

Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process

Table of contents

1 Introduction...2
2 Requirements of Submission Packages..3

2.1 Cover Sheet ...3

2.2 Algorithm Specification and Supporting Documentation..3

2.3 Source Code and Test Vectors ...4

2.4 Intellectual Property Statements / Agreements / Disclosures4

2.4.1 Statement by Each Submitter ...5

2.4.2 Statement by Patent (and Patent Application) Owner(s) ...6

2.4.3 Statement by Reference/Optimized/Additional Implementations’ Owner(s)7

3 Minimum Acceptability Requirements ..7
3.1 AEAD Requirements ...7

3.2 Hash Function Requirements ...8

3.3 Additional Requirements for Submissions with AEAD and Hashing........................9

3.4 Design Requirements...9

3.5 Implementation Requirements ...10

3.5.1 AEAD ...10

3.5.2 Hash Function..13

4 Evaluation Criteria ..14
4.1 Minimum Acceptability of the Submission ..14

4.2 Side Channel and Fault Attack Resistance ...14

4.3 Cost ...15

4.4 Performance ..15

4.5 Third-party Analysis..15

4.6 Suitability for Hardware and Software Implementations ..15

5 Evaluation Process ..15

1

1 Introduction

The deployment of small computing devices such as RFID tags, industrial controllers, sensor nodes
and smart cards is becoming much more common. The shift from desktop computers to small
devices brings a wide range of new security and privacy concerns. In many conventional
cryptographic standards, the tradeoff between security, performance and resource requirements
was optimized for desktop and server environments, and this makes them difficult or impossible
to implement in resource-constrained devices. When they can be implemented, their performance
may not be acceptable.

Lightweight cryptography is a subfield of cryptography that aims to provide solutions tailored for
resource-constrained devices. There has been a significant amount of work done by the academic
community related to lightweight cryptography; this includes efficient implementations of
conventional cryptography standards, and the design and analysis of new lightweight primitives
and protocols.

In 2013, NIST initiated a lightweight cryptography project to study the performance of the current
NIST-approved cryptographic standards on constrained devices and to understand the need for
dedicated lightweight cryptography standards, and if the need is identified, to design a transparent
process for standardization. In July 2015, NIST held the first Lightweight Cryptography Workshop
in Gaithersburg, MD, to get public feedback on the constraints and limitations of the target devices,
and requirements and characteristics of real-world applications of lightweight cryptography. A
second workshop was held in October 2016. In March 2017, NIST published NISTIR 8114 Report
on Lightweight Cryptography and announced that it has decided to create a portfolio of lightweight
algorithms through an open process. In April 2017, NIST published the draft whitepaper Profiles
for the Lightweight Cryptography Standardization Process to solicit feedback on proposed
functionalities for initial inclusion in the portfolio.

In this call for submissions document, the submission requirements and evaluation process for the
lightweight cryptography standardization process are explained.

NIST requires that submission packages must be received by NIST by February 25, 2019
Submission packages that are received by NIST by January 4, 2019 will be reviewed for
completeness by NIST; the submitters will be notified of any deficiencies within a month, allowing
time for deficient packages to be amended by the submission deadline. After the submission
deadline, NIST will publish all first-round submissions received, except that NIST may eliminate
submissions that do not meet requirements stated in this call. No changes to packages will be
permitted after the submission deadline, except at specified times during the evaluation phase.

Due to the specific requirements of the intellectual property statements as specified in Section 2.4,
e-mail submissions shall not be accepted for these statements. The statements specified in Section
2.4 must be mailed to Dr. Kerry McKay, Information Technology Laboratory, Attention:
Lightweight Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop 8930, National
Institute of Standards and Technology, Gaithersburg, MD 20899-8930. The remainder of the
submission package can either be mailed with the intellectual property statements, or sent as e-
mail to: lightweight-crypto@nist.gov. This submission e-mail shall have subject line precisely

2

mailto:lightweight-crypto@nist.gov

“round 1 submission: NAME” where NAME is replaced by the name of the submission. For
technical inquiries, send e-mail to lightweight-crypto@nist.gov. To facilitate the electronic
distribution of submissions to all interested parties, copies of all written materials must also be
submitted in electronic form in the PDF file format.

