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Outline

•Why current safety-critical testing won’t work
•Assurance based on input space coverage, 
•Explainable AI as part of validation, and 
•Transfer learning

Short overview of assured autonomy, 
and NIST focus (measurement and test) in this area
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(Slide from Darryl Ahner,  US Air Force Institute of Technology)
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Software safety assurance is already very 
expensive
Consumer level software cost: 
about 50% code development, 
50% verification

For aviation life-critical, 
12% code development, 
88% verification 
(Software is about 30% of 
cost for new civilian aircraft, 
higher for military)

Autonomy makes the 
problem even harder!
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Autonomy makes the problem even more expensive!
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Components of 
autonomous 
systems can’t 
use 
conventional 
safety 
assurance 
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Why can’t we use same 
processes as other safety-
critical software ?

• Life-critical aviation software 
requires MCDC testing, white-box 
criterion that cannot be used for 
neural nets and other black-box 
methods

• Nearly all conventional software 
testing is based on structural 
coverage – ensuring that statements, 
decisions, paths are covered in 
testing
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High level DARPA Goals
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Code coverage works well - for conventional 
software
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Can we use code coverage for machine 
learning?

•Much of AI/ML depends 
on various neural nets
• Algorithm and code 

stays the same
• Connections and 

weights vary
• Behavior changes 

depending on inputs 
used in training
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DARPA approach

Monitor and guard 
the non-deterministic, 
unpredictable region 
of input space
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To monitor and guard input space, need to 
measure

• We can measure “neuron coverage”, but indirect measure and not clear how 
closely related to accuracy and ability to correctly process all of the input 
space

• Measure the input space 
directly

• Then see if the AI system 
handles all of it correctly

• Gold standard of assurance and verification of life-critical software 
can’t be used for much of new life-critical autonomy software

Nobody at the 
wheel …
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Outline

•Why current safety-critical assurance won’t work
•Assurance based on input space coverage
•Explainable AI as part of validation, and 
•Transfer learning
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Major DoD investment in assured autonomy

(Note that ”testing all possible states and all ranges of inputs” was 
already unachievable, but the point holds.)
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But can they do it under 
all kinds of conditions ?

The problem is 
harder outside of a 
constrained 
environment

It doesn’t take much 
intelligence to drive a 
car.  Even rats can do it!
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Things get tricky as the scene becomes 
complex

•Multiple conditions involved in accidents
• "The camera failed to recognize the white truck 

against a bright sky”

• "The sensors failed to pick up street signs, lane 
markings, and even pedestrians due to the angle of 
the car shifting in rain and the direction of the sun”

• We need to understand what combinations of 
conditions are included in testing
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Combinatorial value coverage - review 

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations 

Vars Combination values Coverage

a b 00, 01, 10             .75

a c 00, 01, 10      .75

a d 00, 01, 11      .75

b c 00, 11        .50

b d 00, 01, 10, 11    1.0

c d 00, 01, 10, 11     1.0

a b c d

0 0 0 0

0 1 1 0

1 0 0 1

0 1 1 1

19 combinations 
included in test set

GBSD Program

Kuhn, D. R., Mendoza, I. D., Kacker, R. N., & Lei, Y. (2013). 
Combinatorial coverage measurement concepts and 
applications. 2013 IEEE Sixth Intl Conference on Software 
Testing, Verification and Validation Workshops Course 4 17



Rearranging 
the table:

1.00 00 00
.75 01 01 00 00 00
.50 10 10 01 01 01 00
.25 11 11 10 10 11 11

bd cd ab ac ad bc

Vars Combination values Coverage

a b 00, 01, 10             .75

a c 00, 01, 10      .75

a d 00, 01, 11      .75

b c 00, 11        .50

b d 00, 01, 10, 11    1.0

c d 00, 01, 10, 11     1.0

Total possible 2-way 

combinations = 2! 4
2 = 24

S2 = fraction of 2-way 
combinations covered = 
19/24 
= 0.79

GBSD ProgramCourse 4 18



Graphing Coverage Measurement 

100% coverage of .33 of combinations
75% coverage of .50 of combinations
50% coverage of .16 of combinations 

Bottom line:
All combinations covered to at 
least .50

1.00 00 00
.75 01 01 00 00 00
.50 10 10 01 01 01 00
.25 11 11 10 10 11 11

bd cd ab ac ad bc

S2 = area under 
curve 
= 0.79

M2
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What else does this chart show?

St = Tested combinations => code works for these 

1 - St = Untested combinations
(look for problems here)

GBSD ProgramCourse 4 20



What levels of input space coverage are 
seen in practical ML data sets?

