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Abstract—Fault detection often depends on the specific order
of inputs that establish states which eventually lead to a failure.
However, beyond basic structural coverage metrics, it is often
difficult to determine if the code has been exercised sufficiently
to ensure confidence in its functions. Measures are needed to
ensure that relevant combinations of input values have been
tested with adequate diversity of ordering to ensure correct
operation. Combinatorial testing and combinatorial coverage
measures have been applied to many types of applications
but have some deficiencies for verifying and testing state-based
systems where the response depends on both input values and the
current system state. In such systems, internal states change as
input values are processed. Examples include network protocols,
which may be in listening, partial connection, full connection,
disconnected, and other states depending on the values of packet
fields and the order of packets received. This paper discusses
definitions for ordered t-way combination arrays and proves
results regarding the construction of adequate blocks of test
inputs, including consecutive ordering of combinations and with
interleaving allowed. The application of the results to verify and
test state- based systems is also illustrated.

Index Terms—combinatorial coverage; combinatorial testing;
software testing; structural coverage; test coverage

I. INTRODUCTION

Vulnerability and fault detection often depend on the spe-
cific order of inputs that establish states which eventually
lead to a failure. That is, many software processes are not
deterministic functions where an input produces the same
output whenever the process is invoked irrespective of previous
invocations. This is particularly true of real-time systems,
which are designed to run continuously, maintain states, and
respond to a changing series of inputs. Such systems are
typically driven by a loop function that accepts input values,
processes and responds to those inputs, and updates its current
state. Examples include network protocols, data servers, and
any system in which user interaction sequence determines the
states, and in turn the outcome. The system state may change,
depending on input, and the system may subsequently respond
differently to the same input. That is, the response of the
process to a particular set of input values may depend on its
current state, such as whether a communication protocol is in
a listen or connection-open state. The current state depends
on the order of input values that were contained in previously
received packets. The same sort of state-dependent behavior
occurs in many other types of systems as well.

Ensuring that inputs and system states in testing are suffi-
ciently representative of what will be encountered in practice

is critical to any form of effective software testing. Structural
coverage metrics, such as statement coverage or branch cov-
erage, are common practice for evaluating software test thor-
oughness. Test cases selected using only structural coverage
criteria are often not very effective as they are not designed to
include corner cases with specific combinations of input values
that may cause a failure. Looking beyond these commonly
used metrics, it is often difficult to determine if the code has
been adequately tested and even more difficult to ensure that a
sufficient diversity of inputs has been achieved. This is partic-
ularly true of assertion-based testing or runtime verification,
where program states and properties are monitored to verify
correct processing. For runtime assertions to discover bugs,
the software needs to be exercised with a set of values in
a particular order that leads to the failure. Consequently, for
strong software assurance, measures are needed to verify that
combinations of input values and combinations of input orders
in a test suite are sufficient.

Combinatorial coverage measures provide an effective
method for quantifying the thoroughness of test input values
[1]. A number of measures have been defined for the coverage
of (static) input value combinations. For example, with four
binary variables, there are a total of 22×C(4, 2) = 24 possible
settings of the four variables taken two at a time. If a test set
includes tests that cover 19 of the 24, the simple combinatorial
coverage is 19/24 = 0.79. These measures quantify the degree
to which input values cover the potential space of parameter
value combinations without regard for the order in which these
inputs occur in a test set or in normal operations. However, if
a system state is affected or determined by the order of inputs,
even thorough coverage of the input space may not detect some
failure conditions. Thus, it is desirable to supplement measures
of input space coverage with measures of the input value
combination ordering. In this paper, we discuss constructing
and using tests that cover all t-way combinations in series of
a given length, with possibly interleaved rows.

