Ordered *t*-way Combinations for Testing State-based Systems

D. Richard Kuhn, M S Raunak, Raghu N. Kacker National Institute of Standards & Technology Gaithersburg, MD, USA {kuhn, raunak, raghu.kacker}@nist.gov

Why do we need ordered input combinations?

- Covering arrays are great, but sequence of inputs can affect results when state is maintained by the system (nearly all)
- Sequence covering arrays handle sequences of events, but events may be complex and involve multiple parameters, combinations
- States change according to inputs, combinations of input values
- So we want to consider the order of inputs of combinations in test set

What are ordered combinations?

Test	<i>p</i> 0	<i>p</i> 1	p2	р3
1	a	d	b	
2	b	а	с	d
3	b	d	с	а
4	С	а	b	d
5	с	d	b	а
6	d	а	С	b

- Sequence covering, of events a, b, c, d
- Sequence covering array has all sequences of events for some specified length, non-repeating
- Each row is one test <u>sequence</u>

Ordered combinations

- Combination order c₁ *→ c₂ *→ ...*→ c_s of <u>s combinations</u> of <u>t parameter values</u>, abbreviated <u>s-order</u>, is a set of <u>t-way</u> combinations in <u>s</u> rows
- Each row is one set of test inputs
- Ordering of combinations as rows entered sequentially
- Example: $p0p1 = ad * \rightarrow p2p3 = cb$

Order of covering array tests affects error detection

Test	p 1	p 2	p ₃	p 4
1	0	0	1	0
2	0	1	0	1
3	1	0	0	1
4	1	1	1	0
5	0	1	0	0
6	0	0	1	1

Example:

 $p_1 \wedge p_2$

not followed by

 $p_1 \wedge \sim p_2$

Reordering tests to: 1

solves the problem

Ordered combination cover

- An ordered combination cover, designated OCC(*N*, *s*, *t*, *p*, *v*), covers all <u>s-orders</u> of <u>t-way</u> combinations of the *v* values of *p* parameters, where *t* is the number of parameters in combinations and <u>s is the number of combinations in an ordered series</u>.
- Number of combination order tuples to cover, for *s*-orders of *t*-way combinations of *p* parameters with *v* values each:

$$v^t C(p,t)^s$$

How can we find these ordered combination covers (OCC) efficiently?

Test	<i>p</i> 0	<i>p1</i>	р2	р3
1	a	đ	b	с
2	b	а	С	d
3	b	d	С	G
4	С	а	b	d
5	с	d	b	а
6	d	a	С	b

Generating ordered combination covers (OCC) ?

- The problem turns out to be easy!
- Theorem (OCC Coverage). A test set covers s-orders of t-way combinations if and only if it includes an ordered series containing a total of s covering arrays, each of strength t.

So,

- 1. make a *t*-way covering array
- 2. write *s* copies of it

Ordered coverage of <u>adjacent</u> combinations

- An adjacent combination order c₁ → c₂ → ... → c_s of *t*-way combinations, abbreviated *s*-order, is a set of *t*-way combinations in *s* consecutive rows.
- No interleaving between the ordered combinations, i.e., Ordered: $c_1 * \rightarrow c_2$ c_1 is *eventually* followed by c_2 <u>Adjacent ordered</u>: $c_1 \rightarrow c_2$ c_1 is *immediately* followed by c_2
- Ordered combinations with added constraint that rows are adjacent, i.e., for $c_1 \rightarrow c_2$ where c_1 and c_2 are in <u>consecutive</u> rows
- We need to produce an ordering of combinations such that every t-length permutation of combinations occurs as tests (rows) are input sequentially

This can be done with a deBruijn sequence

deBruijn sequences

- Studied in early 20th century, many properties proved by deBruijn
- For a given set *S* of *k* symbols, a deBruijn sequence D(*k*, *n*) includes every *n*-length permutation of the symbols in *S*
- length of a deBruijn sequence is k^n , and no shorter length sequence covering all the *n*-length permutations is possible
- Probably re-invented by every hacker on the planet (to crack key code locks)

D(3 2) = 00102112200102

No 'enter' key: 628 key presses instead of 3,125 for 4-digit code

Generating adjacent ordered combination covers

- 1. Generate a covering array of desired strength for the input model of the system under test.
- 2. Number the rows of the covering array sequentially, from 1 to k, for a covering array with k rows.
- 3. Generate a deBruijn sequence D(k,s) of the k row indices.
- 4. For each row index *i* in the sequence, write row *i* from the covering array. After the last row, append the initial s 1 rows of the covering array, resulting in $N = k^s + s 1$ rows.

