
ORANGE

Designers/Submitters:
Bishwajit Chakraborty - Indian Statistical Institute,Kolkata
Mridul Nandi - Indian Statistical Institute, Kolkata, India

bishu.math.ynwa@gmail.com
mridul.nandi@gmail.com

March 22, 2019

1

1 Introduction

This work proposes ORANGE, a variant of sponge authenticated encryption and sponge hash which can
absorb data in the optimum rate. In other words, it is an Optimum RAte spoNGE construction. In this
submission, we propose an authenticated encryption, named as ORANGE-Zest and a hash function, named
as ORANGISH based on a 256-bit permutation.

Underlying Permutation. Both construction use PHOTON256 as the underlying permutation. Among
the existing 256-bit permutations, PHOTON256 [5] is one of the lightest designs in the literature. It has been
well studied and well analysized. Moreover, PHOTON256 is also a part of ISO-IEC: 29192-5 standard, which
deal specifically with light-weight cryptography.

Hash Mode. The mode of hash function ORANGISH is very close to the JH hash function [10] which is
one of the finalists of SHA3-competition. JH mode allows us to absorb 128 bit data for each permutation
call. Thus, it has higher throughput compared with classical sponge hash function [1, 2]. The design of
ORANGISH is expected to provide collision and preimage security against all adversaries running in time 2112

(i.e. making 2112 permutation calls).

Authenticated Encryption Mode. The mode for ORANGE-Zest is a close variant of sponge with full
state absorption. The full state absorption is possible as we hold another state of size 128-bits, a part of
the output of previous execution of the underlying permutation. We use this dynamic secret state to mask
a part of the ciphertext. This mode can be easily generalized to a design based on a permutation with 2n
bit state. In our case, n = 128. To summarize the performance of our AE mode, it has 3n bit state with 2n
bit rate. To process 2n bit blocks, we apply 4n-bit XOR, in addition to one permutation call. The design of
ORANGE is expected to provide privacy and confidentiality against all adversaries running in time 2128 (i.e.
making 2128 permutation calls) having at most 264 data.

2 Notations and Conventions

We use {0, 1}+ and {0, 1}n to denote the set of all non-empty (binary) strings, and n-bit strings, respectively.
λ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪ {λ}. For all practical purposes: we use little-endian
format of indexing, and assume all binary strings are byte-oriented, i.e. belong in ({0, 1}8)∗. For any string
B ∈ {0, 1}+, |B| denotes the number of bits in B, and for 0 ≤ i ≤ |B| − 1, bi denotes the i-th bit of
B, i.e. B = b|B|−1 · · · b0. where b0 is the least significant bit (LSB) and b|B|−1 is the most significant bit
(MSB). Given a nonempty bit string B of size x < n, we denote pad(B) as 0n−x−11B. Thus we always
pad the extra bits from MSB side. When x = n, we define pad(B) as B itself. The chop function chops
either the most significant or least significant bits. For k ≤ n, and B ∈ {0, 1}n, bBck := Bk−1 . . . B0 and
dBek := Bn−1 . . . Bn−k.

For B ∈ {0, 1}+, (B`−1, . . . , B0)
n← B, denotes the n-bit block parsing of B into (B`−1, . . . , B0), where

|Bi| = n for 0 ≤ i ≤ `−2, and 1 ≤ |B`−1| ≤ n. For A,B ∈ {0, 1}+, and |A| = |B|, A⊕B denotes the “bitwise
XOR” operation on A and B. For A,B ∈ {0, 1}+, A‖B denotes the “string concatenation” operation on A
and B. For any B ∈ {0, 1}+ and a non-negative integer s, B � s and B ≪ s denote the “left shift by s” and
“circular left shift by s” operations on B, respectively. The notations for right shift and circular right shift
are analogously defined using � and ≫, respectively. Given two matrices Mm×l and Nl×n, M ·N denotes
the matrix multiplication of M and N .

We will use a compact representation of if-else statement by the following expression P ? b : c where P is
some mathematical statement. This evaluates to b if P is true and c otherwise. P1 & P2 ? b1 : b2 : b3 : b4
evaluates to b1 if both P1 and P2 are true, to b2 if only P1 is true, to b3 if only P2 is true and to b4 if none
of P1 , P2 are true.