II. RELATED WORK

Combinatorial aspects of input ordering have been studied
in the context of event sequences. Sequence covering arrays
(SCAs) were introduced in [2], [3] and further developed
in [4], [5], [6], [7], [8], [9], and [10]. A sequence covering
array [3], SCA(N,S, t) is an N × S matrix where entries
are from a finite set S of s symbols, such that every t-way
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permutation of symbols from S occurs in at least one row. The
t symbols in the permutation are not required to be adjacent.
For example, Fig. 1 shows an event sequence a *→ b *→ c
in test 1 and an event sequence of d *→ c *→ a in test 3,
where x *→ y denotes x is eventually followed by y, with
possible interleaving. Note that the event sequence array has
sequences of events in each row. Event sequences are made
up of a value in a column followed by values in columns
to the right. Such sequence covers can be constructed with a
simple greedy algorithm, although more compact results can
be achieved with a variety of search algorithms, including
answer set programming [11], [12], simulated annealing [13],
and machine learning oriented algorithms [14], [15], [16].

Fig. 1: Event sequence array

Combinatorial testing with constraints on the order in which
values and combinations are applied in tests was analyzed
in [5] and [17]. Extended covering arrays that consider the
sequence of values in each test were defined in [6]. The
notion of a perfect sequence covering array was introduced
in [18]. Another structure defined as a sequence covering
array of t-way combinations has been termed a multi-valued
sequence covering array [19], which extended the notion
of event sequence cover to possibly interleaved sequences
of combinations, without repetition. A method for including
constraints in event sequences was introduced in [20], using
an FSM to ensure coverage of all valid event sequences,
while also allowing for repetition. Another automata-based
approach to generating sequences was developed by [21],
providing reduced test set size (compared with conventional
SCAs) while also incorporating information from previous
tests for optimal error detection. Properties of combination
sequences were studied in [22], combining configuration and
the order of combinations while also considering constraints.
In this paper we consider repeated occurrences of value
combinations, and properties of ordered combinations with
or without interleaving, along with methods of constructing
ordered combination arrays.

Sequence covering arrays have found extensive use in
practical applications [23], [24], [25], [26], [27], [28], [29],
[30], [31], [20]. These applications typically involve cases
where an error is triggered when two or more combinations
occur in series within inputs, but other combinations may
occur between those that are significant to triggering the error.
Such situations may occur in protocol testing, graphical user
interfaces, and others. However, better test methods are also
needed for errors that are only revealed when two or more
combinations occur consecutively in input, without interleav-
ing of other combinations. The methods described in this paper

address this consecutive ordered combination problem as well.

III. ORDERED COMBINATION COVERING

A combination order is different from an event sequence. As
noted in the previous section, an event sequence is a possibly
interleaved sequence of symbols in a single row of a test array.
A combination order, as defined below, is across multiple rows,
given in the order in which tests will be executed. A t-way
permutation of symbols is referred to as a t-way order, which
will be called a t-order for brevity. The t events in the order
may be interleaved with others (i.e., the order a *→ b *→ c
covers three 2-event orders: a followed by b and b followed by
c, and a followed by c). Denoting event a eventually followed
by event b, possibly with other events interleaved, is written
as a *→ b.

Consider the notion of an s-order of t-way combinations
of the input parameters as a series of rows of test data that
contain a particular set of t-way combinations in a specified
order, with possibly interleaved rows.

Definition 1. A combination order c1 *→ c2 *→ . . . *→
cs of s combinations of t parameter values, abbreviated s-
order, is a set of t-way combinations in s rows. Each ci is a
t-way combination of parameter values. The notation a *→ b
denotes the presence of combination a eventually followed by
combination b, possibly with other rows interleaved.

Example. Fig. 2 shows combination order p0p1 = ad *→
p0p3 = ba *→ p1p3 = ab, which is a 3-order of 2-way
combinations. Thus, the term ordered combinations refers to
combinations in a row followed by combinations in rows
below.

