
CryptographicEstimators
A Software Library for Cryptographic Hardness Estimation

Andre Esser, Javier Verbel, Floyd Zweydinger and Emanuele Bellini

@NIST PQC Seminar, Nov. 2023



Contents

1. Introduction
Hardness Estimation
CryptographicEstimators

2. Theoretical Considerations
Time and Memory
Memory Access Costs

3. Technical Design

4. Usage

5. Contributing

6. NIST PQC Signatures

7. Future Developments



Introduction



Cryptographic Hardness Estimation

Estimation of required time to solve a (cryptographic) problem

Security guarantees

Parameter selection

Example: RSA keysize recommendations

Estimates change over time: adaptive process

1



Cryptographic Hardness Estimation

Estimation of required time to solve a (cryptographic) problem

Security guarantees

Parameter selection

Example: RSA keysize recommendations

Estimates change over time: adaptive process

1



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

2



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

2



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years
runtime formulaTd

2



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

100

10

runtime formulaTd

2



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

10

100

runtime formulaTd

200

T200

T100
= 50

500

more accuracy?

2

Assumption: Scalability



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

10

100

runtime formulaTd

200

T200

T100
= 50

500

more accuracy?

2

Assumption: Scalability



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

10

100

runtime formulaTd

200

T200

T100
= 50

500

more accuracy?

2

Assumption: Scalability



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

10

100

runtime formulaTd

200

T200

T100
= 50

500

more accuracy?

2

Assumption: Scalability



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

10

100

runtime formulaTd

200

T200

T100
= 50

500

more accuracy?

2

Assumption: Scalability



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

10

100

runtime formulaTd

200

T200

T100
= 50

500

more accuracy?

2

Assumption: Scalability



The Case of Classical Cryptography

Established methodology

1 Theory

2 Experiments

3 Extrapolate

dimension d

CPU Years

10

100

runtime formulaTd

200

T200

T100
= 50

500

more accuracy?

2

Assumption: Scalability



The Case of PQC

Difficult scalability (memory)

⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges
Consensus
Accessibility

3



The Case of PQC

Difficult scalability (memory) ⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges
Consensus
Accessibility

3



The Case of PQC

Difficult scalability (memory) ⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges
Consensus
Accessibility

3



The Case of PQC

Difficult scalability (memory) ⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges
Consensus
Accessibility

3



The Case of PQC

Difficult scalability (memory) ⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges

Consensus
Accessibility

3



The Case of PQC

Difficult scalability (memory) ⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges
Consensus

Accessibility

3



The Case of PQC

Difficult scalability (memory) ⇒ estimation methodology

Time to solve a problem = Time of fastest known algorithm

Hardness depends on best known algorithms

Requires estimation of time of all known algorithms

Main Challenges
Consensus
Accessibility

3



CryptographicEstimators

Python / Sage library for estimations of cryptographic problems

Main goals

State-of-the-art estimations

Centralization of estimation efforts

Community-driven open-source project

Easy accessibility

Current State: 6 Estimators, 32 Algorithms

Multivariate Quadratic (MQ)
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)
Permutation Equivalence (PE)
Linear Equivalence (LE)
Permuted Kernel (PK)

4



CryptographicEstimators

Python / Sage library for estimations of cryptographic problems

Main goals

State-of-the-art estimations

Centralization of estimation efforts

Community-driven open-source project

Easy accessibility

Current State: 6 Estimators, 32 Algorithms

Multivariate Quadratic (MQ)
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)
Permutation Equivalence (PE)
Linear Equivalence (LE)
Permuted Kernel (PK)

4



CryptographicEstimators

Python / Sage library for estimations of cryptographic problems

Main goals

State-of-the-art estimations

Centralization of estimation efforts

Community-driven open-source project

Easy accessibility

Current State: 6 Estimators, 32 Algorithms

Multivariate Quadratic (MQ)
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)
Permutation Equivalence (PE)
Linear Equivalence (LE)
Permuted Kernel (PK)

4



CryptographicEstimators

Python / Sage library for estimations of cryptographic problems

Main goals

State-of-the-art estimations

Centralization of estimation efforts

Community-driven open-source project

Easy accessibility

Current State: 6 Estimators, 32 Algorithms

Multivariate Quadratic (MQ)
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)
Permutation Equivalence (PE)
Linear Equivalence (LE)
Permuted Kernel (PK)

4



Theoretical Considerations



What to Estimate?

