Assured Autonomy - problems and possible solutions -

Hill Air Force Base

Course 4: August 16-20, 2021

Rick Kuhn National Institute of Standards and Technology Gaithersburg, Maryland 20899 kuhn@nist.gov

Outline

- Why current safety-critical testing won't work
- Assurance based on input space coverage,
- Explainable AI as part of validation, and
- Transfer learning

Short overview of assured autonomy, and NIST focus (measurement and test) in this area

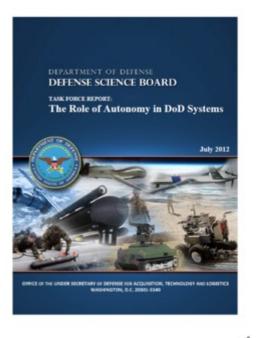
(Slide from Darryl Ahner, US Air Force Institute of Technology)

A CONTRACT OF AUTOM

Defense Science Board Study

STAT T&E COE: Scientia Prudentia et Valor

DSB 2012 The Role of Autonomy in DoD Systems Study recommends:


"USD(AT&L) to create developmental and operational T&E techniques that focus on the unique challenges of autonomy (to include developing operational training techniques that explicitly build trust in autonomous systems)."

Recommendation:

USD(AT&L) establish developmental and operational T&E techniques that focus on the unique challenges of autonomy

- Coping with the <u>difficulty of enumerating all</u> <u>conditions</u> and <u>non-deterministic responses</u>
- Basis for system decisions often not apparent to user
- <u>Measuring trust</u> that the autonomous system will interact with its human supervisor as intended

Leverage the benefits of robust simulation

Software safety assurance is already <u>very</u> expensive

Consumer level software cost: about 50% code development, 50% verification

For aviation life-critical, 12% code development, <u>88% verification</u>

(Software is about 30% of cost for new civilian aircraft, higher for military)

Autonomy makes the problem even harder!

V&V cost and Certification

reter

For FAA compliant DO-178B Level A software, the industry usually spends 7 times as much on verification (reviews, analysis, test). So that's about 12% for development and 88% for verification.

Level B reduces the verification cost by approximately 15%. The mix is then 25% development, 75% verification.

Randall Fulton FAA Designated Engineering Representative (private email to L. Markosian, July 2008)

NFM 2010

10

13 April 2010

Autonomy makes the problem even more expensive!

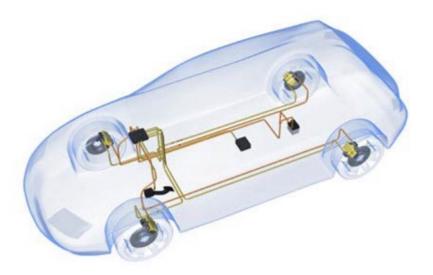
Assurance for Autonomous Systems is Hard

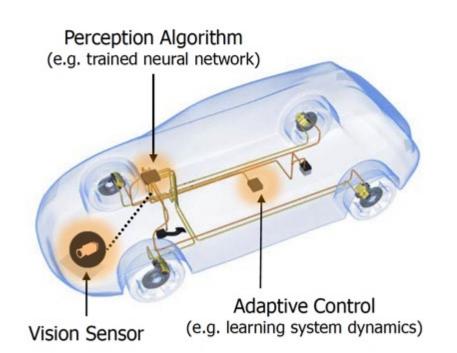
Traditional testing will require exorbitant time and money: 11B miles, 500 years, \$6B

- Driving to Safety, RAND Corp. Report, 2016

Table 1. Examples of Miles and Years Needed to Demonstrate Autonomous Vehicle Reliability

			Benchmark Failure Ro	ate
ç	How many miles (yearsª) would autonomous vehicles have to be driven	(A) 1.09 fatalities per 100 million miles?	(B) 77 reported injuries per 100 million miles?	(C) 190 reported crashes per 100 million miles?
Statistical Question	(1) without failure to demonstrate with 95% confidence that their failure rate is at most	275 million miles (12.5 years)	3.9 million miles (2 months)	1.6 million miles (1 month)
tistical	(2) to demonstrate with 95% confidence their failure rate to within 20% of the true rate of	8.8 billion miles (400 years)	125 million miles (5.7 years)	51 million miles (2.3 years)
Sta	(3) to demonstrate with 95% confidence and 80% power that their failure rate is 20% better than the human driver failure rate of Course 4	11 billion miles (500 years)	161 million miles (7.3 years)	65 million miles (3 years)


^a We assess the time it would take to compete the requisite miles with a fleet of 100 autonomous vehicles flaraer than any known existing fleet driving 24 hours


Illustrating the challenge

(e.g. manual brake-by-wire)

Learning-Enabled Autonomous System (e.g. automated brake-by-wire for collision avoidance)