Fig. 2: Ordered Combination array

When all s-orders of t-way combinations of the input
parameters have been covered, it is referred to as an ordered
combination cover (OCC). For the OCCs, the combination
orders are treated across rows (i.e., a combination in a row
followed by combinations in rows below). A t-way combina-
tion occurs in some row and is eventually followed by other t-
way combinations in other rows. For three Boolean parameters
a, b, c in Fig. 3, ab = 00 is followed by ab = 10 ab = 00
ac = 11 ac = 01 bc = 01 (ac = 01 and bc = 01 are also
followed by this group).

Definition 2. An ordered combination cover, designated
OCC(N, s, t, p, v), covers all s-orders of t-way combinations
of the v values of p parameters, where t is the number of
parameters in combinations and s is the number of combina-
tions in an ordered series. Permutations of parameter value



Fig. 3: Ordered Combinations of Parameter Values

combinations may appear multiple times in a combination
order.

The utility of combination order covering can be illustrated
with an example. Consider the covering array in Fig. 4, which
includes all 2-way combinations of four Boolean variables.

Fig. 4: 2-way covering array of 4 Boolean variables.

Suppose these six tests are applied to the system modeled
with a finite state machine diagram in Fig. 5, and tests are run
in the order 1..6. If condition A = “p1

∧
p2” and condition B

= “p1
∧
¬p2”, then the error in state 2 will not be discovered.

The system returns to state 0 for tests 1 through 3, then enters
state 1 with test 4 and moves to state 3 with test 5. Because the
test array does not include the ordered combinations p1p2 =
11 *→ p1p2 = 10, the error is not exposed. However, if the
tests are run in the order [1, 2, 4, 3, 5, 6], then the error in
state 2 will be discovered because the third test (row 4 in Fig.
4) leads to state 1, the fourth test (row 3) causes condition B
to evaluate to true, and the system enters state 2, exposing the
error.

Fig. 5: Example Finite State Machine

Note that the definition allows the repetition of a value
combination in the OCC. The possibility of repeated occur-

rences of a value combination in an order is allowed based
on the assumption that a particular combination may occur in
multiple tests, and this sequence may be relevant to the system
or software under test (SUT). For example, a function call to
create a new file ‘f1’ followed by a duplicate call to create
‘f1’ may trigger some behavior other than an expected error
message. So the 3-way combination (create, f1, 256) may be
desirable to include more than once in a series of test inputs.

Returning to the example in Fig. 4 and Fig. 5, suppose that
a file system is being tested, where p1 is function with values
{0 = read, 1 = write}, and p2 is rewind, which indicates if
the pointer to the starting block is reset to 0 {0 = start from
last read/write position, 1 = start from block 0}. A read or
write test processes from the starting block indicated by p2
and continues to the end of the file. So tests 1 to 4 represent
‘read from last read position,’ ‘read from start,’ ‘write from
last write position,’ and ‘write from start.’ State 1 is entered
when the file is filled by writing to the end after rewinding to
start. The failure represented by state 2 is only exposed when
a write is attempted on a file starting from the end. Then, as
noted previously, running tests in the order 1,. . . ,6 will not
detect the error. However, when test 4 is run before test 3, the
error will be detected because a write is attempted from the
last position (end of file), as indicated by the value of p2.

When tests are executed in sequence with each individual
t-way combination considered an event, a sequence of t-way
combinations containing s combinations input in sequence
with possible interleaving is an s-order of t-way combinations.
For example, a 2-order of 3-way combinations could be

abd = 001 *→ bcd = 100,
and a 3-order of 2-way combinations could be

bc = 01 *→ ad = 11 *→ bc = 10.
An OCC covers all s-orders of t-way combinations of the

v values of the p parameters. Because a t-tuple is included s
times in an s-order, and the number of t-way combinations of
p parameters is C(p, t), for vt settings of each combination,
the total number of combination order tuples to be covered is

vtC(p, t)s (1)

The number of combination orders to be covered grows
rapidly with s and t, so methods for the efficient construction
of OCCs are of interest.

Example. Fig. 6 shows a test array that covers all 2-way
combinations of values for four parameters, as well as all 2-
orders of 2-way parameter combinations.

