On the Side-Channel Resistance of UOV

Survey of Physical Attacks and Recent Developments

Thomas Aulbach ${ }^{1}$
NIST PQC Seminars, 07.07.2023
${ }^{1}$ Universität Regensburg, Regensburg, Germany

Outline

1. UOV from Two Perspectives
2. Fault Attacks

Skip Random Sampling of Vinegar Variables [SK20]
Bit-Flip in Central Map [FKN+22]
3. Side Channel Attacks

Horizontal SCA on Linear Transformation [PSK+18]
Template Attack on Evaluation of Vinegar Variables [ACK+23]
4. Takeaways

UOV from Two Perspectives

UOV - a Remarkable Candidate

UOV stands out, since

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it

[^0]
UOV - a Remarkable Candidate

UOV stands out, since

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it NIST would like submissions for signature schemes that: ${ }^{1}$

[^1]
UOV - a Remarkable Candidate

UOV stands out, since

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it NIST would like submissions for signature schemes that: ${ }^{1}$
- 'are not based on structured lattices'

[^2]
UOV - a Remarkable Candidate

UOV stands out, since

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it NIST would like submissions for signature schemes that: ${ }^{1}$
- 'are not based on structured lattices'
- 'have short signatures'

[^3]
UOV - a Remarkable Candidate

UOV stands out, since

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it NIST would like submissions for signature schemes that: ${ }^{1}$
- 'are not based on structured lattices'
- 'have short signatures'
- 'and fast verification'

[^4]
UOV - a Remarkable Candidate

UOV stands out, since

- it is a comparably old scheme with 25 years of cryptanalysis
- many current (and past) multivariate signature schemes are modifications of it

NIST would like submissions for signature schemes that: ${ }^{1}$

- 'are not based on structured lattices'
- 'have short signatures'
- 'and fast verification'
- 'e.g., UOV'

[^5]
Comparison with Dilithium

Oil and Vinegar: Modern Parameters and Implementations ${ }^{2}$
Key sizes and performance data

Signature Scheme	public key	secret key Bytes	signature	KeyGen	Sign Cycles	
ov-Ip	278432	237912	128	2903434	105324	90336
ov-Ip-pkc	43576	237912	128	2858724	105324	224006
ov-Ip-pkc-skc	43576	64	128	2848774	1876442	224006
Dilithium2	1312	2544	2420	124031	333013	118412

[^6]
Multivariate Cryptography

Signatures from multivariate quadratic equations:

- Key objects are multivariate quadratic maps $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$

Multivariate Cryptography

Signatures from multivariate quadratic equations:

- Key objects are multivariate quadratic maps $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$
- \mathcal{P} consists of m homogeneous quadratic polynomials

$$
p_{k}(x)=\sum_{1 \leq i \leq i \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}_{q}^{n}
$$

Multivariate Cryptography

Signatures from multivariate quadratic equations:

- Key objects are multivariate quadratic maps $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$
- \mathcal{P} consists of m homogeneous quadratic polynomials

$$
p_{k}(x)=\sum_{1 \leq i \leq j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}_{q}^{n}
$$

- Signing d in a nutshell: For $t=H(d) \in \mathbb{F}_{q}^{m}$, find $s \in \mathbb{F}_{q}^{n}$, such that $\mathcal{P}(s)=t$

Multivariate Cryptography

Signatures from multivariate quadratic equations:

- Key objects are multivariate quadratic maps $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$
- \mathcal{P} consists of m homogeneous quadratic polynomials

$$
p_{k}(x)=\sum_{1 \leq i \leq j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}_{q}^{n}
$$

- Signing d in a nutshell: For $t=H(d) \in \mathbb{F}_{q}^{m}$, find $s \in \mathbb{F}_{q}^{n}$, such that $\mathcal{P}(s)=t$
- In general this is really difficult

Multivariate Cryptography

Signatures from multivariate quadratic equations:

- Key objects are multivariate quadratic maps $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$
- \mathcal{P} consists of m homogeneous quadratic polynomials

$$
p_{k}(x)=\sum_{1 \leq i \leq j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}_{q}^{n}
$$

- Signing d in a nutshell: For $t=H(d) \in \mathbb{F}_{q}^{m}$, find $s \in \mathbb{F}_{q}^{n}$, such that $\mathcal{P}(s)=t$
- In general this is really difficult
- Include a trapdoor that can only be used with the secret key

Multivariate Cryptography

Signatures from multivariate quadratic equations:

- Key objects are multivariate quadratic maps $\mathcal{P}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$
- \mathcal{P} consists of m homogeneous quadratic polynomials

$$
p_{k}(x)=\sum_{1 \leq i \leq j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{F}_{q}^{n}
$$

- Signing d in a nutshell: For $t=H(d) \in \mathbb{F}_{q}^{m}$, find $s \in \mathbb{F}_{q}^{n}$, such that $\mathcal{P}(s)=t$
- In general this is really difficult
- Include a trapdoor that can only be used with the secret key
- Verify if $\mathcal{P}(s)=t$ really holds

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- $\mathcal{P}=\mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- $\mathcal{P}=\mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- \mathcal{F} consists of m homogeneous quadratic polynomials

$$
f_{k}(x)=\sum_{1 \leq i \leq j \leq v} \alpha_{i, j}^{(k)} x_{i} x_{j}+\sum_{1 \leq i \leq v<j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}
$$

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- $\mathcal{P}=\mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- \mathcal{F} consists of m homogeneous quadratic polynomials

$$
f_{k}(x)=\sum_{1 \leq i \leq j \leq v} \alpha_{i, j}^{(k)} x_{i} x_{j}+\sum_{1 \leq i \leq v<j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}
$$

- Sort coefficients to matrices $F^{(k)}$ such that $f_{k}(x)=\mathbf{x}^{\top} F^{(k)} \mathbf{x}$

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- $\mathcal{P}=\mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- \mathcal{F} consists of m homogeneous quadratic polynomials

$$
f_{k}(x)=\sum_{1 \leq i \leq j \leq v} \alpha_{i, j}^{(k)} x_{i} x_{j}+\sum_{1 \leq i \leq v<j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}
$$

- Sort coefficients to matrices $F^{(k)}$ such that $f_{k}(x)=\mathbf{x}^{\top} F^{(k)} \mathbf{x}$

$$
\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)^{\top}\left(\begin{array}{cccccc}
\alpha_{1,1}^{(k)} & \ldots & \alpha_{1, v}^{(k)} & \alpha_{1, v+1}^{(k)} & \ldots & \alpha_{1, n}^{(k)} \\
0 & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \alpha_{v, v}^{(k)} & \alpha_{v, v+1}^{(k)} & \ldots & \alpha_{v, n}^{(k)} \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- $\mathcal{P}=\mathcal{F} \circ T$, where \mathcal{F} is structured and easy to invert and T is a linear transformation
- \mathcal{F} consists of m homogeneous quadratic polynomials

$$
f_{k}(x)=\sum_{1 \leq i \leq j \leq v} \alpha_{i, j}^{(k)} x_{i} x_{j}+\sum_{1 \leq i \leq v<j \leq n} \alpha_{i, j}^{(k)} x_{i} x_{j} \text {, where } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}
$$

