

On the Side-Channel Resistance of UOV

Survey of Physical Attacks and Recent Developments

Thomas Aulbach¹ NIST PQC Seminars , 07.07.2023

¹Universität Regensburg, Regensburg, Germany

Outline

1. UOV from Two Perspectives

2. Fault Attacks

Skip Random Sampling of Vinegar Variables [SK20] Bit-Flip in Central Map [FKN+22]

3. Side Channel Attacks

Horizontal SCA on Linear Transformation [PSK+18]

Template Attack on Evaluation of Vinegar Variables [ACK+23]

4. Takeaways

UOV from Two Perspectives

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it

¹https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it

¹https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it

NIST would like submissions for signature schemes that:¹

'are not based on structured lattices'

¹https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

- it is a comparably old scheme with 25 years of cryptanalysis
- \cdot many current (and past) multivariate signature schemes are modifications of it

- \cdot 'are not based on structured lattices' \checkmark
- 'have **short signatures**' 🗸

¹https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it

- \cdot 'are not based on structured lattices' \checkmark
- 'have short signatures'
- \cdot 'and fast verification' \checkmark

¹https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it

- \cdot 'are not based on structured lattices' \checkmark
- 'have short signatures'
- \cdot 'and fast verification' \checkmark
- 'e.g., UOV' 🗸

¹https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

Oil and Vinegar: Modern Parameters and Implementations²

Key sizes and performance data

Signature	public key	secret key	signature	KeyGen	Sign	Verify
Scheme		Bytes			Cycles	
ov-Ip	278 432	237 912	128	2 903 434	105 324	90 336
ov-Ip-pk c	43 576	237 912	128	2 858 724	105 324	224 006
ov-Ip-pk c -sk c	43 576	64	128	2 848 774	1 876 442	224 006
Dilithium2	1 312	2 544	2 420	124 031	333 013	118 412

²Beullens, W., Chen, M. S., Hung, S. H., Kannwischer, M. J., Peng, B. Y., Shih, C. J., and Yang, B. Y. (2023). Oil and Vinegar: Modern Parameters and Implementations. IACR TCHES, 321-365.

• Key objects are multivariate quadratic maps $\mathcal{P}:\mathbb{F}_q^n \to \mathbb{F}_q^m$

- Key objects are multivariate quadratic maps $\mathcal{P}:\mathbb{F}_q^n
 ightarrow \mathbb{F}_q^m$
- $\cdot \mathcal{P}$ consists of *m* homogeneous quadratic polynomials

$$p_k(\mathbf{x}) = \sum_{1 \le i \le j \le n} \alpha_{i,j}^{(k)} x_i x_j$$
, where $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}_q^n$

- Key objects are multivariate quadratic maps $\mathcal{P}:\mathbb{F}_q^n
 ightarrow\mathbb{F}_q^m$
- $\cdot \mathcal{P}$ consists of *m* homogeneous quadratic polynomials

$$p_k(\mathbf{x}) = \sum_{1 \le i \le j \le n} \alpha_{i,j}^{(k)} x_i x_j, \text{ where } \mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}_q^n$$

• Signing d in a nutshell: For $t = H(d) \in \mathbb{F}_q^m$, find $s \in \mathbb{F}_q^n$, such that $\mathcal{P}(s) = t$

- Key objects are multivariate quadratic maps $\mathcal{P}:\mathbb{F}_q^n
 ightarrow\mathbb{F}_q^m$
- $\cdot \mathcal{P}$ consists of *m* homogeneous quadratic polynomials

$$p_k(\mathbf{x}) = \sum_{1 \le i \le j \le n} \alpha_{i,j}^{(k)} x_i x_j$$
, where $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}_q^n$

- Signing d in a nutshell: For $t = H(d) \in \mathbb{F}_q^m$, find $s \in \mathbb{F}_q^n$, such that $\mathcal{P}(s) = t$
 - In general this is really difficult

- · Key objects are multivariate quadratic maps $\mathcal{P}:\mathbb{F}_q^n
 ightarrow\mathbb{F}_q^m$
- $\cdot \mathcal{P}$ consists of *m* homogeneous quadratic polynomials

$$p_k(\mathbf{x}) = \sum_{1 \le i \le j \le n} \alpha_{i,j}^{(k)} x_i x_j$$
, where $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}_q^n$

- Signing d in a nutshell: For $t = H(d) \in \mathbb{F}_q^m$, find $s \in \mathbb{F}_q^n$, such that $\mathcal{P}(s) = t$
 - In general this is really difficult
 - Include a trapdoor that can only be used with the secret key

- Key objects are multivariate quadratic maps $\mathcal{P}:\mathbb{F}_q^n
 ightarrow\mathbb{F}_q^m$
- $\cdot \mathcal{P}$ consists of *m* homogeneous quadratic polynomials

$$p_k(\mathbf{x}) = \sum_{1 \le i \le j \le n} \alpha_{i,j}^{(k)} x_i x_j$$
, where $\mathbf{x} = (x_1, \dots, x_n)^\top \in \mathbb{F}_q^n$

- Signing d in a nutshell: For $t = H(d) \in \mathbb{F}_q^m$, find $s \in \mathbb{F}_q^n$, such that $\mathcal{P}(s) = t$
 - In general this is really difficult
 - Include a trapdoor that can only be used with the secret key
- Verify if $\mathcal{P}(s) = t$ really holds

UOV with hidden central map ${\cal F}$

 $\cdot \mathcal{P} = \mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation

UOV with hidden central map ${\cal F}$

- $\cdot \mathcal{P} = \mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- $\cdot \mathcal{F}$ consists of *m* homogeneous quadratic polynomials

$$f_k(\mathbf{x}) = \sum_{1 \le i \le j \le v} \alpha_{i,j}^{(k)} x_i x_j + \sum_{1 \le i \le v < j \le n} \alpha_{i,j}^{(k)} x_i x_j, \text{ where } \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$

UOV with hidden central map ${\cal F}$

- $\cdot \mathcal{P} = \mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- $\cdot \mathcal{F}$ consists of *m* homogeneous quadratic polynomials

$$f_k(\mathbf{x}) = \sum_{1 \le i \le j \le v} \alpha_{i,j}^{(k)} x_i x_j + \sum_{1 \le i \le v < j \le n} \alpha_{i,j}^{(k)} x_i x_j, \text{ where } \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$

