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Abstract—Machine Learning (ML) models could exhibit 
biased behavior, or algorithmic discrimination, resulting in 
unfair or discriminatory outcomes. The bias in the ML model 
could emanate from various factors such as the training dataset, 
the choice of the ML algorithm, or the hyperparameters used to 
train the ML model. In addition to evaluating the model’s 
correctness, it is essential to test ML models for fair and 
unbiased behavior. In this paper, we present a combinatorial 
testing-based approach to perform fairness testing of ML 
models. Our approach is model agnostic and evaluates fairness 
violations of a pre-trained ML model in a two-step process. In 
the first step, we create an input parameter model from the 
training data set and then use the model to generate a t-way test 
set. In the second step, for each test, we modify the value of one 
or more protected attributes to see if we could find fairness 
violations. We performed an experimental evaluation of the 
proposed approach using ML models trained with tabular 
datasets. The results suggest that the proposed approach can 
successfully identify fairness violations in pre-trained ML 
models.  

Keywords—Fairness Testing, Algorithmic Discrimination, 
Bias Detection, Testing Model Bias, Testing ML model, 
Combinatorial Testing 

I. INTRODUCTION 
Machine Learning (ML) models are widely used across 

domains in automated decision-making processes. For 
example, ML-based recommender systems are used by banks 
to approve or deny loans for their applicants [10], companies 
use ML-based software applications to filter/select candidates 
in the hiring process [12, 13]. Despite its impressive predictive 
capabilities, ML models inadvertently exhibit bias and result 
in discriminatory behavior, also referred to as algorithmic 
discrimination [2, 11, 13, 39].  

A bias in an ML model could be introduced via various 
factors such as the training dataset, the choice of the ML 
algorithm, or the hyperparameters used to train the ML model. 
Recent reports in [11, 27] illustrate the biased behavior of ML 
models and their adverse effects on society. Thus, in addition 
to an ML model’s correctness, there is a need to test and 
ensure that the ML model behaves in an unbiased and non-
discriminatory manner. In recent years, a significant amount 
of research has been reported on fairness testing [22]. From a 
testing perspective, the objective of fairness testing is to 
evaluate whether a model under test exhibits a consistent, non-
discriminatory behavior for all its use cases?  

ML models used in the automated decision-making 
process must avoid discriminating against sensitive 
characteristic features of individuals such as age, race, sex, 

and ethnicity [1]. The sensitive characteristics vary depending 
on the domain, and they are referred to as protected attributes. 
Assume a pre-trained model M, on receiving an input I, 
predicts a class label C. A discriminatory behavior (also 
referred to as fairness violation) of M can be broadly classified 
into two types: (1) individual discrimination and (2) group 
discrimination [1, 15].  Model M exhibits individual 
discrimination if M predicts a different outcome for two 
similar instances. Model M exhibits group discrimination if M 
favors or discriminates instances belonging to a specific group 
over the other groups.  

Some recent work has been reported on fairness testing [1, 
17, 18, 19, 20, 23, 24, 26]. Galhotra et al. proposed THEMIS, 
a causality-based random test generation technique to identify 
discriminatory behavior of ML models [19]. Aggarwal et al. 
proposed a symbolic execution-based approach to generate 
test instances and then use a local explanation tool called 
LIME to identify individual discriminations in an ML model 
[1]. Udeshi et al. proposed Aeqitas, a testing technique to 
discover discriminatory inputs by randomly sampling the 
input space [18]. The results from existing studies suggest that 
traditional testing techniques can effectively be adapted to 
identify the discriminatory behavior of ML models.  

In this paper, we present a combinatorial approach to test 
ML models for individual discriminations. We believe that the 
key insight that has allowed combinatorial testing to be 
effective for general software testing could also apply to 
fairness testing. That is, while the behavior of an entire model 
could be affected by many factors, individual fairness 
violations may be caused by only a few factors. Our approach 
consists of two phases: Generating T-Way Tests and 
Identifying Fairness Violation. In Phase 1, we generate t-way 
tests based on a training dataset. We begin this phase with the 
design of an Input Parameter Model (IPM). All attributes 
excluding the class label attribute from the training dataset are 
mapped as parameters. Then, we identify representative 
values for each parameter based on the corresponding 
attribute’s data type. In the case of categorical (string) 
attribute(s), we identify and map its unique values as 
representative values. For numerical attribute(s), we identify 
its representative values via discretization, a process of 
converting numerical (continuous) values into a set of discrete 
values [6].   