- Sort coefficients to matrices $F^{(k)}$ such that $f_{k}(x)=\mathbf{x}^{\top} F^{(k)} \mathbf{x}$

$$
\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)^{\top}\left(\begin{array}{cccccc}
\alpha_{1,1}^{(k)} & \ldots & \alpha_{1, v}^{(k)} & \alpha_{1, v+1}^{(k)} & \ldots & \alpha_{1, n}^{(k)} \\
0 & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \alpha_{v, v}^{(k)} & \alpha_{v, v+1}^{(k)} & \ldots & \alpha_{v, n}^{(k)} \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=l_{1}^{(k)} \cdot y_{1}+\ldots+l_{m}^{(k)} \cdot y_{m}+c^{(k)}
$$

- Fix and insert vinegar variables \tilde{v}_{i} to get m linear equations in m oil variables

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- Compute between $\mathrm{pk}=\mathcal{P}$ and $\mathrm{sk}=(\mathcal{F}, T)$ with

$$
P^{(k)}=T^{\top} F^{(k)} T
$$

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- Compute between $\mathrm{pk}=\mathcal{P}$ and $\mathrm{sk}=(\mathcal{F}, T)$ with

$$
P^{(k)}=T^{\top} F^{(k)} T
$$

- Visualization of signing t

$$
\mathrm{t}=\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{m}
\end{array}\right) \xrightarrow{\mathcal{F}^{-1}}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-m} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=\binom{v}{y} \xrightarrow{T^{-1}}\binom{s_{1}}{s_{2}}=\binom{v+T_{1} \cdot \mathbf{y}}{y}
$$

Two Descriptions of UOV in the Literature (1/2)

UOV with hidden central map \mathcal{F}

- Compute between $\mathrm{pk}=\mathcal{P}$ and $\mathrm{sk}=(\mathcal{F}, T)$ with

$$
P^{(k)}=T^{\top} F^{(k)} T
$$

- Visualization of signing t

$$
\mathrm{t}=\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{m}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-m} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=\binom{v}{y} \xrightarrow{\mathcal{F}^{-1}}\binom{s_{1}}{s_{2}}=\binom{v+T_{1} \cdot \mathrm{y}}{\mathrm{y}}
$$

- T has block matrix structure $T=\left(\begin{array}{cc}I_{V} & T_{1} \\ 0 & I_{m}\end{array}\right)$

Two Descriptions of UOV in the Literature (2/2)

UOV with secret oil space

- Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_{q}^{n}$ of dimension m, i.e.

$$
\mathcal{P}(o)=0 \text { for all } o \in O
$$

Two Descriptions of UOV in the Literature (2/2)

UOV with secret oil space

- Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_{q}^{n}$ of dimension m, i.e.

$$
\mathcal{P}(o)=0 \text { for all } o \in O
$$

- The map $\mathcal{P}^{\prime}(x, y):=\mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Two Descriptions of UOV in the Literature (2/2)

UOV with secret oil space

- Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_{q}^{n}$ of dimension m, i.e.

$$
\mathcal{P}(o)=0 \text { for all } o \in O
$$

- The map $\mathcal{P}^{\prime}(x, y):=\mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric Signing strategy:
- Generate random $v \in \mathbb{F}_{q}^{n}$

Two Descriptions of UOV in the Literature (2/2)

UOV with secret oil space

- Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_{q}^{n}$ of dimension m, i.e.

$$
\mathcal{P}(o)=0 \text { for all } o \in O
$$

- The map $\mathcal{P}^{\prime}(x, y):=\mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $v \in \mathbb{F}_{q}^{n}$
- Solve $\mathcal{P}(v+o)=\mathcal{P}(v)+\mathcal{P}(o)+\mathcal{P}^{\prime}(v, o)=\mathrm{t}$ for $\mathrm{o} \in 0$.

Two Descriptions of UOV in the Literature (2/2)

UOV with secret oil space

- Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_{q}^{n}$ of dimension m, i.e.

$$
\mathcal{P}(o)=0 \text { for all } o \in 0
$$

- The map $\mathcal{P}^{\prime}(x, y):=\mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $v \in \mathbb{F}_{q}^{n}$
- Solve $\mathcal{P}(v+o)=\mathcal{P}(v)+\mathcal{P}(o)+\mathcal{P}^{\prime}(v, o)=\mathrm{t}$ for $o \in 0$.
\rightarrow Computing $\mathcal{P}(v)$ implies the insertion of the vinegar variables into the quadratic map

Two Descriptions of UOV in the Literature (2/2)

UOV with secret oil space

- Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_{q}^{n}$ of dimension m, i.e.

$$
\mathcal{P}(o)=0 \text { for all } o \in 0
$$

- The map $\mathcal{P}^{\prime}(x, y):=\mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $v \in \mathbb{F}_{q}^{n}$
- Solve $\mathcal{P}(v+o)=\mathcal{P}(v)+\mathcal{P}(o)+\mathcal{P}^{\prime}(v, o)=\mathrm{t}$ for $o \in 0$.
\rightarrow Computing $\mathcal{P}(v)$ implies the insertion of the vinegar variables into the quadratic map
\rightarrow Solving $\mathcal{P}^{\prime}(v, o)=t-\mathcal{P}(v)$ means solving a system with m variables in m equations

Two Descriptions of UOV in the Literature (2/2)

UOV with secret oil space

- Define \mathcal{P} such that it vanishes on secret linear oil space $O \subset \mathbb{F}_{q}^{n}$ of dimension m, i.e.

$$
\mathcal{P}(o)=0 \text { for all } o \in O
$$

- The map $\mathcal{P}^{\prime}(x, y):=\mathcal{P}(x+y)-\mathcal{P}(x)-\mathcal{P}(y)$ is bilinear and symmetric

Signing strategy:

- Generate random $v \in \mathbb{F}_{q}^{n}$
- Solve $\mathcal{P}(v+o)=\mathcal{P}(v)+\mathcal{P}(o)+\mathcal{P}^{\prime}(v, o)=t$ for $o \in O$.
\rightarrow Computing $\mathcal{P}(v)$ implies the insertion of the vinegar variables into the quadratic map
\rightarrow Solving $\mathcal{P}^{\prime}(v, o)=t-\mathcal{P}(v)$ means solving a system with m variables in m equations
- The vector $s=v+o$ forms a valid signature

Fault Attacks

Skip Random Sampling of Vinegar Variables

Main idea

- Skip the random sampling of vinegar values (already discussed in [HTS11] ${ }^{3}$ and [KL19] ${ }^{4}$)

$$
\mathrm{t} \longrightarrow\binom{\mathrm{v}}{\mathrm{y}} \longrightarrow\binom{\mathcal{F}^{-1}}{\mathrm{~s}_{2}}=\binom{\mathrm{v}+T_{1} \cdot \mathrm{y}}{\mathrm{y}}
$$