That is, the test array includes every solution of (pwpx =
v1v2) *→ (pypz = v3v4), of which there are (C(4, 2)×22)2 =
576 instances. For example, each of the four possible settings
of p1p2 is followed by each of the four possible settings of
p3p4 somewhere in the table (distinguished by color). That is,
(p1p2 = 11) in line 1 is followed by (p3p4 = 01), (p3p4 = 11),
(p3p4 = 00), (p3p4 = 10) in lines 3, 4, 5, and 7, respectively,
highlighted in yellow (also for (p1p2 = 00)). Sequences for
(p1p2 = 01) are shown in green, plus line 14, which provides
a (p3p4 = 00) for both (p1p2 = 01) and (p1p2 = 10). Sequences
for (p1p2 = 10) are highlighted in blue.



Fig. 6: Tests for four parameters, OCC(20,2,4,2)

A. Constructing Ordered Combination Covers

As seen in Fig. 6, the numbers of combination sequences
to be covered will become very large with realistic testing
problems as a result of the exponents in expression (1). Con-
sequently, measuring combination sequence coverage could
be inefficient and resource intensive. Fortunately, the problem
of ensuring combination sequence coverage can be reduced
to ensuring coverage of t-way covering arrays, as shown in
the following result. Checking that a test array is a covering
array can be done efficiently, making it practical to ensure s-
orders of t-way combinations in large-scale testing. Note that
constraints across rows are not considered, but there may be
constraints among value combinations in the covering arrays
from which the OCC is constructed.

Theorem 1 (OCC Coverage). A test set covers s-orders of t-
way combinations if and only if it includes an ordered series
containing a total of s covering arrays, each of strength t.

Proof. From Definition 2, a sufficient process for generating
an s-order t-way OCC is to concatenate s covering arrays
of strength t, as shown below in Fig. 7. Because a covering
array includes every t-way combination, any order of at least
s combinations will occur by taking the rows of s covering
arrays from CA1, CA2, . . . , CAs., where CAi are t-way
covering arrays. Clearly, for any s-order of s combinations,
c1 *→ c2 *→ . . . *→ cs , c1 must be present in CA1, c2 in
CA2, etc. because they cover all t-way value combinations by
definition, giving the required order.

To show necessity, consider a series of rows in a test array.
There must be at least one combination order that can only
exist if the test array can be divided into subarrays, each of
which is a covering array. Each row covers some number
of t-way combinations. For each row, add the combinations
covered to a set, and continue adding non-covered combi-

Fig. 7: OCC constructed from covering arrays

nations from each successive row. Eventually, a row will be
reached that covers the last remaining previously uncovered
combinations. Label these previously uncovered combinations
A1 . . .A2 . . .Ak and the row containing these combinations
as row i. A1 . . .A2 . . .Ak do not occur in any row prior to
row i. The subarray of rows from the first row to and including
row i forms a covering array that will be labeled CA1. With
the inclusion of row i, CA1 includes all t-way combinations,
so it is a t-way covering array.

At row i + 1, start a new set of combinations covered in
rows i+1 and following rows. Continue adding combinations
covered in each successive row until a row is reached that
covers the last remaining previously uncovered combinations
after row i+1. Label these previously uncovered combinations
B1 . . .B2 . . .Bl and the row containing these combinations as
row x. B1 . . .B2 . . .Bl do not occur in any row after row i and
prior to row x. The subarray beginning with row i + 1 and
ending with row x forms a covering array that will be labeled
CA2. CA2 includes all t-way combinations, with the inclusion
of row x, so it is a t-way covering array. Any combination in
A1 . . .A2 . . .Ak must be followed by any t-way combination
in some row of CA2.

Note that any 2-order c1 *→ c2 where c1 is one of Ai and
c2 is one of Bi could not have been covered until row x of
CA2 because the Bi tuples are those that had not been covered
in CA2 before row x (and after row i). Assume that c1 *→
c2 is covered before row x in the combined array CA1∥CA2.
Since c2 is not in subarray CA2 before row x, it must be
in subarray CA1. However, c1 is in the last row of CA1, so
c2 must be in a row of CA1 following the last row of CA1,
which is a contradiction.

