Ordered t-way Combinations for Testing State-based Systems

D. Richard Kuhn, M S Raunak, Raghu N. Kacker

National Institute of Standards \& Technology Gaithersburg, MD, USA
\{kuhn, raunak, raghu.kacker\}@nist.gov

Why do we need ordered input combinations?

- Covering arrays are great, but sequence of inputs can affect results when state is maintained by the system (nearly all)
- Sequence covering arrays handle sequences of events, but events may be complex and involve multiple parameters, combinations
- States change according to inputs, combinations of input values
- So we want to consider the order of inputs of combinations in test set

What are ordered combinations?

Test	$p 0$			$p 1$
$p 2$	$p 3$			
1	a	d	b	c
2	b	a	c	d
3	b	d	c	a
4	c	a	b	d
5	c	d	b	a
6	d	a	c	b

Test	$p 0$	$p 1$	$p 2$	$p 3$		
1	a	d	b	c		
2	b	a	c	d		
3	b	d	c	0		
4	c	a	b	d		
5	c	d	b	a		
6	d	a	c			Ordered
:---						
combinations						

- Combination order $\mathrm{c}_{1}{ }^{*} \rightarrow \mathrm{c}_{2}{ }^{*} \rightarrow$... ${ }^{*} \rightarrow \mathrm{c}_{\mathrm{s}}$ of s combinations of t parameter values, abbreviated s-order, is a set of t-way combinations in s rows
- Each row is one set of test inputs
- Ordering of combinations as rows entered sequentially
- Example: $p 0 p 1=a d{ }^{*} \rightarrow p 2 p 3=c b$

Order of covering array tests affects error detection

Example:
$p_{1} \wedge p_{2}$
not followed by
$p_{1} \wedge \sim p_{2}$

Reordering tests to:
1
2
4
3
5
6
solves the problem

Ordered combination cover

- An ordered combination cover, designated $\operatorname{OCC}(N, s, t, p, v)$, covers all s-orders of t-way combinations of the v values of p parameters, where t is the number of parameters in combinations and s is the number of combinations in an ordered series.
- Number of combination order tuples to cover, for s-orders of t-way combinations of p parameters with v values each:

$$
v^{t} C(p, t)^{s}
$$

How can we find these ordered combination covers (OCC) efficiently?

Test	$p 0$	$p 1$	$p 2$	$p 3$
1	a	d	b	c
2	b	a	c	d
3	b	d	c	0
4	c	a	b	d
5	c	d	b	a
6	d	a	c	

Generating ordered combination covers (OCC) ?

- The problem turns out to be easy!
- Theorem (OCC Coverage). A test set covers s-orders of t-way combinations if and only if it includes an ordered series containing a total of s covering arrays, each of strength t.
So,

1. make a t-way covering array
2. write s copies of it

Ordered coverage of adjacent combinations

- An adjacent combination order $\mathrm{c}_{1} \rightarrow \mathrm{c}_{2} \rightarrow \ldots \rightarrow \mathrm{c}_{\mathrm{s}}$ of t-way combinations, abbreviated s-order, is a set of t-way combinations in s consecutive rows.
- No interleaving between the ordered combinations, i.e., Ordered: $\quad c_{1}{ }^{*} \rightarrow c_{2} \quad c_{1}$ is eventually followed by c_{2} Adjacent ordered: $c_{1} \rightarrow c_{2} \quad c_{1}$ is immediately followed by c_{2}
- Ordered combinations with added constraint that rows are adjacent, i.e., for $c_{1} \rightarrow c_{2}$ where c_{1} and c_{2} are in consecutive rows
- We need to produce an ordering of combinations such that every t-length permutation of combinations occurs as tests (rows) are input sequentially

This can be done with a deBruijn sequence

deBruijn sequences

- Studied in early $20^{\text {th }}$ century, many properties proved by deBruijn
- For a given set S of k symbols, a deBruijn sequence $D(k, n)$ includes every n-length permutation of the symbols in S
- length of a deBruijn sequence is k^{n}, and no shorter length sequence covering all the n-length permutations is possible
- Probably re-invented by every hacker on the planet (to crack key code locks)

$$
D(3,2)=\underbrace{00102112200102 \ldots}_{\underline{9 \text { digits }}}
$$

key codes length 2: 18 digits

$$
00,01,02,10,11,12,20,21,22
$$

Generating adjacent ordered combination covers

1. Generate a covering array of desired strength for the input model of the system under test.
2. Number the rows of the covering array sequentially, from 1 to k, for a covering array with k rows.
3. Generate a deBruijn sequence $D(k, s)$ of the k row indices.
4. For each row index i in the sequence, write row i from the covering array. After the last row, append the initial s-1 rows of the covering array, resulting in $N=k^{s}+s-1$ rows.