[^7]
Skip Random Sampling of Vinegar Variables

Main idea

- Skip the random sampling of vinegar values (already discussed in [HTS11] ${ }^{3}$ and [KL19] ${ }^{4}$)

$$
\mathrm{t} \longrightarrow\binom{\mathrm{y}}{\mathrm{y}} \longrightarrow\binom{\mathrm{~F}_{1}}{\mathrm{~s}_{2}}=\binom{\mathrm{v}+\mathrm{T}_{1} \cdot \mathrm{y}}{\mathrm{y}}
$$

- Solution to \mathcal{F}^{-1} are the randomly generated vinegar values $\mathbf{v}=\left(v_{1}, \ldots, v_{n-m}\right)^{\top}$ and the computed oil variables $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)^{\top}$

[^8]
Skip Random Sampling of Vinegar Variables

$\mathbf{t}^{(i)} \longrightarrow\binom{v}{\boldsymbol{y}^{(i)}} \quad \mathcal{F}^{-1}\binom{s_{1}^{(i)}}{s_{2}^{(i)}}=\binom{v+T_{1} \cdot y^{(i)}}{y^{(i)}}$

Skip Random Sampling of Vinegar Variables

$\mathbf{t}^{(i)} \longrightarrow\binom{v}{\boldsymbol{y}^{(i)}} \quad \mathcal{F}^{-1}\binom{s_{1}^{(i)}}{s_{2}^{(i)}}=\binom{v+T_{1} \cdot y^{(i)}}{y^{(i)}}$

- Skip random sampling enforces reuse of v

Skip Random Sampling of Vinegar Variables

$\mathbf{t}^{(i)} \longrightarrow\binom{v}{\boldsymbol{y}^{(i)}} \quad \mathcal{F}^{-1}\binom{s_{1}^{(i)}}{s_{2}^{(i)}}=\binom{v+T_{1} \cdot y^{(i)}}{y^{(i)}}$

- Skip random sampling enforces reuse of v
- We have $\binom{s_{1}^{(i)}}{s_{2}^{(i)}}-\binom{s_{1}}{s_{2}}=\binom{T_{1} \cdot\left(y^{(i)}-y\right)}{\left(y^{(i)}-y\right)}$

Skip Random Sampling of Vinegar Variables

$\mathrm{t}^{(i)} \longrightarrow\binom{\mathcal{F}^{-1}}{\mathbf{y}^{(i)}} \xrightarrow{T^{-1}}\binom{\mathbf{s}_{1}^{(i)}}{\mathbf{s}_{2}^{(i)}}=\binom{\mathrm{v}+T_{1} \cdot \mathbf{y}^{(i)}}{\mathbf{y}^{(i)}}$

- Skip random sampling enforces reuse of v
- We have $\binom{s_{1}^{(i)}}{s_{2}^{(i)}}-\binom{s_{1}}{s_{2}}=\binom{T_{1} \cdot\left(y^{(i)}-y\right)}{\left(y^{(i)}-y\right)}$
- Repeat m times to solve for T_{1} (requires m faulted signatures)

Reduce Number of Needed Faulted Signatures

In fact, one can do even better

- The vector $\binom{s_{1}^{(i)}}{s_{2}^{(i)}}-\binom{s_{1}}{s_{2}}=\binom{T_{1} \cdot\left(y^{(i)}-\mathrm{y}\right)}{\left(y^{(i)}-\mathrm{y}\right)}$ represents an oil vector, i.e.

$$
\mathcal{P}\binom{T_{1} \cdot\left(y^{(i)}-\mathrm{y}\right)}{\left(\mathrm{y}^{(i)}-\mathrm{y}\right)}=\mathcal{F}\left(\begin{array}{cc}
I_{v} & T_{1} \\
0 & I_{m}
\end{array}\right)\binom{T_{1} \cdot\left(y^{(i)}-\mathrm{y}\right)}{\left(\mathrm{y}^{(i)}-\mathrm{y}\right)}=\mathcal{F}\binom{0}{\left(\mathrm{y}^{(i)}-\mathrm{y}\right)}=0
$$

Reduce Number of Needed Faulted Signatures

In fact, one can do even better

- The vector $\binom{s_{1}^{(i)}}{s_{2}^{(i)}}-\binom{s_{1}}{s_{2}}=\binom{T_{1} \cdot\left(y^{(i)}-\mathrm{y}\right)}{\left(y^{(i)}-\mathrm{y}\right)}$ represents an oil vector, i.e.

$$
\mathcal{P}\binom{T_{1} \cdot\left(y^{(i)}-\mathrm{y}\right)}{\left(\mathrm{y}^{(i)}-\mathrm{y}\right)}=\mathcal{F}\left(\begin{array}{cc}
I_{v} & T_{1} \\
0 & I_{m}
\end{array}\right)\binom{T_{1} \cdot\left(y^{(i)}-\mathrm{y}\right)}{\left(\mathrm{y}^{(i)}-\mathrm{y}\right)}=\mathcal{F}\binom{0}{\left(\mathrm{y}^{(i)}-\mathrm{y}\right)}=0
$$

- This is easy to recognize in the oil space description, since

$$
s^{(i)}-s=\left(v+o^{(i)}\right)-(v+o)=o^{(i)}-0 \in 0
$$

Reduce Number of Needed Faulted Signatures

In fact, one can do even better

- The vector $\binom{s_{1}^{(i)}}{s_{2}^{(i)}}-\binom{s_{1}}{s_{2}}=\binom{T_{1} \cdot\left(y^{(i)}-\mathrm{y}\right)}{\left(\mathrm{y}^{(i)}-\mathrm{y}\right)}$ represents an oil vector, i.e.

$$
\mathcal{P}\binom{T_{1} \cdot\left(y^{(i)}-y\right)}{\left(y^{(i)}-y\right)}=\mathcal{F}\left(\begin{array}{cc}
I_{v} & T_{1} \\
0 & I_{m}
\end{array}\right)\binom{T_{1} \cdot\left(y^{(i)}-y\right)}{\left(y^{(i)}-y\right)}=\mathcal{F}\binom{0}{\left(y^{(i)}-y\right)}=0
$$

- This is easy to recognize in the oil space description, since

$$
s^{(i)}-s=\left(v+o^{(i)}\right)-(v+0)=0^{(i)}-0 \in 0
$$

- One oil vector enables key recovery in polynomial time \rightarrow next slide

Algebraic Attack

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

- For two oil vectors $\mathbf{0}_{1}, \mathbf{o}_{2}$ it holds

$$
\mathcal{P}^{\prime}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)=\mathcal{P}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-\mathcal{P}\left(\mathbf{o}_{1}\right)-\mathcal{P}\left(\mathbf{o}_{2}\right)=0 \in \mathbb{F}_{q}^{m}
$$

Algebraic Attack

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

- For two oil vectors $\mathbf{o}_{1}, \mathbf{o}_{2}$ it holds

$$
\mathcal{P}^{\prime}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)=\mathcal{P}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-\mathcal{P}\left(\mathbf{o}_{1}\right)-\mathcal{P}\left(\mathbf{o}_{2}\right)=0 \in \mathbb{F}_{q}^{m}
$$