NIST welcomes both domestic and international submissions; however, in order to facilitate
analysis and evaluation, it is required that the submission packages be in English. This requirement
includes the cover sheet, algorithm specification and supporting documentation, source code
comments, and intellectual property information.

“Complete and proper” submission packages will be posted at
https://csrc.nist.gov/Projects/Lightweight-Cryptography for public review. To be considered as a
“complete and proper” submission, packages shall satisfy the requirements specified in Section 2
and Section 3.

2 Requirements of Submission Packages

To be considered as a “complete” submission, packages shall contain the following:

• Cover sheet
• Algorithm specifications and supporting documentation
• Source code and test vectors
• Intellectual property statements / agreements / disclosures

These requirements are detailed below.

2.1 Cover Sheet

The cover sheet of a submission package shall contain the following information:

• Name of the submission.
• Name(s) of the submitter(s). Corresponding submitter’s name, e-mail address, telephone,

organization, and postal address. 
• (optional) Backup point of contact (with telephone, postal address, and e-mail address).

2.2 Algorithm Specification and Supporting Documentation

A complete written specification of the algorithms shall be included, consisting of all necessary
mathematical operations, equations, tables, and diagrams that are needed to implement the
algorithms. The document shall also include a design rationale, and an explanation for all the
important design decisions (with respect to targeted constrained devices) that have been made. The
submitter shall explain the provenance of any constants or tables used in the algorithm.

Each submission package shall describe a single algorithm, or a collection of algorithms, that
implements the authenticated encryption with associated data (AEAD) functionality, and
optionally also implements the hashing functionality.

3

https://csrc.nist.gov/Projects/Lightweight-Cryptography
mailto:lightweight-crypto@nist.gov

For algorithms that have tunable parameters, the submission document shall specify concrete
values for these parameters. The submission may specify several parameter sets that allow the
selection of a range of possible security/performance tradeoffs. The submitter shall provide an
analysis of how the security and performance of the algorithms depend on these parameters.

The submission package shall include a statement of the expected security strength of each variant
of the submission, along with a supporting rationale. The submission package shall include a
statement that summarizes the known cryptanalytic attacks on the variants of the submission, and
provide estimates of the complexity of these attacks.

The submission package shall include a statement that lists and describes the advantages and
limitations of the cryptosystem in terms of security, performance, and implementation costs (e.g.,
estimates for required RAM, ROM, or gate equivalents).

The submission of algorithms that are not well-understood is discouraged. Submissions are
expected to have third-party analysis of the design, or leverage existing standards or heavily-
analyzed components as part of the design. The submitter shall provide a list of references to any
published materials describing or analyzing the security of the submitted algorithm or
cryptosystem.

2.3 Source Code and Test Vectors

A reference implementation shall be provided with the submission package. The goal of the
reference implementation is to promote the understanding of how the submitted algorithm may be
implemented and also to allow the verification of the optimized implementations. It shall not
contain any optimizations that will make it more difficult to understand the details of the algorithm.
The source code shall be accompanied by a set of test vectors that will be generated by the
submitter. Information on how the source code and the test vectors should be compiled together to
form the source code package can be found in Section 3.5.

2.4 Intellectual Property Statements / Agreements / Disclosures

Each submitted algorithm, together with each submitted reference implementation and optimized
implementation (if any), must be made freely available for public review and evaluation purposes
worldwide during the standardization period.

Given the nature and use of cryptographic algorithms, NIST’s goals include identifying technically
robust algorithms and facilitating their widespread adoption. NIST does not object in principle to
algorithms or implementations which may require the use of a patent claim, where technical
reasons justify this approach, but will consider any factors which could hinder adoption in the
evaluation process.

NIST has observed that royalty-free availability of cryptosystems and implementations has
facilitated adoption of cryptographic standards in the past. For that reason, NIST believes it is
critical that this process leads to cryptographic standards that can be freely implemented in security
technologies and products. As part of its evaluation of a cryptographic algorithm for
standardization, NIST will consider assurances made in the statements by the submitter(s) and any

4

patent owner(s), with a strong preference for submissions as to which there are commitments to
license, without compensation, under reasonable terms and conditions that are demonstrably free
of unfair discrimination.