Next, we identify constraints using an unsupervised 
learning algorithm that infers the underlying relationships 
among different attributes (excluding the class label) from the 
training dataset. The relationships identified by the learning 
algorithm are mapped as constraints in our IPM. Finally, we 
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generate abstract t-way tests that are later converted into 
concrete t-way tests.  

Using the concrete t-way tests, in phase 2, we identify 
individual fairness violations using a counterfactual approach. 
Given a t-way test instance, we generate perturbations that are 
similar to the t-way instance by modifying the value of one or 
more protected attributes while retaining the values of non-
protected attributes and respecting all the constraints. On 
receiving the perturbated instance(s) as input, if the ML model 
results in an outcome (C`) that differs from the outcome (C) 
produced for the original t-way instance, then the ML model 
is considered to exhibit an individual fairness violation (C != 
C`). 

We report an experimental evaluation of the proposed 
approach.  Three widely used datasets, namely Adult 
Income[29], German Credit[30], and COMPAS[31], are used 
as our subject datasets. We build ML classifiers (models) for 
each dataset using four popular Machine Learning algorithms, 
namely Logistic Regression, Random Forest, Support Vector 
Machines, and Deep Neural Network. We generate t-way test 
sets based on the datasets and test the ML models for fairness 
violations. Our results suggest that the combinatorial approach 
can successfully identify fairness violations in ML models. In 
some cases, more than 40% of t-way test cases resulted in a 
fairness violation. Furthermore, the results indicate that t-way 
test cases generated using our approach can identify a 
substantial number of fairness violations across different types 
of ML classifiers. This suggests that the proposed approach is 
model-agnostic and can be adopted to test fairness violations 
for different ML models. 

The remainder of this paper is organized as follows. 
Section II provides the introduction of Fairness Testing. 
Section III presents our approach, illustrated with an example. 
In Section IV, we present our experimental design, reports the 
results, and discussion about our results. Section V discusses 
the existing work on fairness testing. Section VI provides the 
concluding remarks and plans for future work. 

II. BACKGROUND 
ML Model: To build an ML model, first, a practitioner 

selects an ML algorithm; provides a training dataset and a set 
of hyperparameters as input to the ML algorithm. Then, the 
ML algorithm infers a decision logic based on the underlying 
patterns discovered from the training dataset. The derived 
decision logic is referred to as the ML model.  An ML model 
exhibits fair behavior if it does not favor or discriminate 
against a specific individual or a particular group.  

Protected Attributes: The attributes from the training 
dataset that are sensitive and need to be protected against 
discrimination are referred to as protected attributes [22]. 
Example of protected attributes includes Race, Color, 
Religion, Sex, and Familial Status [28]. Fairness testing aims 
to evaluate and assure that the ML model exhibits a non-
discriminatory behavior. 

Individual Discrimination: Given two valid inputs 
(instances) that differ only by the protected attribute(s), an ML 
model is expected to predict the same outcome for both the 
inputs. Otherwise, the ML model is considered to exhibit 
individual discrimination [1]. For example, consider two 
applicants with identical credit history but differ only by their 
Race. If an ML model approves the loan for one applicant 
while rejecting the other, the model exhibits individual 

discrimination. In the rest of the paper, we refer to individual 
discrimination simply as a fairness violation unless otherwise 
specified. 

Group Discrimination: If an ML model favors or 
discriminates instances belonging to a specific group over the 
other groups, it is considered group discrimination. For 
example, Amazon AI recruiting tool preferred male 
candidates over female candidates in the candidate hiring 
process [2].  Buolamwini et al. demonstrated that 
commercially available facial recognition software 
misclassifies more female faces than male faces [39]. 