\rightarrow If \mathbf{o}_{1} and \mathbf{o}_{2} are unknown, this is a quadratic system that is hard to solve

Algebraic Attack

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

- For two oil vectors $\mathbf{0}_{1}, \mathbf{0}_{2}$ it holds

$$
\mathcal{P}^{\prime}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)=\mathcal{P}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-\mathcal{P}\left(\mathbf{o}_{1}\right)-\mathcal{P}\left(\mathbf{o}_{2}\right)=0 \in \mathbb{F}_{q}^{m}
$$

\rightarrow If \mathbf{o}_{1} and \mathbf{o}_{2} are unknown, this is a quadratic system that is hard to solve \rightarrow If \mathbf{o}_{1} is known, this presents m linear equations for \mathbf{o}_{2}

Algebraic Attack

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

- For two oil vectors $\mathbf{0}_{1}, \mathbf{o}_{2}$ it holds

$$
\mathcal{P}^{\prime}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)=\mathcal{P}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-\mathcal{P}\left(\mathbf{o}_{1}\right)-\mathcal{P}\left(\mathbf{o}_{2}\right)=0 \in \mathbb{F}_{q}^{m}
$$

\rightarrow If \mathbf{o}_{1} and \mathbf{o}_{2} are unknown, this is a quadratic system that is hard to solve \rightarrow If o_{1} is known, this presents m linear equations for \mathbf{o}_{2}

- With the given UOV parameters, this implies: If two oil vectors are known, the remaining oil space can be found in polynomial time

Algebraic Attack

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

- For two oil vectors $\mathbf{o}_{1}, \mathbf{o}_{2}$ it holds

$$
\mathcal{P}^{\prime}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)=\mathcal{P}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-\mathcal{P}\left(\mathbf{o}_{1}\right)-\mathcal{P}\left(\mathbf{o}_{2}\right)=0 \in \mathbb{F}_{q}^{m}
$$

\rightarrow If \mathbf{o}_{1} and \mathbf{o}_{2} are unknown, this is a quadratic system that is hard to solve \rightarrow If \mathbf{o}_{1} is known, this presents m linear equations for \mathbf{o}_{2}

- With the given UOV parameters, this implies: If two oil vectors are known, the remaining oil space can be found in polynomial time

In fact, even one oil vector is enough, when using modified Kipnis-Shamir attack ${ }^{5}$

[^9]
Algebraic Attack

Knowledge of an oil vector dramatically simplifies algebraic key recovery attacks

- For two oil vectors $\mathbf{0}_{1}, \mathbf{o}_{2}$ it holds

$$
\mathcal{P}^{\prime}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right)=\mathcal{P}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-\mathcal{P}\left(\mathbf{o}_{1}\right)-\mathcal{P}\left(\mathbf{o}_{2}\right)=0 \in \mathbb{F}_{q}^{m}
$$

\rightarrow If \mathbf{o}_{1} and \mathbf{o}_{2} are unknown, this is a quadratic system that is hard to solve \rightarrow If o_{1} is known, this presents m linear equations for o_{2}

- With the given UOV parameters, this implies: If two oil vectors are known, the remaining oil space can be found in polynomial time

In fact, even one oil vector is enough, when using modified Kipnis-Shamir attack ${ }^{5}$
Details can be found in $[A C K+23]^{6}$

[^10]
Summary of the Fault Attack [SK20]

Summary

- Instruction skip to reuse the vinegar variables
- Number of needed faulted signatures is reduced from m to now only 1
- Distinguish between reuse and zero setting (analyzed in [SK20] ${ }^{7}$ and $[\text { KKT22 }]^{8}$)

[^11]
Summary of the Fault Attack [SK20]

Summary

- Instruction skip to reuse the vinegar variables
- Number of needed faulted signatures is reduced from m to now only 1
- Distinguish between reuse and zero setting (analyzed in $[\mathrm{SK} 20]^{7}$ and $[K K T 22]^{8}$)

Practicality

- Attack is simulated targeting Rainbow on an emulated ARM M4 architecture using QEMU in $[A K K+22]^{9}$

[^12]
Summary of the Fault Attack [SK20]

Summary

- Instruction skip to reuse the vinegar variables
- Number of needed faulted signatures is reduced from m to now only 1
- Distinguish between reuse and zero setting (is analyzed in [SK20] and [KKT22])

Practicality

- Attack is simulated targeting Rainbow on an emulated ARM M4 architecture using QEMU in [AKK+22]

Countermeasures

- 'Verify before output' is not possible, since faulted signature is valid
- Store old vinegar variables and only output signature if there are no large overlaps

Summary of the Fault Attack [SK20]

Summary

- Instruction skip to reuse the vinegar variables
- Number of needed faulted signatures is reduced from m to now only 1
- Distinguish between reuse and zero setting (is analyzed in [SK20] and [KKT22])

Practicality

- Attack is simulated targeting Rainbow on an emulated ARM M4 architecture using QEMU in [AKK+22]

Countermeasures

- 'Verify before output' is not possible, since faulted signature is valid
- Store old vinegar variables and only output signature if there are no large overlaps

Future work

- Execute instruction skip on a target device
- Apply to various modifications of UOV

Bit-Flip in Central Map

Fault model

- Introduce a fault that changes one coefficient $\alpha_{i, j}^{(k)}$ in the central map \mathcal{F} (already discussed in [HTS11] and [KL19])
- Faulted coefficient is randomly chosen and attacker does not know its location

$$
F^{\prime(k)}=\left(\begin{array}{cccccc}
\alpha_{1,1}^{(k)} & \ldots & \alpha_{1, v}^{(k)} & \alpha_{1, v+1}^{(k)} & \ldots & \alpha_{1, n}^{(k)} \\
0 & \ddots & \vdots & \vdots & \alpha_{i, j}^{\prime(k)} & \vdots \\
0 & 0 & \alpha_{v, v}^{(k)} & \alpha_{v, v+1}^{(k)} & \ldots & \alpha_{v, n}^{(k)} \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Bit-Flip in Central Map

Fault model

- Introduce a fault that changes one coefficient $\alpha_{i, j}^{\prime(k)}$ in the central map \mathcal{F} (already discussed in [HTS11] and [KL19])
- Faulted coefficient is randomly chosen and attacker does not know its location

$$
\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)^{\top}\left(\begin{array}{cccccc}
\alpha_{1,1}^{(k)} & \ldots & \alpha_{1, v}^{(k)} & \alpha_{1, v+1}^{(k)} & \ldots & \alpha_{1, n}^{(k)} \\
0 & \ddots & \vdots & \vdots & \alpha_{i, j}^{\prime(k)} & \vdots \\
0 & 0 & \alpha_{v, v}^{(k)} & \alpha_{v, v+1}^{(k)} & \ldots & \alpha_{v, n}^{(k)} \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=l_{1}^{(k)} \cdot y_{1}+\ldots+l_{j}^{(k)} \cdot y_{j}+\ldots+c^{(k)}
$$

