
Ordered t-way Combinations for
Testing State-based Systems

D. Richard Kuhn, M S Raunak, Raghu N. Kacker
National Institute of Standards & Technology Gaithersburg, MD, USA

{kuhn, raunak, raghu.kacker}@nist.gov

Why do we need ordered input combinations?

• Covering arrays are great, but sequence of inputs can affect
results when state is maintained by the system (nearly all)
• Sequence covering arrays handle sequences of events, but

events may be complex and involve multiple parameters,
combinations
• States change according to inputs, combinations of input

values
• So we want to consider the order of inputs of combinations

in test set

What are ordered combinations?

• Sequence covering, of events a, b, c, d
• Sequence covering array has all

sequences of events for some
specified length, non-repeating

• Each row is one test sequence

Ordered
combinations

• Combination order c1 *→ c2 *→ ...*→ cs of
s combinations of t parameter values,
abbreviated s-order, is a set of t-way
combinations in s rows

• Each row is one set of test inputs
• Ordering of combinations as rows entered

sequentially
• Example: p0p1 = ad *→ p2p3 = cb

Order of covering array tests affects error detection

p1 ⋀ p2
~p1 ⋁	 ~p2

p1 ⋀ ~p2

~p1 ⋁	 p2

p1 ⋀ p2

Example:

not followed by

Reordering tests to:
1
2
4
3
5
6

solves the problem

p1 ⋀ ~p2

Ordered combination cover
• An ordered combination cover, designated OCC(N, s, t, p, v), covers all

s-orders of t-way combinations of the v values of p parameters, where
t is the number of parameters in combinations and s is the number of
combinations in an ordered series.
• Number of combination order tuples to cover, for s-orders of t-way

combinations of p parameters with v values each:

How can we find these ordered
combination covers (OCC)
efficiently?

Generating ordered combination covers (OCC) ?

• The problem turns out to be easy!
• Theorem (OCC Coverage). A test set covers s-orders of t-way

combinations if and only if it includes an ordered series
containing a total of s covering arrays, each of strength t.

So,
1. make a t-way covering array
2. write s copies of it

Ordered coverage of adjacent combinations
• An adjacent combination order c1 → c2 → . . . → cs of t-way

combinations, abbreviated s-order, is a set of t-way combinations in s
consecutive rows.
• No interleaving between the ordered combinations, i.e.,

Ordered: c1 *→ c2 c1 is eventually followed by c2
Adjacent ordered : c1 → c2 c1 is immediately followed by c2

• Ordered combinations with added constraint that rows are adjacent,
i.e., for c1 → c2 where c1 and c2 are in consecutive rows
• We need to produce an ordering of combinations such that every

t-length permutation of combinations occurs as tests (rows) are input
sequentially

This can be done with a deBruijn sequence

deBruijn sequences
• Studied in early 20th century, many properties proved by deBruijn
• For a given set S of k symbols, a deBruijn sequence D(k, n) includes

every n-length permutation of the symbols in S
• length of a deBruijn sequence is kn, and no shorter length sequence covering

all the n-length permutations is possible
• Probably re-invented by every hacker on the planet (to crack key code locks)

D(3,2) = 00102112200102…

key codes length 2: 18 digits
00,01,02,10,11,12,20,21,22

No ‘enter’ key:
628 key presses
instead of
3,125 for 4-digit code

001021122

9 digits

Generating adjacent ordered combination covers
1. Generate a covering array of desired strength for the input model of

the system under test.
2. Number the rows of the covering array sequentially, from 1 to k, for a

covering array with k rows.
3. Generate a deBruijn sequence D(k,s) of the k row indices.
4. For each row index i in the sequence, write row i from the covering

array. After the last row, append the initial s − 1 rows of the covering
array, resulting in N = ks + s − 1 rows.

Example

• Covering array of 9 variables, 2 values each:

row numbers
1..6 deBruijn

sequence
generator

112131415162232425263343536445465566

1
1
2
1
3
1
4
5
…

transpose

Using adjacent ordered combinations

• Therac-25 example - radiation therapy machine fatal errors,
1985-1987 - widely known in software safety
•Multiple bugs and safety failures
• Critical, fatal race condition - error occurs if

X-ray beam selected,
changed to electron
without min time
between selections

Testing to detect error
p1 = min time between option selections
p2 = X-ray beam selected
p3 = electron beam selected
p4 = start beam

Then, error only detected if test set contains
a sequence of:

p1p2p3p4 = 1100 (X-ray beam selected)
followed by

p1p2p3p4 = 0011 (not min time so X-ray still on, electron selected & beam started)

OCCa guaranteed to contain this sequence.
Unlikely that other test set would, even if very large

Combination order coverage measurement

• Prototype tool to analyze coverage and
output combination orders that are not
found in test set

• Example:
• test set (a) with 4 variables, 12 tests
• for ab = 11, covered combinations

for cd following are cd = 01 and
cd = 10

• missing combinations output (c)

Coverage statistics

Coverage stats for
• static (simple) t-way coverage

and
• dynamic (ordered combinations)

coverage

Future directions

• Empirical data on real-world problems
- many possible applications
- network protocols
- automated test pattern generation for sequential circuits
- blockchain smart contracts
• Comparison with random tests, structural coverage criteria

- e.g., fuzz testing
- also see if we can improve on standard CT
• Inclusion of constraints on sequencing
• Tool support

Rick Kuhn, M S Raunak, Raghu Kacker
{kuhn, raunak, raghu.kacker,}@nist.gov

Please contact us
if you’re interested!

16

http://csrc.nist.gov/acts