Field Multiplication . It is well known that x128 + x7 + x2 + x + 1 is a primitive polynomial over the
finite field of order 2. We define a constant a := 012010000111. Given B ∈ {0, 1}128, the α-multiplication on
an 128 bit string B := b127 · · · b1b0, denoted by α ·B, is defined as (B � 1)⊕ a if b127 = 1, B � 1, otherwise.
For a c ∈ Z≥0, αc ·B denotes c times repeated α-multiplication of B.

2.1 Our Recommendation

ORANGE is primarily parameterized by its underlying Permutation P. We choose P to be PHOTON256 as
described in Algorithm 2. We propose a hash function, called ORANGISH, and authenticated encryption
ORANGE-Zest. Description of both are given in 1. Our proposal of ORANGE-Zest uses a nonce-size of
128−bits and a key-size of 128−bits to produce a 128-bit tag. It is clear from the description that the
hash function ORANGISH is very close to the process of associated data in ORANGE-Zest. So a combined
implementation of both ORANGISH and ORANGE-Zest would be optimized.

2

Y

S

X

ρ Pad

M C

Y

S

X

ρ Pad

M C

S ≪

Chop

Feedbackenc or (FB+) Feedbackdec or (FB−)

ρ
V

KeyStream

Figure 1: Feedback process for ORANGE-Zest: KeyStream module or the function ρ describes how the key-stream
is defined. Feedback functions describe to define the next input X for the block cipher and the ciphertext (for
encryption feedback) and message (for decryption feedback). The black circular dot represents the mult operation
which is nothing but the αδM -multiplication to the most significant half of Y (the previous block cipher output).
Note that δM = 0, 1, 2 for imtermediate block, complete last block, partial last block respectively .The gray circular
dot represents the mult operation which is nothing but the α-multiplication to S. Here, Pad and Chop, pads and
chops appropriate amounts of bits from MSB or LSB sides. The exact definitions of these process can be found in
Algorithm 1

3 PHOTON256 Permutation

We use PHOTON256 [5] as our underlying 256-bit permutation in our mode. We use exactly same permutation
without changing any part of the definition as it has been well studied. However, for the sake of completeness
we provide a brief description of the permutation in this section (see Algorithm 2). It is applied on a state
of 64 elements of 4 bits each, which is represented as a (8× 8) matrix X. Let X[i, j] denote the element at
i-th row and j-th column of X.

PHOTON256 is composed of 12 rounds. Each round applies four layers of functions AddConstant, SubCells,
ShiftRows and MixColumnSerial on the state in a sequence. The description of these functions are given in
Algorithm2. Informally, AddConstant adds fixed constants to the cells of the internal state. SubCells applies
an 4-bit S-Box (see Table. 1) to each of the 64 4-bit cells. ShiftRows rotates the position of the cells in
each of the rows and MixColumnSerial linearly mixes all the columns independently using a serial matrix
multiplication. The multiplication with the coefficients in the matrix is in GF (24) with x4 + x+ 1 being the
irreducible polynomial.

We represent a serial matrix Serial[a0, a1, a2, a3, a4, a5, a6, a7] by

Serial[a0, a1, a2, a3, a4, a5, a6, a7] :=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a0 a1 a2 a3 a4 a5 a6 a7


.

Table 1: The PHOTON S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S-box C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

3

Algorithm 1 ORANGE-Zest and ORANGISH and their main modules. Here, ⊥ and > denote the abort and
accept symbols respectively.

1: function ORANGE-Zest[P].enc(K,N,A,M)

2: (Aa−1, . . . , A0)
n← A

3: (Mm−1, . . . ,M0)
n←M

4: if a = 0,m = 0 then

5: (T, ∗)← P((K ⊕ 2)‖N)

6: return (λ, T)

7: if a = 0 then

8: (C,U)← proc txt(K, (K ⊕ 1)‖N,M,+)

9: return proc tg(U)

10: C ← λ

11: if a 6= 0 then U ← proc hash(K‖N,A, 1, 2)
12: if m 6= 0 then (C,U)← proc txt(K,U,M,+)

13: return (C, proc tg(U))

14: function ORANGISH(D)

