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1 Overview on third-party analysis

In this section, we give an overview of third-party analysis of ASCON. For the results of
the designers, we refer to the ASCON design document [23].

1.1 Analysis on AEAD only reducing rounds

In Table 1, we give an overview of third-party results that analyze the authenticated
encryption variants of ASCON by reducing the rounds of the underlying permutation. As
we can see, the results of Table 1 indicate a comfortable security margin.

Table 1: Best third-party analyses of ASCON-128, ASCON-128a, and ASCON-80pq achieved
by only reducing the number of rounds of their underlying permutation.

Type Target Rounds Time Method Reference

Key recovery ~ ASCON initialization 7/12 2123 Cube [48]
ASCON initialization 6 /12 240 Cube-like [38]
ASCON initialization 5/12 23 Diff.-linear  [54]

Forgery ASCON-128a finalization 3 /12 220 Differential  [27]

State recovery  ASCON-128a iteration 3/ 8 27  Differential [27]
ASCON-128a iteration 2/ 8 — Sat-Solver  [25]

1.2 Analysis on AEAD by reducing rounds and under misuse

In Table 2, we show analysis results on ASCON that further weaken the algorithm outside
of its specification and security claim by repeating the nonce, using more than 264 blocks
of data per key, exceeding 2'2% time complexity, or in a weak-key setting.

The third-party results show that the initialization and finalization hold up very well
even in the analyzed misuse scenarios only allowing for application on round-reduced
variants. As we can further see in Table 2, it is possible to recover the internal state of
Ascon-128 and AscoN-80pq under massive repetition of the nonce and an attacker who
is able to choose the plaintexts according to their needs. Due to the initialization and
finalization being keyed, the only immediate consequence of such a state recovery is the
loss of confidentiality for the plaintexts that have been encrypted under the nonce that
has been massively repeated. As shown in [14, 15], it requires cryptographically significant
additional effort (297-5 for ASCON-128a [15] and 2!2%-% for ASCON-80pq [14]) and additional
queries under repeated nonces to turn a state recovery into a key recovery that defeats
authenticity and the confidentiality of plaintexts encrypted under arbitrary nonces.
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Table 2: Best third-party analysis of ASCON-128, ASCON-128a, and ASCON-80pq achieved
by additional weakening of the algorithm outside of its specification or security claim. We
annotate this additional weakening by © = nonce misuse, = exceeds data limit of 264
blocks, B = time exceeds 2!28, and # = using a weak key.

Type Target Rounds Time Method Reference
Key recovery ~ ASCON initialization 7/12 27 Q Cube-like [37]
ASCON initialization 7 /12 2104 Cube-like [38]
ASCON initialization 7/12 297 @  Cube-like [49]
ASCON initialization 7/12 277 SN Cube-like [38]
ASCON initialization 6/12 2™ Cond. HDL  [31]
ASCON-128a iteration 7/ 8 21 Qi Cond. cube [15]
AsScoN-80pq iteration 6/ 6 23°Q ECond. cube [14]
Forgery ASCON-128 finalization 6 /12 233 @ Cube tester [37]
ASCON-128 finalization 4 / 12 297 Differential  [27]
State recovery  ASCON-128 iteration 6/ 6 2 Q Cond. cube [4]
ASCON-128 iteration 6/ 6 2% Q Cond. cube [14]
ASCON-128 iteration 5/ 6 200 Q Cube-like [37]
ASCON-128a iteration 7/ 8 218 QM Cond. cube [15]

1.3 Analysis on Ascon-Hash and Ascon-Xof only reducing rounds

The hash functions and extendable output functions of the ASCON family have a relatively
high capacity of 256 bits compared to their 64-bit rate. Hence, as also backed by the
third-party results of Table 3, an attacker is very limited in degrees of freedom, resulting in
a comfortable security margin. The published results on ASCON-HASH and ASCON-XOF
are also directly applicable to ASCON-HASHA and ASCON-XOFA.