Counterfactual Explanation: Explainable Artificial 
Intelligence (XAI) tools generate explanations for decisions 
made by ML models [34]. A counterfactual approach is one 
of the two commonly used approaches to explain a model’s 
decision.  

Assume a pre-trained model M, on receiving an input I, 
predicts a class label C. A counterfactual approach identifies 
a minimum set of features that, if removed, shall result in a 
different prediction [35]. That is, a counterfactual is generated 
by making minor change(s) to the original instance, resulting 
in a different outcome than the original prediction. 

III. APPROACH 
This section presents a combinatorial approach to identify 

fairness violations of pre-trained ML models that take an 
instance as input and outputs a prediction. Figure 1 presents 
the overview of our approach. It consists of two major phases: 
(1) Generating T-Way Tests, where a t-way test set is 
generated; and (2) Identifying fairness violation, where the t-
way tests are executed to detect fairness violations. 

A. Phase 1: Generating T-Way Tests 
In Phase 1, we generate t-way test cases (instances) based 

on the training dataset.  A training dataset consists of 
numerical attributes, categorical attributes, or a combination 
of both. We first create an Input Parameter Model (IPM) for 
the training dataset. All attributes except the class label 
attribute from the training dataset are mapped as a parameter 
in the IPM. Next, we identify representative values for each 
identified parameter (attribute) based on its data type (numeric 
or categorical). 

For a categorical attribute, we identify and map all its 
unique values as parameter values. For a numerical attribute, 
we identify the parameter values using an entropy-based 
discretization approach. Discretization is a process of 
converting numerical (continuous) values into a set of discrete 
values.  A numerical attribute is divided into a small number 
of intervals, where each interval is mapped to a bin [6]. In 
entropy-based discretization, the entropy is calculated based 
on the class label. Then, the entropy-based approach tries to 
find the best split (bins) where the majority of values in a bin 
belong to the same class label [40]. The bins identified using 
the discretization approach are mapped as the parameter 
values. That is, if a numeric attribute is divided into n bins 
using the discretization approach, then “n” bins are considered 
as the attribute’s representative values.  

Next, to derive constraints, we first modify the dataset by 
mapping all the numeric attributes to their respective bins 
identified via discretization. Our goal is to identify the 
relationships among all attributes, excluding the class label 
attribute. Hence, we remove the class label attribute from the 



dataset. Then, the modified dataset is provided as an input to 
Apriori, an association rule mining algorithm [23]. The apriori 
algorithm discovers association rules in a two-step process. 
First, they identify the relationship among attributes that 
appear together more frequently in the training dataset. Next, 
the algorithm calculates association rules between frequently 
appearing attributes (identified in the previous step) using a 
statistical score. These association rules are mapped as 
constraints in our IPM. Using constraints enables us to 
generate valid test cases. Then, we generate an abstract t-way 
test set using ACTS [4, 14]. 

The final step in phase 1 is to derive a concrete test set 
from the abstract test set. Recall that our approach discretizes 
the numeric attributes. Therefore, in this step, for numeric 
attributes, we replace the abstract value with a value (selected 
randomly) from the corresponding bin. The t-way concrete 
test set (test instances) is used to identify the fairness 
violations of the pre-trained ML model. 

B. Phase 2: Identifying Fairness Violation 
In Phase 2, we identify fairness violations by perturbing 

the test instances using a counterfactual approach. First, each 
test instance (i.e. a concrete test set generated from Phase 1) is 
provided as an input to the pre-trained ML model, and its 
predicted class label is recorded. Then, we generate a set of 
perturbated instances (from the test instance) by changing the 
value of one or more protected attribute(s) while retaining the 
value of non-protected attributes, execute the model with the 
perturbated instances and record its predicted class label. If the 
predicted class label for any of the perturbated instances 
differs from the predicted class label of the original test 
instance, then it is considered a fairness violation. Otherwise, 
the model is considered to exhibit fair behavior.  

