

proc initialize priv-realΠ
K ←$ K
X ← ∅

proc Enc(N,A,M)
if N ∈ X then
return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
return C

proc initialize priv-idealΠ
X ← ∅

proc Enc(N,A,M)
if N ∈ X then
return ⊥
X ← X ∪ {N}
C ←$ {0, 1}|M |+τ
return C

proc initialize authΠ

K ←$ K
X ← ∅, Y ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
Y ← Y ∪ {(N,A,C)}
return C

proc Dec(N,A,C)
if (N,A,C) ∈ Y then

return ⊥
return D(K,N,A,C)

Figure 11: Security games for a nonce-based AE Π = (K, E ,D) with ciphertext expansion τ .

52

ForkAE: Lightweight AEAD Submission to NIST

1: proc initialize
2: for T ∈ {0, 1}τ do
3: fT,0 ←$ Func(n)
4: fT,1 ←$ Func(n)
5: DT ← ∅
6: end for
7: bad← false

1: proc Enc(N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: W ← (N,A)
5: noM← 0
6: if |M | = 0 then noM← 1
7: ∆← 0n; T← N||0τ−ν−4||1
8: for i← 1 to a do
9: T← T||000

10: if Ai ⊕∆ ∈ DT then
11: bad← true
12: end if
13: DT ← DT ∪ (Ai ⊕∆)
14: ∆← fT,1(Ai ⊕∆)
15: if bad = true then

16: ∆←$ {0, 1}n

17: end if
18: T← 0τ−3

19: end for
20: if |A∗| = n then
21: T← T||noM||10
22: if A∗ ⊕∆ ∈ DT then
23: bad← true
24: end if
25: DT ← DT ∪ (A∗ ⊕∆)
26: ∆← fT,1(A∗ ⊕∆)
27: if bad = true then

28: ∆←$ {0, 1}n

29: end if
30: T← 0τ−3

31: else if |A∗| > 0 or |M | = 0 then
32: T← T||noM||11

33: if A∗ ⊕∆ ∈ DT then
34: bad← true
35: end if
36: DT ← DT ∪ ((A∗||10∗)⊕∆)
37: ∆← fT,1((A∗||10∗)⊕∆)
38: if bad = true then

39: ∆←$ {0, 1}n

40: end if
41: T← 0τ−3

42: end if
43: for i← 1 to m do
44: T← T||001
45: if Mi ⊕∆ ∈ DT then
46: bad← true
47: end if
48: DT ← DT ∪ (Mi ⊕∆)
49: Ci ← fT,0(Mi ⊕∆)⊕∆
50: ∆← fT,1(Mi ⊕∆)
51: if bad = true then

52: Ci,∆←$ {0, 1}n × {0, 1}n

53: end if
54: T← 0τ−3

55: end for
56: if |M∗| = n then
57: T← T||100
58: else if |M∗| > 0 then
59: T← T||101
60: else
61: return ∆
62: end if
63: if M∗ ⊕∆ ∈ DT then
64: bad← true
65: end if
66: C∗ ← fT,0(pad10(M∗)⊕∆)⊕∆
67: T ← fT,1(pad10(M∗)⊕∆)
68: if bad = true then

69: C∗, T ←$ {0, 1}n × {0, 1}n

70: end if
71: return C1|| . . . ||Cm||C∗||left|M∗|(T)

Figure 12: The games G0 and G1 for bounding Advpriv
SAEF[f0,f1]. The game G0 does not contain

the boxed statement, while G1 does.

53

ForkAE: Lightweight AEAD Submission to NIST

1: proc initialize
2: for T ∈ {0, 1}τ do
3: πT,0 ←$ Permn
4: fT,1 ←$ Func(n)
5: DT ← ∅
6: end for
7: for N ∈ {0, 1}ν do Q(N)← ∅
8: bad← false

1: proc Enc(N,A,M)

2: A1, . . . , Aa, A∗
n←− A

3: M1, . . . ,Mm,M∗
n←−M

4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← N||1
7: for i← 1 to a do
8: T← T||000
9: if Ai ⊕∆ ∈ DT and Pia(W,Q) then

10: bad← true
11: end if
12: DT ← DT ∪ (Ai ⊕∆)
13: ∆← fT,1(Ai ⊕∆)
14: T← 0τ−3

15: end for
16: if |A∗| = n then
17: T← T||noM||10
18: if A∗ ⊕∆ ∈ DT and P∗a(W,Q) then
19: bad← true
20: end if
21: DT ← DT ∪ (A∗ ⊕∆)
22: ∆← fT,1(A∗ ⊕∆)
23: T← 0τ−3

24: else if |A∗| > 0 or |M | = 0 then
25: T← T||noM||11

26: if (A∗||10∗) ⊕∆ ∈ DT and P∗a(W,Q)
then

27: bad← true
28: end if
29: DT ← DT ∪ ((A∗||10∗)⊕∆)
30: ∆← fT,1((A∗||10∗)⊕∆)
31: T← 0τ−3

32: end if
33: for i← 1 to m do
34: T← T||001
35: if Mi ⊕∆ ∈ DT then
36: bad← true
37: end if
38: DT ← DT ∪ (Mi ⊕∆)
39: Ci ← πT,0(Mi ⊕∆)⊕∆
40: ∆← fT,1(Mi ⊕∆)
41: T← 0τ−3

42: end for
43: if |M∗| = n then
44: T← T||100
45: else if |M∗| > 0 then
46: T← T||101
47: else
48: return ∆
49: end if
50: if pad10(Mi)⊕∆ ∈ DT then
51: bad← true
52: end if
53: DT ← DT ∪ (pad10(Mi)⊕∆)
54: C∗ ← πT,0(pad10(M∗)⊕∆)⊕∆
55: T ← fT,1(pad10(M∗)⊕∆)
56: Q(N)← Q(N)∪((A1, .., A∗), (C1, .., Cm))
57: return C1|| . . . ||Cm||C∗||left|M∗|(T)

Figure 13: The games G2 and G3 for bounding Advauth
SAEF[π0,f1] (continued in Figure 14). The

game G2 does not contain the boxed statements, while G3 does.