The following signed statements will be required for a submission to be considered ‘complete’:

1) Statement by each submitter,
2) Statement by patent (and patent application) owner(s) (if applicable), and
3) Statement by reference/optimized implementations' owner(s).

Note that for the last two statements, separate statements must be completed if multiple individuals
are involved.

2.4.1 Statement by Each Submitter

I, _____ (print submitter’s full name), of ____ (print full postal address), do hereby declare that
the cryptosystem, reference implementation, or optimized implementations that I have submitted,
known as ______ (print name of cryptosystem), is my own original work, or if submitted jointly
with others, is the original work of the joint submitters.

I further declare that (check at least one of the following):

� I do not hold and do not intend to hold any patent or patent application with a claim which
may cover the cryptosystem, reference implementation, or optimized implementations that I
have submitted, known as ____ (print name of cryptosystem);

� to the best of my knowledge, the practice of the cryptosystem, reference implementation, or
optimized implementations that I have submitted, known as ____ (print name of cryptosystem),
may be covered by the following U.S. and/or foreign patents: _____ (describe and enumerate
or state “none” if applicable)_____ ;

� I do hereby declare that, to the best of my knowledge, the following pending U.S. and/or foreign
patent applications may cover the practice of my submitted cryptosystem, reference
implementation or optimized implementations: _____ (describe and enumerate or state
“none” if applicable) ______.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation
or optimized implementations. I also acknowledge and agree that the U.S. Government may,
during the public review and the evaluation process, and, if my submitted cryptosystem is selected
for standardization, during the lifetime of the standard, modify my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment I do hereby agree to provide the statements required by
Sections 2.4.2 and 2.4.3, below, for any patent or patent application identified to cover the practice

5

of my cryptosystem, reference implementation or optimized implementations and the right to use
such implementations for the purposes of the public review and evaluation process.

I acknowledge that, during the lightweight crypto evaluation process, NIST may remove my
cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consideration
by all submitter(s) and owner(s), I understand that rights granted and assurances made under
Sections 2.4.1, 2.4.2 and 2.4.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

2.4.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those held by
the submitter, the following statement must be signed by each and every owner, or each owner’s
authorized representative, of each patent and patent application identified.

I, _____ (print full name), of _____(print full postal address), am the owner or authorized
representative of the owner (print full name, if different than the signer) of the following patent(s)
and/or patent application(s): ______ (enumerate), and do hereby commit and agree to grant to
any interested party on a worldwide basis, if the cryptosystem known as _____(print name of
cryptosystem) is selected for standardization, in consideration of its evaluation and selection by
NIST, a non-exclusive license for the purpose of implementing the standard (check one):

� without compensation and under reasonable terms and conditions that are demonstrably free
of any unfair discrimination, OR

� under reasonable terms and conditions that are demonstrably free of any unfair
discrimination.

I further do hereby commit and agree to license such party on the same basis with respect to any
other patent application or patent hereafter granted to me, or owned or controlled by me, that is
or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring ownership
of each patent and patent application, provisions to ensure that the commitments and assurances
made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by me
to be binding on successors-in-interest of each patent and patent application, regardless of
whether such provisions are included in the relevant transfer documents.

6

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferable, irrevocable,
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into the
standard.

Signed:

Title:

Date:

Place:

2.4.3 Statement by Reference/Optimized/Additional Implementations’ Owner(s)

The following must also be included:

I, _____ (print full name), _______(print full postal address), am the owner or authorized
representative of the owner (print full name, if different than the signer) of the submitted reference
implementation, optimized and additional implementations and hereby grant the U.S. Government
and any interested party the right to reproduce, prepare derivative works based upon, distribute
copies of, and display such implementations for the purposes of the lightweight cryptography
public review and evaluation process, and implementation if the corresponding cryptosystem is
selected for standardization and as a standard, notwithstanding that the implementations may be
copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

3 Minimum Acceptability Requirements

To be considered as a “proper” submission, packages shall satisfy the requirements stated in this
section. The following requirements have some similarities with the call of Competition for
Authenticated Encryption: Security, Applicability, and Robustness (CAESAR)
(https://competitions.cr.yp.to/caesar-call.html) and eBACS: ECRYPT Benchmarking of
Cryptographic Systems (https://bench.cr.yp.to/), for which the unified SUPERCOP benchmarking
suite was developed. This has been done to facilitate the submission of algorithms, and the
benchmarks of algorithm performance.