• Sort coefficients to matrices $F^{(k)}$ such that $f_k(\mathbf{x}) = \mathbf{x}^\top F^{(k)} \mathbf{x}$

UOV with hidden central map ${\cal F}$

- $\cdot \mathcal{P} = \mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- $\cdot \mathcal{F}$ consists of *m* homogeneous quadratic polynomials

$$f_k(\mathbf{x}) = \sum_{1 \le i \le j \le v} \alpha_{i,j}^{(k)} x_i x_j + \sum_{1 \le i \le v < j \le n} \alpha_{i,j}^{(k)} x_i x_j, \text{ where } \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$

• Sort coefficients to matrices $F^{(k)}$ such that $f_k(\mathbf{x}) = \mathbf{x}^\top F^{(k)} \mathbf{x}$

$$\begin{pmatrix} \tilde{\mathbf{v}}_{1} \\ \vdots \\ \tilde{\mathbf{v}}_{v} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix}^{\top} \begin{pmatrix} \alpha_{1,1}^{(k)} & \dots & \alpha_{1,v}^{(k)} & \alpha_{1,v+1}^{(k)} & \dots & \alpha_{1,n}^{(k)} \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \alpha_{v,v}^{(k)} & \alpha_{v,v+1}^{(k)} & \dots & \alpha_{v,n}^{(k)} \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} \tilde{\mathbf{v}}_{1} \\ \vdots \\ \tilde{\mathbf{v}}_{v} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix}$$

UOV with hidden central map ${\cal F}$

- $\cdot \mathcal{P} = \mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- $\cdot \mathcal{F}$ consists of *m* homogeneous quadratic polynomials

$$f_k(\mathbf{x}) = \sum_{1 \le i \le j \le v} \alpha_{i,j}^{(k)} x_i x_j + \sum_{1 \le i \le v < j \le n} \alpha_{i,j}^{(k)} x_i x_j, \text{ where } \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$

• Sort coefficients to matrices $F^{(k)}$ such that $f_k(\mathbf{x}) = \mathbf{x}^\top F^{(k)} \mathbf{x}$

$$\begin{pmatrix} \tilde{\mathbf{V}}_{1} \\ \vdots \\ \tilde{\mathbf{V}}_{V} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix}^{\top} \begin{pmatrix} \alpha_{1,1}^{(k)} & \dots & \alpha_{1,v}^{(k)} & \alpha_{1,v+1}^{(k)} & \dots & \alpha_{1,n}^{(k)} \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \alpha_{v,v}^{(k)} & \alpha_{v,v+1}^{(k)} & \dots & \alpha_{v,n}^{(k)} \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} \tilde{\mathbf{V}}_{1} \\ \vdots \\ \tilde{\mathbf{V}}_{v} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix} = l_{1}^{(k)} \cdot y_{1} + \dots + l_{m}^{(k)} \cdot y_{m} + c^{(k)}$$

• Fix and insert vinegar variables \tilde{v}_i to get *m* linear equations in *m* oil variables

UOV with hidden central map ${\cal F}$

• Compute between pk = P and sk = (F, T) with

 $P^{(k)} = T^{\top} F^{(k)} T$

UOV with hidden central map ${\cal F}$

• Compute between pk = P and sk = (F, T) with

$$P^{(k)} = T^{\top} F^{(k)} T$$

• Visualization of signing **t**

$$\mathbf{t} = \begin{pmatrix} t_1 \\ \vdots \\ t_m \end{pmatrix} \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{n-m} \\ \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_m \end{pmatrix} = \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} \xrightarrow{\mathcal{T}^{-1}} \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \mathcal{T}_1 \cdot \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

UOV with hidden central map ${\cal F}$

• Compute between pk = P and sk = (F, T) with

$$P^{(k)} = T^{\top} F^{(k)} T$$

• Visualization of signing **t**

.

$$\mathbf{t} = \begin{pmatrix} t_1 \\ \vdots \\ t_m \end{pmatrix} \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} v_1 \\ \vdots \\ v_{n-m} \\ y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} \xrightarrow{T^{-1}} \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{v} + T_1 \cdot \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

T has block matrix structure $T = \begin{pmatrix} l_v & T_1 \\ 0 & l_m \end{pmatrix}$

UOV with secret oil space

• Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_a^n$ of dimension *m*, i.e.

 $\mathcal{P}(\boldsymbol{o}) = 0$ for all $\boldsymbol{o} \in O$

UOV with secret oil space

• Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_a^n$ of dimension *m*, i.e.

 $\mathcal{P}(o) = 0$ for all $o \in O$

• The map $\mathcal{P}'(x,y) \coloneqq \mathcal{P}(x+y) - \mathcal{P}(x) - \mathcal{P}(y)$ is bilinear and symmetric

UOV with secret oil space

• Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_a^n$ of dimension *m*, i.e.

 $\mathcal{P}(\boldsymbol{o}) = 0$ for all $\boldsymbol{o} \in O$

• The map $\mathcal{P}'(x,y)\coloneqq \mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

• Generate random $\mathbf{v} \in \mathbb{F}_q^n$

UOV with secret oil space

• Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_a^n$ of dimension *m*, i.e.

 $\mathcal{P}(\boldsymbol{o}) = 0$ for all $\boldsymbol{o} \in O$

• The map $\mathcal{P}'(x,y)\coloneqq \mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $\mathbf{v} \in \mathbb{F}_q^n$
- Solve $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathcal{P}(\mathbf{v}) + \mathcal{P}(\mathbf{o}) + \mathcal{P}'(\mathbf{v}, \mathbf{o}) = t$ for $\mathbf{o} \in O$.

UOV with secret oil space

• Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_a^n$ of dimension *m*, i.e.

 $\mathcal{P}(\boldsymbol{o}) = 0$ for all $\boldsymbol{o} \in O$

• The map $\mathcal{P}'(x,y)\coloneqq \mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $\mathbf{v} \in \mathbb{F}_q^n$
- Solve $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathcal{P}(\mathbf{v}) + \mathcal{P}(\mathbf{o}) + \mathcal{P}'(\mathbf{v}, \mathbf{o}) = \mathbf{t}$ for $\mathbf{o} \in O$. \rightarrow Computing $\mathcal{P}(\mathbf{v})$ implies the insertion of the vinegar variables into the quadratic map

UOV with secret oil space

• Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_a^n$ of dimension *m*, i.e.