C. Example 
We illustrate our approach using an example. Assume an 

ML classifier is used to predict the admission decisions for 
prospective candidates. The ML classifier is trained using a 
dataset that consists of 5 attributes, namely Gender, Race, 
State, Final Score, and Decision. Gender, Race, and State are 

categorical attributes with 3, 4, and 10 unique values, 
respectively. Final Score is a numerical attribute. Decision is 
a class label with two values – Accept, Reject. Based on 
domain knowledge, we identify Gender and Race as protected 
attributes among the four attributes. 

We begin the first phase by generating an IPM. We 
identify the four attributes (excluding the class label attribute) 
Gender, Race, State, Final Score as parameters. For the three 
categorical attributes (Gender, Race, State), their unique 
values are identified as parameter values; We discretize the 
Final Score into eight bins, and they (bins) are identified as its 
parameter values. Next, to identify constraints, we use the 
Apriori algorithm. The algorithm identifies two association 
rules by analyzing the training dataset {State = CA => Final 
Score >= 70, State = GA => Final Score < 90}. We map these 
association rules as constraints in our IPM. Next, we generate 
80 abstract t-way test cases (t=2) followed by deriving the 
concrete test cases.  

Using constraints allows us to generate valid t-way tests. 
That is, in the generated t-way tests, if the state is CA, then the 
final score will always be greater than or equal to 70. 
Similarly, if the state is GA, then the final score will always 
be less than 90. 

In the second phase, we use a counterfactual XAI tool to 
identify if there exists a counterfactual for any test instance 
from the t-way test set. We provide the ML classifier, dataset, 
test instance, a list of protected attributes (Gender, Race) as an 
input to the counterfactual tool. Recall that our goal is to 
identify if changing the protected attributes results in a 
different outcome. The tool successfully identifies a 
counterfactual for one of the test instances from the concrete 
test set: (male, white, CA, 92). The ML classifier predicts 
Admit for the test instance (original prediction). For one of the 
perturbated instances: (female, black, CA, 92), we observe 
that the model predicts Reject. As the counterfactual indicates, 
modifying the protected attribute(s) results in a different 
outcome, suggesting a fairness violation of the ML classifier. 

FIGURE 1 – APPROACH OVERVIEW 

 



IV. EXPERIMENTS 
In this section, we first present the design of our 

experiments, including the research question(s), the datasets, 
the subject models, discretization techniques, the 
counterfactual generation tool, and the metrics used to identify 
fairness violations. Next, we present and discuss the results of 
our experiments. Finally, the threats to validity are discussed. 

A. Research Questions 
Our experiments are designed to answer the following 

research question: How effective is our combinatorial testing-
based approach in fairness testing of ML models? 

B. Datasets 
In our experiments, we use three datasets, namely the 

Adult Income [29], German-Credit [30], and COMPAS [31] 
datasets, that are among the most widely used in the fairness 
testing domain [1, 19, 32, 33].  Bellamy et al. presented IBM 
AI Fairness 360, a software library to detect and mitigate bias 
in AI models [5]. They made their scripts publicly accessible. 
We reuse their scripts and preprocess the subject datasets [7]. 

• The German credit dataset is used to classify 
individuals as either good or bad credit risk based on 
their personal and financial information. The dataset 
consists of 1000 instances and 21 attributes (8 
numerical + 13 categorical). Among the 20 
attributes(excluding the class label), Sex and Age are 
treated as protected attributes. 

• The Adult dataset contains census information of 
individuals that is used to determine if an individual 
can earn more than $50,000 per year. The dataset has 
13 attributes with five numerical and eight categorical 
attributes. The Adult dataset has two protected 
attributes: Sex and Race. 

• The Correctional Offender Management Profiling for 
Alternative Sanctions (COMPAS) dataset consists of 
information of defendants such as criminal history, 
prison time, demographics, and it is used to predict the 
likelihood of a defendant to re-offend (recidivism). 
The dataset contains 7214 records with four 
categorical and five numerical attributes. Sex and Race 
are treated as protected attributes. Note that, the 
original COMPAS dataset had 52 attributes. We 
preprocessed the dataset as per AI Fairness 360 [5, 7] 
and retain ten attributes. 