3.1 AEAD Requirements

An authenticated encryption with associated data (AEAD) algorithm is a function with four byte-
string inputs and one byte-string output. The four inputs are a variable-length plaintext, variable-

7

http:https://bench.cr.yp.to
https://competitions.cr.yp.to/caesar-call.html

length associated data, a fixed-length nonce, and a fixed-length key. The output is a variable-
length ciphertext. Authenticated decryption, also known as decryption-verification, shall be
supported: it shall be possible to recover the plaintext from a valid ciphertext (i.e., a ciphertext
that corresponds to the plaintext for a given associated data, nonce, and key), given associated
data, nonce and key. Plaintext shall not be returned by the decryption-verification process if the
ciphertext is invalid.

From a security point of view, an AEAD algorithm should ensure both the confidentiality of the
plaintexts (under adaptive chosen-plaintext attacks) and the integrity of the ciphertexts (under
adaptive forgery attempts). AEAD algorithms are expected to maintain security as long as the
nonce is unique (not repeated under the same key). Any security loss when the nonce is not unique
shall be documented, and algorithms that do not lose all security with repeated nonces may
advertise this as a feature.

The submitters are allowed to submit a family of AEAD algorithms, where members of the family
may vary in external parameters (e.g., key length, nonce length), or in internal parameters (e.g.,
number of rounds, or state size). The family shall include at most 10 members. The following
requirements apply to all members of the family.

An AEAD algorithm shall not specify key lengths that are smaller than 128 bits. Cryptanalytic
attacks on the AEAD algorithm shall require at least 2112 computations on a classical computer in
a single-key setting. If a key size larger than 128 bits is supported, it is recommended that at least
one recommended parameter set has a key size of 256 bits, and that its resistance against
cryptanalytical attacks is at least 2224 computations on a classical computer in a single-key setting.

AEAD algorithms shall accept all byte-string inputs that satisfy the input length requirements.
Submissions shall include justification for any length limits.

The family shall include one primary member that has a key length of at least 128 bits, a nonce
length of at least 96 bits, and a tag length of at least 64 bits. The limits on the input sizes (plaintext,
associated data, and the amount of data that can be processed under one key) for this member shall
not be smaller than 250-1 bytes.

3.2 Hash Function Requirements

A hash function is a function with one byte-string input and one byte-string output. The input is a
variable-length message. The output is a fixed-length hash value.

It should be computationally infeasible to find a collision or a (second) preimage for this hash
function. The hash function should also be resistant against length extension attacks. For example,
if part of the message is a secret key that is unknown to the attacker, it should be infeasible for this
attacker to construct a hash value corresponding to a different message that contains the same
secret key. In several practical applications, hash functions may need to satisfy other security
properties as well, such as retaining some level of security when the output is truncated. Hash
function submissions should describe any additional security properties that are provided.

8

The submitters are allowed to submit a family of hash functions, where members of the family
may vary in external parameters (e.g., maximum message length, output size), or in internal
parameters (e.g., number of rounds, or state size). The family shall include at most 10 members.
The following requirements apply to all members of the family.

Cryptanalytic attacks on the hash function shall require at least 2112 computations on a classical
computer. The hash function shall not specify output sizes that are smaller than 256 bits.

Hash functions shall accept all byte-string inputs that meet the specified maximum length of
messages. Submissions shall include justification for any length limits.

The family shall include one primary member that has an output size of at least 256 bits. The limit
on the message size for this member shall not be smaller than 250-1 bytes.

3.3 Additional Requirements for Submissions with AEAD and Hashing

This section provides additional requirements on the submissions that provide both AEAD and
hashing functionality.

Submissions shall state which design components the AEAD and hashing algorithms have in
common, and explain how these common components lead to a reduced implementation cost.

Submissions shall specify list of pairs of AEAD and hash function family members to be evaluated
jointly. This list is permitted to be as short as one recommendation. The primary member of the
AEAD family and the primary member of the hash function family shall be paired together. This
list shall not be longer than ten recommendations.