 $\mathcal{P}(o) = 0$ for all $o \in O$

• The map $\mathcal{P}'(x,y)\coloneqq \mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $\mathbf{v} \in \mathbb{F}_q^n$
- Solve $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathcal{P}(\mathbf{v}) + \mathcal{P}(\mathbf{o}) + \mathcal{P}'(\mathbf{v}, \mathbf{o}) = \mathbf{t}$ for $\mathbf{o} \in O$.

 \rightarrow Computing $\mathcal{P}(v)$ implies the insertion of the vinegar variables into the quadratic map

 \rightarrow Solving $\mathcal{P}'(\mathbf{v},\mathbf{o}) = \mathbf{t} - \mathcal{P}(\mathbf{v})$ means solving a system with *m* variables in *m* equations

UOV with secret oil space

• Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_a^n$ of dimension *m*, i.e.

 $\mathcal{P}(\boldsymbol{o}) = 0$ for all $\boldsymbol{o} \in O$

• The map $\mathcal{P}'(x,y)\coloneqq \mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $\mathbf{v} \in \mathbb{F}_q^n$
- Solve $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathcal{P}(\mathbf{v}) + \mathcal{P}(\mathbf{o}) + \mathcal{P}'(\mathbf{v}, \mathbf{o}) = \mathbf{t}$ for $\mathbf{o} \in O$.

 \rightarrow Computing $\mathcal{P}(\mathbf{v})$ implies the insertion of the vinegar variables into the quadratic map \rightarrow Solving $\mathcal{P}'(\mathbf{v}, \mathbf{o}) = \mathbf{t} - \mathcal{P}(\mathbf{v})$ means solving a system with *m* variables in *m* equations

• The vector $\mathbf{s} = \mathbf{v} + \mathbf{o}$ forms a valid signature

Fault Attacks

Main idea

Skip the random sampling of vinegar values (already discussed in [HTS11]³ and [KL19]⁴)

$$\mathbf{t} \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} \xrightarrow{\mathcal{T}^{-1}} \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \mathcal{T}_1 \cdot \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

³Hashimoto, Y., Takagi, T., and Sakurai, K.: General Fault Attacks on Multivariate Public Key Cryptosystems. PQCrypto 2011

⁴Krämer, J., and Loiero, M.: Fault Attacks on UOV and Rainbow. COSADE 2019

Main idea

• Skip the random sampling of vinegar values (already discussed in [HTS11]³ and [KL19]⁴)

$$t \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} \xrightarrow{\mathcal{T}^{-1}} \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \mathcal{T}_1 \cdot \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

• Solution to \mathcal{F}^{-1} are the randomly generated vinegar values $\mathbf{v} = (v_1, \dots, v_{n-m})^\top$ and the computed oil variables $\mathbf{y} = (y_1, \dots, y_m)^\top$

³Hashimoto, Y., Takagi, T., and Sakurai, K.: General Fault Attacks on Multivariate Public Key Cryptosystems. PQCrypto 2011

⁴Krämer, J., and Loiero, M.: Fault Attacks on UOV and Rainbow. COSADE 2019

 \cdot Skip random sampling enforces reuse of v
Skip Random Sampling of Vinegar Variables

$$\mathbf{t} \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} \xrightarrow{T^{-1}} \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{v} + T_1 \cdot \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$
$$\mathbf{t}^{(i)} \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} \mathbf{v} \\ \mathbf{y}^{(i)} \end{pmatrix} \xrightarrow{T^{-1}} \begin{pmatrix} \mathbf{s}_1^{(i)} \\ \mathbf{s}_2^{(i)} \end{pmatrix} = \begin{pmatrix} \mathbf{v} + T_1 \cdot \mathbf{y}^{(i)} \\ \mathbf{y}^{(i)} \end{pmatrix}$$

 $\cdot\,$ Skip random sampling enforces reuse of v

• We have
$$\begin{pmatrix} \mathbf{s}_1^{(i)} \\ \mathbf{s}_2^{(i)} \end{pmatrix} - \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix}$$

Skip Random Sampling of Vinegar Variables

 \cdot Skip random sampling enforces reuse of v

• We have
$$\begin{pmatrix} \mathbf{s}_1^{(i)} \\ \mathbf{s}_2^{(i)} \end{pmatrix} - \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix}$$

• Repeat *m* times to solve for T_1 (requires *m* faulted signatures)

In fact, one can do even better

• The vector
$$\begin{pmatrix} \mathbf{s}_1^{(i)} \\ \mathbf{s}_2^{(i)} \end{pmatrix} - \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix}$$
 represents an oil vector, i.e.
 $\mathcal{P}\begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathcal{F}\begin{pmatrix} I_v & T_1 \\ 0 & I_m \end{pmatrix} \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathcal{F}\begin{pmatrix} \mathbf{0} \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathbf{0}$

In fact, one can do even better

• The vector
$$\begin{pmatrix} \mathbf{s}_1^{(i)} \\ \mathbf{s}_2^{(i)} \end{pmatrix} - \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix}$$
 represents an oil vector, i.e.
 $\mathcal{P}\begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathcal{F}\begin{pmatrix} I_v & T_1 \\ 0 & I_m \end{pmatrix} \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathcal{F}\begin{pmatrix} \mathbf{0} \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathbf{0}$

• This is easy to recognize in the oil space description, since

$$s^{(i)} - s = (\mathbf{v} + o^{(i)}) - (\mathbf{v} + o) = o^{(i)} - o \in O$$

In fact, one can do even better

• The vector
$$\begin{pmatrix} \mathbf{s}_1^{(i)} \\ \mathbf{s}_2^{(i)} \end{pmatrix} - \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} = \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix}$$
 represents an oil vector, i.e.
 $\mathcal{P}\begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathcal{F}\begin{pmatrix} I_v & T_1 \\ 0 & I_m \end{pmatrix} \begin{pmatrix} T_1 \cdot (\mathbf{y}^{(i)} - \mathbf{y}) \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathcal{F}\begin{pmatrix} \mathbf{0} \\ (\mathbf{y}^{(i)} - \mathbf{y}) \end{pmatrix} = \mathbf{0}$