15: (Dd−1, . . . , D0)
n← D

16: Dd ← (n - |Dd−1|)? 0n−210 : 0n−11

17: Dd−1 ← pad(Dd−1)

18: X ← (0n||D0)

19: for i = 0 to d− 1 do

20: Ai ← (Di‖Di+1)

21: Z ← proc hash(X, (Ad−1‖ . . . ‖, A0), 1, 1)

22: Z1 ← P(Z)

23: Z2 ← P(Z1)

24: return bZ2cn‖bZ1cn

25: function proc txt(S0, U0, D, dir)

26: (Dd−1, . . . , D0)
2n← D

27: for i = 0 to d− 1 do

28: Vi ← P(Ui)

29: if i = d− 1 then

30: c← (2n | |Dd−1|)?1 : 2

31: Vi ← mult(c, Vi)

32: KSi ← ρ(Si, Vi)

33: D′i ← Di ⊕ bKSic|Di|
34: if dir = ” + ” then Di ← D′i

35: Si+1 ← dVien
36: Ui+1 ← Vi ⊕ pad(Di)

37: return (D′, Ua)

1: function ORANGE-Zest[P].dec(K,N,A,C, T)

2: (Aa−1, . . . , A0)
n← A

3: (Cm−1, . . . , C0)
n← C, M ← λ

4: if a = 0,m = 0 then (T ′, ∗)← P((K ⊕ 2)‖N)

5: if a = 0 then

6: (M,U)← proc txt(K, (K ⊕ 1)‖N,C,−)
7: T ′ ← proc tg(U)

8: if a 6= 0 then U ← proc hash(N‖K,A, 1, 2)
9: if m 6= 0 then (M,U)← proc txt(K,U,C,−)
10: T ′ ← proc tg(U)

11: if T 6= T ′ then

12: return ⊥
13: else

14: return (M,>)

15: function proc hash(X,D, c0, c1)

16: (Dd−1, . . . , D0)
2n← D

17: X0 ← X

18: for i = 0 to d− 2 do

19: Yi ← P(Xi)

20: Xi+1 ← Yi ⊕Di
21: c← (2n | |Dd−1|)?c0 : c1
22: Yd−1 ← P(Xd−1)

23: Yd−1 ← mult(c, Yd−1)

24: Xd ← Yd−1 ⊕ pad(Dd−1)

25: return Xd

26: function ρ(S, Y)

27: (Y b, Y t)
n← Y

28: Z ← (Y b ⊕ αS)‖(Y t ≪ 1)

29: return Z

30: function mult(c, V)

31: (V b, V t)
n← V

32: return V t ‖ αc · V b

33: function proc tg(U)

34: (Ub, Ut)
n← U

35: return P(Ut‖Ub)

4 Security of ORANGE

Here we describe some possible strategies to attack the ORANGE mode, and give a rough estimate on the
amount of data and time required to mount those attacks (see Table 2). In the following discussion:

• D denotes the data complexity of the attack. This parameter quantifies the online resource require-
ments, and includes the total number of blocks (among all messages and associated data) processed
through the underlying permutation for a fixed master key. Note that for simplicity we also use D to
denote the data complexity of forging attempts.

• T denotes the time complexity of the attack. This parameter quantifies the offline resource requirements,
and includes the total time required to process the off line evaluations of the underlying permutation.
Since one call of the permutation can be assumed to take a constant amount of time, we generally take
T as the total number of off line calls to the permutation.

Security Data complexity Time complexity
Model (log2D) (log2 T)

IND-CPA 64 128
INT-CTXT 64 128

Table 2: Security Claims of ORANGE-Zest. We remark that the given values indicate the amount of data and time
required to make the attack advantage close to 1.

4

Algorithm 2 PHOTON256 Modules. Note that we view the state X as a matrix and M8 · X in
MixColumnSerial represents the matrix multiplication in the underlying field GF (24) defined over the ir-
reducible polynomial x4 + x+ 1.