3.4 Design Requirements

Submitted AEAD algorithms and optional hash function algorithms should perform significantly
better in constrained environments (hardware and embedded software platforms) compared to
current NIST standards. They should be optimized to be efficient for short messages (e.g., as short
as 8 bytes). Compact hardware implementations and embedded software implementations with
low RAM and ROM usage should be possible. The performance on ASIC and FPGA should
consider a wide range of standard cell libraries. The algorithms should be flexible to support
various implementation strategies (low energy, low power, low latency). The performance on
microcontrollers should consider a wide range of 8-bit, 16-bit and 32-bit microcontroller
architectures. For algorithms that have a key, the preprocessing of a key (in terms of computation
time and memory footprint) should be efficient.

The implementations of the AEAD algorithms and the optional hash function algorithms should
lend themselves to countermeasures against various side-channel attacks, including timing attacks,
simple and differential power analysis (SPA/DPA), and simple and differential electromagnetic
analysis (SEMA/DEMA).

Designs may make tradeoffs between various performance requirements. A submission is allowed
to prioritize certain performance requirements over others. To satisfy the stringent limitations of
some constrained environments, it may not be possible to meet all performance requirements stated

9

in the previous paragraph. The submission document should, however, explain the bottlenecks that
were identified and the tradeoffs that were made.

3.5 Implementation Requirements1

Each submission shall be accompanied by a portable reference software implementation, in C, to
support public understanding of the algorithms, cryptanalysis, verification of subsequent
implementations, etc. An implementation shall be provided for all members of the family, and
shall compute exactly the functions specified in the submission. This reference implementation is
expected to be easy to understand, and should not include code that is solely intended to optimize
performance on certain platforms. For example, the reference implementation shall not contain
compiler intrinsics, platform-specific headers, or compiler-specific features. The submission may
also include optimized implementations that use the same API, or additional implementations that
highlight specific implementation features of the algorithms. There are no restrictions on the API
for additional implementations.

The correctness of the reference implementation shall be verified on the NIST test vector
verification platform. This platform is an Intel x64-based system, running Ubuntu 16.04 (64-bit)
and the reference implementations shall be compiled with GCC 5.4.0 using the compiler flags:

-std=c99 -Wall -Wextra -Wshadow -fsanitize=address,undefined -O2

The following sections describe specific implementation requirements for AEAD and hash
functions.

3.5.1 AEAD

A minimal reference implementation of a variant of an AEAD algorithm consists of two files:
api.h and encrypt.c. As an example, MyAEAD algorithm with 256-bit keys would consist of
the files: crypto_aead/myaead256v1/ref/api.h and crypto_aead/myaead256v1/ref/

encrypt.c. There are three levels of directory names:

• The first-level directory name crypto_aead is the same for all AEAD algorithms.

• The second-level directory name is a lowercase version of the name of the algorithm,
including the version number and a family member identifier (if multiple family members
in submission). A reference implementation covering multiple family members must have
a second-level directory for each member. Dashes, dots, slashes, and other punctuation
marks are omitted; the directory name consists solely of digits (0123456789) and lowercase
ASCII letters (abcdefghijklmnopqrstuvwxyz).

• The third-level directory name is ref for the reference implementation. Other
implementations of the same AEAD algorithm (with the same parameter set) use other
third-level directory names. Third-level directory names starting with add_ may be used

1 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental
procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor
is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

10

only for the additional implementations that highlight specific implementation features of
the algorithms. These include software implementations that do not satisfy the API, as well
as any hardware implementations that may be included in the submission.

• For each of the implementations that satisfy the API, the genkat_aead.c file2 shall be
used to generate the test vector output file. The submitters shall verify that the test vector
output files are identical for all implementations in the second-level directory, and shall
provide the test vector output file in the crypto_aead/myaead256v1/ directory for the
variant of the MyAEAD algorithm with 256-bit keys in the aforementioned example.

The file api.h consists of five definitions. For example:

#define CRYPTO_KEYBYTES 32
#define CRYPTO_NSECBYTES 0
#define CRYPTO_NPUBBYTES 12
#define CRYPTO_ABYTES 16
#define CRYPTO_NOOVERLAP 1

This indicates that for this variant of the MyAEAD algorithm, the key is 32 bytes, the nonce is 12
bytes, and that the ciphertext is at most 16 bytes longer than the plaintext. (A typical AEAD
algorithm has a constant gap between plaintext length and ciphertext length, but the requirement
here is to have a constant limit on the gap.) The definition CRYPTO_NSECBYTES shall always be set
to zero.

