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Cryptographic Hardness Estimation

Estimation of required time to solve a (cryptographic) problem

Security guarantees

Parameter selection

Example: RSA keysize recommendations

Estimates change over time: adaptive process
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The Case of PQC

Difficult scalability (memory)

⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges
Consensus
Accessibility
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CryptographicEstimators

Python / Sage library for estimations of cryptographic problems

Main goals

State-of-the-art estimations

Centralization of estimation efforts

Community-driven open-source project

Easy accessibility

Current State: 6 Estimators, 32 Algorithms

Multivariate Quadratic (MQ)
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)
Permutation Equivalence (PE)
Linear Equivalence (LE)
Permuted Kernel (PK)
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Theoretical Considerations



What to Estimate?

Estimate required time (and memory) of algorithmA to solve problemP

Time : Measured in basic operations op

Memory: Measured in basic elements el

Basic units depend on problemP

Example MQ-Problem : op : Fq-multiplication and el : Fq-element

Example binary SD-Problem: op : Fn
2 -vector addition and el : Fn

2 -vector

Problem defines op / el to bit (operation) conversion
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Memory Access Costs

Computations are performed in the RAM model

Accessing 1 bit equals 1 bit operation

Embedding higher cost

Accessing 1 bit in memory of sizeM takes f(M) =
√
M, 3

√
M, . . . bit operations

Upper bound on memory access: T · f(M)

Real costC of the full algorithm : T ≤ C ≤ T · f(M)
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Technical Design



Class Design

CryptographicEstimators: An object-oriented Python library
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Usage



Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.
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A full user guide is available.
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Contributing

Where? –> Public repository CryptographicEstimators 3.

Submitting code? –> Write access by an email to cryptographic_estimators@tii.ae.

Guidelines? –> Check CONTRIBUTING.md in the repository.

Don’t want to code? –>

3https://github.com/Crypto-TII/CryptographicEstimators.
10

1 Check the code and raise issues.

2 Participate in the discussion (within the repository).

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/docs/CONTRIBUTING.md
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NIST PQC Signatures



Coverage

Current included estimators:

Multivariate Quadratic (MQ)

—-> y = P(x), withP a quadratic map.

Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)

—-> s = H · e, with wt(e) ≤ ω.

Permutation Equivalence (PE)
Linear Equivalence (LE)

—-> G′ = SGQ, with Q a monomial matrix.

Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope
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Estimation of NIST Candidates

Estimates for NIST Category I parameter sets

Scheme Hardness Assumption Est. Time Est. Memory

SDitH SDFq 147.0 26.9
LESS LE 136.6 39.0
PERK PK 155.5 154.4
MQOM MQ 142.8 51.8
TUOV / UOV MQ 144.5 59.6
VOX MQ 153.0 59.8
PROV MQ 150.1 62.3
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Future Developments

We plan to maintain the library, and actively develop it.

Features in development

Scheme vs. Problem estimators

Advanced memory access

Estimators in development

Schemes: UOV –> National University of Colombia and TII.

Problems:
MinRank –> NIST, TII and University of Limoges

Rank Syndrome Decoding –> NIST, TII and University of Limoges.

Rank Support Learning –> NIST, TII and University of Limoges.

Regular Syndrome Decoding –> Marche Polytechnic University, TII, and potential other collaborators.
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