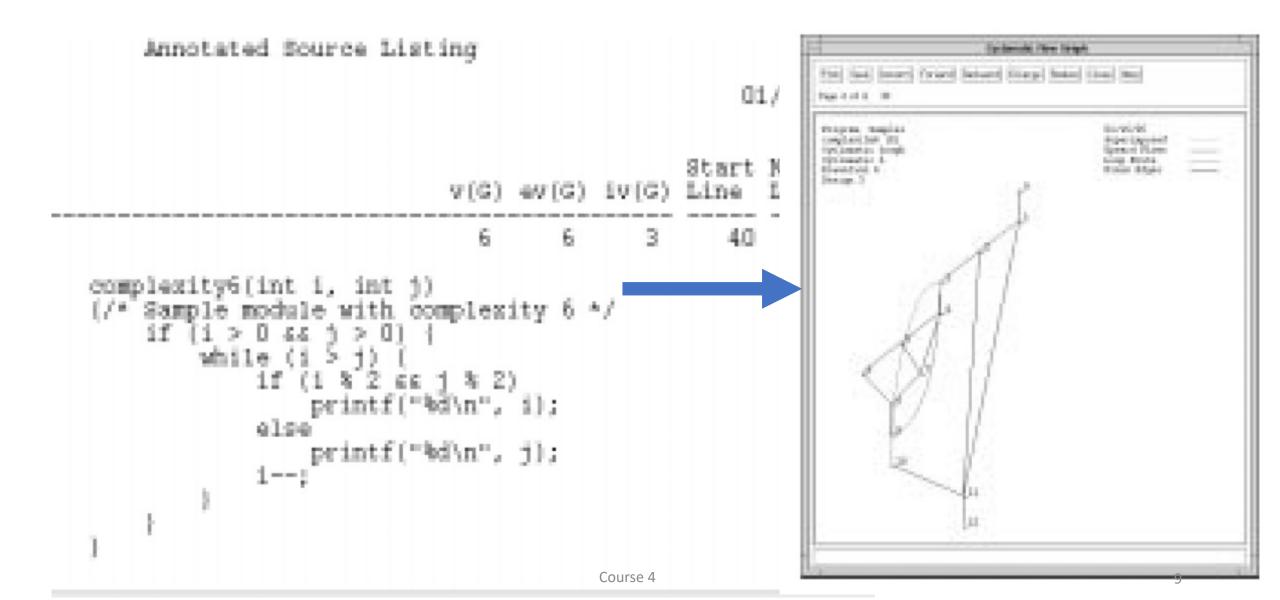
Safety assurance can be provided

Components of autonomous systems can't use conventional safety assurance

Safety assurance can NOT be provided

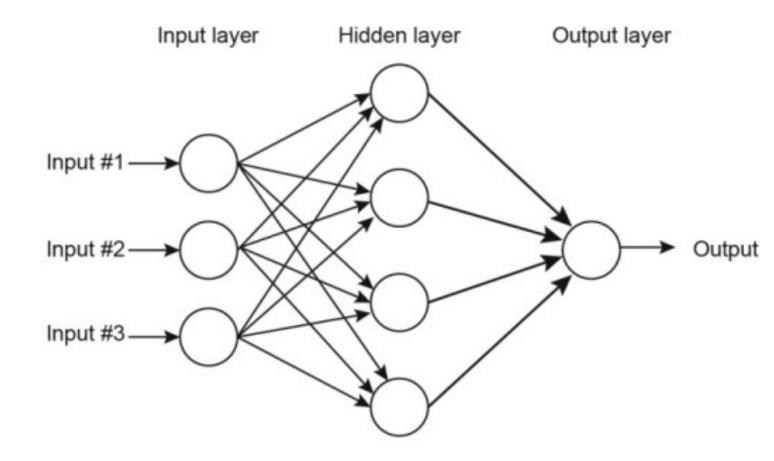
Why can't we use same processes as other safetycritical software ?

- Nearly all conventional software testing is based on structural coverage – ensuring that statements, decisions, paths are covered in testing
- Life-critical aviation software requires MCDC testing, white-box criterion that cannot be used for neural nets and other black-box methods Course 4

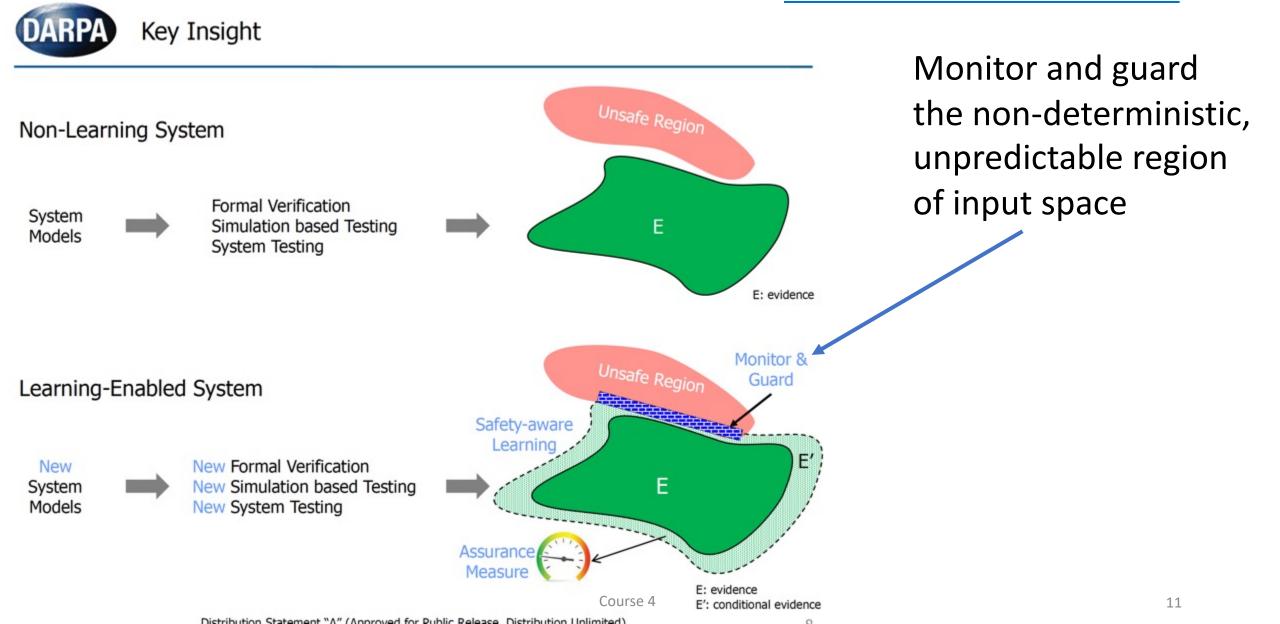


- Increase scalability of design-time assurance
 - What is the baseline capability of the proposed methods, in terms of the hybrid state-space and number and complexity of learning-enabled components
 - How do you plan to scale up by an order of magnitude?
 - How will you characterize the tradeoffs between fidelity of your modeling abstractions and scalability of the verification approach.
- Reduce overhead of operation-time assurance
 - What is the baseline overhead of the operation-time assurance monitoring techniques?
 - How do you plan to minimize it to be below 10% of the nominal system resource utilization?
- Scale up dynamic assurance
 - What is the size and scale of dynamic assurance case that can be developed and dynamically evaluated with your tools?