Therefore c1 *→ c2 can be covered only if CA1 and CA2

are covering arrays. Continuing in this manner shows that
orders of s combinations of strength t can be covered only
if the subarrays of the set of test rows form s covering arrays.

Example. Fig. 8 shows the concatenation of two 2-way
covering arrays for four binary parameters. Any 2-order of
2-way combinations occurs somewhere in the rows of Fig. 8.
For example, (p1p2 = 10) (row 3) is followed by p1p3 = 00,



01, 10, 11 in rows 5, 6, 9, and 4, respectively. If row 12 is
removed, there must be at least one combination order c1 *→
c2 where c2 = (p3p4 = 11) that is not covered because (p3p4
= 11) is covered only in the last row of CA1 and CA2 (row
12). Removing row 12 would result in losing (p3p4 = 11)
*→ (p3p4 = 11). Similarly, (p1p4 = 10) is covered only in
the third-to-last row (row 10) of CA1 and CA2, so there
must be at least one combination order c1 *→ c2 where
c2= (p1p4 = 10) that is not covered if row 10 is removed.
Removing row 10 would result in losing (p1p3 = 11) *→
(p1p4 = 10), (p3p4 = 00) *→ (p1p4 = 10), and others.

The practical utility of this result is that it shows one can
efficiently produce tests that cover all orders of t-way com-
binations up to any necessary order length by concatenating
t-way covering arrays. It also shows that the minimum size of
the OCC is determined by the minimum size of the relevant
t-way covering arrays. From a testing perspective, producing
full coverage of t-way combinations in s length orders makes
it possible to detect faults that are only detectable when a
system is in a state that can only be reached by a particular
sequence of input combinations.

Fig. 8: Two concatenated covering arrays

This result can also be useful for runtime verification,
assertion monitoring, and other methods that rely on checking
program properties and states as code is executed. If inputs are
monitored and recorded, then it is possible to verify whether
a covering array series of desired length has been applied
in testing. The system should run long enough to enter all
major states and allow detection of errors that occur only in
particular states. The use of covering arrays gives stronger
assurance that relevant states have been reached, as program
states depend on the order of inputs, and the coverage of input
value combinations can be measured.

B. Combination Order Coverage Measurement

A combination order tool for OCCs, Corder, has been
developed, allowing for the order coverage of any test set to
be measured. It may also be used in generating OCCs using
random test generation, measuring coverage, and extending the
test array until sufficient coverage is achieved.

In its current form, the tool assumes that all single values of
input variables have been included in the input test array and
computes t-way coverage for t = 2..4 in the same manner as

the CCM tool for combination coverage [32]. This is referred
to in the output report as static coverage and measures the
coverage of combinations in each row of the array where
any t-way covering array will have 100 % coverage of t-way
combinations. A second output provides coverage, referred to
as dynamic, of s-orders of t-way combinations in the test array.

For example, the test array in Fig. 9 (a) shows 12 tests
with four binary parameters or variables. If these are executed
in order, the first test includes C(4, 2) = 6 events defined
as 2-way combinations: ab = 00, ac = 01, ad = 00, bc =
01, bd = 00, and cd = 10. For 2-orders containing ab, there
are four possible settings of ab. Each of these may followed
by value combinations of ab, ac, ad, bc, bd, and cd. Completely
covering all 2-way 2-orders (i.e., orders of length 2 of 2-way
combinations) would produce 4×C(4, 2)×4×C(4, 2) orders.
One can measure the degree to which these orders are covered
and output any missing orders, as shown in Fig. 9(b). Note that
ab = 11 is followed by cd = 01 and cd = 10, but cd = 00 and
cd = 11 do not follow ab = 11 in the test series, as shown in
Fig 9(c), which shows the missing ⟨parameter indices⟩:⟨value
combination⟩ → ⟨parameter indices⟩:⟨value combination⟩ for
2-way orders.