• This is easy to recognize in the oil space description, since

$$\mathbf{s}^{(i)} - \mathbf{s} = (\mathbf{v} + \mathbf{o}^{(i)}) - (\mathbf{v} + \mathbf{o}) = \mathbf{o}^{(i)} - \mathbf{o} \in O$$

 \cdot One oil vector enables key recovery in polynomial time ightarrow next slide

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

• For two oil vectors $\mathbf{o}_1, \mathbf{o}_2$ it holds

$$\mathcal{P}'(\mathbf{o}_1,\mathbf{o}_2)=\mathcal{P}(\mathbf{o}_1+\mathbf{o}_2)-\mathcal{P}(\mathbf{o}_1)-\mathcal{P}(\mathbf{o}_2)=\mathbf{0}\in\mathbb{F}_q^m$$

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

+ For two oil vectors $\mathbf{o}_1, \mathbf{o}_2$ it holds

$$\mathcal{P}'(\mathbf{o}_1,\mathbf{o}_2) = \mathcal{P}(\mathbf{o}_1 + \mathbf{o}_2) - \mathcal{P}(\mathbf{o}_1) - \mathcal{P}(\mathbf{o}_2) = \mathbf{0} \in \mathbb{F}_q^m$$

 \rightarrow If o_1 and o_2 are unknown, this is a quadratic system that is hard to solve

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

+ For two oil vectors $\mathbf{o}_1, \mathbf{o}_2$ it holds

$$\mathcal{P}'(\mathbf{o}_1,\mathbf{o}_2)=\mathcal{P}(\mathbf{o}_1+\mathbf{o}_2)-\mathcal{P}(\mathbf{o}_1)-\mathcal{P}(\mathbf{o}_2)=\mathbf{0}\in\mathbb{F}_q^m$$

 \rightarrow If \mathbf{o}_1 and \mathbf{o}_2 are unknown, this is a quadratic system that is hard to solve \rightarrow If \mathbf{o}_1 is known, this presents *m* linear equations for \mathbf{o}_2

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

• For two oil vectors $\mathbf{o}_1, \mathbf{o}_2$ it holds

$$\mathcal{P}'(\mathbf{o}_1,\mathbf{o}_2)=\mathcal{P}(\mathbf{o}_1+\mathbf{o}_2)-\mathcal{P}(\mathbf{o}_1)-\mathcal{P}(\mathbf{o}_2)=\mathbf{0}\in\mathbb{F}_q^m$$

 \rightarrow If \mathbf{o}_1 and \mathbf{o}_2 are unknown, this is a quadratic system that is hard to solve \rightarrow If \mathbf{o}_1 is known, this presents *m* linear equations for \mathbf{o}_2

• With the given UOV parameters, this implies: If **two oil vectors** are known, the remaining oil space can be found in polynomial time

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

+ For two oil vectors $\boldsymbol{o}_1, \boldsymbol{o}_2$ it holds

$$\mathcal{P}'(\mathbf{o}_1,\mathbf{o}_2)=\mathcal{P}(\mathbf{o}_1+\mathbf{o}_2)-\mathcal{P}(\mathbf{o}_1)-\mathcal{P}(\mathbf{o}_2)=\mathbf{0}\in\mathbb{F}_q^m$$

 \rightarrow If \mathbf{o}_1 and \mathbf{o}_2 are unknown, this is a quadratic system that is hard to solve \rightarrow If \mathbf{o}_1 is known, this presents *m* linear equations for \mathbf{o}_2

• With the given UOV parameters, this implies: If **two oil vectors** are known, the remaining oil space can be found in polynomial time

In fact, even one oil vector is enough, when using modified Kipnis-Shamir attack ⁵

⁵Thanks to Ward Beullens for pointing out how this attack is possible

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

+ For two oil vectors $\boldsymbol{o}_1, \boldsymbol{o}_2$ it holds

$$\mathcal{P}'(\mathbf{o}_1,\mathbf{o}_2)=\mathcal{P}(\mathbf{o}_1+\mathbf{o}_2)-\mathcal{P}(\mathbf{o}_1)-\mathcal{P}(\mathbf{o}_2)=\mathbf{0}\in\mathbb{F}_q^m$$

 \rightarrow If \mathbf{o}_1 and \mathbf{o}_2 are unknown, this is a quadratic system that is hard to solve \rightarrow If \mathbf{o}_1 is known, this presents *m* linear equations for \mathbf{o}_2

• With the given UOV parameters, this implies: If **two oil vectors** are known, the remaining oil space can be found in polynomial time

In fact, even **one oil vector** is enough, when using modified Kipnis-Shamir attack ⁵ Details can be found in [ACK+23] ⁶

⁵Thanks to Ward Beullens for pointing out how this attack is possible

⁶Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

- Instruction skip to reuse the vinegar variables
- Number of needed faulted signatures is reduced from *m* to now only 1
- Distinguish between reuse and zero setting (analyzed in [SK20]⁷ and [KKT22]⁸)

⁷Shim, K. A., and Koo, N.: Algebraic Fault Analysis of UOV and Rainbow with the Leakage of Random Vinegar Values. IEEE Transactions on Information Forensics and Security 2020 ⁸Kato, T., Kiyomura, Y., and Takagi, T.: Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values. International Workshop on Security 2022

- Instruction skip to reuse the vinegar variables
- + Number of needed faulted signatures is reduced from m to now only 1
- Distinguish between reuse and zero setting (analyzed in [SK20]⁷ and [KKT22]⁸)

Practicality

 Attack is simulated targeting Rainbow on an emulated ARM M4 architecture using QEMU in [AKK+22]⁹

⁷Shim, K. A., and Koo, N.: Algebraic Fault Analysis of UOV and Rainbow with the Leakage of Random Vinegar Values. IEEE Transactions on Information Forensics and Security 2020
 ⁸Kato, T., Kiyomura, Y., and Takagi, T.: Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values. International Workshop on Security 2022
 ⁹Aulbach, T., Kovats, T., Krämer, J., and Marzougui, S.: Recovering Rainbow's Secret Key with a First-Order Fault Attack. AfricaCrypt 2022

- Instruction skip to reuse the vinegar variables
- Number of needed faulted signatures is reduced from *m* to now only 1
- Distinguish between reuse and zero setting (is analyzed in [SK20] and [KKT22])

Practicality

• Attack is simulated targeting Rainbow on an emulated ARM M4 architecture using QEMU in [AKK+22]