Reduce trials to assurance


How will your approach quantifiably reduce the need for statistical testing?

Code coverage works well - for conventional software



Can we use code coverage for machine learning?

- Much of AI/ML depends on various neural nets
- Algorithm and code stays the same
- Connections and weights vary
- Behavior changes depending on inputs used in training

DARPA approach

To monitor and guard input space, need to

measure

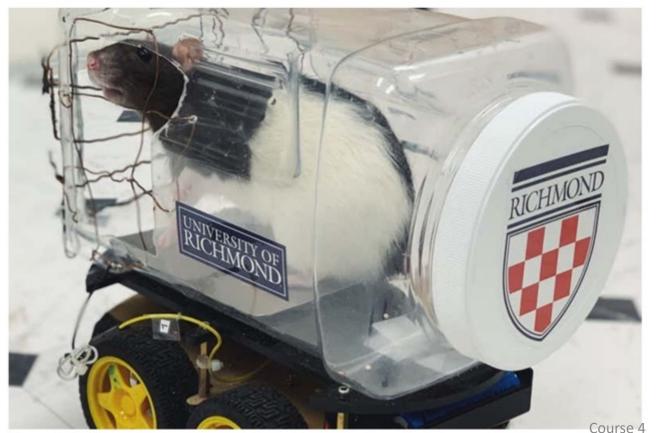
- Gold standard of assurance and verification of life-critical software can't be used for much of new life-critical autonomy software
- We can measure "neuron coverage", but indirect measure and not clear how closely related to accuracy and ability to correctly process all of the input space
- Measure the input space directly
- Then see if the AI system handles all of it correctly

Outline

- Why current safety-critical assurance won't work
- Assurance based on input space coverage
- Explainable AI as part of validation, and
- Transfer learning

Major DoD investment in assured autonomy

"The notion that autonomous systems can be fully tested is becoming increasingly infeasible as higher levels of self governing systems become a reality...*the standard practice of testing all possible states and all ranges of inputs to the system becomes an unachievable goal*. Existing TEVV methods are, by themselves, insufficient for TEVV of autonomous systems; therefore *a fundamental change is needed in how we validate and verify these systems*." - OSD TEV&V Strategy Report, May 2015


(Note that "testing all possible states and all ranges of inputs" was already unachievable, but the point holds.)

NewScientist

Scientists have trained rats to drive tiny cars to collect food

LIFE 22 October 2019

By Alice Klein

It doesn't take much intelligence to drive a car. Even rats can do it!

But can they do it under all kinds of conditions ?

The problem is harder outside of a constrained environment

Things get tricky as the scene becomes complex

- Multiple conditions involved in accidents
 - "The camera failed to recognize the white truck against a bright sky"
 - "The sensors failed to pick up street signs, lane markings, and even pedestrians due to the angle of the car shifting in rain and the direction of the sun"
- <u>We need to understand what combinations of</u> <u>conditions are included in testing</u>

Combinatorial value coverage - review

0 1 0 1	0 1 0	0 0 1	ab ac	00, 01, 10 00, 01, 10	.75 .75			
0	-	-		00, 01, 10	.75			
	0	1	. /					
1			ad	00, 01, 11	.75			
-	1	1	bc	00, 11	.50			
	•	•	b d	00, 01, 10, 11	1.0			
			CO	00, 01, 10, 11	1.0			
			75% c	100% coverage of 33% of combination 75% coverage of half of combinations				
C	d in te	binations d in test set	d in test set	d in test set 100% 75% c 50% c	binations d in test set 100% coverage of 33% of			

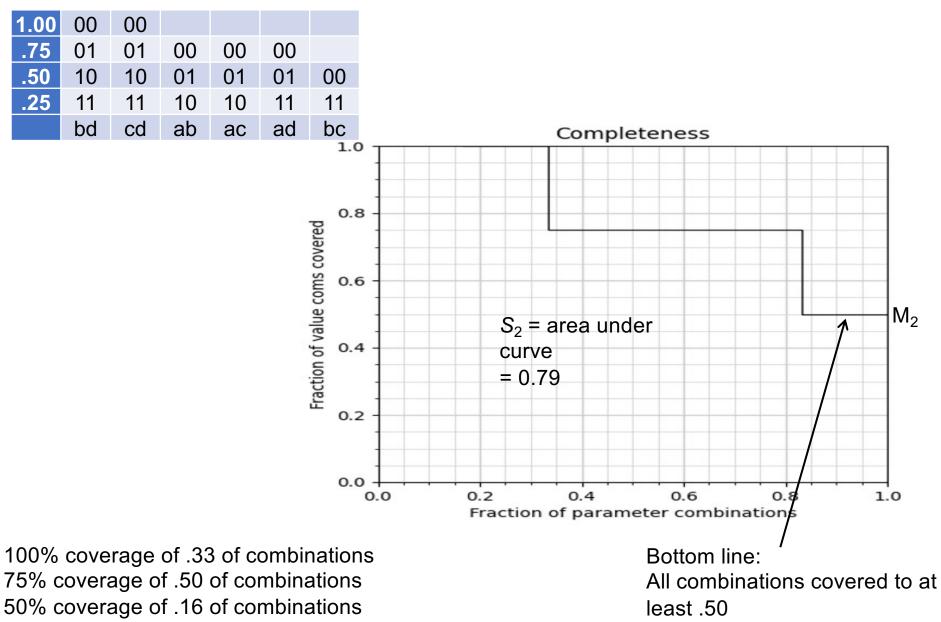
GBSD Brogram

Kuhn, D. R., Mendoza, I. D., Kacker, R. N., & Lei, Y. (2013). Combinatorial coverage measurement concepts and applications. 2013 IEEE Sixth Intl Conference on Software Testing, Verification and Validation Workshops