Examples from WEKA data mining demo set

Opportunity?
Goal:  
enumerating 
all conditions 
that matter
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Research questions
• Practical ML examples don’t seem to have very high input space 

coverage  (previous slide)
• Can we improve results with better input space coverage?
• Empirical data show that small numbers of factors are involved in 

system failures (generally 1 to 6).  
• Is this also true of autonomous systems?
• How are input space coverage and classification/prediction 

accuracy related?
• Can we apply some of these methods to temporal aspects?  

(sequence covering arrays)
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Outline

•Why current safety-critical testing won’t work
•Assurance based on input space coverage
•Explainable AI as part of validation, and 
•Transfer learning
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What is the explainability problem?
• AI systems are good, but sometimes make mistakes, and human users 

will not trust their decisions without explanation or justification
à assurance and explainability are closely tied 

• There is a tradeoff between AI accuracy and explainability:  the most accurate 
methods, such as convolutional neural nets (CNNs), provide no explanations;  
understandable methods, such as rule-based, tend to be less accurate

• The black-box nature of these systems that makes explanation difficult 
also makes assurance and testing even harder

• Life-critical aviation software requires MCDC testing, white-box criterion 
that cannot be used for neural nets and other non-explainable methods
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Explainability – what’s current state of the 
art?

Black-box statistical 
predictions are 
inadequate

Explanations must 
be understandable 
to non-specialist
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Tradeoff:

How do we get the 
best of both worlds?

Expert system:
Good for explanations, 
not so good for accuracy

Neural nets:
Good for accuracy,
not so good for explanations

- OR -
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What has been tried?
• Interpretable models – e.g. rule-based expert systems: “if patient has 

symptoms A and B, or has B with C and D, then illness is X”
• best for explanations
• hard to find rules
• less accurate than other approaches

• Modify neural nets etc. to add explanations
• reduces accuracy, complicates the system
• explanations still not very understandable

• Model induction  - infer explainable model from black-box
• flexible for application, good explanations using only input, output
• hard to produce the explainable model

• Our approach – derive rule predicates from inputs and outputs to 
CNNs and other black-box functions
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Fault location – identify fault-triggering input

Given:  a set of tests that the SUT fails, which 
combinations of variables/values triggered the failure?

variable/value combinations 
in passing tests

Combinations in failing but 
not in passing tests
These are the ones we want 

variable/value combinations 
in failing tests
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Relevance to explainable 
AI

Class feature combinations -
brown & furry, black & furry,  whiskers, 
claws, ...not aquatic, not venomous, 
not 6 legs, 

Individual 
feature 
combinations – 
brown & furry, 
whiskers, claws, 
not aquatic, not 
venomous, not 6 
legs, ...

Non-class 
feature 
combinations

aquatic, 
venomous, 6 legs, 
... 

Animal shares features 
with cat class

Animal does not share 
features with non-cat 
classes

Kuhn, D. R., Kacker, R. N., Lei, Y., & Simos, D. E. (2020). 
Combinatorial methods for explainable AI. In 2020 IEEE Intl 
Conference on Software Testing, Verification and Validation 
Workshops (ICSTW)
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Why is this 
creature 
recognized as 
a reptile?

Input configuration  21561

No single feature is sufficient 
explanation – shares features with 
non-reptiles

No pair of features sufficient – 
shares 2-way combinations 
w/ non-reptiles  
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3-way combinations produce rules to 
explain recognition of Testudo as a reptile

Non-reptiles in the 
database do not have 
these 3-way 
combinations

Only reptiles have these combinations of features:
not aquatic AND not toothed AND four legs
egg-laying AND not aquatic AND four legs

not hairy AND four legs AND cat size
not milk-producing AND not aquatic AND four legs

not milk-producing AND four legs AND cat size
not predator AND not toothed AND four legsCourse 4 31



Mapping combinations to expressions

if  (not aquatic AND not toothed AND four legs) 
     OR (egg-laying AND not aquatic AND four legs)
    OR  (not hairy AND four legs AND cat size)
    OR  (not milk-producing AND not aquatic AND four legs)
    OR  (not milk-producing AND four legs AND cat size)
    OR  (not predator AND not toothed AND four legs)
    then reptile;
    else not reptile;

• Report identifies t-way combinations that distinguish the predicted class 
from others
• Combinations can be mapped to expressions to produce a rule-based 

type of explanation

As noted, none of the single factors above is sufficient for explanation
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Example:  empty 
vs. occupied 
rooms, using 
sensor data

Why do we conclude this room is occupied?