Countermeasures

- · 'Verify before output' is not possible, since faulted signature is valid
- Store old vinegar variables and only output signature if there are no large overlaps

- Instruction skip to reuse the vinegar variables
- Number of needed faulted signatures is reduced from *m* to now only 1
- Distinguish between reuse and zero setting (is analyzed in [SK20] and [KKT22])

Practicality

• Attack is simulated targeting Rainbow on an emulated ARM M4 architecture using QEMU in [AKK+22]

Countermeasures

- $\cdot\,$ 'Verify before output' is not possible, since faulted signature is valid
- Store old vinegar variables and only output signature if there are no large overlaps

Future work

- Execute instruction skip on a target device
- Apply to various modifications of UOV

Fault model

- Introduce a fault that changes one coefficient $\alpha'_{i,j}^{(k)}$ in the central map \mathcal{F} (already discussed in [HTS11] and [KL19])
- Faulted coefficient is randomly chosen and attacker does not know its location

$$F'^{(k)} = \begin{pmatrix} \alpha_{1,1}^{(k)} & \dots & \alpha_{1,v}^{(k)} & \alpha_{1,v+1}^{(k)} & \dots & \alpha_{1,n}^{(k)} \\ 0 & \ddots & \vdots & \vdots & \alpha'_{i,j}^{(k)} & \vdots \\ 0 & 0 & \alpha_{v,v}^{(k)} & \alpha_{v,v+1}^{(k)} & \dots & \alpha_{v,n}^{(k)} \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$$

Bit-Flip in Central Map

Fault model

- Introduce a fault that changes one coefficient $\alpha'_{i,j}^{(k)}$ in the central map \mathcal{F} (already discussed in [HTS11] and [KL19])
- Faulted coefficient is randomly chosen and attacker does not know its location

$$\begin{pmatrix} \tilde{v}_{1} \\ \vdots \\ \tilde{v}_{v} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix}^{\top} \begin{pmatrix} \alpha_{1,1}^{(k)} & \dots & \alpha_{1,v}^{(k)} & \alpha_{1,v+1}^{(k)} & \dots & \alpha_{1,n}^{(k)} \\ 0 & \ddots & \vdots & \vdots & \alpha_{i,j}^{\prime(k)} & \vdots \\ 0 & 0 & \alpha_{v,v}^{(k)} & \alpha_{v,v+1}^{(k)} & \dots & \alpha_{v,n}^{(k)} \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} \tilde{v}_{1} \\ \vdots \\ \tilde{v}_{v} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix} = l_{1}^{(k)} \cdot y_{1} + \dots + l_{j}^{(k)} \cdot y_{j} + \dots + c^{(k)}$$

Bit-Flip in Central Map

Fault model

- Introduce a fault that changes one coefficient $\alpha'_{i,j}^{(k)}$ in the central map \mathcal{F} (already discussed in [HTS11] and [KL19])
- Faulted coefficient is randomly chosen and attacker does not know its location

$$\begin{pmatrix} \tilde{v}_{1} \\ \vdots \\ \tilde{v}_{v} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix}^{\top} \begin{pmatrix} \alpha_{1,1}^{(k)} & \dots & \alpha_{1,v}^{(k)} & \alpha_{1,v+1}^{(k)} & \dots & \alpha_{1,n}^{(k)} \\ 0 & \ddots & \vdots & \vdots & \alpha_{i,j}^{\prime(k)} & \vdots \\ 0 & 0 & \alpha_{v,v}^{(k)} & \alpha_{v,v+1}^{(k)} & \dots & \alpha_{v,n}^{(k)} \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} \tilde{v}_{1} \\ \vdots \\ \tilde{v}_{v} \\ y_{1} \\ \vdots \\ y_{m} \end{pmatrix} = l_{1}^{(k)} \cdot y_{1} + \dots + l_{j}^{(k)} \cdot y_{j} + \dots + c^{(k)}$$

• One coefficient in the k-th linear equation is altered

Fault propagation

$$t \xrightarrow{\mathcal{F}'^{-1}} \begin{pmatrix} v \\ y \end{pmatrix} \xrightarrow{\mathcal{T}^{-1}} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = s'$$

• Faulted signature \mathbf{s}' of \mathbf{t} might deviate heavily from fault-free $\mathbf{s} = T^{-1} \circ \mathcal{F}^{-1}(\mathbf{t})$

Fault propagation

$$t \xrightarrow{\mathcal{F}'^{-1}} \begin{pmatrix} v \\ y \end{pmatrix} \xrightarrow{\mathcal{T}^{-1}} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = s'$$

- Faulted signature \mathbf{s}' of \mathbf{t} might deviate heavily from fault-free $\mathbf{s} = T^{-1} \circ \mathcal{F}^{-1}(\mathbf{t})$
- $\cdot \,$ But $\mathcal{P}(s')$ only deviates in one entry from t

$$\begin{aligned} \mathcal{P}(\mathbf{s}') - \mathbf{t} &= \mathcal{F} \circ T(\mathbf{s}') - \mathcal{F}' \circ T(\mathbf{s}') = (\mathcal{F} - \mathcal{F}') \circ T(\mathbf{s}') \\ &= (0, \dots, 0, (\alpha_{i,j}^{(k)} - \alpha_{i,j}'^{(k)})(T(\mathbf{s}')_i \cdot T(\mathbf{s}')_j), 0, \dots, 0) \end{aligned}$$

Fault propagation

$$t \xrightarrow{\mathcal{F}'^{-1}} \begin{pmatrix} v \\ y \end{pmatrix} \xrightarrow{\mathcal{T}^{-1}} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = s'$$

- Faulted signature \mathbf{s}' of \mathbf{t} might deviate heavily from fault-free $\mathbf{s} = T^{-1} \circ \mathcal{F}^{-1}(\mathbf{t})$
- $\cdot \,$ But $\mathcal{P}(s')$ only deviates in one entry from t

$$\begin{aligned} \mathcal{P}(\mathbf{s}') - \mathbf{t} &= \mathcal{F} \circ T(\mathbf{s}') - \mathcal{F}' \circ T(\mathbf{s}') = (\mathcal{F} - \mathcal{F}') \circ T(\mathbf{s}') \\ &= (0, \dots, 0, (\alpha_{i,j}^{(k)} - \alpha_{i,j}'^{(k)})(T(\mathbf{s}')_i \cdot T(\mathbf{s}')_j), 0, \dots, 0) \end{aligned}$$