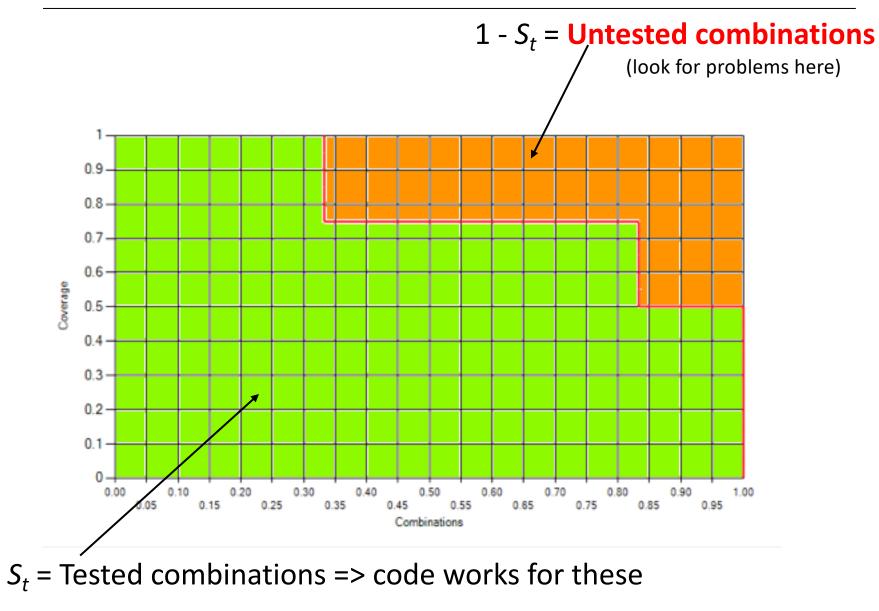
National Institute of lards and Technology

17

Vars	Combination values	Coverage
a b	00, 01, 10	.75
a c	00, 01, 10	.75
a d	00, 01, 11	.75
bc	00, 11	.50
b d	00, 01, 10, 11	1.0
c d	00, 01, 10, 11	1.0

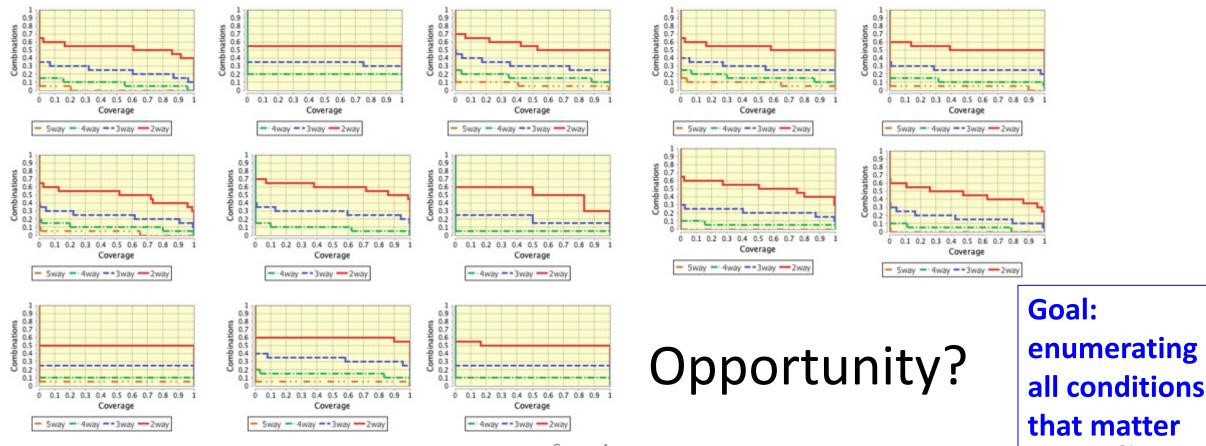

Total possible 2-way combinations = $2^2 \binom{4}{2} = 24$

S_2 = fraction of 2-way
combinations covered =
19/24
= 0.79


Rearranging the table:

1.00	00	00				
.75	01	01	00	00	00	
.50	10	10	01	01	01	00
.25	11	11	10	10	11	11
	bd	cd	ab	ac	ad	bc

Graphing Coverage Measurement



What else does this chart show?

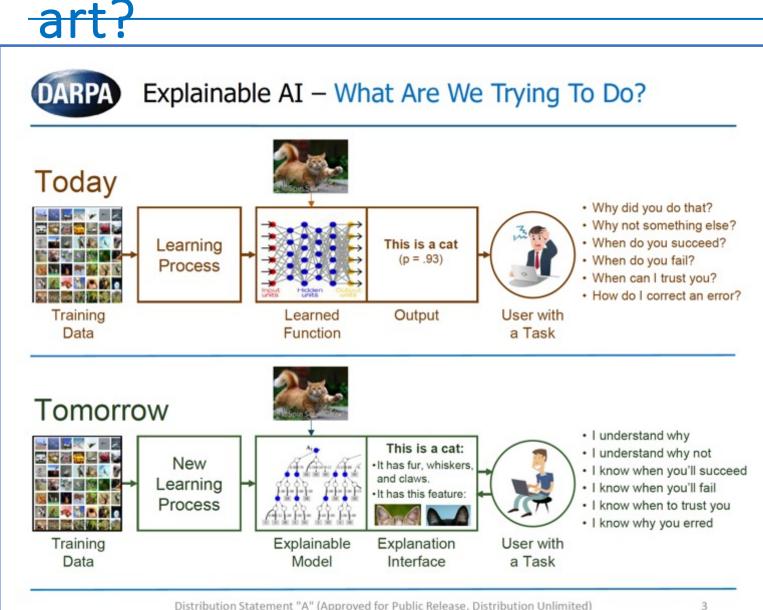
What levels of input space coverage are seen in practical ML data sets?