54

ForkAE: Lightweight AEAD Submission to NIST

1: proc Dec(N,A,C)
2: if bad = true then
3: return ⊥
4: end if
5: W ← (N,A,C)
6: Q(N)← Q(N) ∪ ((A1, .., A∗))

7: A1, . . . , Aa, A∗
n←− A

8: C1, . . . , Cm, C∗, T ← csplit-bn(C)
9: noM← 0

10: if |C| = n then noM← 1
11: ∆← 0n; T← N||1
12: for i← 1 to a do
13: T← T||000
14: if Ai ⊕∆ ∈ DT and Pia(W,Q) then
15: bad← true
16: return ⊥
17: end if
18: DT ← DT ∪ (Ai ⊕∆)
19: ∆← fT,1(Ai ⊕∆)
20: T← 0τ−3

21: end for
22: if |A∗| = n then
23: T← T||noM||10
24: if A∗ ⊕∆ ∈ DT and P∗a(W,Q) then
25: bad← true
26: return ⊥
27: end if
28: DT ← DT ∪ (A∗ ⊕∆)
29: ∆← fT,1(A∗ ⊕∆)
30: T← 0τ−3

31: end if
32: if |A∗| > 0 or |T | = 0 then
33: T← T||noM||11 and P∗a(W,Q)
34: if (A∗||10∗) ⊕∆ ∈ DT and P∗a(W,Q)

then
35: bad← true
36: return ⊥
37: end if
38: DT ← DT ∪ ((A∗||10∗)⊕∆)
39: ∆← fT,1((A∗||10∗)⊕∆)
40: T← 0τ−3

41: end if
42: for i← 1 to m do
43: T← T||001
44: Mi ← π−1T,0(Ci ⊕∆, 0)⊕∆

45: if Mi ⊕∆ ∈ DT and Pim(W,Q) then
46: bad← true
47: return ⊥
48: end if
49: DT ← DT ∪ (Mi ⊕∆)
50: ∆← fT,1(π−1T,0(Ci ⊕∆, 0))

51: T← 0τ−3

52: end for
53: if |T | = n then
54: T← T||100
55: else if |T | > 0 then
56: T← T||100
57: else
58: if C∗ 6= ∆ then return ⊥
59: return ε
60: end if
61: M∗ ← π−1T,0(C∗ ⊕∆)⊕∆
62: T ′ ← fT,1(M∗ ⊕∆)
63: T ′ ← left|T |(T

′); P ← rightn−|T |(M∗)
64: if T ′ 6= T return ⊥
65: if P 6= leftn−|T |(10n−1) return ⊥
66: return M1|| . . . ||Mm||left|T |(M∗)

Figure 14: The games G2 and G3 for bounding Advauth
SAEF[π0,f1] (continued from Figure 13). The

game G2 does not contain the boxed statements, while G3 does. The predicates PA and PM are
defined in Section C.

55

ForkAE: Lightweight AEAD Submission to NIST

Y

M ′

tk3
r →

tk4
r →

Y

Y

C0 ⊕∇

C1 ⊕∇

X

M

tk1
r →

tk2
r →

X

X

C0

C1

∇

∇

Figure 15: RTK boomerang attack against forkcipher producing forgery for single block.
Here tk1

r and tk2
r are two round keys after forking which introduce the tweakey difference.

X and Y are states of the ForkSkinny after forking.

56

	1 Introduction
	2 ForkSkinny Family
	2.1 Primary NIST compliant recommendation
	2.2 Use case recommendations
	2.3 Operational limits

	3 Notation
	3.1 Forkcipher
	3.2 Authenticated Encryption

	4 Specification
	4.1 ForkSkinny
	4.2 Parallel AEAD from a Forkcipher
	4.3 Sequential AEAD from a Forkcipher

	5 Security Claims
	5.1 NIST security requirement
	5.2 Security for our primary and targeted use cases.

	6 Security Analysis
	6.1 Cryptanalysis of ForkSkinny
	6.2 Modes

	7 Efficiency/Implementation
	8 Design Rationale
	8.1 Design Decisions in the Primitive Level
	8.2 Design Decisions in the Modes of Operation
	8.3 Distinct Instances, Advantages and Limitations

	A Formal Definitions of Forkcipher and Authentiated Encryption
	A.1 Syntax
	A.2 Security Definition of Forkcipher
	A.3 Security Definition of Authenticated Encryption

	B Security Analysis of PAEF
	C Security Analysis of SAEF
	D Security Analysis of ForkSkinny
	D.1 Arguments deduced from the Security of SKINNY
	D.2 Differential and Linear analysis
	D.3 Impossible Differential
	D.4 Boomerang Attack
	D.5 Meet-in-the-Middle Attack
	D.6 Integral Attack
	D.7 Algebraic Attack

	E The Sboxes of SKINNY