Table 3: Best third-party analysis of ASCON-HASH and ASCON-XOF.

Type Target Output Rounds Time Method Ref.
Collision AsCON-XOF finalization 64 2 /12 215 Differential  [58]
AscoN-XoFa finalization 64 2 /12 215 Differential  [58]
AscoN-HASH iteration 256 2 /12 212 Differential [58]
ASCON-HASH iteration 256 2 /12 219 Differential [27]
ASCON-HASHA iteration 256 2/8 2125 Differential  [58]
AscoN-HASHA iteration 256 2 /8 2103 Differential [27]

1.4 Analysis of permutation

As already stated in the design document [23], we emphasize that we do not require ideal
properties for the underlying permutations of our designs. Non-random properties of the
permutations are known and do not afflict the claimed security properties of the entire
algorithms. Nevertheless, for designing algorithms based on ASCON’s permutation, it is
necessary to understand the permutations’ cryptographic properties. Hence, we give an
overview of third-party results regarding ASCON’s permutation in Table 4.
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Table 4: Third-party analysis of ASCON’s permutation. (@ = non-black-box distinguisher,
= chosen constants at input (integral) or middle (zero-sum, i.e., no zero-sum partition))

Goal Target Rounds Time Method Reference

Distinguisher ~Permutation 12/12 2% @ Zero-sum [31]
Permutation 8 /12 246 Integral [31]
Permutation 7/12 205 Integral [56]
Permutation 7 /12 200 Integral [48]
Permutation 7/12 2% ® Limited-Birthday [27]
Permutation 5/12 2109 Truncated Differential  [55]
Permutation 5/12 280 Rectangle [27]
Permutation 3/12 - Subspace Trails [35]

2 New proofs/arguments supporting the security claims

All variants of ASCON are based on either the sponge or the duplex construction. Hence,
they profit from the vast analysis already performed for these constructions [8, 19]. An
overview of the relevant work can be found in ASCON’s design document [23, Section 6].

Improved preimage security bounds. A new paper by Levevre and Mennink [36] proves
that AScON-HASH could generically achieve 192-bit preimage security, which is higher
than anticipated based on previous bounds.

Improved bounds on characteristics. Several teams have worked on proving improved
bounds on characteristics. Erlacher et al. [26] proved bounds on the minimum number of
linearly or differentially active S-boxes for 4, 6, 8, 12 rounds using SAT solvers. For the
12-round initialization and finalization, any characteristic has differential probability or
squared correlation < 272'6; this bound is very likely not tight, but provides ample security
margin. For the 6-round (8-round) data absorption, the bound is < 27198 (< 27144) and
thus not exploitable within the data limit, again likely not tight. Makarim and Rohit
[39] proved that the previously best known differential characteristic for 3 rounds with
probability 2740 is optimal, using a hybrid SMT/MILP approach. They also slightly
improve the best known characteristics (from 44 to 43 differentially active S-boxes for
4 rounds and 78 to 72 for 5 rounds, though with worse probability; and from squared
correlation 27186 to 27184 for 5 rounds), allowing a clearer estimate of how far from tight
the current bounds likely are. The results are summarized in Table 5.

Table 5: Bounds on the number of active S-boxes (min #§S) and probability or squared
correlation (max p, max c?) of the round-reduced ASCON permutation, listing both bounds
and currently best known characteristics. Bold values are new.

R Differential characteristics Linear characteristics
min #S max p min #S max c?

bound known bound known bound known bound known
1 1 1 272 272 1 1 272 272
2 4 4 2—8 2-8 4 4 2—8 28
3 15 15 2-40  9—40 13 13 2-26 9—28
4 >36 43 <2772 9-107 >36 43 <2772 9-98
5 >37 72 <2774 2-190 >37 67 <2774 g8
6 > 54 < 2-108 > 54 < g—108
8 > T2 < o144 > 72 < o144
12 >108 < 27216 > 108 < 27216
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3 New software and hardware implementations

Since ASCON has been published in 2014, many hardware and software implementations
are available. An overview can be found in the design document [23, Section 7]. This
includes implementations that protect against side-channel attacks. Nevertheless, many
new implementations have been published in the final year of the competition. In the
following sections, we give an overview on these implementations and their improvements.