The last definition CRYPTO_NOOVERLAP is an optional definition in SUPERCOP API and indicates
whether the implementation can handle overlapping input and output buffers. To ensure
compatibility with the SUPERCOP API, api.h file shall contain "#define CRYPTO_NOOVERLAP
1". Regardless of whether this flag is needed in the SUPERCOP framework, it clarifies how the
API is intended to be used; the implementation is not expected to handle overlapping input and
output buffers. (Note that if CRYPTO_NOOVERLAP is not defined, the SUPERCOP framework
assumes that inputs and outputs can overlap, and returns an error if this behavior is not supported.)

The file encrypt.c has the following structure:

#include "crypto_aead.h"

int crypto_aead_encrypt(
unsigned char *c,unsigned long long *clen,
const unsigned char *m,unsigned long long mlen,
const unsigned char *ad,unsigned long long adlen,
const unsigned char *nsec,
const unsigned char *npub,
const unsigned char *k

)
{
...
... the code for the cipher implementation goes here,

2 Available at: https://csrc.nist.gov/Projects/Lightweight-Cryptography

11

https://csrc.nist.gov/Projects/Lightweight-Cryptography

... generating a ciphertext c[0],c[1],...,c[*clen-1]

... from a plaintext m[0],m[1],...,m[mlen-1]

... and associated data ad[0],ad[1],...,ad[adlen-1]

... and nonce npub[0],npub[1],...

... and secret key k[0],k[1],...

... the implementation shall not use nsec

...
return 0;

}

int crypto_aead_decrypt(
unsigned char *m,unsigned long long *mlen,
unsigned char *nsec,
const unsigned char *c,unsigned long long clen,
const unsigned char *ad,unsigned long long adlen,
const unsigned char *npub,
const unsigned char *k

)
{
...
... the code for the AEAD implementation goes here,
... generating a plaintext m[0],m[1],...,m[*mlen-1]
... and secret message number nsec[0],nsec[1],...
... from a ciphertext c[0],c[1],...,c[clen-1]
... and associated data ad[0],ad[1],...,ad[adlen-1]
... and nonce number npub[0],npub[1],...
... and secret key k[0],k[1],...
...
return 0;

}

The outputs of crypto_aead_encrypt and crypto_aead_decrypt shall be determined entirely
by the inputs listed above (except that the parameter nsec is kept for compatibility with
SUPERCOP and will not be used) and shall not be affected by any randomness or other hidden
inputs.

The crypto_aead_decrypt function shall return -1 if the ciphertext is not valid.
The crypto_aead_encrypt and crypto_aead_decrypt functions may return other negative
numbers to indicate other failures (e.g., memory-allocation failures).

The file crypto_aead.h contains the declarations of the API functions, and should not be
modified in any way. It should not be included in the reference implementation.

A reference implementation can use names other than encrypt.c. It can split its code across
several files *.c defining various auxiliary functions; the files will be automatically compiled
together.

12

3.5.2 Hash Function

A minimal reference implementation of a hash function consists of two files: api.h and hash.c. As
an example, MyHash hash function with 256-bit output would consists of the files:
crypto_hash/myhash256v1/ref/api.h and crypto_hash/myhash256v1/ref/hash.c. There
are three levels of directory names:

• The first-level directory name crypto_hash is the same for all hash functions.

• The second-level directory name is a lowercase version of the name of the algorithm,
including the version number and a family member identifier (if multiple family members
in submission). A reference implementation covering multiple family members must have
a second-level directory for each member. Dashes, dots, slashes, and other punctuation
marks are omitted; the directory name consists solely of digits (0123456789) and lowercase
ASCII letters (abcdefghijklmnopqrstuvwxyz).

• The third-level directory name is ref for the reference implementation. Other
implementations of the same hash function (with the same parameter set) use other third-
level directory names. Third-level directory names starting with add_ may be used only for
the additional implementations that highlight specific implementation features of the
algorithms. These include software implementations that do not satisfy the API, as well as
any hardware implementations that may be included in the submission.