• This yields quadratic equations in the *i*-th and *j*-th row of T

Iterate the following steps to achieve key recovery (Details in [FKN+22]¹⁰)

- 1. Employ signing oracle to get N = n(n + 1)/2 message and faulted signature pairs
- 2. Obtain rows of the secret transformation T
- 3. Transform ${\cal P}$ to a smaller system by reducing the number of variables

¹⁰Furue, H., Kiyomura, Y., Nagasawa, T., and Takagi, T.: A New Fault Attack on UOV Multivariate Signature Scheme. PQCrypto 2022

Summary

- Randomization fault
- Attack needs \approx 10 20 iterations with $n^2/2$ queries to a signing oracle each round

Summary

- Randomization fault
- Attack needs \approx 10 20 iterations with $n^2/2$ queries to a signing oracle each round

Practicality

+ Purely theoretical \rightarrow No execution of the fault attack yet

Summary

- Randomization fault
- Attack needs \approx 10 20 iterations with $n^2/2$ queries to a signing oracle each round

Practicality

+ Purely theoretical \rightarrow No execution of the fault attack yet

Countermeasures

- Verify before returning the signature, since faulted signature is invalid
- Check if secret key is altered

Summary

- Randomization fault
- Attack needs \approx 10 20 iterations with $n^2/2$ queries to a signing oracle each round

Practicality

+ Purely theoretical \rightarrow No execution of the fault attack yet

Countermeasures

- Verify before returning the signature, since faulted signature is invalid
- Check if secret key is altered

Future work

- Find a way to physically cause the randomization in exactly one entry
- Transfer the attack to implementation with compressed keys, where the central map is not stored

¹¹Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

Uses Rowhammer attack to introduce faults to the linear transformation T
 → Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level
 above or below some threshold)

¹¹Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

- Uses Rowhammer attack to introduce faults to the linear transformation T
 → Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level
 above or below some threshold)
- Software-induced hardware-fault attack

¹¹Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

- Uses Rowhammer attack to introduce faults to the linear transformation T
 → Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level
 above or below some threshold)
- Software-induced hardware-fault attack
- Applied the attack with \approx 4hrs of active Rowhammer with efficient post-processing to achieve full key recovery

¹¹Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

- Uses Rowhammer attack to introduce faults to the linear transformation T
 → Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level
 above or below some threshold)
- Software-induced hardware-fault attack
- Applied the attack with \approx 4hrs of active Rowhammer with efficient post-processing to achieve full key recovery
- Might be transferred to UOV

¹¹Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

Side Channel Attacks

Horizontal SCA on Linear Transformation T

Main idea¹²

$$t \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} v \\ y \end{pmatrix} \xrightarrow{T^{-1}} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} v + T_1 \cdot y \\ y \end{pmatrix}$$

• Perform power analysis of matrix-vector multiplication

$$\begin{pmatrix} I_{\mathsf{v}} & T_{\mathsf{1}} \\ 0 & I_{\mathsf{m}} \end{pmatrix} \cdot \begin{pmatrix} \mathsf{v} \\ \mathsf{y} \end{pmatrix} = \begin{pmatrix} \mathsf{v} + T_{\mathsf{1}} \cdot \mathsf{y} \\ \mathsf{y} \end{pmatrix}$$

¹²Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR TCHES 2018

Horizontal SCA on Linear Transformation T

Main idea¹²

$$t \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} v \\ y \end{pmatrix} \xrightarrow{T^{-1}} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} v + T_1 \cdot y \\ y \end{pmatrix}$$

Perform power analysis of matrix-vector multiplication

$$\begin{pmatrix} I_{v} & T_{1} \\ 0 & I_{m} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \mathbf{T}_{1} \cdot \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

• Here, the vector \mathbf{y} is known, and the matrix T_1 is the secret we want to obtain

¹²Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR TCHES 2018

Horizontal SCA on Linear Transformation T

Main idea¹²

$$t \xrightarrow{\mathcal{F}^{-1}} \begin{pmatrix} v \\ y \end{pmatrix} \xrightarrow{T^{-1}} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} v + T_1 \cdot y \\ y \end{pmatrix}$$

• Perform power analysis of matrix-vector multiplication

$$\begin{pmatrix} I_{v} & T_{1} \\ 0 & I_{m} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{v} + \mathbf{T}_{1} \cdot \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

- Here, the vector \mathbf{y} is known, and the matrix T_1 is the secret we want to obtain
- Either obtain all entries of *T* by SCA or identify certain rows and reduce the system *P* <u>as shown in previous fault attack</u>

¹²Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR TCHES 2018

Matrix-Vector Multiplication

The vulnerable function in more detail

$$\begin{pmatrix} I & T_1 \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_{1,4} & t_{1,5} \\ 0 & 1 & 0 & t_{2,4} & t_{2,5} \\ 0 & 0 & 1 & t_{3,4} & t_{3,5} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} t_{1,4} \cdot y_1 + t_{1,5} \cdot y_2 \\ t_{2,4} \cdot y_1 + t_{2,5} \cdot y_2 \\ t_{3,4} \cdot y_1 + t_{3,5} \cdot y_2 \\ 0 \\ 0 \end{pmatrix}$$
Matrix-Vector Multiplication

The vulnerable function in more detail

$$\begin{pmatrix} I & T_{1} \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_{1,4} & t_{1,5} \\ 0 & 1 & 0 & t_{2,4} & t_{2,5} \\ 0 & 0 & 1 & t_{3,4} & t_{3,5} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ y_{1} \\ y_{2} \end{pmatrix} = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ y_{1} \\ y_{2} \end{pmatrix} + \begin{pmatrix} t_{1,4} \cdot y_{1} + t_{1,5} \cdot y_{2} \\ t_{2,4} \cdot y_{1} + t_{2,5} \cdot y_{2} \\ t_{3,4} \cdot y_{1} + t_{3,5} \cdot y_{2} \\ 0 \\ 0 \end{pmatrix}$$

Correlation power analysis

1. Guess intermediate values and map hypothetical value to hypothetical power consumption of the function under investigation