Estimate required time (and memory) of algorithmA to solve problemP

Time : Measured in basic operations op

Memory: Measured in basic elements el

Basic units depend on problemP

Example MQ-Problem : op : Fq-multiplication and el : Fq-element

Example binary SD-Problem: op : Fn
2 -vector addition and el : Fn

2 -vector

Problem defines op / el to bit (operation) conversion

5



What to Estimate?

Estimate required time (and memory) of algorithmA to solve problemP

Time : Measured in basic operations op

Memory: Measured in basic elements el

Basic units depend on problemP

Example MQ-Problem : op : Fq-multiplication and el : Fq-element

Example binary SD-Problem: op : Fn
2 -vector addition and el : Fn

2 -vector

Problem defines op / el to bit (operation) conversion

5



What to Estimate?

Estimate required time (and memory) of algorithmA to solve problemP

Time : Measured in basic operations op

Memory: Measured in basic elements el

Basic units depend on problemP

Example MQ-Problem : op : Fq-multiplication and el : Fq-element

Example binary SD-Problem: op : Fn
2 -vector addition and el : Fn

2 -vector

Problem defines op / el to bit (operation) conversion

5



What to Estimate?

Estimate required time (and memory) of algorithmA to solve problemP

Time : Measured in basic operations op

Memory: Measured in basic elements el

Basic units depend on problemP

Example MQ-Problem : op : Fq-multiplication and el : Fq-element

Example binary SD-Problem: op : Fn
2 -vector addition and el : Fn

2 -vector

Problem defines op / el to bit (operation) conversion
5



Memory Access Costs

Computations are performed in the RAM model

Accessing 1 bit equals 1 bit operation

Embedding higher cost

Accessing 1 bit in memory of sizeM takes f(M) =
√
M, 3

√
M, . . . bit operations

Upper bound on memory access: T · f(M)

Real costC of the full algorithm : T ≤ C ≤ T · f(M)

6



Memory Access Costs

Computations are performed in the RAM model

Accessing 1 bit equals 1 bit operation

Embedding higher cost

Accessing 1 bit in memory of sizeM takes f(M) =
√
M, 3

√
M, . . . bit operations

Upper bound on memory access: T · f(M)

Real costC of the full algorithm : T ≤ C ≤ T · f(M)

6



Memory Access Costs

Computations are performed in the RAM model

Accessing 1 bit equals 1 bit operation

Embedding higher cost

Accessing 1 bit in memory of sizeM takes f(M) =
√
M, 3

√
M, . . . bit operations

Upper bound on memory access: T · f(M)

Real costC of the full algorithm : T ≤ C ≤ T · f(M)

6



Memory Access Costs

Computations are performed in the RAM model

Accessing 1 bit equals 1 bit operation

Embedding higher cost

Accessing 1 bit in memory of sizeM takes f(M) =
√
M, 3

√
M, . . . bit operations

Upper bound on memory access: T · f(M)

Real costC of the full algorithm : T ≤ C ≤ T · f(M)

6



Memory Access Costs

Computations are performed in the RAM model

Accessing 1 bit equals 1 bit operation

Embedding higher cost

Accessing 1 bit in memory of sizeM takes f(M) =
√
M, 3

√
M, . . . bit operations

Upper bound on memory access: T · f(M)

Real costC of the full algorithm : T ≤ C ≤ T · f(M)

6



Memory Access Costs

Computations are performed in the RAM model

Accessing 1 bit equals 1 bit operation

Embedding higher cost

Accessing 1 bit in memory of sizeM takes f(M) =
√
M, 3

√
M, . . . bit operations

Upper bound on memory access: T · f(M)

Real costC of the full algorithm : T ≤ C ≤ T · f(M)

6



Technical Design



Class Design

CryptographicEstimators: An object-oriented Python library

7



Class Design

CryptographicEstimators: An object-oriented Python library

7



Usage



Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


Usage

From command line:

Install –> sage –>

Docker 1 –> make docker-run –> same as local

From web application 2:

1Docker: https://www.docker.com
2Webapp: https://estimators.crypto.tii.ae

8

https://www.docker.com
https://estimators.crypto.tii.ae


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>

optimal parameters –>complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>

optimal parameters –>

complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>

complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>

complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>

complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>

complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


More Functionalities

Available algorithms:

Access single algorithms:

More functionalities:

Time complexity –> given as basic operations or bit operations.

Optimization under constraints, e.g:
1 memory bounds.
2 restricted parameters ranges.

9

complexity of crossbred –>optimal parameters –>

complex. for (D, d, k) = (6, 1, 3) –>

A full user guide is available.