• For each of the implementations that satisfy the API, the genkat_hash.c file3 shall be
used to generate the test vector output file. The submitters shall verify that the test vector
output files are identical for all implementations in the second-level directory, and shall
provide the test vector output file in the crypto_hash/myhash256v1/ directory for the
256-bit output of the MyHash hash function in the aforementioned example.

The file api.h contains one definition. For example:

#define CRYPTO_BYTES 32

This indicates that for this variant of the MyHash algorithm, the output size is 32 bytes.

The file hash.c has the following structure:

#include "crypto_hash.h"

int crypto_hash(
unsigned char *out,
const unsigned char *in,
unsigned long long inlen

)
{
...
... the code for the hash function implementation goes here

3 Available at: https://csrc.nist.gov/Projects/Lightweight-Cryptography

13

https://csrc.nist.gov/Projects/Lightweight-Cryptography

... generating a hash value out[0],out[1],...,out[CRYPTO_BYTES-1]

... from a message in[0],in[1],...,in[in-1]

...
return 0;

}

To ensure compatibility with the SUPERCOP, the implementation of crypto_hash shall handle
overlapping input and output buffers.

The output of crypto_hash shall be determined entirely by the message input and shall not be
affected by any randomness or other hidden inputs.

The crypto_hash function may return a negative number to indicate other failure (e.g., memory-
allocation failures).

The file crypto_hash.h contains the declaration of the API function, and should not be modified
in any way. It should not be included in the reference implementation.

A reference implementation can use names other than hash.c. It can split its code across several
files *.c defining various auxiliary functions; the files will be automatically compiled together.

Finally, all implementations shall be packaged into a tarball, such as mysubmissionv1.tar.gz for a
reference implementation of MySubmission v1, including all members of the MyAEAD v1 family
of AEAD algorithms. If the submission specifies a hash function, it will also include the members
of the MyHash v1 family of hash functions. This tarball shall be included in the submission
package.

4 Evaluation Criteria

4.1 Minimum Acceptability of the Submission

The evaluation will verify whether the submission meets the minimum acceptability requirements,
as described in Section 3 of this notice. This will include a security evaluation of the algorithms
against known attacks (e.g., differential cryptanalysis) that may violate the minimum submission
requirements.

4.2 Side Channel and Fault Attack Resistance

Side channel resistance is the ability for an implementation to reduce the information gained by
measurable phenomena about the inner workings of a cryptographic computation (such as timing,
power, electromagnetic field, ciphertext length). While implementations will not be required to
provide side channel resistance, the ability to provide it easily and at low cost is highly desired.
Side channel resistance may be necessary in some applications.

A fault attack alters the normal functioning of a physical electronic device (e.g., by changing the
supply voltage), such that it causes an error in the computation that can be leveraged to perform
an attack (e.g., key recovery). Resistance to fault attacks may also be a desired feature in

14

http:mysubmissionv1.tar.gz

applications. While implementations will not be required to protect against fault attacks, the ability
to provide it easily and at low cost will be taken into consideration.

4.3 Cost

Submissions will be evaluated in terms of various cost metrics (e.g., area, memory, energy
consumption), as appropriate.

4.4 Performance

Submissions will be evaluated in terms of various performance metrics (e.g., latency, throughput,
power consumption), as appropriate.

4.5 Third-party Analysis

Submissions that have significant third-party analysis or leverage components of existing
standards will be favored for selection.

4.6 Suitability for Hardware and Software Implementations

An algorithm may be well-suited for both hardware and software, or it may be specifically tailored
for performance in either one. Submissions that perform well in both will likely be given greater
consideration; however, a submission that excels in highly-constrained hardware may also be
granted greater consideration for selection.

5 Evaluation Process

NIST will form an internal selection panel composed of NIST researchers to analyze the
submissions. All of NIST’s analysis results will be made publicly available.

Although NIST will be performing its own analyses of the submitted algorithms, NIST strongly
encourages public evaluation and publication of the results. NIST will take into account its own
analysis, as well as the public comments that are received in response to the posting of the
“complete and proper” submissions, to make its decisions.