Fig. 9: Missing combination orders

Fig. 10 illustrates the output of the Corder tool for a simple
example. Further explanation and additional examples may be
found in [33]. Basic static coverage measures are shown in the
top half of the results to provide an overview of input space
coverage. For more detailed data on input space coverage, the
CCM tool measuring combination coverage can be used [32].

Fig. 10: Example output of Corder tool



The Corder tool provides the following output:
• file = input file name for test vectors to be analyzed
• Nvars = number of variables; each column of the input

.csv file corresponds to a single variable
• Nrows = number of rows of input file
• Static-input space coverage: t-way combination coverage

of the input file for levels of t specified in first column
• Dynamic-order coverage: coverage statistics for orders of

combinations as described in this section
Static coverage refers to the presence or absence of t-way

settings of the input variables, and dynamic coverage refers
to the coverage of possible orders of these combinations.
For dynamic coverage, the interaction strength (level of t)
for the combinations included in orders and the number of
combinations in an order need to be specified.

IV. ORDERED COVERAGE OF ADJACENT COMBINATIONS

In some testing problems, errors may be revealed only when
a series of particular inputs appear in sequence consecutively.
That is, we remove the possibility of interleaving with other
combinations not in the specified order, in contrast with the
combination order of Definition 1, so that the ordering refers
to combinations in rows that are adjacent in the test array.

Definition 3. An adjacent combination order c1 → c2 →
. . . → cs of t-way combinations, abbreviated s-order, is a set
of t-way combinations in s consecutive rows. Each ci is a
t-way combination of parameter values. The notation a → b
denotes the presence of combination a immediately followed
by combination b, where a and b are in adjacent rows, i.e.,
combination a is in row i followed by combination b in row
i+ 1.

Example. For Boolean parameters a, b, c in Fig. 11, ab = 00
is followed consecutively by ab = 10 ac = 11 and bc = 01.

Fig. 11: Ordered combinations of parameter values

When all s-orders of t-way combinations of the input
parameters have been covered in this manner, where only
adjacent combinations are considered, it is referred to as an
adjacent ordered combination cover (OCCa). For the OCCa,
the combination orders are treated across rows (i.e., a com-
bination in a row followed by combinations in rows below).
A t-way combination occurs in some row and is followed
consecutively by other t-way combinations in other rows.

Definition 4. An adjacent ordered combination cover,
OCCa(N, s, t, p, v), covers all s-orders of t-way combina-
tions of the v values of p parameters, where t is the num-
ber of parameters in combinations and s is the number of
combinations in a consecutive set of rows. Permutations of
parameter value combinations may appear multiple times in a
combination order. For example, a particular adjacent 2-order
of 2-way combinations may be (p1p2 = 01) → (p2p4 = 11).

A. Constructing Adjacent Ordered Combination Covering Ar-
rays

To use adjacent ordered combination covers in testing, it is
necessary to efficiently construct arrays of test inputs. There
is a straightforward construction for such arrays, as shown in
this section.

For a given set S of k symbols, a deBruijn sequence D(k, n)
includes every n-length permutation of the symbols in S,
and practical algorithms for constructing such sequences are
available. The length of a deBruijn sequence is kn, and no
shorter length sequence covering all the n-length permutations
is possible.

OCCa Construction. We can construct an adjacent ordered
combination covering array OCCa(N, s, t, p, v) with the fol-
lowing steps:

1) Generate a covering array of desired strength for the
input model of the SUT.

2) Number the rows of the covering array sequentially,
from 1 to k, for a covering array with k rows.

3) Generate a deBruijn sequence D(k, s) of the k row
indices.

4) For each row index i in the sequence, write row i from
the covering array. After the last row, append the initial
s− 1 rows of the covering array, resulting in N = ks +
s− 1 rows.