Bit-Flip in Central Map

Fault model

- Introduce a fault that changes one coefficient $\alpha_{i, j}^{\prime(k)}$ in the central map \mathcal{F} (already discussed in [HTS11] and [KL19])
- Faulted coefficient is randomly chosen and attacker does not know its location

$$
\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)^{\top}\left(\begin{array}{cccccc}
\alpha_{1,1}^{(k)} & \ldots & \alpha_{1, v}^{(k)} & \alpha_{1, v+1}^{(k)} & \ldots & \alpha_{1, n}^{(k)} \\
0 & \ddots & \vdots & \vdots & \alpha_{i, j}^{\prime(k)} & \vdots \\
0 & 0 & \alpha_{v, v}^{(k)} & \alpha_{v, v+1}^{(k)} & \ldots & \alpha_{v, n}^{(k)} \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{v}_{1} \\
\vdots \\
\tilde{v}_{v} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=l_{1}^{(k)} \cdot y_{1}+\ldots+l_{j}^{(k)} \cdot y_{j}+\ldots+c^{(k)}
$$

- One coefficient in the k-th linear equation is altered

Bit-Flip in Central Map

Fault propagation

- Faulted signature s^{\prime} of t might deviate heavily from fault-free $s=T^{-1} \circ \mathcal{F}^{-1}(\mathrm{t})$

Bit-Flip in Central Map

Fault propagation

- Faulted signature s^{\prime} of t might deviate heavily from fault-free $s=T^{-1} \circ \mathcal{F}^{-1}(\mathrm{t})$
- But $\mathcal{P}\left(s^{\prime}\right)$ only deviates in one entry from t

$$
\begin{aligned}
\mathcal{P}\left(\mathrm{s}^{\prime}\right)-\mathrm{t} & =\mathcal{F} \circ T\left(\mathrm{~s}^{\prime}\right)-\mathcal{F}^{\prime} \circ T\left(\mathrm{~s}^{\prime}\right)=\left(\mathcal{F}-\mathcal{F}^{\prime}\right) \circ T\left(\mathrm{~s}^{\prime}\right) \\
& =\left(0, \ldots, 0,\left(\alpha_{i, j}^{(k)}-\alpha_{i, j}^{\prime(k)}\right)\left(T\left(\mathrm{~s}^{\prime}\right)_{i} \cdot T\left(\mathrm{~s}^{\prime}\right)_{j}\right), 0, \ldots, 0\right)
\end{aligned}
$$

Bit-Flip in Central Map

Fault propagation

- Faulted signature s^{\prime} of t might deviate heavily from fault-free $s=T^{-1} \circ \mathcal{F}^{-1}(\mathrm{t})$
- But $\mathcal{P}\left(s^{\prime}\right)$ only deviates in one entry from t

$$
\begin{aligned}
\mathcal{P}\left(\mathrm{s}^{\prime}\right)-\mathrm{t} & =\mathcal{F} \circ T\left(\mathrm{~s}^{\prime}\right)-\mathcal{F}^{\prime} \circ T\left(\mathrm{~s}^{\prime}\right)=\left(\mathcal{F}-\mathcal{F}^{\prime}\right) \circ T\left(\mathrm{~s}^{\prime}\right) \\
& =\left(0, \ldots, 0,\left(\alpha_{i, j}^{(k)}-\alpha_{i, j}^{\prime(k)}\right)\left(T\left(\mathrm{~s}^{\prime}\right)_{i} \cdot T\left(\mathrm{~s}^{\prime}\right)_{j}\right), 0, \ldots, 0\right)
\end{aligned}
$$

- This yields quadratic equations in the i-th and j-th row of T

Key Recovery

Iterate the following steps to achieve key recovery (Details in $[F K N+22]^{10}$)

1. Employ signing oracle to get $N=n(n+1) / 2$ message and faulted signature pairs
2. Obtain rows of the secret transformation T
3. Transform \mathcal{P} to a smaller system by reducing the number of variables
[^13]
Summary of the Fault Attack [FKN+22]

Summary

- Randomization fault
- Attack needs $\approx 10-20$ iterations with $n^{2} / 2$ queries to a signing oracle each round

Summary of the Fault Attack [FKN+22]

Summary

- Randomization fault
- Attack needs $\approx 10-20$ iterations with $n^{2} / 2$ queries to a signing oracle each round Practicality
- Purely theoretical \rightarrow No execution of the fault attack yet

Summary of the Fault Attack [FKN+22]

Summary

- Randomization fault
- Attack needs $\approx 10-20$ iterations with $n^{2} / 2$ queries to a signing oracle each round Practicality
- Purely theoretical \rightarrow No execution of the fault attack yet

Countermeasures

- Verify before returning the signature, since faulted signature is invalid
- Check if secret key is altered

Summary of the Fault Attack [FKN+22]

Summary

- Randomization fault
- Attack needs $\approx 10-20$ iterations with $n^{2} / 2$ queries to a signing oracle each round Practicality
- Purely theoretical \rightarrow No execution of the fault attack yet

Countermeasures

- Verify before returning the signature, since faulted signature is invalid
- Check if secret key is altered

Future work

- Find a way to physically cause the randomization in exactly one entry
- Transfer the attack to implementation with compressed keys, where the central map is not stored

A Fault Attack on LUOV [MIS20]

QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme ${ }^{11}$

[^14]
A Fault Attack on LUOV [MIS20]

QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme ${ }^{11}$

- Uses Rowhammer attack to introduce faults to the linear transformation T \rightarrow Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level above or below some threshold)

[^15]
A Fault Attack on LUOV [MIS20]

QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme ${ }^{11}$

- Uses Rowhammer attack to introduce faults to the linear transformation T \rightarrow Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level above or below some threshold)
- Software-induced hardware-fault attack

[^16]
A Fault Attack on LUOV [MIS20]

QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme ${ }^{11}$

- Uses Rowhammer attack to introduce faults to the linear transformation T \rightarrow Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level above or below some threshold)
- Software-induced hardware-fault attack
- Applied the attack with ≈ 4 hrs of active Rowhammer with efficient post-processing to achieve full key recovery

[^17]
A Fault Attack on LUOV [MIS20]

QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme ${ }^{11}$

- Uses Rowhammer attack to introduce faults to the linear transformation T \rightarrow Activate DRAM rows rapidly, to flip bits in neighboring rows (pushes voltage level above or below some threshold)
- Software-induced hardware-fault attack
- Applied the attack with ≈ 4 hrs of active Rowhammer with efficient post-processing to achieve full key recovery
- Might be transferred to UOV

[^18]
Side Channel Attacks

Horizontal SCA on Linear Transformation T

Main idea ${ }^{12}$

- Perform power analysis of matrix-vector multiplication

$$
\left(\begin{array}{cc}
I_{v} & T_{1} \\
0 & I_{m}
\end{array}\right) \cdot\binom{v}{y}=\binom{v+T_{1} \cdot y}{y}
$$

