Redactable Distributed Ledger Technology with Hyperledger Fabric

Privacy Symposium 2023
Industry Session: Blockchain, Privacy and Use Cases
Venice, Italy, April 18, 2023

Rick Kuhn
US National Institute of Standards and Technology
kuhn@nist.gov
Key Points – why listen to this talk?

• Blockchain has valuable properties, but conflicts with privacy and exception management – “immutable” - deletion impossible

 ➡ Sometimes we don’t need blockchain, just some blockchain features

• Data structure called blockmatrix provides distributed trust, integrity protection of blockchain, but allows controlled edits for privacy or corrections

• Drop-in compatibility for Hyperledger Fabric applications

 ➡ Released and available
Market, range of applications for DLT

This talk here

Blockchain fits pretty well here

cryptocurrency

many distributed systems

Not as well here

additional distributed systems

Privacy

Error/exception management

Much research to try to get around blockchain properties
Why use redactable distributed ledger for error and exception management?

• **Using blockchain in logistics is difficult**

• “This Could Be the End of Enterprise Blockchain” (shutdown of TradeLens by IBM)
 - Motley Fool (popular investment news), Jan 10, 2023

• “Digital forwarding - Respondents say the biggest advantage is improved tracking and visibility; the biggest disadvantage is error/exception management.”
 - survey of 750 global logistics executives, Supply Chain Management Review, Feb 13, 2023
Why use redactable DLT for privacy?

- Permanence/immutability conflicts with ‘right to erasure’ privacy regulations
- Privacy rules such as European Union General Data Protection Regulation (GDPR) require that all information related to a particular person can be deleted at that person's request
 - *personal* data, defined as "any information concerning an identified or identifiable natural person" - data for which blockchains are designed
 - "Personal data which have undergone pseudonymisation, which could be attributed to a natural person by the use of additional information should be considered to be information on an identifiable natural person."
- US states adopting similar privacy rules, including California and Virginia
- Law enforcement also requires expungement of data in some cases
What’s been tried to solve blockchain/privacy conflict?

• Don’t put personal data on blockchain
 • Pseudo-anonymized data are still considered personal
 • Even if not directly tied to a person – dynamic IP address can be considered personal if it can be indirectly tied
 • Financial transactions are obviously personal data

• Encrypt data and destroy key to delete
 • Data must be secure for decades (DES replaced in only 17 years)
 • Advancements in cryptography usually compromise old crypto – e.g., quantum computing puts current public key systems at risk
Redactable/editable blockchain, DLT

• **Chameleon hash function** - most common approach to providing editability
 • Generate a collision for the hash, given trapdoor or key, changing data but hash not disturbed
 • Standard blockchain for integrity protection
 • Requires specialized chameleon hash function

• **Our approach, data block matrix**
 • Dual hash list for integrity protection
 • Use standard hash function (SHA 256)

• Either may be best, depending on application requirements
 • *Tradeoffs like any other engineering problem*
Many blockchain applications don’t need blockchain, just some blockchain features

Can we try something else?

Datablock matrix – uses two hash values per block instead of a linked chain

• Java or Go example code available as open source
• Incorporated into Next Gen Access Control – practical demo
• NOT to replace blockchain, to provide alternative tools for distributed system design
• **Hyperledger Fabric component** available
Datablock matrix data structure

- A data structure that provides integrity assurance using hash-linked records while also allowing the deletion of records
- Stores hashes of each row and column
- Each block within the matrix is protected by two hashes
- Suggested use for private/permissioned distributed ledger systems

Figure 1. Block matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H₀⁻</th>
<th>H₁⁻</th>
<th>H₂⁻</th>
<th>H₃⁻</th>
<th>H₄⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀₀⁻</td>
<td>H₀₁⁻</td>
<td>H₀₂⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₁₀⁻</td>
<td>H₁₁⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂₀⁻</td>
<td>H₂₁⁻</td>
<td>H₂₂⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H₃₀⁻</td>
<td>H₃₁⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₄₀⁻</td>
</tr>
</tbody>
</table>

Privacy Symposium 2023 - Venice, Italy
How does this work?

- Suppose we want to delete block 12

 - disrupts the hash values of $H_{3,-}$ for row 3 and $H_{-,2}$ and column 2
 - blocks of row 3 are included in the hashes for columns 0, 1, 3, and 4
 - blocks of column 2 are included in the hashes for rows 0, 1, 2, and 4
Structure can be extended to multiple dimensions

- Block dispersal for 3 dimensions
- Location in sectors 0..5 according to $b \mod 6$ for block b
Why use this data structure?

Again, many blockchain applications don’t need blockchain, just some features

Enlarge the market for blockchain
• Solve the conflict between blockchain and privacy regulations
• Allow for exception management

Replace network communication with local data
• You can obviously do this with conventional database functions, but
• New data structure adds integrity checks as in blockchain

Easy-to-use component for distributed database design
Do you need a shared, consistent data store?

Does more than one entity need to contribute data?

Data records, once written, are never updated or deleted?

Sensitive identifiers WILL NOT be written to the data store?

Are the entities with write access having a hard time deciding who should be in control of the data store?

Do you want a tamperproof log of all writes to the data store?

Distributed ledgers provide a historically consistent data store. If you don’t need that, you don’t need a distributed ledger.

CONSIDER: Email / Spreadsheets

Your data comes from a single entity. Distributed ledgers are typically used when data comes from multiple entities.

CONSIDER: Database

CAVEAT: Auditing Use Cases

If you don’t need to audit what happened and when it happened, you don’t need a distributed ledger.

CONSIDER: Database

You should not write sensitive information to a blockchain that requires medium to long term confidentiality, such as PII, even if it is encrypted.

CONSIDER: Encrypted Database OR blockmatrix

Uses handled by blockmatrix that cannot be done in blockchain

NIST blockchain decision flowchart

YES

YES
Hyperledger blockmatrix implementation

• Designed to use existing API as closely as possible – add blocks in same manner as adding to blockchain

• Blockmatrix is configurable by channel (private subnet)

• Configure to use conventional blockchain or blockmatrix
 • If a deployment uses two channels, one can be a blockchain and the other can be a blockmatrix

• RED Ledger = Redactable Enhanced Distributed Ledger

• https://csrc.nist.gov/projects/redactable-distributed-ledger
Compatible with current Hyperledger applications

Application (e-commerce, supply chain, etc.)

Hyperledger Fabric

blkstorage module (current)

Hyperledger Fabric

Application (e-commerce, supply chain, etc.)

No change

Hyperledger Fabric

blkstorage module (blockmatrix added)
Applications in clinical trials

• “An Infrastructure for Secure Sharing of Clinical Data” – to be presented at Healthcare Information and Management Systems Society, HIMSS 23

• “Data Block Matrix and Hyperledger Implementation: Extending Distributed Ledger Technology for Privacy Requirements”, J. Roberts, J. DeFranco, R. Kuhn
 ACM Distributed Ledger Technologies: Research and Practice.
More information:

Project sites with links to source code and publications

- https://csrc.nist.gov/Projects/enhanced-distributed-ledger-technology

Acknowledgements

- Josh Roberts, Jeff Voas, Dylan Yaga, Sylvain Chantreau, NIST
- Temur Saidkhodjaev, University of Maryland College Park
- Arsen Klyuev, Johns Hopkins University
- Gokhan Kocak, Asena, Inc.