Examples from WEKA data mining demo set

Course 4

Research questions

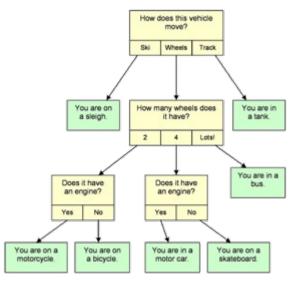
- Practical ML examples <u>don't seem to have very high input space</u> <u>coverage</u> (previous slide)
- Can we improve results with better input space coverage?
- Empirical data show that small numbers of factors are involved in system failures (generally 1 to 6).
- Is this also true of autonomous systems?
- How are input space coverage and classification/prediction accuracy related?
- Can we apply some of these methods to temporal aspects? (sequence covering arrays)

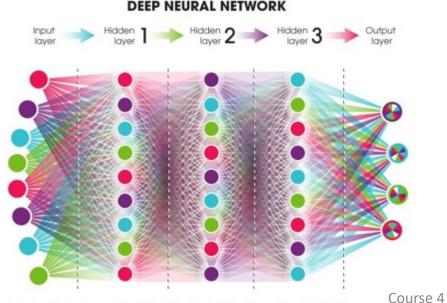

Outline

- Why current safety-critical testing won't work
- Assurance based on input space coverage
- Explainable AI as part of validation, and
- Transfer learning

What is the explainability problem?

- Al systems are good, but sometimes make mistakes, and human users will not trust their decisions without explanation or justification
 → assurance and explainability are closely tied
- There is a tradeoff between AI accuracy and explainability: the most accurate methods, such as convolutional neural nets (CNNs), provide no explanations; understandable methods, such as rule-based, tend to be less accurate
- The black-box nature of these systems that makes explanation difficult also makes assurance and testing even harder
- Life-critical aviation software requires MCDC testing, white-box criterion that cannot be used for neural nets and other non-explainable methods


Explainability – what's current state of the


Black-box statistical predictions are inadequate

Explanations must be understandable to non-specialist

Tradeoff:

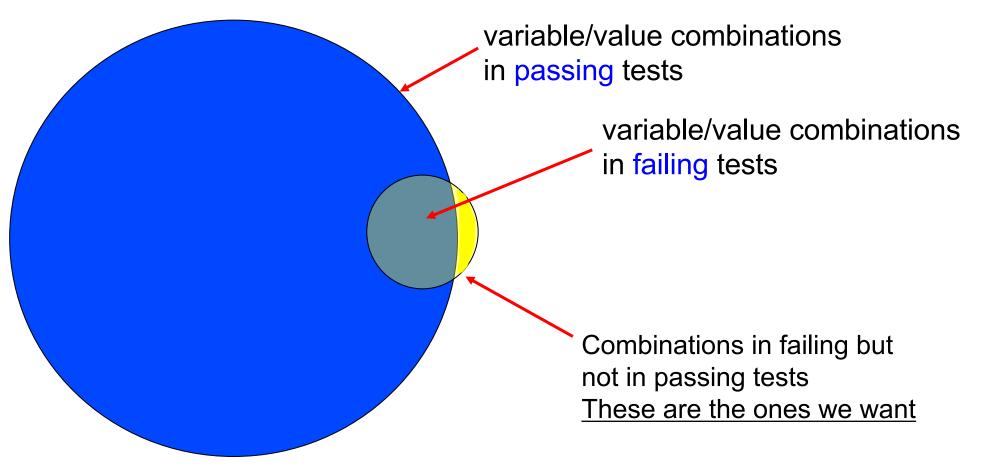
- OR -

Expert system:

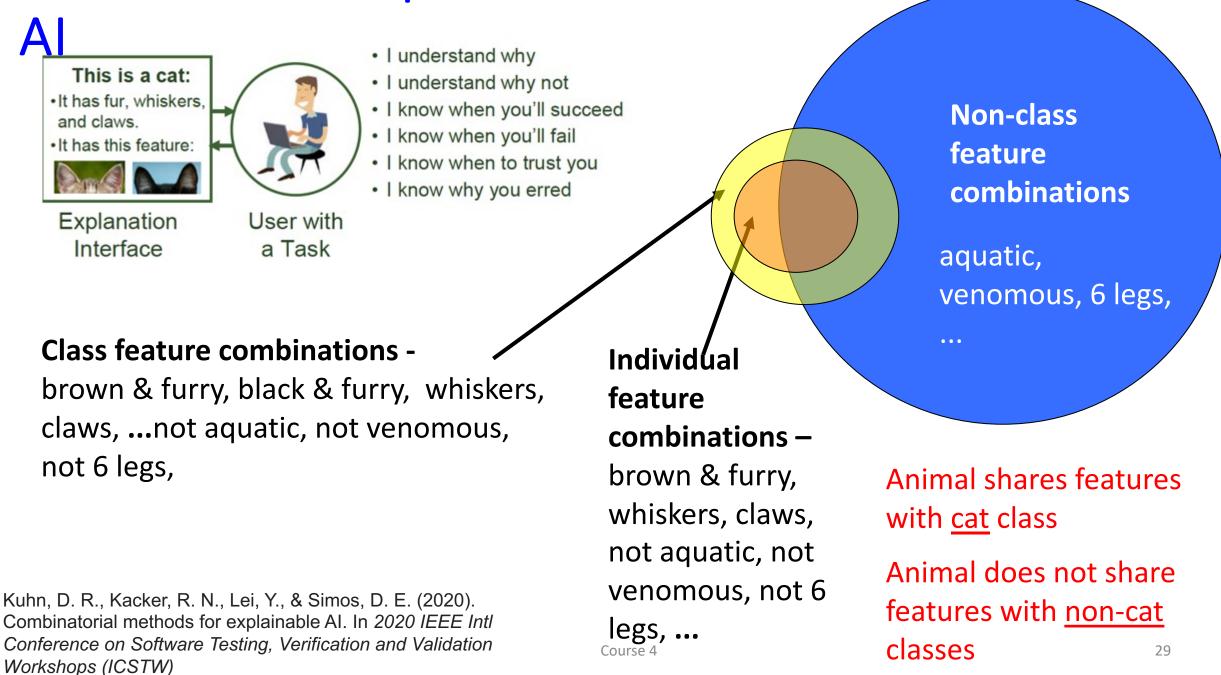
Good for explanations, not so good for accuracy