Example

- Covering array of 9 variables, 2 values each:

1	0	0	1	0	0	0	1	1	1
2	0	1	0	1	1	0	0	0	1
3	1	0	0	1	0	1	0	1	0
4	1	1	1	0	1	1	0	1	1
5	1	1	0	0	0	0	1	0	0
6	0	0	1	1	1	1	1	0	0

1	0	0	1	0	0	0	1	1	1
	0	0	1	0	0	0	1	1	1
2	0	1	0	1	1	0	0	0	1
	0	0	1	0	0	0	1	1	1
	1	0	0	1	0	1	0	1	0
	0	0	1	0	0	0	1	1	1
	1	1	1	0	1	1	0	1	1
	0	0	1	0	0	0	1	1	1
	1	1	0	0	0	0	1	0	0
	1	1	1	0	0	0	1	1	1

row numbers
$1 . .6$ deBruijn
sequence
generator
transpose

Using adjacent ordered combinations

- Therac-25 example - radiation therapy machine fatal errors, 1985-1987 - widely known in software safety
- Multiple bugs and safety failures
- Critical, fatal race condition - error occurs if X-ray beam selected, changed to electron without min time between selections

Testing to detect error

$p_{1}=$ min time between option selections
$p_{2}=X$-ray beam selected
$p_{3}=$ electron beam selected
$\mathrm{p}_{4}=$ start beam
Then, error only detected if test set contains a sequence of:

$$
\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{p}_{4}=1100 \text { (X-ray beam selected) }
$$

Test	p_{1}	p_{2}	p_{3}	p_{4}
t_{1}	1	1	0	0
t_{2}	1	0	1	0
t_{3}	1	0	0	1
t_{4}	0	0	1	0
t_{5}	0	1	0	1
\ldots				
t_{m}	1	1	0	0
t_{n}	0	0	1	1
\ldots				

followed by

$$
\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{p}_{4}=0011 \text { (not min time so } X \text {-ray still on, electron selected } \& \text { beam started) }
$$

OCCa guaranteed to contain this sequence. Unlikely that other test set would, even if very large

Combination order coverage measurement

- Prototype tool to analyze coverage and output combination orders that are not found in test set
- Example:
- test set (a) with 4 variables, 12 tests
- for $a b=11$, covered combinations for cd following are cd = 01 and $c d=10$
- missing combinations output (c)

a	b	c	d
0	0	1	0
0	1	0	1
1	0	0	1
0	0	1	1
1	1	0	0
1	1	1	0
1	0	0	1
0	1	0	1
0	0	1	0
1	0	0	1
0	1	0	1
0	0	1	0

(a)

a	b	c	d
0	0	1	0
0	1	0	1
1	0	0	1
0	0	1	1
1	1	0	0
1	1	1	0
1	0	0	1
0	1	0	1
0	0	1	0
1	0	0	1
0	1	0	1
0	0	1	0
$\mathbf{(b)}$			

0,2: (11 ', '1') ->0,2: ('1', '1')
0,2: ('1', '1') -> 0,3: ('1', '0')
0,2: ('1', '1') -> 1,2: ('1', '1')
0,2: ('1', '1') -> 1,3: ('1', '0')
0,2: ('1', '1') -> 2,3: ('1', '1')
0,2: ('1', '1') -> 2,3: ('0', '0')
0,3: ('1', '0') -> 2,3: ('1', '1')
(c)

0,1: (1, 1) >2.3 2: (0^{\prime} ' 0^{\prime} '
0,2: ('1', '1') -> 0,2: ('1', '1')
0,2: ('1', '1') >0,3: ('1', '0')
0,2: ('1', '1') -> 1,2: ('1', '1')
0,2: ('1', '1') -> 1,3: ('1', '0')
0,2: ('1', '1') -> 2,3: ('1', '1')
0,2: ('1', '1') -> 2,3: ('0', '0')
0,3: ('1', '0') -> 2,3: ('1', '1')
(c)

Coverage statistics

Coverage stats for

- static (simple) t-way coverage and
- dynamic (ordered combinations) coverage

Future directions

- Empirical data on real-world problems
- many possible applications
- network protocols
- automated test pattern generation for sequential circuits
- blockchain smart contracts
- Comparison with random tests, structural coverage criteria
- e.g., fuzz testing
- also see if we can improve on standard CT
- Inclusion of constraints on sequencing
- Tool support

Please contact us if you're interested!

Rick Kuhn, M S Raunak, Raghu Kacker \{kuhn, raunak, raghu.kacker,\}@nist.gov

http://csrc.nist.gov/acts

