

Digital signatures from equivalence problems - A closer look at $\rm MEDS$ and $\rm ALTEQ$

Simona Samardjiska Radboud University, Netherlands Youming Qiao University of Technology Sydney, Australia NIST PQC Seminar

- The rest of the MEDS team: Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika Trimoska
- ► The rest of the ALTEQ team: Markus Bläser, Dung Hoang Duong, Anand Kumar Narayanan, Thomas Plantard, Arnaud Sipasseuth, Gang Tang.

Interesting case - when problem is hard! What can we do with it?

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

Zero-Knowledge protocols

- Zero-Knowledge protocols
- Identification schemes (IDS)

- Zero-Knowledge protocols
- Identification schemes (IDS)
- ▶ Digital Signatures via Fiat-Shamir transform
 - F-S is a common strategy for PQ signatures
 - Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition

- Zero-Knowledge protocols
- Identification schemes (IDS)
- ▶ Digital Signatures via Fiat-Shamir transform
 - F-S is a common strategy for PQ signatures
 - Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition
 - More than 15 in the additional round!

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

$\mathcal{P}(\mathcal{O}_0, \mathcal{O}_1, \phi)$	$\mathcal{V}(\mathcal{O}_0,\mathcal{O}_1)$

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1=\phi(\mathcal{O}_0).$

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$. Given $\mathcal{O}_0, \mathcal{O}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing

any information about it

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$. Given $\mathcal{O}_0, \mathcal{O}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Digital Signatures via the Fiat-Shamir transform

Digital Signatures via the Fiat-Shamir transform

 $\begin{array}{c|c} \mathsf{IDS} & \overbrace{\mathcal{P}(\mathcal{O}_{0},\mathcal{O}_{1},\phi)}^{\mathcal{P}(\mathcal{O}_{0},\mathcal{O}_{1},\phi)} & \overbrace{\mathcal{O}'',\dots,\mathcal{O}^{(r)}}^{\mathsf{com}} & \overbrace{\mathsf{com}}^{\mathsf{com}} & \overbrace{\mathsf{ch} = (\mathsf{ch}_{1},\dots,\mathsf{ch}_{r})}^{\mathsf{com}} & c\mathsf{h} \leftarrow_{\mathcal{R}} \{0,1\}^{r} \\ & \overbrace{\mathsf{resp}}^{\mathsf{resp}} & \overbrace{\mathcal{O}' \stackrel{?}{=} \phi_{\mathsf{ch}_{1}}(\mathcal{O}_{\mathsf{ch}_{1}}),\dots,\mathcal{O}^{(r)} \stackrel{?}{=} \phi_{\mathsf{ch}_{r}}(\mathcal{O}_{\mathsf{ch}_{r}})} \end{array}$

Digital Signatures via the Fiat-Shamir transform

FS signature $\begin{array}{c}
 \underbrace{ \text{Signer}(pk, sk) \\
 com \leftarrow (\mathcal{O}', \mathcal{O}'', \dots, \mathcal{O}^{(r)}) \\
 ch \leftarrow H(m, com) \\
 resp \leftarrow (\phi_{ch_1}, \phi_{ch_2}, \dots, \phi_{ch_r}) \\
 output : \sigma = (com, resp) \\
\end{array}$ $\begin{array}{c}
 \underbrace{ \text{Verifier}(pk) \\
 ch \leftarrow H(m, com) \\
 b \leftarrow \forall f(pk, com, ch, resp) \\
 output : b \\
 \end{array}$

• Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2

- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- For security of λ bits, **needs to be repeated** $r = \lambda$ **times!**

- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- For security of λ bits, **needs to be repeated** $r = \lambda$ **times!**
- ▶ \Rightarrow Signature contains λ isometries (from λ rounds)

- Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- For security of λ bits, **needs to be repeated** $r = \lambda$ **times!**
- ▶ \Rightarrow Signature contains λ isometries (from λ rounds)
- $\blacktriangleright \Rightarrow$ All operations in signing and verification need to be repeated λ times

Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N

- **Challenge space is now of size** $N \Rightarrow$ Soundness error is 1/N
- For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!

- **Challenge space is now of size** $N \Rightarrow$ Soundness error is 1/N
- For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ► \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries

- **Challenge space is now of size** $N \Rightarrow$ Soundness error is 1/N
- For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ▶ ⇒ Signature contains $\frac{\lambda}{\log N}$ isometries
- ▶ ⇒ All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times

- **Challenge space is now of size** $N \Rightarrow$ Soundness error is 1/N
- For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ▶ ⇒ Signature contains $\frac{\lambda}{\log N}$ isometries
- ▶ ⇒ All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- ▶ There is a cost *N*-fold increase in public and private key

- **Challenge space is now of size** $N \Rightarrow$ Soundness error is 1/N
- For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ▶ ⇒ Signature contains $\frac{\lambda}{\log N}$ isometries
- ▶ ⇒ All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- ▶ There is a cost *N*-fold increase in public and private key
- Always necessary to find the best trade-off