3.1 Software implementations

The main sources of optimized ASCON software implementations is the Github repository
by the ASCON team [24]. These implementations have been submitted to the main
benchmarking initiatives. Additionally, Rhys Weatherley has implemented a general
ASCON suite and a specific one for Arduino devices. In the following, we list the available
implementations of these repositories:

e https://github.com/ascon/ascon-c (ASCON team):

— C: ref, speed/area optimized, trade-offs, combined

— ASM: ARMv6, ARMv6m, ARMv7m, ESP32, RV32, AVR
— Masked C+ASM: 2-4 shares, leveled (evaluated)

— Modes: AEAD, Hash, XOF, MAC, PRF

e https://github.com/rweather/ascon-suite and
https://github.com/rweather/ascon-arduino (Rhys Weatherley)

— 8/32/64-bit C, AVR, ARM, RISC-V, m68k, Xtensa (ESP32)

— Framework to generate C/ASM/masked implementations

— Masked 8-bit AVR and 32/64-bit C implementations

— Modes: AEAD, Hash, HKDF, ISAP, KMAC, PBKDF2, PRNG, SIV, XOF

The updates in these repositories include new algorithms, implementations optimized
for speed and size as well as masked implementations to protect against side-channel
attacks. Most importantly, we

 improved the performance (0-65%) and code size (0-65%) on low-end 32-bit and 8-bit
devices (ARMv6m, ARMv7m, ESP32 [3], RV32 [3], AVR [12]),

 improved the code size of implementations combining AEAD with hashing (overhead
for AEAD with hashing compared to AEAD is only about 15%),

« improved the round function using fewer instructions for the S-box [11],
o added evaluated masked and leveled ARMv6 implementations [21],

o added AscON algorithms with a bit-interleaved interface,

¢ added implementations for the NIST LWC candidates ASCON-HASHA and ASCON-XOFA,

o and added implementations for ASCON-MAC, ASCON-PRF and ASCON-PRFS [22].
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3.1.1 Software benchmarks

The performance of many implementations mentioned in the previous section have been
benchmarked by the following benchmarking initiatives:

e https://bench.cr.yp.to/

e https://lwc.las3.de/

e https://rweather.github.io/lwc-finalists/

e https://rweather.github.io/arduinolibs/crypto.html

e https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

We refer to the benchmarking initiatives instead of listing all results here. Note that
updates of [24] in the final round have only been benchmarked by the first two initiatives
yet. We hope that the latest improvements will be included by the others as well until the
end of the final round. Nevertheless, we provide a first analysis to show the improvements
made to [24] since the end of round 2 for different low-end devices here.

Table 6 includes a preliminary code size comparison of different ASCON algorithms
with AES-GcM and SHA-256 using the benchmarking framework by NIST [45]'. Table 7
provides an overview of the improvements made to ASCON compared to the round 2 code,
AEs-GcM and the best other finalists on each device and category using the benchmarking
results of [47]. The benchmarks show excellent performance and area numbers for ASCON
on a wide range of different platforms. Compared to current NIST standards and other
NIST LWC finalists, ASCON performs better in most situations.

Table 6: Code size (in bytes) for the smallest implementations of ASCON and common
NIST standards. Numbers have been generated using [45] with platformio 6.1.4 and the
latest version of [24].