Following the close of the call for submission packages, NIST will review the received packages
to determine which are “complete and proper,” as described in Sections 2 and 3 of this notice.
NIST will post all “complete and proper” submissions at
https://csrc.nist.gov/Projects/Lightweight-Cryptography for public review.

The initial phase of evaluation will consist of approximately twelve months of public review of
the submitted algorithms. During this initial review period, NIST intends to evaluate the submitted
algorithms as outlined in Section 4. Depending on the number of submissions, NIST may eliminate
algorithms from consideration early in the first evaluation phase in order to focus analysis on the
strongest submissions. A workshop will be held ten to eleven months after the submission deadline
to discuss analysis of first round candidates. NIST will review the public evaluations of the
submitted algorithms’ cryptographic strengths and weaknesses, implementation costs, and

15

https://csrc.nist.gov/Projects/Lightweight-Cryptography

implementation performance and will use these to narrow the candidate pool for more careful study
and analysis. The purpose of this selection process is to identify candidates that are suitable for
standardization in the near future. Algorithms that are not included in the narrowed pool may still
be considered for standardization at a later date, unless they are explicitly removed from
consideration by NIST or the submitter.

Because of limited resources, and also to avoid moving evaluation targets (i.e., modifying the
submitted algorithms undergoing public review), NIST will not accept substantive modifications
to the submitted algorithms during this initial phase of evaluation.

For informational and planning purposes, near the end of the initial public evaluation process,
NIST intends to hold another lightweight cryptography standardization conference. Its purpose
will be to publicly discuss the submitted algorithms, and to provide NIST with information for
narrowing the field of algorithms for continued evaluation.

NIST plans to narrow the field of algorithms for further study, based upon its own analysis, public
comments, and all other available information. It is envisioned that this narrowing will be done
primarily on security, cost, performance, and intellectual property considerations. NIST will issue
a report describing its findings.

During the course of the initial evaluations, it is conceivable that some small deficiencies may be
identified in even some of the most promising submissions. Therefore, for the second round of
evaluations, small modifications to the submitted algorithms will be permitted for either security
or efficiency purposes. Submitters may submit minor changes (no substantial redesigns), along
with a supporting justification that must be received by NIST prior to the beginning of the second
evaluation period. (Submitters will be notified by NIST of the exact deadline.) NIST will
determine whether the proposed modification would significantly affect the design of the
algorithm, requiring a major re-evaluation; if such is the case, the modification will not be
accepted. If modifications are submitted, new reference and optimized implementations and
written descriptions must also be provided by the announced deadline. This will allow a thorough
public review of the modified algorithms during the entire course of the second evaluation phase.

Note that all proposed changes shall be conveyed by the submitter; no proposed changes (to the
algorithm or implementations) will be accepted from a third party.

The second round of evaluation will consist of approximately nine to twelve months of public
review, with a focus on a narrowed pool of candidate algorithms. During the public review, NIST
will similarly evaluate these algorithms. After the end of the public review period, NIST intends
to hold another lightweight cryptography standardization conference.

Following the third lightweight cryptography standardization conference, NIST will prepare a
summary report, which may select algorithm(s) for possible standardization. Any selected
algorithm(s) for standardization will be incorporated into draft standards, which will be made
available for public comment.

Specific parameters will be chosen during the standardization process following the final
evaluation phase. Specific parameter sets may permit NIST to select a different

16

performance/security tradeoff than originally specified by the submitter, in light of discovered
attacks or other analysis. NIST will consult with the submitter of the algorithm, as well as the
cryptographic community, if it plans to select that algorithm for development as a NIST standard
with a different parameter set than originally specified by the submitter.

When evaluating algorithms, NIST will make every effort to obtain public input and will
encourage the review of the submitted algorithms by outside organizations. NIST encourages the
reviewers to demonstrate their findings and attacks both on the versions with parameters that
achieve full security levels, as well as with practical attacks on the provided parameter sets with
lower security levels. The final decision as to which (if any) algorithm(s) will be selected for
standardization is the responsibility of NIST.

It should be noted that this schedule for the evaluation process is somewhat tentative, depending
upon the type, quantity, and quality of the submissions. Specific conference dates and public
comment periods will be announced at appropriate times in the future. NIST estimates that some
algorithms could be selected for standardization after two to four years. However, due to
developments in the field, this timeline could change.

17