1: function AddConstant(X,K)

2: RC[12]← {1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10}
3: IC[8]← {0, 1, 3, 7, 15, 14, 12, 8}
4: for i = 0 to 7 do

5: X[i, 0]← X[i, 0]⊕ RC[k]⊕ IC[i]

6: return X

7: function SubCells(X)

8: for i = 0 to 7 j=0 to 7 do

9: X[i, j]← S-box(X[i, j])

10: return X

11: function ShiftRows(X)

12: for i = 0 to 7 j = 0 to 7 do

13: X′[i, j]← X[i, (j + i)%4]

14: return X′

1: function MixColumnSerial(X)

2: M ← Serial[2, 4, 2, 11, 2, 8, 5, 6]

3: M8 ·X
4: return X

5: function PHOTON256(X)

6: for i = 0 to 11 do

7: X ← AddConstant(X)

8: X ← SubCells(X)

9: X ← ShiftRows(X)

10: X ← MixColumnSerial(X)

11: return X

Table 3: Security of Hash Function Family ORANGISH.

Mode Security Time complexity security (in bits)
ORANGISH Collision 112
ORANGISH Pre-image 128

4.1 IND-CPA and INT-CTXT Security of ORANGE-Zest

The privacy security of a permutation based construction relies on no collision of the inputs among online
and offline permutation calls. Note that both top and bottom part of the input of a permutation call during
the computation of an encryption query has full entropy due to two previous outputs. Hence a collision would
happen with probability at most 1/2−256. The privacy claim of our design follows from this observation.

Note that the tag verification algorithm is almost same as that of Beetle [3]. Hence, a similar argument
follows.

4.2 Collision Security of ORANGISH

To mount a collision attack on ORANGISH, suppose an adversary can make q many permutation calls.
Suppose all the states reachable from the initial state (we define the initial state as 0256) using the permutation
calls are called reachable states. The adversary can set up the queries in an adaptive way to make all the
query inputs (and hence query outputs) reachable states. We claim that the number of reachable state can
be at most nq (by using multi-collision argument, details will be provided later). Hence, finding a collision
pair has probability at most n2q2/2256. This leads to our claim on the collision security.

5 Preimage Security of ORANGISH

In ORANGISH we set the tag size as 256 bits and the tag squeeze rate as 128 bits. So given a preimage target
T2‖T1, an adversary needs to find a Z such that PHOTON256(Z‖T1) = ?‖T2 or PHOTON−1256(Z‖T2) = ?‖T1.
It is easy to see that the probability of this event can be bounded by q

2128 where q is the number of P and
P−1 call.

6 Existing Analysis of PHOTON256

Basic security analysis for PHOTON256 has been provided explicitly in the original paper [5]. PHOTON is
an ISO standard with a comfortable security margin. As we have used PHOTON256 we only report briefly
the known analysis of it.

5

A rebound-like attack [5] allows us to distinguish 8 rounds of PHOTON256 from an ideal permutation
of the same size with time complexity 216 (and later reduced to 210.8[7]) and memory complexity of 28. In
[6] Jean et al. presented a distinguisher for 9 round PHOTON256 with time complexity of 2184 and memory
complexity of 232. Some other attacks are improved Indifferentiable [8] and statistical Integral distinguisher
[4]. Recently, Wang et al. [9] presented the first full round distinguishers on PHOTON256 based on zero-sum
partitions of size 2184.

We believe that all these distinguishers have no impact on the security of our construction as these attacks
are much more costlier than the security target we are aiming.

7 Design Rational

7.1 Choice of the Mode

Our primary goal is to design a lightweight cipher that has optimum throughput. No such sponge variant
is known so far which can absorb message at the rate of the state of the permutation. Our design achieves
this at the cost of an additional state. So it is optimum in rate. We also use JH variant of hash which also
absorbs much higher data compared with classical sponge hash.

7.2 Need of an additional state

A b-bit permutation with r bit rate leaks r bit information about the permutation outputs. So when r = b,
all the state value would be leaked and the key can be computed easily. Thus we need additional state to
keep some amount of secret. We find that 128 bit additional state (chosen dynamically) provides the desired
security.

7.3 Choice of the Permutation

PHOTON is an ISO-standard lightweight permutation which also provides sufficient amount of security level.

References

[1] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions. In ECRYPT
hash workshop, volume 2007. Citeseer, 2007.

[2] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indifferentiability of the
sponge construction. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 181–197. Springer, 2008.

[3] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Cryptology ePrint Archive, 2018:805, 2018.