ATmega328P  ATmega4809 SAM D21 nRF52840 PIC32MX ESP8266

AEs-GcM 3188 3102 1648 1776 2536 2412
ASCON-128 2754 2820 1300 1144 1820 1004
ASCON-128a 3026 2894 1424 1192 1876 10841
SHA-256 2432 2322 944 936 1628 1116
AscoN-HasH 1836 1876 760 688 1244 652!
AscoN-HASHA 1836 1876 760 688 1244 652"

Also, for ASCON, the area overhead for AEAD with hashing is very small compared
to, e.g., AES-GCM with SHA-256 or AES-GCOM with SHA-3. Table 8 shows a preliminary
evaluation of combined ASCON implementations on different low-end devices using [24].
In this case, the overhead of AEAD with hashing is only about 12-16% (about 500 Bytes
for AVR or about 200 Bytes for ARM) compared to AEAD only implementations. Using
Table 6, the overhead for AES-GCOM + SHA-256 compared to only AES-GCM seems to be
in the range of about 45-75%.

An efficient way to implement ASCON on 32-bit platforms is using bit interleaving. If
performance is critical, the data/key/nonce can be stored/transmitted in bit interleaved
format. This allows to improve the performance of ASCON by another 10-20%. The
same improvement is possible using, e.g., funnel shifts (on ESP32) or dedicated bit

IFor ESP8266, the asm_esp32 implementation of [24] does not build correctly with xtensa-1x106-
elf-gcc 10.3.0 (installed by platformio 6.1.4), while it does build with xtensa-1x106-elf-gcc 10.3.0-
lubuntul48ubuntul on Ubuntu 22.04. The latter version has been used to generate the results.
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Table 7: Performance (in pus) and code size (in bytes) for the fastest and smallest implemen-
tations of AES-GCM, any other primary candidate or finalist, ASCON-128, ASCON-128a,
and ASCON-128 at the end of round 2. Performance numbers have been extracted from
[47]. The time and area for performing no crypto operation has been removed.

Time Area
Uno F1 ESP F7 R5 Uno F1 ESP F7 R5

AES-GCM - 3328 672 358 23.7 - 9908 14832 9836 14272
Best primary 1985  59.8 387 15.6 15.6 1606 2692 2048 1356 1984
Best finalist 1448  59.6 349 119 157 1604 1804 2048 1356 1728

ASCON-128 2337 767 223 138 85 2552 2157 1120 1180 1792
AsSCcON-128a 1981 66.4 184 11.8 7.3 2544 2252 1200 1240 1792

(@Qround 2) 2719 8.5 65.8 15.0 85 3676 2556 3072 1640 1792

Table 8: Code size (in bytes) for the smallest implementations of AscoN for AEAD,
hashing, and combined implementations. Numbers have been generated using [24].

ATmega328P  Cortex-M0  Cortex-M4

ASCON-128 2774 1298 1342
ASCON-128a 3062 1334 1418
ASCON-HASH 1738 776 718
ASCON-HASHA 1738 776 718
ASCON-128 + AscON-HASH 3198 1456 1542
ASCON-128a + ASCON-HASHA 3524 1510 1638

interleaving instructions (ARM Custom Datapath Extension, RISC-V Bitmanip Extension).
To demonstrate this potential improvement, implementations of algorithms without bit
interleaving have also been submitted to the benchmarking platforms.

3.2 Hardware implementations

For AsCON, many different hardware implementations exist. In the case of implementations
without countermeasures against implementation attacks, we have the following recent
implementations:

o The implementations by Robert Primas (https://github.com/ascon/ascon-hardware)
providing round-based implementations for 1, 2, 3, and 4 rounds per clock cycle for
authenticated encryption and hash variants of ASCON and combinations of them.

o Implementations from Virginia Tech by Behnaz Rezvani advised by William Diehl
(https://github.com/vtsal/ascon_lwc_aead_hash).

e Implementations from George Mason University by Rishub Nagpal advised by Kris
Gaj and Jens-Peter Kaps (https://github.com/GMUCERG/Ascon).