Matrix-Vector Multiplication

The vulnerable function in more detail

$$\begin{pmatrix} I & T_{1} \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_{1,4} & t_{1,5} \\ 0 & 1 & 0 & t_{2,4} & t_{2,5} \\ 0 & 0 & 1 & t_{3,4} & t_{3,5} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ y_{1} \\ y_{2} \end{pmatrix} = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ y_{1} \\ y_{2} \end{pmatrix} + \begin{pmatrix} t_{1,4} \cdot y_{1} + t_{1,5} \cdot y_{2} \\ t_{2,4} \cdot y_{1} + t_{2,5} \cdot y_{2} \\ t_{3,4} \cdot y_{1} + t_{3,5} \cdot y_{2} \\ 0 \\ 0 \end{pmatrix}$$

Correlation power analysis

- 1. Guess intermediate values and map hypothetical value to hypothetical power consumption of the function under investigation
- 2. Measure the power consumption of the target device

Matrix-Vector Multiplication

The vulnerable function in more detail

$$\begin{pmatrix} I & T_{1} \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_{1,4} & t_{1,5} \\ 0 & 1 & 0 & t_{2,4} & t_{2,5} \\ 0 & 0 & 1 & t_{3,4} & t_{3,5} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ y_{1} \\ y_{2} \end{pmatrix} = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ y_{1} \\ y_{2} \end{pmatrix} + \begin{pmatrix} t_{1,4} \cdot y_{1} + t_{1,5} \cdot y_{2} \\ t_{2,4} \cdot y_{1} + t_{2,5} \cdot y_{2} \\ t_{3,4} \cdot y_{1} + t_{3,5} \cdot y_{2} \\ 0 \\ 0 \end{pmatrix}$$

Correlation power analysis

- 1. Guess intermediate values and map hypothetical value to hypothetical power consumption of the function under investigation
- 2. Measure the power consumption of the target device
- 3. Perform statistical comparison between hypothetical power consumption and measured power traces

Compute Correlation with Hypothetical Values

Example with clear separation between correct key elements and wrong key element

Correlation coefficients for all possible field elements and the entry t_{45} [PSK+18]

Compute Correlation with Hypothetical Values

Example with two possible candidate for the correct key element

Correlation coefficients for all possible field elements and the entry t_{46} [PSK+18]

Summary

- Correlation power analysis on field multiplication
- \cdot Around 30 100 power traces are needed to recover field elements

Summary

- Correlation power analysis on field multiplication
- \cdot Around 30 100 power traces are needed to recover field elements

Practicality

- Attack the matrix-vector product code on the ChipWhisperer-Lite evaluation platform
- Target board is an 8-bit Atmel XMEGA128 (might be more difficult on 32-bit devices)
- Parameters were strongly reduced (n = 8 and m = 6)

Summary

- Correlation power analysis on field multiplication
- \cdot Around 30 100 power traces are needed to recover field elements

Practicality

- Attack the matrix-vector product code on the ChipWhisperer-Lite evaluation platform
- Target board is an 8-bit Atmel XMEGA128 (might be more difficult on 32-bit devices)
- Parameters were strongly reduced (n = 8 and m = 6)

Countermeasures

- Masking or shuffling are classical countermeasures for this
- Randomization of the input value (since *T* is linear)

Summary

- Correlation power analysis on field multiplication
- \cdot Around 30 100 power traces are needed to recover field elements

Practicality

- Attack the matrix-vector product code on the ChipWhisperer-Lite evaluation platform
- Target board is an 8-bit Atmel XMEGA128 (might be more difficult on 32-bit devices)
- Parameters were strongly reduced (n = 8 and m = 6)

Countermeasures

- Masking or shuffling are classical countermeasures for this
- Randomization of the input value (since *T* is linear)

Future work

- Analyze efficiency impact of countermeasures
- Transfer the attack to modern and optimized implementations

Attack Insertion of Vinegar Values in Public Key Map

Main idea¹³

• Measure power consumption of $\mathcal{P}(\mathbf{v})$

¹³Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

Main idea¹³

- Measure power consumption of $\mathcal{P}(v)$
- This operation boils down to computing $\mathbf{v}^{\top} P^{(k)} \mathbf{v}$ for *m* known matrices $P^{(k)}$

¹³Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

Main idea¹³

- \cdot Measure power consumption of $\mathcal{P}(v)$
- This operation boils down to computing $\mathbf{v}^{\top} P^{(k)} \mathbf{v}$ for *m* known matrices $P^{(k)}$
- Consider the matrix-vector multiplication

$$P^{(k)} \cdot \mathbf{v} = \begin{pmatrix} p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1,n}^{(k)} \\ & p_{2,2}^{(k)} & \cdots & p_{2,n}^{(k)} \\ & & \ddots & \vdots \\ & & & & p_{n,n}^{(k)} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \text{ for } k \in \{1,\dots,m\}$$

¹³Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

Main idea¹³

- \cdot Measure power consumption of $\mathcal{P}(v)$
- This operation boils down to computing $\mathbf{v}^{\top} P^{(k)} \mathbf{v}$ for *m* known matrices $P^{(k)}$
- Consider the matrix-vector multiplication

$$P^{(k)} \cdot \mathbf{v} = \begin{pmatrix} p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1,n}^{(k)} \\ & p_{2,2}^{(k)} & \cdots & p_{2,n}^{(k)} \\ & & \ddots & \vdots \\ & & & p_{n,n}^{(k)} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \text{ for } k \in \{1,\dots,m\}$$

 $\cdot\,$ Secret v is multiplied with a considerable amount of known values

¹³Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

Template Attack

• Create a template by tracing the power consumption of

$$P^{(k)} \cdot \mathbf{v} = \begin{pmatrix} p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1,n}^{(k)} \\ p_{2,2}^{(k)} & \cdots & p_{2,n}^{(k)} \\ & & \ddots & \vdots \\ & & & & p_{n,n}^{(k)} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \text{ for } k \in \{1,\dots,m\}$$

for $\mathbf{v} = \mathbf{0}, \mathbf{1}, \mathbf{2}, ..., \mathbf{q} - \mathbf{1} \in \mathbb{F}_q^m$