Neural nets: Good for accuracy, not so good for explanations

How do we get the best of both worlds?


neuralnetworksanddeepleaming.com - Michael Nielsen, Yoshua Bengio, Ian Goodfellow. and Aaron Courville, 2016.

What has been tried?


- Interpretable models e.g. rule-based expert systems: "if patient has symptoms A and B, or has B with C and D, then illness is X"
 - best for explanations
 - hard to find rules
 - less accurate than other approaches
- Modify neural nets etc. to add explanations
 - reduces accuracy, complicates the system
 - explanations still not very understandable
- Model induction infer explainable model from black-box
 - flexible for application, good explanations using only input, output
 - hard to produce the explainable model
- Our approach derive rule predicates from inputs and outputs to CNNs and other black-box functions

Fault location – identify fault-triggering input

Given: a set of tests that the SUT fails, which combinations of variables/values triggered the failure?

Relevance to explainable

Class File:	Class file rep	1.csv; rows=1	; cols=16								Inni	ut confi	aurat	tion 2	15 6 1	
Nominal File:	Nominal file r	notreptile.csv;	rows=96; cols=1	6 2-way:	120 3-way.	: 560 4-w	ray: 1,820	5-way: 4,368	6-way: 8,008		mp		guiat	.1011 2	0	
Class File Contents:	hair 0	feathers 0	eggs 1	milk 0	airborne 0	aquatic 0	predator	toothed 0	backbone 0 1	breathes 1	venomous f	ins nlegs O	tail 4	domestic 1	catsize 0	1

Why is this Nominal File: creature recognized as a reptile?

No single feature is sufficient explanation – shares features with non-reptiles

0053	occurrences	=	0.552	of	cases.	hair = O
0076	occurrences	=	0.792	of	cases,	feathers = O
0055	occurrences	=	0.573	-10	04000,	
0055	occurrences	=	0.573	of	cases,	milk = O
0072	occurrences	=	0.750	of	cases,	airborne = O
0061	occurrences	=	0.635	of	cases,	aquatic = O
0044	occurrences	=	0.458	of	cases,	predator = O
0039	occurrences	=	0.406	of	cases,	toothed = 0
0078	occurrences	=	0.813	of	cases,	backbone = 1
0076	occurrences	=	0.792	of	cases,	breathes = 1
0090	occurrences	=	0.938	οf	cases,	venomous = O
0079	occurrences	=	0.823	of	cases,	fins = 0
0036	occurrences	=	0.375	of	cases,	nlegs = 4
0070	occurrences	=	0.729	of	cases,	tail = 1
0083	occurrences	=	0.865	οf	cases,	domestic = 0
0043	occurrences	=	0.448	οf	cases,	catsize = 1

No pair of features sufficient – shares 2-way combinations w/ non-reptiles

						toothed,nlegs = 0,4
	0005	occurrences =	0 052	of	CARES	hair nlegs = 0.4
	0005	occurrences =	= 0.052	οf	cases,	milk,nlegs = 0,4
	0006	occurrences =	= 0.063	οf	cases,	eggs,nlegs = 1,4
•	0008	occurrences =	= 0.083	οf	cases,	toothed,catsize = 0,1
	0011	occurrences =	= 0.115	οf	cases,	milk,catsize = 0,1
	0012	occurrences =	= 0.125	οf	cases,	eggs,catsize = 1,1
	0013	occourse4ences =	= 0.135	οf	cases,	hair,catsize = 0,1 ₃₀
	0015	occurrences =	= 0 156	of	~	predator cateize = 0.1

3-way combinations produce rules to explain recognition of Testudo as a reptile

00000	occurrences	=	0.000	of	cases,	aquatic,toothed,nlegs = 0,0,4
00000	occurrences	F	0.000	of	cases,	eggs,aquatic,nlegs = 1,0,4
00000	occurrences	L	0.000	ΟÎ	cases,	hair,aquatic,niegs – 0,0,4
00000	occurrences	=	0.000	οf	cases,	hair,nlegs,catsize = 0,4,1
00000	occurrences	=	0.000	of	cases,	milk,aquatic,nlegs = 0,0,4
00000	occurrences	=	0.000	οf	cases,	milk,nlegs,catsize = 0,4,1
00000	occurrences	=	0.000	οf	cases,	predator,toothed,nlegs = 0,0,4
					-	eggs,nlegs,catsize = 1,4,1
00001	occurrences	=	0.010	οf	cases,	eggs,predator,nlegs = 1,0,4
00001	occurrences	=	0.010	of	cases.	<pre>feathers.toothed.backbone = 0.0.1</pre>

Non-reptiles in the database do not have these 3-way combinations Only reptiles have these <u>combinations</u> of features: not aquatic AND not toothed AND four legs egg-laying AND not aquatic AND four legs not hairy AND four legs AND cat size not milk-producing AND not aquatic AND four legs not milk-producing AND four legs AND cat size not predator AND not toothed AND four legs 31