o Implementations from George Mason University by Kamyar Mohajerani advised
by Kris Gaj and Jens-Peter Kaps (https://github.com/kammoh/bluelight/tree/
api3/Ascon)

o A fast and lightweight ASCON round instruction for 32-bit ARM/RV32 by Stefan
Steinegger and Robert Primas, able to achieve a 50x speedup with only 4.7kGE by
reusing 10 registers of the RI5CY CPU [53].


https://github.com/ascon/ascon-hardware
https://github.com/vtsal/ascon_lwc_aead_hash
https://github.com/GMUCERG/Ascon
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3.2.1 Hardware benchmarks

A good benchmark of NIST LWC entries and AES-GCM can be found in [1]. This benchmark
is done for 5 different cell libraries and 2 different design flows. We think that this work
gives a good overview of the relative performance of the various candidates and refer to
the very informative figures for further details. However, since the benchmark seems to be
non-continuous, it is only a snapshot of the then available (submitted) implementations
and does not picture improved implementations of candidates and design tweaks of some
of the competitors of ASCON.

3.2.2 FPGA benchmarks

To compare ASCON with other candidates including AES-GCM on FPGAs, we rely on
third-party results [40]. Please note that the benchmark [40] was performed for 2°¢ round
candidates. Hence, newer implementations and the effects of changes in the specifications
of some competitors are not considered. As we can see in Table 10 and Table 9, ASCON
performs best, or close to best on many platforms.

Table 9: Throughput ([Mbit/s]) of best ASCON implementations compared to best other
candidate and AES-GoM. Ounly Plaintext [40].

FPGA Xilinx Artix®-7 Intel® Cyclone® 10 LP Lattice ECP5
length 16 Byte long 16 Byte long 16 Byte long
AEs-GeMm — 2455.30 — 1407.50 — 1258.60

Best other 601.40  5458.30  318.30 2665.80 263.90 2222.50
ASCON-128 637.30  3744.00 367.10 2157.00 243.00 1427.50
ASCON-128a 699.70 6297.60 337.10 3031.00 245.90 1666.30

Table 10: Throughput ([Mbit/s]) of best ASCON implementations compared to best other
candidate and AES-GCM. Associated data and Plaintext [40].

FPGA Xilinx Artix®-7 Intel® Cyclone® 10 LP Lattice ECP5
length 16 Byte long 16 Byte long 16 Byte long
AEs-GeMm — 2700.80 — 1548.30 — 1384.40

Best other 601.40 6569.80 318.30 3563.20 263.90 3148.50
ASCON-128 544.60  3744.00  313.70 2157.00 207.60 1427.50
AScon-128a 629.80 6297.60  303.10 3031.00 205.40 1666.30

3.3 Implementations that protect against side channel attacks

ASCON has been designed with protected implementations in mind. For example, most
implementations are constant time by default which is shown in the results at https:
//bench.cr.yp.to/. ASCON is also very flexible, and several hardware and software
options can be used to protect ASCON against side-channel attacks.

Another advantage of ASCON is its small state size. Therefore, masking can be
implemented more efficiently. On RV32, two shares easily fit in the register file. Software
shares can also be stored and computed in a rotated form with limited performance impact
on ARM platforms. This reduces the side-channel leakage on real devices. Furthermore,
the non-linear ASCON S-box can be efficiently masked with fewer instructions and less (or
no fresh) randomness using the Toffoli gate, as discussed in [18, 52].
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Additionally, AscoON provides the option to use leveled implementations proposed by
Adomnicai et al. [2] and recently discussed by Bellizia et al. [6]. In leveled implementations,
a higher protection order is used for the initialization and finalization than for other parts
of an algorithm. In particular, in scenarios where the number of decryption failures or
queries can be limited or plaintext confidentiality is not critical, such implementations
might be of interest. For long messages, such implementations can achieve performances
similar to that of unprotected implementations.