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/User_Guide.ipynb


Contributing



Contributing

Where? –> Public repository CryptographicEstimators 3.

Submitting code? –> Write access by an email to cryptographic_estimators@tii.ae.

Guidelines? –> Check CONTRIBUTING.md in the repository.

Don’t want to code? –>

3https://github.com/Crypto-TII/CryptographicEstimators.
10

1 Check the code and raise issues.

2 Participate in the discussion (within the repository).

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/docs/CONTRIBUTING.md
https://github.com/Crypto-TII/CryptographicEstimators


Contributing

Where? –> Public repository CryptographicEstimators 3.

Submitting code? –> Write access by an email to cryptographic_estimators@tii.ae.

Guidelines? –> Check CONTRIBUTING.md in the repository.

Don’t want to code? –>

3https://github.com/Crypto-TII/CryptographicEstimators.
10

1 Check the code and raise issues.

2 Participate in the discussion (within the repository).

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/docs/CONTRIBUTING.md
https://github.com/Crypto-TII/CryptographicEstimators


Contributing

Where? –> Public repository CryptographicEstimators 3.

Submitting code? –> Write access by an email to cryptographic_estimators@tii.ae.

Guidelines? –> Check CONTRIBUTING.md in the repository.

Don’t want to code? –>

3https://github.com/Crypto-TII/CryptographicEstimators.
10

1 Check the code and raise issues.

2 Participate in the discussion (within the repository).

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/docs/CONTRIBUTING.md
https://github.com/Crypto-TII/CryptographicEstimators


Contributing

Where? –> Public repository CryptographicEstimators 3.

Submitting code? –> Write access by an email to cryptographic_estimators@tii.ae.

Guidelines? –> Check CONTRIBUTING.md in the repository.

Don’t want to code? –>

3https://github.com/Crypto-TII/CryptographicEstimators.
10

1 Check the code and raise issues.

2 Participate in the discussion (within the repository).

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/docs/CONTRIBUTING.md
https://github.com/Crypto-TII/CryptographicEstimators


Contributing

Where? –> Public repository CryptographicEstimators 3.

Submitting code? –> Write access by an email to cryptographic_estimators@tii.ae.

Guidelines? –> Check CONTRIBUTING.md in the repository.

Don’t want to code? –>

3https://github.com/Crypto-TII/CryptographicEstimators.
10

1 Check the code and raise issues.

2 Participate in the discussion (within the repository).

https://github.com/Crypto-TII/CryptographicEstimators/blob/main/docs/CONTRIBUTING.md
https://github.com/Crypto-TII/CryptographicEstimators


NIST PQC Signatures



Coverage

Current included estimators:

Multivariate Quadratic (MQ)

—-> y = P(x), withP a quadratic map.

Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)

—-> s = H · e, with wt(e) ≤ ω.

Permutation Equivalence (PE)
Linear Equivalence (LE)

—-> G′ = SGQ, with Q a monomial matrix.

Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ)

—-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)

—-> s = H · e, with wt(e) ≤ ω.

Permutation Equivalence (PE)
Linear Equivalence (LE)

—-> G′ = SGQ, with Q a monomial matrix.

Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.

Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)

—-> s = H · e, with wt(e) ≤ ω.

Permutation Equivalence (PE)
Linear Equivalence (LE)

—-> G′ = SGQ, with Q a monomial matrix.

Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq)

—-> s = H · e, with wt(e) ≤ ω.
Permutation Equivalence (PE)
Linear Equivalence (LE)

—-> G′ = SGQ, with Q a monomial matrix.

Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq) —-> s = H · e, with wt(e) ≤ ω.

Permutation Equivalence (PE)
Linear Equivalence (LE) —-> G′ = SGQ, with Q a monomial matrix.
Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq) —-> s = H · e, with wt(e) ≤ ω.
Permutation Equivalence (PE)
Linear Equivalence (LE) —-> G′ = SGQ, with Q a monomial matrix.

Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq) —-> s = H · e, with wt(e) ≤ ω.
Permutation Equivalence (PE)
Linear Equivalence (LE) —-> G′ = SGQ, with Q a monomial matrix.

Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq) —-> s = H · e, with wt(e) ≤ ω.
Permutation Equivalence (PE)
Linear Equivalence (LE) —-> G′ = SGQ, with Q a monomial matrix.
Permuted Kernel (PK)

—-> 0 = H · π
(

x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq) —-> s = H · e, with wt(e) ≤ ω.
Permutation Equivalence (PE)
Linear Equivalence (LE) —-> G′ = SGQ, with Q a monomial matrix.
Permuted Kernel (PK) —-> 0 = H · π

(
x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Coverage

Current included estimators:

Multivariate Quadratic (MQ) —-> y = P(x), withP a quadratic map.
Binary Syndrome Decoding (SD)
Syndrome Decoding overFq (SDFq) —-> s = H · e, with wt(e) ≤ ω.
Permutation Equivalence (PE)
Linear Equivalence (LE) —-> G′ = SGQ, with Q a monomial matrix.
Permuted Kernel (PK) —-> 0 = H · π

(
x
)

, withπ a permuation.

Best known attacks of 8 / 30 (remaining) submissions fall into this scope

11



Estimation of NIST Candidates

Estimates for NIST Category I parameter sets

Scheme Hardness Assumption Est. Time Est. Memory

SDitH SDFq 147.0 26.9
LESS LE 136.6 39.0
PERK PK 155.5 154.4
MQOM MQ 142.8 51.8
TUOV / UOV MQ 144.5 59.6
VOX MQ 153.0 59.8
PROV MQ 150.1 62.3

12



Future Developments



Future Developments

We plan to maintain the library, and actively develop it.

Features in development

Scheme vs. Problem estimators

Advanced memory access

Estimators in development

Schemes: UOV –> National University of Colombia and TII.

Problems:
MinRank –> NIST, TII and University of Limoges

Rank Syndrome Decoding –> NIST, TII and University of Limoges.

Rank Support Learning –> NIST, TII and University of Limoges.

Regular Syndrome Decoding –> Marche Polytechnic University, TII, and potential other collaborators.

13

Thank you!



Future Developments

We plan to maintain the library, and actively develop it.

Features in development

Scheme vs. Problem estimators

Advanced memory access

Estimators in development

Schemes: UOV –> National University of Colombia and TII.

Problems:
MinRank –> NIST, TII and University of Limoges

Rank Syndrome Decoding –> NIST, TII and University of Limoges.

Rank Support Learning –> NIST, TII and University of Limoges.

Regular Syndrome Decoding –> Marche Polytechnic University, TII, and potential other collaborators.

13

Thank you!



Future Developments

We plan to maintain the library, and actively develop it.

Features in development

Scheme vs. Problem estimators

Advanced memory access

Estimators in development

Schemes: UOV –> National University of Colombia and TII.

Problems:
MinRank –> NIST, TII and University of Limoges

Rank Syndrome Decoding –> NIST, TII and University of Limoges.

Rank Support Learning –> NIST, TII and University of Limoges.

Regular Syndrome Decoding –> Marche Polytechnic University, TII, and potential other collaborators.

13

Thank you!



Future Developments

We plan to maintain the library, and actively develop it.

Features in development

Scheme vs. Problem estimators

Advanced memory access

Estimators in development

Schemes: UOV –> National University of Colombia and TII.

Problems:
MinRank –> NIST, TII and University of Limoges

Rank Syndrome Decoding –> NIST, TII and University of Limoges.

Rank Support Learning –> NIST, TII and University of Limoges.

Regular Syndrome Decoding –> Marche Polytechnic University, TII, and potential other collaborators.

13

Thank you!



Future Developments

We plan to maintain the library, and actively develop it.

Features in development

Scheme vs. Problem estimators

Advanced memory access

Estimators in development

Schemes: UOV –> National University of Colombia and TII.

Problems:
MinRank –> NIST, TII and University of Limoges

Rank Syndrome Decoding –> NIST, TII and University of Limoges.

Rank Support Learning –> NIST, TII and University of Limoges.

Regular Syndrome Decoding –> Marche Polytechnic University, TII, and potential other collaborators. 13

Thank you!



Future Developments

We plan to maintain the library, and actively develop it.

Features in development

Scheme vs. Problem estimators

Advanced memory access

Estimators in development

Schemes: UOV –> National University of Colombia and TII.

Problems:
MinRank –> NIST, TII and University of Limoges

Rank Syndrome Decoding –> NIST, TII and University of Limoges.

Rank Support Learning –> NIST, TII and University of Limoges.

Regular Syndrome Decoding –> Marche Polytechnic University, TII, and potential other collaborators. 13

Thank you!



tii.ae


	Introduction
	Hardness Estimation
	CryptographicEstimators

	Theoretical Considerations
	Time and Memory
	Memory Access Costs

	Technical Design
	Usage
	Contributing
	NIST PQC Signatures
	Future Developments