C. Subject Models 
We evaluate our approach using four ML classifiers. Three 

(out of four) ML classifiers are implemented using classical 
ML algorithms, namely Logistic Regression(LR), 
RandomForest(RF), and Support Vector Machines(SVM) that 
are commonly used in fairness testing studies [1,17, 19, 33]. 
In addition to this, we also use a fourth ML classifier, a simple 
Deep Neural Network(DNN) model with two hidden layers, 
in our experiments. Thus, for each dataset, we train and build 
four ML classifiers. Overall, we use twelve 12 ML classifiers 
(subject models) in our experiments. Similar to earlier studies 
[33], we train the ML classifiers using their default 
configuration, provided by the sci-kit learn library [37]. 

D. Discretization 
We use a decision-tree (entropy-based) algorithm to 

discretize numeric attributes [37, 38]. The user can specify the 

depth of the decision tree. A decision tree of depth n will 
generate a maximum of 2n bins. Note that the depth of a 
decision tree could affect the size of the t-way test cases 
generated using our approach. A higher value (tree depth) can 
result in a significantly large number of t-way test cases, thus 
making it computationally expensive to identify fairness 
violations in ML models. As a trade-off, similar to LIME, a 
state-of-the-art XAI tool [8, 9], in our experiments, we limit 
the depth of the decision tree to a value of 3. Thus, a numeric 
attribute can be discretized into a maximum of 23 bins (8 bins).  
That is, a discretized numeric attribute will have at most eight 
bins.  

In our experiments, we identify representative values for 
numerical attributes as follows:  First, we calculate the total 
number of unique values for each numerical attribute. If the 
number of unique values is less than or equal to 8, we map the 
unique values as the representative values for the attribute. 
Otherwise, we use a decision tree algorithm with its default 
configuration value (not explicitly specifying the depth of the 
tree) and identify the representative values until either of the 
two conditions is satisfied. (1) the number of bins identified 
by the algorithm is less than or equal to 8; or (2) the number 
of bins is greater than 8. In the first case, we map the identified 
bins as the representative values for the attribute. In the second 
case, we re-execute the decision tree algorithm by setting the 
depth (of the tree) to 3 and discretizing the numerical attribute 
into eight bins. These bins are identified as representative 
values. 

E. Constraints 
In our experiments, we use Waikato Environment for 

Knowledge Analysis (WEKA), an open-source ML 
workbench tool, to identify the association rules from the 
training dataset. We preprocess the training dataset by 
converting all attributes to nominal datatype as required by 
WEKA.  

Next, we provide the modified dataset (input) to WEKA 
and execute the algorithm (Apriori) with its default 
configuration values. The Apriori algorithm identifies a list of 
the top 10 association rules from the dataset. These association 
rules are used as constraints in the t-way test generation.  

F. Test Generation 
Using ACTS, a combinatorial test generation tool [4, 14], 

we generate t-way (t=2) abstracts which are then converted 
into concrete t-way tests.  

G. Counterfactual Generation 
We use DiCE, a state-of-the-art XAI tool to identify a 

counterfactual by modifying the values of protected attributes 
while retaining the values of the non-protected attributes [36]. 
The DiCE tool allows a user to generate a counterfactual based 
on specific attribute(s) [36]. Therefore, we provide a pre-
trained model, the concrete t-way test instance, and protected 
attribute(s) as input to the DiCE tool. If successful, DiCE 
generates a test instance that is almost identical to the original 
instance but differs by the value of its protected attribute. In 
other words, DiCE identifies a scenario where the model 
predicts a different outcome on changing the protected 
attribute while retaining the value of all other attributes. This 
is considered as a fairness violation exhibited by the model. 



H. Metrics 
We assess our approach's effectiveness in terms of the 

number of fairness violations revealed by a t-way test set.  The 
more fairness violations identified by a t-way test set, the more 
effective the t-way test set is considered. 