3.3.1 Protected software implementations

A preliminary comparison of plain, leveled and masked implementations of ASCON with
bitsliced AES-CTR is shown in Table 11. Leveled implementations (2-1-2) use 2 shares for
Init/Final and 1 share for AD/PT/CT processing. Unfortunately, not many side-channel
protected software implementations of AES-GCM are publicly available to provide a detailed
comparison. Combining the masked AES-CTR and plain AES-GCM performance suggest
that masked ASCON is at least twice as fast.

Additionally, protected implementations of ASCON have been submitted to the bench-
marking platforms. At the time of writing this report, the 2-share protected ARMv6
implementation was even faster and smaller than most plain primary finalists on the F7
device at [47]. However, note that this dedicated implementation on this device has not
been security-evaluated and device-specific fixes might be needed.

Table 11: Software performance of plain and masked bitsliced AES-CTR and plain, leveled,
and masked ASCON on 32-bit ARM Cortex-M4 microcontrollers in cycles/byte. Underlined
values have been security evaluated by [17] and/or using the framework of [21].

GCC flags asm -02 -Os -02 -Os -02 -Os -02 -Os
# shares 1 1 1 2-1-2  2-1-2 2 2 3 3
Ascon-128 [24] 59 69 97 94 102 287 369 531 722
AsScoN-128a [24] 42 47 71 67 73 196 252 362 491
AEs-Ctr [50, 51] 101 545

3.3.2 Protected hardware implementations

Regarding hardware implementation that include protection mechanisms against side
channel attacks, two teams have submitted to the ongoing side-channel evaluation or-
chestrated by the team of the George Mason University (see https://cryptography.gmu.
edu/athena/LWC/LWC_Finalists_protected_HW_implementations.html):

o Nicolai Miiller has automatically generated masked hardware [33] of all finalists
including ASCON using PINI-secure composable HPC2 [13] at https://github.com/
Chair-for-Security-Engineering/LWC-Masking.

o Masked hardware implementations have been published by Robert Primas and Rishub
Nagpal at https://github.com/ascon/ascon-hardware-sca. The implementation
has been successfully formally verified in the glitch-extended probing model using
the tool Coco [28].

Note that the implementations have not been optimized for low randomness require-
ments. Similar to masked software implementations, ASCON can be masked with minimal
(or no) fresh randomness, depending on the number of masks and required protection
order.


https://cryptography.gmu.edu/athena/LWC/LWC_Finalists_protected_HW_implementations.html
https://cryptography.gmu.edu/athena/LWC/LWC_Finalists_protected_HW_implementations.html
https://github.com/Chair-for-Security-Engineering/LWC-Masking
https://github.com/Chair-for-Security-Engineering/LWC-Masking
https://github.com/ascon/ascon-hardware-sca
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Recently, also a new method for low-latency masking has been proposed, implementing
ASCON’s permutation as an example [41]. Finally, the side-channel security of ASCON and
other LWC finalists providing mode-level security has been evaluated in [57].

4 Platforms and metrics in which Ascon performs better
than current NIST standards

4.1 Authenticated encryption with associated data

If we compare ASCON’s authenticated encryption schemes with the current widely used
NIST standard AEs-GcM [20, 44], ASCON has the benefit that we could learn from the
issues of AES-GCM in practical deployment. This includes the increased relevance of
side-channel attacks [7, 34] and also resilience against implementation mistakes [32].

AscoN has been designed to allow naturally for fast, constant-time, and bitsliced
software implementations, because non-constant-time table-based implementations have
turned out to be very vulnerable against timing-based attacks [7]. As a consequence,
third-party benchmarks [45, 46, 47] show that ASCON is faster than AES-GCM on a wide
variety of platforms ranging from 8 to 64-bits.