Mapping combinations to expressions

- Report identifies t-way combinations that distinguish the predicted class from others
- Combinations can be mapped to expressions to produce a rule-based type of explanation
 - if (not aquatic AND not toothed AND four legs)
 - OR (egg-laying AND not aquatic AND four legs)
 - OR (not hairy AND four legs AND cat size)
 - OR (not milk-producing AND not aquatic AND four legs)
 - OR (not milk-producing AND four legs AND cat size)
 - OR (not predator AND not toothed AND four legs)
 - then reptile;
 - else not reptile;

As noted, none of the single factors above is sufficient for explanation

	Class File: Class file o1.csv; rows=1; cols=5							
Example: empty	Nominal File: Nominal file empty.csv; rows=7703; cols=5 2-way: 10 3-way: 10 4-way: 5 5-way: 1 6-way: 0							
• • •	Class File Contents: Temperature Humidity Light CO2 HumidityRatio							
vs. occupied	B3 B3 B2 B2 B4							
vs. occupica								
rooms, using	T							
Tooms, using								
sensor data								
sensor uala	2-Way 3-Way 4-Way 5-Way 6-Way							
	I Enabled							
	Combinations = 10, Settings = 210							
Why do we conclude this room is occupied?	0016 occurrences = 0 002 of cases Humidity Light = B3 B2							
,	0016 occurrences = 0.002 of cases, Light, CO2 = B2, B2							
	0036 occurrences = 0.005 of cases, Tomporature, Light = 20,22 0040 occurrences = 0.005 of cases, CO2, HumidityRatio = B2, B4							
	0043 occurrences = 0.006 of cases, Light, HumidityRatio = B2,B4							
These levels of humidity and lighting are strong	0054 occurrences = 0.007 of cases, Temperature,CO2 = B3,B2 0078 occurrences = 0.010 of cases, Humidity,CO2 = B3,B2							
indication	0205 occurrences = 0.027 of cases, Temperature, HumidityRatio = B3, B4							
	0247 occurrences = 0.032 of cases, Temperature, Humidity = B3, B3							
	0495 occurrences = 0.064 of cases, Humidity,HumidityRatio = B3,B4							
Considering levels of lighting, CO2, and	0523 occurrences = 0.068 of cases, Temperature = B3							
humidity ratio provide even stronger evidence:	2415 occurrences = 0.314 of cases, Humidity = B3							
	0085 occurrences = 0.011 of cases, Light = $B2$ 0534 occurrences = 0.069 of cases, $CO2 = B2$							
Empty rooms don't have these levels	2190 occurrences = 0.284 of cases, HumidityRatio = B4							
00003 occurrences = 0.000 of cases, Light, CO	2, HumidityRatio = B2, B2, B4							
00005 occurrences = 0 001 of creas, Humidity	Light CO2 = P2 P2 P2							
00008 occurrences = 0.001 of cases, Temperat								
00011 occurrences = 0.001 of cases, Humidity,	Light, HumidityRatio = B3, B2, B4							

A different example: lymph node pathology – why is this classified as malignant not metastatic?

 These combinations are characteristic of lymphoma that arises in lymph node instead of metastatic that spread to node from somewhere else

File Information Class File: Class file mal1.csv: rows=1: cols=18 Nominal File: Nominal file meta.csv; rows=81; cols=18 || 2-way: 153 3-way: 816 4-way: 3,060 5-way: 8.568 Class File Contents: lymphatic affere lvmc lvms bypass extravas regen 2 1 2 Way 3 Way 4 Way 5 Way 6 Way Enabled Combinations = 153, Settings = 1358 0000 occurrences 0000 occurrences = 0.000 of cases, chnode, disloc = 4,1 0000 occurrences = 0.000 or cases, cnnode,num = 4,2 0000 occurrences = 0.000 of cases, chnode, spec = 4,1 0000 occurrences = 0.000 of cases, defect, chnode = 2,4 0000 occurrences = 0.000 of cases, extravas, chnode = 1,4 0000 occurrences = 0.000 of cases, lymphatic, chnode = 4,40001 occurrences = 0.012 of cases, bypass, chnode = 1,4 0001 occurrences = 0.012 of cases, chang, chnode = 2,4 0001 occurrences = 0.012 of cases, chnode, exclu = 4,2 0001 occurrences = 0.012 of cases, lymc, chnode = 1,4 0001 occurrences = 0.012 of cases, lymphatic, spec = 4,1 0002 occurrences = 0.025 of cases, lyms, chnode = 1,4 0002 occurrences = 0.025 of cases, affere, chnode = 2,4 0002 occurrences = 0.025 of cases, dimin,chnode = 1,4 0002 occurrences = 0.025 of cases, earlyup, chnode = 2,4 0002 occurrences = 0.025 of cases, enlar, chnode = 2,4 0002 occurrences = 0.025 of cases, regen, chnode = 1,4 0002 occurrences = 0.025 of cases, spec, num = 1,2 0003 occurrences = 0.037 of cases, lymphatic, disloc = 4,1 0004 occurrences = 0.049 of cases, chstru, spec = 8,1 0004 occurrences = 0.049 of cases, lymphatic, chstru = 4,8 0005 occurrences = 0.062 of cases, lymphatic, chang = 4,2 0006 occurrences = 0.074 of cases, chstru, num = 8,2 Course 4 34

Cla

Summary - explainable AI

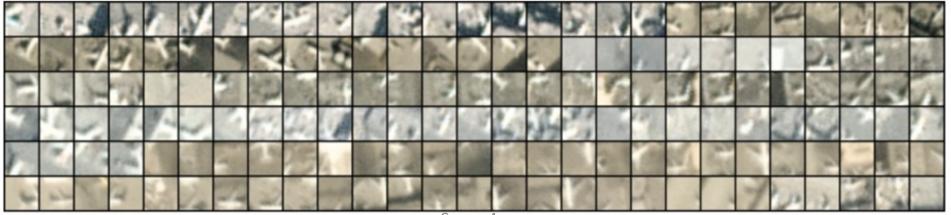
- Combinatorial methods can provide explainable AI
- We have prototype that applies this approach
 - Determine combinations of variable values that differentiate an example from other possible conclusions
 - → Feature combinations present shared with class
 - → Feature combinations not shared with class not present
- Method can be applied to black-box functions such as CNNs
- Present explanation in the preferred form of rules, "if A & B, or C with D & E, then conclusion is X"

Outline

- Why current safety-critical testing won't work
- Assurance based on input space coverage
- Explainable AI as part of validation, and
- Transfer learning

Transfer learning – what is the problem?