It is easy to show that any s-order of adjacent combinations
will be generated by the OCCa construction procedure above.

Theorem 2 (OCCa Construction). Any adjacent combination
order c1 → c2 → . . .→ cs of t-way combinations will be found
in the array generated by the OCCa construction procedure.

Proof. By definition each combination ci must occur some-
where in the covering array produced in step 1. Two or more
of the ci combinations may occur in the same row. Label the
row number where each ci appears in the covering array as
Ri. By definition, the deBruijn sequence generated in step 3
must contain Ri Ri+1 . . .Rs, so the rows associated with each
of these indices written in step 4 must appear as consecutive
rows in the completed OCCa. Appending the initial s − 1
rows of the covering array allows orders of combinations in
the tail of the deBruijn sequence followed by those in the start
of the sequence.

Example: Fig. 12 shows a covering array, CA(2, 9, 2) of t =
2-way combinations of 9 variables of 2 values each.

Fig. 12: 2-way covering array of 9 binary variables



Next we produce a deBruijn sequence of length 36 with the
indices of the covering array rows 1. . . 6:

112131415162232425263343536445465566

Listing the row of variable values from the array in Fig. 12
indexed by each number in the deBruijn sequence produces
the adjacent ordered combination covering array shown in Fig.
13. The OCCa contains 62 = 36 rows corresponding to the 36
indices in the deBruijn sequence.

B. Using Adjacent Ordered Combination Covering Arrays

An important problem in testing is the discovery of unin-
tended functions or unspecified paths in a program. To do
so, it is useful to generate tests that thoroughly cover the
specification, such as in protocol testing. Similarly ordered
coverage can be useful in catching potential race condition
situations in complex software. When a state machine is
specified, a number of methods are available to generate tests
that will cover the paths specified [34], [35], typically by
processing the FSM definition and producing conditions in
tests based on the specification.

Example: Using the covering array shown in Fig. 4, we
construct the OCCa for this configuration, shown in Fig. 14.
Comparing with the (non-adjacent) OCC of Fig. 8, it is easy
to recognize many adjacent combination orders that occur in
Fig. 14 that are not present in the OCC of Fig. 8. For example,
(p1p2 = 00) → (p3p4 = 11) on adjacent rows. It can also be
verified that any adjacent order of two 2-way combinations
occurs somewhere in Fig. 14.

Fig. 13: OCCa generated from covering array in Fig. 12

Fig. 14: OCCa for covering array in Fig. 4

V. THERAC 25: A POIGNANT EXAMPLE

To illustrate the importance and usefulness of designing test
cases based on OCC and OCCa, let us examine one of the
well known fatal software failures in history, the Therac-25.
[36]. Therac-25 was an expensive radiation treatment device
designed to treat cancer by administering energy beams to
destroy tumors. It operated in three modes: field light mode
to adjust the position of the beam using light simulation, an
electron mode to administer low energy electron radiation,
and x-ray mode to beam high energy photons flattened over a
target area. The turntable adjustments and other safety features
were all provided with computer control. After putting the
patient on the treatment table, the operator went to the user
interface outside the treatment room, choose the beam type,
set all other parameters on the console, and administered the
radiation beam with the command “B”. Figure 15 shows the
operator user interface.

Between 1985 and 1987, the machine administered massive
overdose of radiation to six patients leading to three serious
injuries and three deaths. The extensive testing and safety
analysis of the system failed to discover the corner-case errors
before deployment, which led to a false sense of confidence
about the reliability of the device. Even when early incidents
were reported, the manufacturer’s engineers could not repro-
duce the error and kept claiming that the device was incapable
of administering overdose.

In reality, there were multiple software bugs and other safety
failures associated with Therac-25. One of the primary errors



was due to an underlying race condition of a shared variable
which could be manifested through a very specific order of
interaction in the user interface.