I. Results and Discussion 
We present and discuss our experimental results. The 

source code, data, and/or artifacts have been made available at 
[16].   

Table I presents the results of fairness violations of ML 
models identified using t-way test sets. The Column headers 
in Table I are self-explanatory.   

TABLE 1- FAIRNESS VIOLATIONS IDENTIFIED BY T-WAY TESTS 
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Recall that we identify fairness violations by perturbing 

each test instance using a counterfactual approach. Given a 
test case, if we successfully identify a counterfactual (a 
perturbation of the test case whose output differs from the 
original prediction), we consider that the test case resulted in 
a fairness violation.  

Adult Income: For the Adult Income dataset, our approach 
generates 676 t-way tests (t=2). The results indicate that a 
substantial number of t-way test cases result in a fairness 
violation. For the LR-based model, out of 58 t-way tests, we 
observe that 27 t-way tests result in a fairness violation on 
modifying either one of the two protected attributes: 16 t-way 
tests cases result in a fairness violation on modifying attribute 
Race whereas 11 t-way test cases result in a fairness violation 
on modifying attribute Sex. The remaining 31 t-way test cases 
(out of 58) result in a fairness violation on modifying both of 
the protected attributes. In the case of the RF-based model, ten 
t-way tests result in a fairness violation on modifying the Race 
attribute, and one t-way test results in a fairness violation on 
changing the Sex attribute. Fourteen t-way tests result in a 
fairness violation on modifying the value of both the protected 
attributes. For the SVM-based model, out of 23 t-way tests, 
we observe that eight tests result in a fairness violation on 
modifying either one of the two protected attributes (Race = 
5, Sex = 3), and 16 tests result in a fairness violation modifying 
both protected attributes. 

German Credit: Based on the IPM derived from the 
German Credit Dataset, we generate 81 t-way test cases. The 
results indicate that t-way tests can detect fairness violations 
among models trained using different ML algorithms. We 
observe that across three ML models, t-way tests result in a 
fairness violation on modifying both the protected attributes 
(Sex and Age).  

COMPAS dataset: Out of the 64 t-way test cases 
generated using our approach, for the RF-based ML model, 
more than 50% of t-way tests (37 t-way tests) result in a 
fairness violation.  Among these 37 t-way tests, 19 t-way tests 
result in a fairness violation on modifying the Race attribute; 
three t-way tests result in a fairness violation on modifying the 
Sex attribute. The remaining 15 (out of 37) t-way tests result 
in a fairness violation on modifying both the protected 
attributes.  For the LR-based ML model, 11 t-way tests result 
in a fairness violation on modifying the Race attribute, one t-
way test results in a fairness violation on modifying the Sex 
attribute, and 15 t-way tests result in a fairness violation on 
modifying both the protected attributes. In the case of the 
SVM-based ML model,  18 tests result in a fairness violation 
on modifying both protected attributes, while the remaining 
six tests result in a fairness violation on modifying either one 
of the two protected attributes (Race = 5, Sex = 1). 

For DNN based classifiers, we noticed DiCE takes a 
longer execution time to identify a counterfactual. For 
example, to identify a counterfactual for a pre-trained DNN 
model (trained with the Adult Income dataset), on average, 
DiCE takes 2 minutes per test case. So, it will take 
(676*2)/60= 22.5 hours to complete the execution. Therefore, 
for DNN models, we follow a brute-force approach as a 
workaround. That is, for each test case, using a script, we 
generate and execute all possible perturbations and identify if 
there exists a counterfactual by comparing the output with the 
original prediction.   

Our results indicate that for the Adult Income dataset 
(DNN model), nine t-way tests result in a fairness violation on 
modifying either of the protected attributes (Race = 4, Sex = 
5), while the remaining two tests result in a fairness violation 
on modifying both the protected attributes. For the German 
Credit dataset (DNN model), twelve t-way tests result in a 
fairness violation on modifying both the protected attributes. 
Additionally, fourteen t-way tests resulted in a fairness 
violation on modifying either Age (4 instances) or Sex (10 
instances) attributes.  For the COMPAS dataset (DNN model), 
we observed two tests result in a fairness violation on 
modifying both the protected attributes, while the other two 
tests result in a fairness violation on modifying either of the 
two protected attributes. 