Optimization 2: Reduce signature size by using seeds

• The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature

Optimization 2: Reduce signature size by using seeds

• The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature

• ψ_0 can be reconstructed from the seed

Optimization 2: Reduce signature size by using seeds

• The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature

- ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N

- ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - \Rightarrow not a big benefit in general

- ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - \Rightarrow not a big benefit in general
 - \Rightarrow signature is not of constant size

- ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - \Rightarrow not a big benefit in general
 - \Rightarrow signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges

- ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - \Rightarrow not a big benefit in general
 - \Rightarrow signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges
 - We need a special hash function that always produces fixed weight outputs

- ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - \Rightarrow not a big benefit in general
 - \Rightarrow signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges
 - We need a special hash function that always produces fixed weight outputs
 - Always necessary to find the best trade-off

- ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - \Rightarrow not a big benefit in general
 - \Rightarrow signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges
 - We need a special hash function that always produces fixed weight outputs
 - Always necessary to find the best trade-off

▶ Isomorphism of polynomials - Patarin's signature, 1998

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, [Denes 2001]

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, [Denes 2001]
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, [De Feo et al.]

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, [Denes 2001]
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence LESS [Biasse et al. 2020], LESS-FM [Barenghi et al. 2021]

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, [Denes 2001]
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence LESS [Biasse et al. 2020], LESS-FM [Barenghi et al. 2021]
- ▶ Alternate trilinear form equivalence [Tang et al. 2022]

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, [Denes 2001]
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence LESS [Biasse et al. 2020], LESS-FM [Barenghi et al. 2021]
- ▶ Alternate trilinear form equivalence [Tang et al. 2022]
- ▶ Lattice isomorphism [Ducas-van Woerden 2022]

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, [Denes 2001]
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence LESS [Biasse et al. 2020], LESS-FM [Barenghi et al. 2021]
- ▶ Alternate trilinear form equivalence [Tang et al. 2022]
- ▶ Lattice isomorphism [Ducas-van Woerden 2022]
- Matrix code equivalence [Reijnders-Samardjiska-Trimoska 2022]

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, [Denes 2001]
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence LESS [Biasse et al. 2020], LESS-FM [Barenghi et al. 2021]
- ▶ Alternate trilinear form equivalence [Tang et al. 2022]
- ▶ Lattice isomorphism [Ducas-van Woerden 2022]

• • • •

Matrix code equivalence - [Reijnders-Samardjiska-Trimoska 2022]

Equivalence problems for MEDS and ALTEQ

- $\blacktriangleright~\mathrm{MEDS}$ is based on the following equivalence problem.
- ▶ Matrix code a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with rank metric.

- $\blacktriangleright~{\rm MEDS}$ is based on the following equivalence problem.
- ► Matrix code a subspace of M_{m×n}(F_q) of dimension k endowed with rank metric.

Matrix Code Equivalence (MCE) problem [Berger,2003] MCE(k, n, m, q, C, D): Input: Two k-dimensional matrix codes $C, D \subset M_{m,n}(q)$ Question: Find – if any – $\mathbf{A} \in GL_m(q), \mathbf{B} \in GL_n(q)$ s.t. for all $\mathbf{C} \in C$, it holds that

$$\textbf{ACB} \in \mathcal{D}$$

ALTEQ: Alternating Trilinear Form Equivalence

- $\blacktriangleright~\mathrm{ALTEQ}$ is based on the following equivalence problem.
- ▶ Alternating trilinear form a map $\phi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ that
 - (1) is linear in each argument, and
 - (2) evaluates to 0 whenever two arguments are the same.

ALTEQ: Alternating Trilinear Form Equivalence

- ▶ ALTEQ is based on the following equivalence problem.
- ▶ Alternating trilinear form a map $\phi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ that
 - (1) is linear in each argument, and
 - (2) evaluates to 0 whenever two arguments are the same.

Alternating Trilinear Form Equivalence (ATFE) [Grochow-Qiao-Tang, 2021] ALTEQ (n, q, ϕ, ψ) : Input: Two alternating trilinear forms $\phi, \psi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$. Question: Find – if any – $\mathbf{A} \in \operatorname{GL}_n(q)$ s.t. for any $u, v, w \in \mathbb{F}_q^n$, $\phi(u, v, w) = \psi(\mathbf{A}^t(u), \mathbf{A}^t(v), \mathbf{A}^t(w))$.

Matrix codes:

Matrix codes:

MCE:

matrix codes of rectangular matrices

Matrix codes:

MCE:

matrix codes of rectangular matrices

▶ isometry (A, B)

- ▶ An alternating trilinear form is $\phi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$.
- ▶ We can record ϕ as an $n \times n \times n$ 3-way array $C = [c_{i,j,k}]$, where $c_{i,j,k} = \phi(e_i, e_j, e_k)$.
 - Note that $c_{i,j,k} = -c_{j,i,k} = -c_{k,j,i} = -c_{i,k,j} = c_{j,k,i} = c_{k,i,j}$.
- ▶ A 3-way array C can also be represented as a matrix tuple (C_1, \ldots, C_n) , $C_i \in \mathcal{M}_n(q)$.