Fig. 15: Therac 25 Operator Interface

If the operator chose Beam Type to be “X” for x-ray by
mistake, set all the parameters, and then went back to change
the Beam Type to be “E” for electron, stepped through the
parameters quickly with a series of enters and then hit the “B”
command for beam, the machine would administer a very high
energy x-ray instead of low energy electron. The device did
recognize that an overdose was administered and paused. But
due to the cryptic error message, which did not mention the
overdose and since the machine used to frequently go into the
“Paused” state with benign error messages, it led operators
to simply press “P” for proceed to continue with the beam
administration resulting in repeated massive overdose on most
of those fatal cases.

Let us illustrate this with a very similar test scenario
illustrated above in Fig. 4. Suppose p1, p2, p3, and p4 are
four boolean variables representing the states of some user
interactions controlling the device. Let p1 represents whether
sufficient time has passed since last test interaction at the
console. Let p2 and p3 stand for selection of x-ray beam (“X”)
and electron beam (“E”) respectively, and let p4 represent the
administration of the beam (“B”). There is a constraint in this
example where p2 and p3 can not both be 1, i.e., both x-ray
and electron can not be selected simultaneously.

The fatal error is manifested for an ordered sequence of
tests where p1p2p3p4 = 1100 immediately followed by the
test p1p2p3p4 = 0011. Let us revisit the FSM that is shown
in Fig. 5. Let the conditions A and B the following:

A = p1 ∧ p2 ∧ ¬p3 ∧ ¬p4

B = ¬p1 ∧ ¬p2 ∧ p3 ∧ p4

Only A followed by B will lead to the error state. Any
other path will not discover the error. Fig 16 shows the partial
OCCa for Therac-25 that would have enumerated this scenario.
Here test case tm represents the selection of “X” for x-ray,
but not administering the beam, and then a selection of “E”
followed by the command “B” for administering the beam.

Test p1 p2 p3 p4
t1 1 1 0 0
t2 1 0 1 0
t3 1 0 0 1
t4 0 0 1 0
t5 0 1 0 1
. . .
tm 1 1 0 0
tn 0 0 1 1
. . .

Fig. 16: Therac-25 partial OCCa

The two test cases are also exercised without sufficient delay.
In case of Therac-25, this delay was 8 seconds. This sequence
of test interactions would be guaranteed to be exercised if
and only if an adjacent ordered combinatorial coverage, or
OCCa was generated and used for the Therac-25 finite state
machine. Although a potential threat to validity can arise from
the fact that this example is very specific and designed with
the knowledge of the flaw, it is not unreasonable that for such
safety critical system, an extensive set of tests incorporating
the time delay and enumerating all relevant combinations of
user interactions would indeed be systematically created and
exercised. In fact, we argue to ensure the complete safety of
such complex systems, this level of extensive test case and
user interaction generation and execution is necessary. OCC
and OCCa allow us to do that.

VI. DISCUSSION AND CONCLUSIONS

This paper considers methods for testing complex orders of
all t-way combinations up to some specified level of t. It is
shown that the test set covers s-orders of t-way combinations
if and only if it includes an ordered series of s covering arrays
of strength t. This result can efficiently produce tests that
cover all orders of t-way combinations for any necessary order
length by concatenating t-way covering arrays.

The notion of ordered combination covers may be applied in
runtime verification, assertion monitoring, and other verifica-
tion and test methods that rely on checking program properties
and states as code is executed. Additional applications may
include checking digital designs, where sequential circuits in
particular present challenges in verification and testing. Auto-
matic test pattern generation (ATPG) for sequential circuit de-
signs requires a number of heuristics, as there is no universally
applicable most effective method. Ordered combination covers
may have potential for improving the efficiency and effective-
ness of ATPG methods. Another important application area
can be autonomous systems, especially self driving vehicles.
A sequence of states and events in a specific order may lead
to unexpected behavior from autonomous systems. We plan to
study these application areas in large-scale experiments, along
with the inclusion of constraints on combination orders.

Note: Sections I to III of this paper were originally published
as a NIST technical report [33].
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