Example

• Covering array of 9 variables, 2 values each:

Using adjacent ordered combinations

- Therac-25 example radiation therapy machine fatal errors, 1985-1987 widely known in software safety
- Multiple bugs and safety failures
- Critical, fatal race condition error occurs if X-ray beam selected, changed to electron without min time between selections

Testing to detect error

 p_1 = min time between option selections p_2 = X-ray beam selected p_3 = electron beam selected p_4 = start beam

```
Then, error only detected if test set contains a sequence of:
```

```
p_1p_2p_3p_4 = 1100 (X-ray beam selected)
```

followed by

p₁p₂p₃p₄ = 0011 (not min time so X-ray still on, electron selected & beam started)

OCCa guaranteed to contain this sequence. Unlikely that other test set would, even if very large

Test	p_1	p_2	p_3	p_4
t_1	1	1	0	0
t_2	1	0	1	0
t_3	1	0	0	1
t_4	0	0	1	0
t_5	0	1	0	1
t_m	1	1	0	0
t_n	0	0	1	1

Combination order coverage measurement

- Prototype tool to analyze coverage and output combination orders that are not found in test set
- Example:
 - test set (a) with 4 variables, 12 tests
 - for ab = 11, covered combinations for cd following are cd = 01 and cd = 10
 - missing combinations output (c)

а	b	С	d	а	b	С	d	0 1. ('1' '1') > 2 3. ('1' '1')
0	0	1	0	0	0	1	0	0,1.(11, 11) > 2,3.(11, 11)
0	1	0	1	0	1	0	1	0.2; (11, 11) > 0.1; (11, 11)
1	0	0	1	1	0	0	1	$0,2:(1,1) \rightarrow 0,1:(1,1)$
0	0	1	1	0	0	1	1	0,2: ('1', '1') -> 0,2: ('1', '1')
1	1	0	0	1	1	0	0	0,2: ('1', '1') -> 0,3: ('1', '0')
1	1	1	0	1	1	1	0	0,2: ('1', '1') -> 1,2: ('1', '1')
1	0	0	1	1	0	0	1	0,2: ('1', '1') -> 1,3: ('1', '0')
0	1	0	1	0	1	0	1	0,2: ('1', '1') -> 2,3: ('1', '1')
0	0	1	0	0	0	1	0	0.2: ('1', '1') -> 2.3: ('0', '0')
1	0	0	1	1	0	0	1	0.3: ('1', '0') -> 2.3: ('1', '1')
0	1	0	1	0	1	0	1	0,0.(1,0) / 2,0.(1,1)
0	0	1	0	0	0	1	0	
	(8	a)			(b)		(c)

Coverage statistics

Coverage stats for

- static (simple) t-way coverage and
- dynamic (ordered combinations) coverage

file = ·	t9.csv	Nvars: 4 Nro	ws: 12	
Static ·	- input s	pace coverage		
	t	covered	max possible	coverage
	1	8	- 8	1.0000
	2	24	24	1.0000
	3	22	32	0.6875
	4	6	16	0.3750
Dynamic	- order	coverage	22.27	
		covered	max possible	coverage
1-way	2-seq	64	64	1.0000
1-way	3-seq	512	512	1.0000
2-way	2-seq	553	576	0.9601
2_11217	3-seg	11.069	13.824	0.8007

Future directions

- Empirical data on real-world problems
 - many possible applications
 - network protocols
 - automated test pattern generation for sequential circuits
 - blockchain smart contracts
- Comparison with random tests, structural coverage criteria
 - e.g., fuzz testing
 - also see if we can improve on standard CT
- Inclusion of constraints on sequencing
- Tool support

Please contact us if you're interested!

Rick Kuhn, M S Raunak, Raghu Kacker {kuhn, raunak, raghu.kacker,}@nist.gov

http://csrc.nist.gov/acts