[^19]
Horizontal SCA on Linear Transformation T

Main idea ${ }^{12}$

$$
\mathrm{t} \longrightarrow\binom{\mathrm{v}}{\mathrm{y}} \longrightarrow\binom{\mathrm{~F}_{1}}{\mathrm{~s}_{2}}=\binom{\mathrm{v}+T_{1} \cdot \mathrm{y}}{\mathrm{y}}
$$

- Perform power analysis of matrix-vector multiplication

$$
\left(\begin{array}{cc}
I_{v} & T_{1} \\
0 & I_{m}
\end{array}\right) \cdot\binom{\mathrm{v}}{\mathrm{y}}=\binom{\mathrm{v}+T_{1} \cdot \mathrm{y}}{\mathrm{y}}
$$

- Here, the vector y is known, and the matrix T_{1} is the secret we want to obtain

[^20]
Horizontal SCA on Linear Transformation T

Main idea ${ }^{12}$

$$
\mathrm{t} \longrightarrow\binom{\mathrm{v}}{\mathrm{y}} \longrightarrow\binom{\mathrm{~s}_{1}}{\mathrm{~s}_{2}}=\binom{\mathrm{v}+T_{1} \cdot \mathrm{y}}{\mathrm{y}}
$$

- Perform power analysis of matrix-vector multiplication

$$
\left(\begin{array}{cc}
I_{v} & T_{1} \\
0 & I_{m}
\end{array}\right) \cdot\binom{\mathrm{v}}{\mathrm{y}}=\binom{\mathrm{v}+T_{1} \cdot \mathrm{y}}{\mathrm{y}}
$$

- Here, the vector y is known, and the matrix T_{1} is the secret we want to obtain
- Either obtain all entries of T by SCA or identify certain rows and reduce the system \mathcal{P} as shown in previous fault attack

[^21]
Matrix-Vector Multiplication

The vulnerable function in more detail

$$
\left(\begin{array}{cc}
1 & T_{1} \\
0 & 1
\end{array}\right) \cdot\binom{v}{y}=\left(\begin{array}{ccccc}
1 & 0 & 0 & t_{1,4} & t_{1,5} \\
0 & 1 & 0 & t_{2,4} & t_{2,5} \\
0 & 0 & 1 & t_{3,4} & t_{3,5} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)+\left(\begin{array}{c}
t_{1,4} \cdot y_{1}+t_{1,5} \cdot y_{2} \\
t_{2,4} \cdot y_{1}+t_{2,5} \cdot y_{2} \\
t_{3,4} \cdot y_{1}+t_{3,5} \cdot y_{2} \\
0 \\
0
\end{array}\right)
$$

Matrix-Vector Multiplication

The vulnerable function in more detail

$$
\left(\begin{array}{cc}
1 & T_{1} \\
0 & 1
\end{array}\right) \cdot\binom{v}{y}=\left(\begin{array}{ccccc}
1 & 0 & 0 & t_{1,4} & t_{1,5} \\
0 & 1 & 0 & t_{2,4} & t_{2,5} \\
0 & 0 & 1 & t_{3,4} & t_{3,5} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)+\left(\begin{array}{c}
t_{1,4} \cdot y_{1}+t_{1,5} \cdot y_{2} \\
t_{2,4} \cdot y_{1}+t_{2,5} \cdot y_{2} \\
t_{3,4} \cdot y_{1}+t_{3,5} \cdot y_{2} \\
0 \\
0
\end{array}\right)
$$

Correlation power analysis

1. Guess intermediate values and map hypothetical value to hypothetical power consumption of the function under investigation

Matrix-Vector Multiplication

The vulnerable function in more detail

$$
\left(\begin{array}{cc}
1 & T_{1} \\
0 & 1
\end{array}\right) \cdot\binom{v}{y}=\left(\begin{array}{ccccc}
1 & 0 & 0 & t_{1,4} & t_{1,5} \\
0 & 1 & 0 & t_{2,4} & t_{2,5} \\
0 & 0 & 1 & t_{3,4} & t_{3,5} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)+\left(\begin{array}{c}
t_{1,4} \cdot y_{1}+t_{1,5} \cdot y_{2} \\
t_{2,4} \cdot y_{1}+t_{2,5} \cdot y_{2} \\
t_{3,4} \cdot y_{1}+t_{3,5} \cdot y_{2} \\
0 \\
0
\end{array}\right)
$$

Correlation power analysis

1. Guess intermediate values and map hypothetical value to hypothetical power consumption of the function under investigation
2. Measure the power consumption of the target device

Matrix-Vector Multiplication

The vulnerable function in more detail

$$
\left(\begin{array}{cc}
1 & T_{1} \\
0 & 1
\end{array}\right) \cdot\binom{v}{y}=\left(\begin{array}{ccccc}
1 & 0 & 0 & t_{1,4} & t_{1,5} \\
0 & 1 & 0 & t_{2,4} & t_{2,5} \\
0 & 0 & 1 & t_{3,4} & t_{3,5} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
y_{1} \\
y_{2}
\end{array}\right)+\left(\begin{array}{c}
t_{1,4} \cdot y_{1}+t_{1,5} \cdot y_{2} \\
t_{2,4} \cdot y_{1}+t_{2,5} \cdot y_{2} \\
t_{3,4} \cdot y_{1}+t_{3,5} \cdot y_{2} \\
0 \\
0
\end{array}\right)
$$

Correlation power analysis

1. Guess intermediate values and map hypothetical value to hypothetical power consumption of the function under investigation
2. Measure the power consumption of the target device
3. Perform statistical comparison between hypothetical power consumption and measured power traces

Compute Correlation with Hypothetical Values

Example with clear separation between correct key elements and wrong key element

(a) Maximum correlation coefficients according to increased number of traces for \tilde{t}_{45}

Correlation coefficients for all possible field elements and the entry $t_{45}[P S K+18]$

Compute Correlation with Hypothetical Values

Example with two possible candidate for the correct key element

(b) Maximum correlation coefficients according to increased number of traces for \widetilde{t}_{46}

Correlation coefficients for all possible field elements and the entry $t_{46}[P S K+18]$

Summary of the Horizontal SCA

Summary

- Correlation power analysis on field multiplication
- Around 30 - 100 power traces are needed to recover field elements

Summary of the Horizontal SCA

Summary

- Correlation power analysis on field multiplication
- Around 30-100 power traces are needed to recover field elements

Practicality

- Attack the matrix-vector product code on the ChipWhisperer-Lite evaluation platform
- Target board is an 8-bit Atmel XMEGA128 (might be more difficult on 32-bit devices)
- Parameters were strongly reduced ($n=8$ and $m=6$)

Summary of the Horizontal SCA

Summary

- Correlation power analysis on field multiplication
- Around 30 - 100 power traces are needed to recover field elements

Practicality

- Attack the matrix-vector product code on the ChipWhisperer-Lite evaluation platform
- Target board is an 8-bit Atmel XMEGA128 (might be more difficult on 32-bit devices)
- Parameters were strongly reduced ($n=8$ and $m=6$)

Countermeasures

- Masking or shuffling are classical countermeasures for this
- Randomization of the input value (since T is linear)