Overall, the results suggest the following major points:  
(1) The t-way test sets generated based on the three subject 

datasets can identify fairness violations in pre-trained ML 
models.  

(2) The results also indicate that the proposed approach 
can successfully detect fairness violations across different ML 
model architectures. Furthermore, on executing a t-way set 
across ML models (LR, RF, SVM, and DNN), we observe in 
the case of the Adult Income dataset and German Credit 
dataset, there is no overlap among the t-way test cases that 
result in a fairness violations across all four ML models. In the 
case of the COMPAS dataset, out of t-way tests that result in 
fairness violations, there are only four tests that are common 
among all ML models. This suggests a minimal overlap 
among the t-way test cases (from the test set) that resulted in 
a fairness violation across different ML models. That is, not 
the same set of t-way test cases triggers a fairness violation 
across ML models. We believe this indicates that t-way tests 
are effective in identifying biases introduced by both the 
training dataset and the learning algorithm.  



(3) The results also indicate that the proposed approach 
can identify fairness violations with a relatively small number 
of test cases compared to the existing work [1]. We plan to 
perform a detailed comparison as part of future work.  

J. Threats to Validity 
Threats to external validity occur when the results from 

our experiments could not be generalized to other subjects. 
The datasets and ML models used in our study have been used 
in other studies in the fairness testing domain [1, 17, 19, 33]. 
We use four different algorithms (model architectures) to train 
ML models. This reduces the risk of a lack of representatives 
in the model architecture used in our study. 

Threats to internal validity are factors that may be 
responsible for the experimental results without our 
knowledge. To mitigate the risk of human errors, we tried to 
automate the experimental procedure as much as possible. In 
particular, all the steps are automated except the identification 
and mapping of constraints. Further, we have manually 
verified some of the results if any surprising results occur. For 
example, on executing the t-way test cases (676 tests) 
generated for the AdultIncome dataset, 23 tests and 25 tests 
resulted in a fairness violation for SVM and RF models, 
respectively. However, for the LR model, we observed 58 
tests (x2, compared to SVM and RF) that resulted in a fairness 
violation. In such a scenario, we manually verified the 
counterfactuals identified by DiCE. 

V. RELATED WORK 
This section discusses existing work on fairness testing 

that is closely related to our work. First, we discuss existing 
work that focuses on testing individual discriminations of ML 
models. Udeshi et al. proposed Aqeutias, a testing technique 
to discover discriminatory inputs that result in an individual 
fairness violation [18]. In phase 1, they identify a set of 
discriminatory inputs from a test set generated by randomly 
sampling the input space (global search). In phase 2, they 
identify additional discriminatory inputs by changing the 
values of the non-protected attributes for the discriminatory 
instance found in the global search. Furthermore, they 
demonstrate that retraining the model with portions of the 
discriminatory inputs improves its performance. Our work is 
similar to theirs in generating test instances to identify 
individual fairness violations. However, our work differs in 
the following two ways: 1) Aqueitas generate test instances 
using a random testing approach, whereas we use a 
combinatorial approach to generate test instances. 2) Their 
approach identifies discriminatory instances from the random 
test set, and they (discriminatory instances) are further 
perturbated by searching the neighborhood. In contrast, we 
identify discriminatory instances using a counterfactual 
approach by perturbating the protected attributes defined by 
the user. 

Galhotra et al. proposed THEMIS, a causality-based 
technique to measure discrimination in software [19]. They 
use a random test generation technique to identify 
discriminatory test instances. In contrast, we use 
combinatorial testing, a systematic test generation technique 
to generate test cases and identify fairness violations. Zhang 
et al. proposed an approach that generates discriminatory test 
instances for Deep Neural Network (DNNs)-based models 
[20]. Their work adopts a gradient descent and clustering-
based approach to identify individual discriminatory 
instances. In contrast, we use a combinatorial testing-based 

approach to generate test instances. Their approach focuses on 
testing individual fairness violations in DNN models, whereas 
our approach is model agnostic and can be used to test ML 
models trained using different architectures. 