Since the round function of ASCON allows for a very compact description as binary
circuit and the state-size of 320 bits is small for an AEAD-scheme aiming at 128-bit
security, hardware implementations are also very efficient. For hardware/ASIC implemen-
tations, third-party benchmarks [1] show an advantage over AES-GCM considering area,
energy, and throughput. If we consider masking as a countermeasure against side-channel
attacks, the low algebraic degree of 2 of one round of ASCON allows for very efficient
masked implementations in hardware [29] and software?, which is another advantage over
AEs-GcM. Furthermore, ASCON can be masked with almost no or less fresh randomness
than AES-GCM, as discussed in [18, 52].

Another interesting feature of ASCON is its keyed initialization and finalization. Keying
the initialization and finalization protects against trivial key recovery and forgery attacks
even if an attacker somehow gets knowledge of an internal state during the data procession
of ASCON. This feature increases the resilience of ASCON even against attacks with heavy
nonce misuse; in particular, key-recovery still requires significant effort [5, 16]. Furthermore,
the keyed initialization and finalization feature allows for leveled implementations, where
the masking degree is reduced during the data processing phase to allow for more efficient
implementations [6]. Both features are not present in AES-GcCM, which allows for forgeries
after a few repeated nonces [32].

4.2 Hashing

Both SHA-3 [10, 42] and AsCON-HASH are permutation-based designs using the sponge
construction [9], bringing in the flexibility to easily define functionality besides classi-
cal hashing, like extendable output functions (ASCON-XOF) or message authentication
codes [22]. Hence, the main difference in performance is rooted in the underlying permuta-
tion. Here, ASCON uses a 320-bit permutation with a maximum of 12 rounds, while SHA-3
is based on the 1600-bit permutation Keccak-f with 24 rounds. Both round functions have
a similar number of Boolean operations per processed bit. Due to the massive difference
in state-size, ASCON’s permutation can be expected to have a much lower area footprint
in hardware implementations and less register pressure in software implementations.
Comparing ASCON with SHA-256, we see that ASCON does not have many of the
undesirable properties of SHA-256 like message extension. Thus, there is no need of

2https://github.com/ascon/simpleserial-ascon
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using HMAC when wanting to have keyed functionality that requires at least two calls to
SHA-256. Also, ASCON can be used together with KMAC [43] to provide pseudorandom
functions (PRFs), message authentication codes (MACs) and keyed hash functions with
variable-length outputs. For improved performance, dedicated PRF and MAC modes are
possible using ASCON as suggested in [22].

While SHA-256 it is very suitable for software implementations due to the heavy use
of modular additions, rotations and XORs, it comes short when considering hardware
implementations. For example, a straightforward hardware implementation of SHA-256
using one round per cycle results in a performance of 1 ¢/b (64 rounds for 64 bytes) and has
a state size of 1024 bits. On the other hand, a similar round-based 1 ¢/b implementation
of AscON-HasHA (8 rounds for 8 bytes) only has a state size of 320 bits, less than one
third. Moreover, the round-based implementation can be shared with the AEAD mode of
ASCON.

5 Target applications and use-cases for Ascon

AscoN follows a very balanced approach providing excellent performance/size trade-offs
for a wide variety of software platforms from high-end to low-end and also for dedicated
hardware designs. Furthermore, ASCON can keep its excellent performance even for short
messages.

In addition, ASCON has been designed with robustness and implementation attacks
in mind. Hence, it allows for masking with a very low overhead [18, 30] and even leveled
implementations [6]. Moreover, even if an attacker somehow manages to recover an internal
state during data processing (e.g., due to side-channel attacks), this does not directly lead
to the recovery of the secret key or to constructing trivial forgeries. These properties of
the mode set ASCON apart from many other lightweight designs.

Taking all into account, ASCON is not only highly suited for scenarios where lightweight
devices communicate with lightweight devices, but also for scenarios where many lightweight
devices communicate with high-end devices (e.g., a back-end server), a typical use-case
in many applications including the Internet of Things (IoT). This is especially true in
scenarios where protection against side-channel attacks is needed.

In these settings, we consider both ASCON-128 and ASCON-128a to be equally well-
suited and secure choices.
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