Template Attack

 \cdot Create a template by tracing the power consumption of

$$P^{(k)} \cdot \mathbf{v} = \begin{pmatrix} p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1,n}^{(k)} \\ & p_{2,2}^{(k)} & \cdots & p_{2,n}^{(k)} \\ & & \ddots & \vdots \\ & & & & p_{n,n}^{(k)} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \text{ for } k \in \{1,\dots,m\}$$

for $\mathbf{v}=\mathbf{0},\mathbf{1},\mathbf{2},...,\mathbf{q}-\mathbf{1}\in\mathbb{F}_q^m$

• Multiplication of field elements

$$p_{1,1}^{(k)} \cdot v_1 \quad p_{2,2}^{(k)} \cdot v_2 \quad \dots \quad p_{n,n}^{(k)} \cdot v_n$$

• Create a template by tracing the power consumption of

$$P^{(k)} \cdot \mathbf{v} = \begin{pmatrix} p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1,n}^{(k)} \\ p_{2,2}^{(k)} & \cdots & p_{2,n}^{(k)} \\ & & \ddots & \vdots \\ & & & & p_{n,n}^{(k)} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \text{ for } k \in \{1,\dots,m\}$$

for $\mathbf{v}=\mathbf{0},\mathbf{1},\mathbf{2},...,\mathbf{q}-\mathbf{1}\in\mathbb{F}_q^m$

• Multiplication of field elements

$$p_{1,1}^{(k)} \cdot v_1 \quad p_{2,2}^{(k)} \cdot v_2 \quad \dots \quad p_{n,n}^{(k)} \cdot v_n$$

• For each field element, we need to run and trace the matrix-vector multiplication only once \rightarrow in total q = 256 profiling traces

• Create a template by tracing the power consumption of

$$P^{(k)} \cdot \mathbf{v} = \begin{pmatrix} p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1,n}^{(k)} \\ p_{2,2}^{(k)} & \cdots & p_{2,n}^{(k)} \\ & & \ddots & \vdots \\ & & & & p_{n,n}^{(k)} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \text{ for } k \in \{1,\dots,m\}$$

for $\mathbf{v}=\mathbf{0},\mathbf{1},\mathbf{2},...,\mathbf{q}-\mathbf{1}\in\mathbb{F}_q^m$

• Multiplication of field elements

$$p_{1,1}^{(k)} \cdot v_1 \quad p_{2,2}^{(k)} \cdot v_2 \quad \dots \quad p_{n,n}^{(k)} \cdot v_n$$

- For each field element, we need to run and trace the matrix-vector multiplication only once \rightarrow in total q = 256 profiling traces
- Can be collected on another device (subtract some mean to erase the 'footprint' of the device)

• Power traces are very distinctive

Record Power Traces

- Power traces are very distinctive
- The vinegar variables are processed bitwise from LSB to MSB

Record Power Traces

- Power traces are very distinctive
- \cdot The vinegar variables are processed bitwise from LSB to MSB
- Consider the following example

Compare power traces with $v_i = 0$ xFF vs $v_i = 0$ xEB

Compute Correlation

• Trace the matrix-vector multiplications with secret vinegar variables on the target device

Compute Correlation

- Trace the matrix-vector multiplications with secret vinegar variables on the target device
- $\cdot\,$ Compute correlation to templates for each entry of v

Correlation of the target trace with each of the 256 reference traces

Summary

- Very high success probability (\approx 97%) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Summary

- \cdot Very high success probability (pprox 97%) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Practicality

- Attack executed with the ChipWhisperer-Lite on an 32-bit STM32F3 target board
- $\cdot\,$ Parameter set only slightly reduced, s.t. $\mathcal P$ fits on the target board
- Used modern UOV implementation

Summary

- \cdot Very high success probability (pprox 97%) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Practicality

- Attack executed with the ChipWhisperer-Lite on an 32-bit STM32F3 target board
- $\cdot\,$ Parameter set only slightly reduced, s.t. $\mathcal P$ fits on the target board
- Used modern UOV implementation

Countermeasures

• Masking or shuffling are classical countermeasures for this

Summary

- \cdot Very high success probability (pprox 97%) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Practicality

- Attack executed with the ChipWhisperer-Lite on an 32-bit STM32F3 target board
- $\cdot\,$ Parameter set only slightly reduced, s.t. $\mathcal P$ fits on the target board
- Used modern UOV implementation

Countermeasures

• Masking or shuffling are classical countermeasures for this

Future work

- Analyze efficiency impact of countermeasures
- Apply the attack to M4 implementations or using a different setup

Takeaways

The End

Takeaways

- · Vinegar vectors and oil vectors should be equally secured
- With one of those, the secret key can be recovered in polynomial time
- $\cdot\,$ Some physical attacks are still in a theoretical or simulated state
- Efficiency impact of countermeasures should be analyzed

Questions? Contact: thomas.aulbach@ur.de

Aulbach, Campos, Krämer, Samardjiska, Stöttinger: Separating Oil and Vinegar with a Single Trace https://ia.cr/2023/335

References

- Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023.
- Aulbach, T., Kovats, T., Krämer, J., and Marzougui, S.: *Recovering Rainbow's Secret Key with a First-Order Fault Attack*. In International Conference on Cryptology in Africa, 2022.
- Beullens, W., Chen, M. S., Hung, S. H., Kannwischer, M. J., Peng, B. Y., Shih, C. J., and Yang, B. Y.: *Oil and Vinegar: Modern Parameters and Implementations*. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023.
- Furue, H., Kiyomura, Y., Nagasawa, T., and Takagi, T.: A New Fault Attack on UOV Multivariate Signature Scheme. In International Conference on Post-Quantum Cryptography, 2022.
- Hashimoto, Y., Takagi, T., and Sakurai, K.: *General Fault Attacks on Multivariate Public Key Cryptosystems*. In International Conference on Post-Quantum Cryptography, 2011.

References

- Kato, T., Kiyomura, Y., and Takagi, T.: *Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values*. International Workshop on Security, 2022.
- Krämer, J., and Loiero, M.: *Fault Attacks on UOV and Rainbow*. In Constructive Side-Channel Analysis and Secure Design: 10th International Workshop, COSADE, 2019.
- Mus, K., Islam, S., and Sunar, B.: *QuantumHammer: a Practical Hybrid Attack on the LUOV Signature Scheme.* In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 2020.
- Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018.
- Shim, K. A., and Koo, N.: Algebraic Fault Analysis of UOV and Rainbow with the Leakage of Random Vinegar Values. IEEE Transactions on Information Forensics and Security, 2020.