Summary of the Horizontal SCA

Summary

- Correlation power analysis on field multiplication
- Around 30 - 100 power traces are needed to recover field elements

Practicality

- Attack the matrix-vector product code on the ChipWhisperer-Lite evaluation platform
- Target board is an 8-bit Atmel XMEGA128 (might be more difficult on 32-bit devices)
- Parameters were strongly reduced ($n=8$ and $m=6$)

Countermeasures

- Masking or shuffling are classical countermeasures for this
- Randomization of the input value (since T is linear)

Future work

- Analyze efficiency impact of countermeasures
- Transfer the attack to modern and optimized implementations

Attack Insertion of Vinegar Values in Public Key Map

Main idea ${ }^{13}$

- Measure power consumption of $\mathcal{P}(\mathrm{v})$

[^22]
Attack Insertion of Vinegar Values in Public Key Map

Main idea ${ }^{13}$

- Measure power consumption of $\mathcal{P}(\mathrm{v})$
- This operation boils down to computing $\mathbf{v}^{\top} P^{(k)} \mathbf{v}$ for m known matrices $P^{(k)}$

[^23]
Attack Insertion of Vinegar Values in Public Key Map

Main idea ${ }^{13}$

- Measure power consumption of $\mathcal{P}(\mathrm{v})$
- This operation boils down to computing $\mathbf{v}^{\top} P^{(k)} \mathbf{v}$ for m known matrices $P^{(k)}$
- Consider the matrix-vector multiplication

$$
p^{(k)} \cdot v=\left(\begin{array}{cccc}
p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1, n}^{(k)} \\
& p_{2,2}^{(k)} & \cdots & p_{2, n}^{(k)} \\
& & \ddots & \vdots \\
& & & p_{n, n}^{(k)}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right) \text { for } k \in\{1, \ldots, m\}
$$

[^24]
Attack Insertion of Vinegar Values in Public Key Map

Main idea ${ }^{13}$

- Measure power consumption of $\mathcal{P}(v)$
- This operation boils down to computing $\mathbf{v}^{\top} P^{(k)} \mathbf{v}$ for m known matrices $P^{(k)}$
- Consider the matrix-vector multiplication

$$
P^{(k)} \cdot \boldsymbol{v}=\left(\begin{array}{cccc}
p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1, n}^{(k)} \\
& p_{2,2}^{(k)} & \cdots & p_{2, n}^{(k)} \\
& & \ddots & \vdots \\
& & & p_{n, n}^{(k)}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right) \text { for } k \in\{1, \ldots, m\}
$$

- Secret v is multiplied with a considerable amount of known values

[^25]
Template Attack

- Create a template by tracing the power consumption of

$$
p^{(k)} \cdot v=\left(\begin{array}{cccc}
p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1, n}^{(k)} \\
& p_{2,2}^{(k)} & \cdots & p_{2, n}^{(k)} \\
& & \ddots & \vdots \\
& & & p_{n, n}^{(k)}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right) \text { for } k \in\{1, \ldots, m\}
$$

for $v=0,1,2, \ldots, q-1 \in \mathbb{F}_{q}^{m}$

Template Attack

- Create a template by tracing the power consumption of

$$
p^{(k)} \cdot \boldsymbol{v}=\left(\begin{array}{cccc}
p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1, n}^{(k)} \\
& p_{2,2}^{(k)} & \cdots & p_{2, n}^{(k)} \\
& & \ddots & \vdots \\
& & & p_{n, n}^{(k)}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right) \text { for } k \in\{1, \ldots, m\}
$$

$$
\text { for } v=0,1,2, \ldots, q-1 \in \mathbb{F}_{q}^{m}
$$

- Multiplication of field elements

$$
\begin{array}{llll}
p_{1,1}^{(k)} \cdot v_{1} & p_{2,2}^{(k)} \cdot v_{2} & \ldots & p_{n, n}^{(k)} \cdot v_{n}
\end{array}
$$

Template Attack

- Create a template by tracing the power consumption of

$$
p^{(k)} \cdot v=\left(\begin{array}{cccc}
p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1, n}^{(k)} \\
& p_{2,2}^{(k)} & \cdots & p_{2, n}^{(k)} \\
& & \ddots & \vdots \\
& & & p_{n, n}^{(k)}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right) \text { for } k \in\{1, \ldots, m\}
$$

$$
\text { for } v=0,1,2, \ldots, q-1 \in \mathbb{F}_{q}^{m}
$$

- Multiplication of field elements

$$
\begin{array}{llll}
p_{1,1}^{(k)} \cdot v_{1} & p_{2,2}^{(k)} \cdot v_{2} & \ldots & p_{n, n}^{(k)} \cdot v_{n}
\end{array}
$$

- For each field element, we need to run and trace the matrix-vector multiplication only once \rightarrow in total $q=256$ profiling traces

Template Attack

- Create a template by tracing the power consumption of

$$
p^{(k)} \cdot v=\left(\begin{array}{cccc}
p_{1,1}^{(k)} & p_{1,2}^{(k)} & \cdots & p_{1, n}^{(k)} \\
& p_{2,2}^{(k)} & \cdots & p_{2, n}^{(k)} \\
& & \ddots & \vdots \\
& & & p_{n, n}^{(k)}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right) \text { for } k \in\{1, \ldots, m\}
$$

$$
\text { for } v=0,1,2, \ldots, q-1 \in \mathbb{F}_{q}^{m}
$$

- Multiplication of field elements

$$
\begin{array}{llll}
p_{1,1}^{(k)} \cdot v_{1} & p_{2,2}^{(k)} \cdot v_{2} & \cdots & p_{n, n}^{(k)} \cdot v_{n}
\end{array}
$$

- For each field element, we need to run and trace the matrix-vector multiplication only once \rightarrow in total $q=256$ profiling traces
- Can be collected on another device (subtract some mean to erase the 'footprint' of the device)

Record Power Traces

- Power traces are very distinctive

Record Power Traces

- Power traces are very distinctive
- The vinegar variables are processed bitwise from LSB to MSB

Record Power Traces

- Power traces are very distinctive
- The vinegar variables are processed bitwise from LSB to MSB
- Consider the following example

Compare power traces with $v_{i}=0 \times F F$ vs $v_{i}=0 x E B$

Compute Correlation

- Trace the matrix-vector multiplications with secret vinegar variables on the target device

Compute Correlation

- Trace the matrix-vector multiplications with secret vinegar variables on the target device
- Compute correlation to templates for each entry of v

Correlation of the target trace with each of the 256 reference traces

Summary of the Template Attack

Summary

- Very high success probability ($\approx 97 \%$) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Summary of the Template Attack

Summary

- Very high success probability ($\approx 97 \%$) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Practicality

- Attack executed with the ChipWhisperer-Lite on an 32-bit STM32F3 target board
- Parameter set only slightly reduced, s.t. \mathcal{P} fits on the target board
- Used modern UOV implementation

Summary of the Template Attack

Summary

- Very high success probability ($\approx 97 \%$) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Practicality