[4] Tingting Cui, Ling Sun, Huaifeng Chen, and Meiqin Wang. Statistical integral distinguisher with
multi-structure and its application on AES. In Information Security and Privacy - 22nd Australasian
Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceedings, Part I, pages 402–420,
2017.

[5] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of lightweight hash functions. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 222–239. Springer, 2011.

[6] Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Improved rebound attack on the finalist
grøstl. In Anne Canteaut, editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of LNCS, pages 110–
126. Springer, 2012.

[7] Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Multiple limited-birthday distinguishers and
applications. In Selected Areas in Cryptography - SAC 2013 - 20th International Conference, Burnaby,
BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 533–550, 2013.

[8] Yusuke Naito and Kazuo Ohta. Improved indifferentiable security analysis of PHOTON. In Security
and Cryptography for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5,
2014. Proceedings, pages 340–357, 2014.

6

[9] Qingju Wang, Lorenzo Grassi, and Christian Rechberger. Zero-sum partitions of PHOTON permuta-
tions. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 279–299, 2018.

[10] Hongjun Wu. The hash function jh. Submission to NIST (round 3), 6, 2011.

Appendix A

Figures of ORANGE for Different Cases

N

K + 2
P

T

Figure 2: ORANGE-Zest encryption (|A| = 0, |M | = 0).

N

K

A0 Aa−1

N

K
P P P P

T

αδA multiplication to the most significant half. (X1‖X0 ↔ X0‖X1)

Figure 3: ORANGE-Zest encryption (|M | = 0, |A| 6= 0, δA = 1/2 for complete-last/ partial block).

N

K + 1
P

K

Y0
FB+

M0M0

C0

P
Y 1
0

FB+

M1

C1

Mm−1

Cm−1

Y 1
m−2

FB+ P

T

Figure 4: ORANGE-Zest encryption (|A| = 0, |M | 6= 0).

7

N

K

A0 Aa−1

N

K
P P P X0

X0

P
K

Y0
FB+

M0M0

C0

P
Y 1
0

FB+

M1

C1

Mm−1

Cm−1

Y 1
m−2

FB+ P

T

Figure 5: ORANGE-Zest encryption (|A| 6= 0, |M | 6= 0).

0 P P

H0 H1

Figure 6: ORANGISH output (|M | = 0). The final hash output is defined as H1‖H0.

M0

0
P

M0

M1

P P

Mm−1

Mm−2

P

δM

Mm−1

P

H0

P

H1

Figure 7: ORANGISH output (|M | 6= 0, δM = 1/2 for complete/ partial input). The final hash output is defined as
H1‖H0.

Appendix B

Test vectors for ORANGE-Zest

Test vector 1:
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E0F
PT =
AD = 00010203
CT = F41612F0FD6758018FDC1377675401DF

Test vector 2:
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E0F
PT =
AD =
CT = 5A65624E01D1349D2211EFBD52217976

Test vector 3:

8

Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E0F
PT = 000102030405060708090A0B0C0D0E0F101112131415161718191A
AD = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D
CT =
D75622A343E2459DEAA1B9A1784C5B84DC3ED112E895154CBDC0261C367EBBF849231F4C0
79B16DCEA57DC

Test vectors for ORANGISH

Test vector 1:
Msg = 00010203
MD = 51390073EFBB1DEF2CEAD9688CC2C9D907F2EF6AC8C8D7E73317EB2C28155226

Test vector 2:
Msg = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20212223242526
2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4
F505152535455565758595A5B5C5D5E5F606162
MD = 7B1A8606FF708377BB612E0712C7E824921A8D78B9AD3258A7B400E96AA349C3

Test vector 3:
Msg = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20212223242526
2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F
MD = 85739793F2A59EC254488C3931447E86E0F3C0C919899DDA1BF34B1639DFDCD8

9

	Introduction
	Notations and Conventions
	Our Recommendation

	PHOTON256 Permutation
	Security of
	IND-CPA and INT-CTXT Security of ORANGE-Zest
	Collision Security of ORANGISH

	Preimage Security of ORANGISH
	Existing Analysis of PHOTON256
	Design Rational
	Choice of the Mode
	Need of an additional state
	Choice of the Permutation