Aggarwal et al. proposed an approach to generate test 
inputs and identify individual discrimination in ML models 
[1]. Their approach uses a combination of symbolic execution 
and LIME, a local explainer tool to generate test instances and 
identify individual discriminations. Once they identify a test 
instance that identifies individual discrimination, they perturb 
the test instance further by modifying its non-protected 
attributes and generating additional test instances to test the 
ML model for fairness violations. Similar to their work, the 
goal of our approach is to generate test instances and identify 
individual discriminations in an ML model. However, our 
work differs in the following ways: 1) We generate test 
instances using a combinatorial test approach. 2) Our 
approach identifies individual discrimination by perturbating 
a test instance using a counterfactual approach. 3) 
Furthermore, we do not perturb discriminatory inputs further. 

Next, we discuss the existing literature on applying 
combinatorial testing for fairness testing. Morales et al. 
proposed Coverage-Guided Fairness Testing (CGFT) that 
aims to improve the performance of Aequitas, a testing 
technique that identifies individual discrimination in a two-
step test generation process, namely global search and local 
search. The CGFT aims to leverage combinatorial testing by 
replacing the random test generation process in the global 
search phase of Aequitas with a t-way test generation 
approach and reduce the execution cost [17].   Our work is 
similar to theirs in using combinatorial testing to generate t-
way test cases that are later used to identify individual 
discrimination. However, our work differs in the following 
way. CGFT uses an algorithm to control the number of t-way 
test cases generated. Hence, the test set generated using their 
algorithm has a combination of mixed strength t-way test 
cases. In contrast, all test cases generated in our approach 
belong to the same test strength (t=2). Furthermore, they do 
not use constraints in their test generation process. In contrast, 
we derive (from the training dataset) and use constraints in our 
test generation process. We believe using constraints enables 
our approach to generate valid and realistic t-way test cases 
compared to their approach. 

We also note that there is a significant number of existing 
studies in literature, and we refer the reader to [21, 22] for a 
comprehensive report on existing work on fairness testing for 
machine learning systems. 

 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we presented a combinatorial approach to 

identify individual fairness violations in pre-trained ML 
models. Our approach consists of two phases. In the first 
phase, based on the training dataset, we develop an IPM, 
derive constraints, and generate t-way test instances. In the 
second phase, we identify fairness violations by perturbing the 
t-way instances using a counterfactual approach. The key idea 
is to generate counterfactuals by modifying the protected 
attribute(s) while retaining the value of non-protected 
attributes of the t-way test instance. We performed an 
experimental evaluation of our approach using twelve ML 
classifiers (4 ML classifiers * 3 datasets). Our results suggest 
that our approach can successfully identify fairness violations 



in ML models. Furthermore, our approach identifies a 
substantial number of fairness violations for different ML 
model classifiers. This suggests t-way tests are effective in 
identifying biases introduced by both the training dataset and 
the learning algorithm. 

There are a few directions to continue our work. First, in 
our current approach, for a categorical attribute, we identify 
and map all its unique values as representative values in IPM. 
A significantly large number of t-way tests cases will be 
generated if the training dataset consists of a categorical 
attribute(s) with many unique values. We plan to investigate 
how to adapt the entropy-based discretization technique for 
categorical attributes. Second, after we detect fairness 
violations from a model, the next step is to identify the root 
cause and modify and/or retrain the model to remove those 
violations. We plan to explore how to leverage the t-way 
instances that identified fairness violations for model 
debugging and for model modification and retraining 
activities. Third, we plan to extend this approach to identify 
group discrimination in pre-trained ML models. Finally, we 
plan to conduct more empirical studies to further evaluate the 
effectiveness of our approach. In particular, we plan to 
compare the effectiveness of our approach to existing 
approaches such as the symbolic generation (SG) approach [1] 
and the CGFT approach [17].  
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