- Attack executed with the ChipWhisperer-Lite on an 32-bit STM32F3 target board
- Parameter set only slightly reduced, s.t. \mathcal{P} fits on the target board
- Used modern UOV implementation

Countermeasures

- Masking or shuffling are classical countermeasures for this

Summary of the Template Attack

Summary

- Very high success probability ($\approx 97 \%$) for all vinegar variables
- Template attack with small number of profiling traces
- One single attack trace leads to a secret oil vector (key recovery)

Practicality

- Attack executed with the ChipWhisperer-Lite on an 32-bit STM32F3 target board
- Parameter set only slightly reduced, s.t. \mathcal{P} fits on the target board
- Used modern UOV implementation

Countermeasures

- Masking or shuffling are classical countermeasures for this

Future work

- Analyze efficiency impact of countermeasures
- Apply the attack to M4 implementations or using a different setup

Takeaways

The End

Takeaways

- Vinegar vectors and oil vectors should be equally secured
- With one of those, the secret key can be recovered in polynomial time
- Some physical attacks are still in a theoretical or simulated state
- Efficiency impact of countermeasures should be analyzed

Questions?
Contact: thomas.aulbach@ur.de
Aulbach, Campos, Krämer, Samardjiska, Stöttinger:
Separating Oil and Vinegar with a Single Trace https://ia.cr/2023/335

References

圊 Aulbach，T．，Campos，F．，Krämer，J．，Samardjiska，S．，and Stöttinger，M．：Separating Oil and Vinegar with a Single Trace：Side－Channel Assisted Kipnis－Shamir Attack on UOV． IACR Transactions on Cryptographic Hardware and Embedded Systems， 2023.
國 Aulbach，T．，Kovats，T．，Krämer，J．，and Marzougui，S．：Recovering Rainbow＇s Secret Key with a First－Order Fault Attack．In International Conference on Cryptology in Africa， 2022.

Reullens，W．，Chen，M．S．，Hung，S．H．，Kannwischer，M．J．，Peng，B．Y．，Shih，C．J．，and Yang， B．Y．：Oil and Vinegar：Modern Parameters and Implementations．IACR Transactions on Cryptographic Hardware and Embedded Systems， 2023.
囯 Furue，H．，Kiyomura，Y．，Nagasawa，T．，and Takagi，T．：A New Fault Attack on UOV Multivariate Signature Scheme．In International Conference on Post－Quantum Cryptography， 2022.
围 Hashimoto，Y．，Takagi，T．，and Sakurai，K．：General Fault Attacks on Multivariate Public Key Cryptosystems．In International Conference on Post－Quantum Cryptography， 2011.

References

Kato, T., Kiyomura, Y., and Takagi, T.: Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values. International Workshop on Security, 2022.
目 Krämer, J., and Loiero, M.: Fault Attacks on UOV and Rainbow. In Constructive Side-Channel Analysis and Secure Design: 10th International Workshop, COSADE, 2019.
围 Mus, K., Islam, S., and Sunar, B.: QuantumHammer: a Practical Hybrid Attack on the LUOV Signature Scheme. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, 2020.
? Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018.
R Shim, K. A., and Koo, N.: Algebraic Fault Analysis of UOV and Rainbow with the Leakage of Random Vinegar Values. IEEE Transactions on Information Forensics and Security, 2020.

[^0]: ${ }^{1}$ https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/GODoD7lkGPk

[^1]: ${ }^{1}$ https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/GODoD7lkGPk

[^2]: ${ }^{1}$ https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/GODoD7lkGPk

[^3]: ${ }^{1}$ https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

[^4]: ${ }^{1}$ https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

[^5]: ${ }^{1}$ https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk

[^6]: ${ }^{2}$ Beullens, W., Chen, M. S., Hung, S. H., Kannwischer, M. J., Peng, B. Y., Shih, C. J., and Yang, B. Y. (2023). Oil and Vinegar: Modern Parameters and Implementations. IACR TCHES, 321-365.

[^7]: ${ }^{3}$ Hashimoto, Y., Takagi, T., and Sakurai, K.: General Fault Attacks on Multivariate Public Key Cryptosystems. PQCrypto 2011
 ${ }^{4}$ Krämer, J., and Loiero, M.: Fault Attacks on UOV and Rainbow. COSADE 2019

[^8]: ${ }^{3}$ Hashimoto, Y., Takagi, T., and Sakurai, K.: General Fault Attacks on Multivariate Public Key Cryptosystems. PQCrypto 2011
 ${ }^{4}$ Krämer, J., and Loiero, M.: Fault Attacks on UOV and Rainbow. COSADE 2019

[^9]: ${ }^{5}$ Thanks to Ward Beullens for pointing out how this attack is possible

[^10]: ${ }^{5}$ Thanks to Ward Beullens for pointing out how this attack is possible
 ${ }^{6}$ Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

[^11]: ${ }^{7}$ Shim, K. A., and Koo, N.: Algebraic Fault Analysis of UOV and Rainbow with the Leakage of Random Vinegar Values. IEEE Transactions on Information Forensics and Security 2020
 ${ }^{8}$ Kato, T., Kiyomura, Y., and Takagi, T.: Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values. International Workshop on Security 2022

[^12]: ${ }^{7}$ Shim, K. A., and Koo, N.: Algebraic Fault Analysis of UOV and Rainbow with the Leakage of Random Vinegar Values. IEEE Transactions on Information Forensics and Security 2020
 ${ }^{8}$ Kato, T., Kiyomura, Y., and Takagi, T.: Improving Fault Attacks on Rainbow with Fixing Random Vinegar Values. International Workshop on Security 2022
 ${ }^{9}$ Aulbach, T., Kovats, T., Krämer, J., and Marzougui, S.: Recovering Rainbow's Secret Key with a First-Order Fault Attack. AfricaCrypt 2022

[^13]: ${ }^{10}$ Furue, H., Kiyomura, Y., Nagasawa, T., and Takagi, T.: A New Fault Attack on UOV Multivariate Signature Scheme. PQCrypto 2022

[^14]: ${ }^{11}$ Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

[^15]: ${ }^{11}$ Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

[^16]: ${ }^{11}$ Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

[^17]: ${ }^{11}$ Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

[^18]: ${ }^{11}$ Mus, K., Islam, S., and Sunar, B. QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme. ACM SIGSAC Conference on Computer and Communications Security 2020

[^19]: ${ }^{12}$ Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR TCHES 2018

[^20]: ${ }^{12}$ Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR TCHES 2018

[^21]: ${ }^{12}$ Park, A., Shim, K. A., Koo, N., and Han, D. G.: Side-channel Attacks on Post-quantum Signature Schemes based on Multivariate Quadratic Equations:-Rainbow and UOV. IACR TCHES 2018

[^22]: ${ }^{13}$ Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

[^23]: ${ }^{13}$ Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

[^24]: ${ }^{13}$ Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

[^25]: ${ }^{13}$ Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., and Stöttinger, M.: Separating Oil and Vinegar with a Single Trace: Side-Channel Assisted Kipnis-Shamir Attack on UOV. IACR TCHES 2023