- Differences inevitably exist between training data sets, test data sets, and real-world application data
- Further differences exist between data from two or more different environments
- How do we <u>predict performance of a model trained on</u> one data set when applied to another?
 - New environment
 - Changed environment
 - Additional possible values
 - etc.


Lanus, E., Freeman, L. J., Kuhn, D. R., & Kacker, R. N. (2021, April). Combinatorial Testing Metrics for Machine Learning. In 2021 IEEE Intl Conference on Software Testing, Verification and Validation Workshops (ICSTW)

Transfer learning – conventional practice

- Randomized selection but will randomization be sufficient, especially with smaller data sets?
- Ensure at least one of each object type but this may not be representative of object attribute distributions
- Interactions are critical to consider in most ML problems, especially for safety, but conventional practice does little to ensure data sets are adequately representative of interactions

Example – image analysis

- Planes in satellite imagery Kaggle ML data set determine if image <u>contains</u> or <u>does not contain</u> an airplane
- Two data sets Southern California (SoCal, 21,151 images) or Northern California (NorCal, 10,849 images)
- 12 features, each discretized into 3 equal range bins

Transfer learning problem

- Train model on one set, apply to the other set
- Problem
 - Model trained on larger, SoCal data applied to smaller, NorCal data → performance drop
 - Model trained on smaller, NorCal data applied to larger, SoCal data → NO performance drop
- This seems backwards!
- Isn't it better to have more data?
- Can we explain this and predict it next time?

Density of combinations <u>in one</u> but <u>not the</u> <u>other</u> data set, 2-way

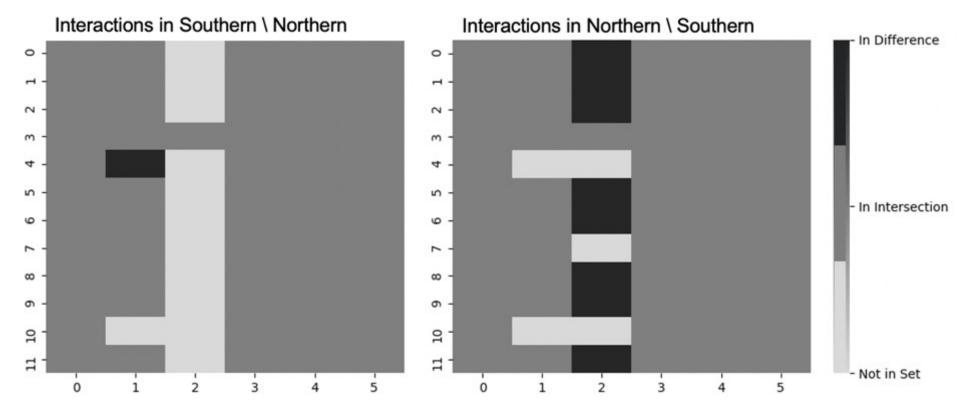


Image from Combinatorial Testing Metrics for Machine Learning, Lanus, Freeman, Kuhn, Kacker, IWCT 2021

For C = SoCal, N = NorCal, |C\N| / |C| = 0.02 |N\C| / |N| = 0.12

The NorCal data set has fewer "never seen" combinations, even with half as many observations

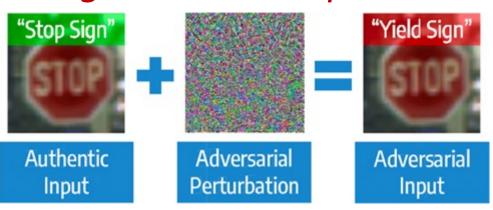
Summary – Transfer learning

- Current approaches to estimating success for transfer learning are largely ad-hoc and not highly effective
- Combinatorial methods show promise for improvements measurable quantities directly related to determining if one data set is representative of the field of application
- Much additional work is needed to evaluate this idea, and to understand the link between combinatorial difference values and prediction accuracy
- Empirical studies planned

Assured autonomy – more questions than answers

- How to classify bug types in <u>learning systems that are programmed</u> by their inputs, continuously
 - Are they mostly aging-related bugs?
 - Or something else not yet defined?
 - Implications? Rejuvenation, restart likely valuable?
- Interactions of learning components with programmed components especially replacing humans
 - Changes the nature of system failures
 - More like failures involving human factors issues?
 Turing test for bugs! Distinguish between human-triggered and AI-triggered system failures?

Assured autonomy – key points & current state


- For capability and cost reasons, <u>autonomous components</u> are becoming routine in software engineering
- Many, or most, <u>methods used in high assurance</u> <u>conventional systems do not apply</u> to many autonomous components
 - Structural coverage not for neural nets, and others
 - Formal proofs for some parts but limited
- How to deal with learning, dynamic changes in system, routine non-determinism?
- Developing appropriate measures of test adequacy

Where are we going?

- Need new approaches in:
 - Design
 - Simulation
 - Validation
 - Formal verification
 - Testing
 - Explainability
- Security much bigger problem than safety assurance solvable?
 - All the old vulnerabilities apply with greater consequences

Course 4

- And new vulnerabilities —
- Leading to ... AI vs. AI?

Please contact us if you're interested!

Rick Kuhn, Raghu Kacker, M.S. Raunak {kuhn, raghu.kacker, raunak}@nist.gov

http://csrc.nist.gov/acts

46