These levels of humidity and lighting are strong 
indication

Empty rooms don’t have these levels

Considering levels of lighting, CO2, and 
humidity ratio provide even stronger evidence:
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A different example:  
lymph node pathology – 
why is this classified as 
malignant not 
metastatic? 

• These combinations are 
characteristic of lymphoma that 
arises in lymph node instead of 
metastatic that spread to node 
from somewhere else 
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Summary - explainable AI
• Combinatorial methods can provide explainable AI

• We have prototype that applies this approach
• Determine combinations of variable values that differentiate an example from other 

possible conclusions
è Feature combinations present shared with class 
è Feature combinations not shared with class not present

• Method can be applied to black-box functions such as CNNs

• Present explanation in the preferred form of rules, 
“if A & B, or C with D & E,  then conclusion is X”
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Outline

•Why current safety-critical testing won’t work
•Assurance based on input space coverage
•Explainable AI as part of validation, and 
•Transfer learning
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Transfer learning – what is the problem?
• Differences inevitably exist between training data sets, 

test data sets, and real-world application data
• Further differences exist between data from two or 

more different environments
• How do we predict performance of a model trained on 

one data set when applied to another?
• New environment
• Changed environment
• Additional possible values
• etc.

Lanus, E., Freeman, L. J., Kuhn, D. R., & Kacker, R. N. (2021, April). Combinatorial 
Testing Metrics for Machine Learning. In 2021 IEEE Intl Conference on Software 
Testing, Verification and Validation Workshops (ICSTW)Course 4 37



Transfer learning – conventional practice

• Randomized selection – but will randomization be 
sufficient, especially with smaller data sets?

• Ensure at least one of each object type – but this may 
not be representative of object attribute distributions

•    Interactions are critical to consider in most ML 
problems, especially for safety, but conventional 
practice does little to ensure data sets are adequately 
representative of interactions
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Example – image analysis
• Planes in satellite imagery – Kaggle ML data set – 

determine if image contains or does not contain an 
airplane

• Two data sets – Southern California (SoCal, 21,151 
images) or Northern California (NorCal, 10,849 images)

• 12 features, each discretized into 3 equal range bins
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Transfer learning problem
• Train model on one set, apply to the other set
• Problem – 

• Model trained on larger, SoCal data applied to 
smaller, NorCal data à performance drop 

• Model trained on smaller, NorCal data applied to 
larger, SoCal data à NO performance drop 

• This seems backwards!
• Isn’t it better to have more data?
• Can we explain this and predict it next time?
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Density of combinations in one but not the 
other data set, 2-way

Image from Combinatorial Testing Metrics for Machine Learning,  Lanus, Freeman, Kuhn, Kacker, IWCT 2021

For C = SoCal, N = NorCal,
|C\N| / |C| = 0.02
|N\C| / |N| = 0.12 

The NorCal data set has fewer “never seen” 
combinations, even with half as many 
observations
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Summary – Transfer learning

• Current approaches to estimating success for transfer 
learning are largely ad-hoc and not highly effective

• Combinatorial methods show promise for improvements – 
measurable quantities directly related to determining if one 
data set is representative of the field of application

• Much additional work is needed to evaluate this idea, and to 
understand the link between combinatorial difference values 
and prediction accuracy

• Empirical studies planned 
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Assured autonomy – more questions than answers
• How to classify bug types – in learning systems that are programmed 

by their inputs, continuously
• Are they mostly aging-related bugs?
• Or something else not yet defined?
• Implications?   Rejuvenation, restart likely valuable?

• Interactions of learning components with programmed components – 
especially replacing humans

• Changes the nature of system failures
• More like failures involving human factors issues?
J Turing test for bugs!  Distinguish between human-triggered and 
AI-triggered system failures?
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Assured autonomy – key points & current state
• For capability and cost reasons, autonomous components 

are becoming routine in software engineering
• Many, or most, methods used in high assurance 

conventional systems do not apply to many autonomous 
components

• Structural coverage – not for neural nets, and others
• Formal proofs – for some parts but limited 

• How to deal with learning, dynamic changes in system, 
routine non-determinism?

• Developing appropriate measures of test adequacy
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Where are we going?
• Need new approaches in:
• Design
• Simulation
• Validation
• Formal verification
• Testing
• Explainability

• Security – much bigger problem than safety assurance – solvable?
• All the old vulnerabilities apply – with greater consequences
• And new vulnerabilities 

•Leading to … AI vs. AI? 
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Rick Kuhn, Raghu Kacker, M.S. Raunak
                      {kuhn, raghu.kacker, raunak}@nist.gov

         http://csrc.nist.gov/acts

Please contact us 
if you’re interested!
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