- ▶ An alternating trilinear form is $\phi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$.
- ▶ We can record ϕ as an $n \times n \times n$ 3-way array $C = [c_{i,j,k}]$, where $c_{i,j,k} = \phi(e_i, e_j, e_k)$.
 - Note that $c_{i,j,k} = -c_{j,i,k} = -c_{k,j,i} = -c_{i,k,j} = c_{j,k,i} = c_{k,i,j}$.
- ▶ A 3-way array C can also be represented as a matrix tuple (C_1, \ldots, C_n) , $C_i \in \mathcal{M}_n(q)$.

ATFE:

- ▶ matrix codes with "symmetries in the three directions".
- ▶ isometry $(\mathbf{A}, \mathbf{A}^{\top})$ and \mathbf{A} on the third direction too

MCE and ATFE are polynomial-time equivalent

- ▶ The objects in MCE and ATFE are both 3-way arrays.
 - A 2-way array, $[c_{i,j}]$, is a matrix.
 - A 3-way array, $[c_{i,j,k}]$, is sometimes called a 3-tensor.
 - The 3-way arrays from ATFE are subject to certain structural constraints.

MCE and ATFE are polynomial-time equivalent

- ▶ The objects in MCE and ATFE are both 3-way arrays.
 - A 2-way array, $[c_{i,j}]$, is a matrix.
 - A 3-way array, $[c_{i,j,k}]$, is sometimes called a 3-tensor.
 - The 3-way arrays from ATFE are subject to certain structural constraints.
- ▶ The isomorphisms in MCE and ATFE are both invertible matrices.
 - $L, R \in GL_n(q)$ sends $C \in \mathcal{M}_n(q)$ to $L^t CR$.
 - $L, R, T = (t_{i,j}) \in GL_n(q)$ sends $(C_1, \ldots, C_n) \in \mathcal{M}_n(q)^n$ to $(L^t C'_1 R, \ldots, L^t C'_n R)$, where $C'_i = \sum_j t_{i,j} C_j$.
 - The isomorphism in ATFE imposes that L = R = T.

MCE and ATFE are polynomial-time equivalent

- ▶ The objects in MCE and ATFE are both 3-way arrays.
 - A 2-way array, $[c_{i,j}]$, is a matrix.
 - A 3-way array, $[c_{i,j,k}]$, is sometimes called a 3-tensor.
 - The 3-way arrays from ATFE are subject to certain structural constraints.
- ▶ The isomorphisms in MCE and ATFE are both invertible matrices.
 - $L, R \in GL_n(q)$ sends $C \in \mathcal{M}_n(q)$ to $L^t CR$.
 - $L, R, T = (t_{i,j}) \in GL_n(q)$ sends $(C_1, \ldots, C_n) \in \mathcal{M}_n(q)^n$ to $(L^t C'_1 R, \ldots, L^t C'_n R)$, where $C'_i = \sum_j t_{i,j} C_j$.
 - The isomorphism in ATFE imposes that L = R = T.

Theorem ([Grochow-Qiao-Tang, 2023])

MCE and ATFE are polynomial-time equivalent.

A complexity class for isomorphism problems of algebraic structures

 Relations between isomorphism problems for some algebraic structures are studied in [Reijnders-Samardjiska-Trimoska, Grochow-Qiao-Tang, D'Alconzo, Couvreur-Debris-Alazard-Gaborit...]

A complexity class for isomorphism problems of algebraic structures

- Relations between isomorphism problems for some algebraic structures are studied in [Reijnders–Samardjiska–Trimoska, Grochow–Qiao–Tang, D'Alconzo, Couvreur–Debris-Alazard–Gaborit...]
- ► The complexity class TI was defined in [Grochow-Qiao], consisting of problems polynomial-time reducible to MCE.
 - MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
 - In analogy with the complexity class GI for Graph Isomorphism.
- ▶ MCE and ATFE are TI-complete.

A complexity class for isomorphism problems of algebraic structures

- Relations between isomorphism problems for some algebraic structures are studied in [Reijnders–Samardjiska–Trimoska, Grochow–Qiao–Tang, D'Alconzo, Couvreur–Debris-Alazard–Gaborit...]
- ► The complexity class TI was defined in [Grochow-Qiao], consisting of problems polynomial-time reducible to MCE.
 - MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
 - In analogy with the complexity class GI for Graph Isomorphism.
- ▶ MCE and ATFE are TI-complete.
- TI-complete problems include isomorphism problems for tensors, finite groups, (associative and Lie) algebras, (systems of) polynomials...

- ► TI-complete problems appear in computational group theory, multivariate cryptography, and quantum information.
 - Experiences from these areas suggest that TI-complete problems are difficult to solve in practice.

- ► TI-complete problems appear in computational group theory, multivariate cryptography, and quantum information.
 - Experiences from these areas suggest that TI-complete problems are difficult to solve in practice.
- Isomorphism problems for <u>cubic forms</u> and <u>quadratic polynomial systems</u>, as studied since 1996 [Patarin], are TI-complete.
 - Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

- ► TI-complete problems appear in computational group theory, multivariate cryptography, and quantum information.
 - Experiences from these areas suggest that TI-complete problems are difficult to solve in practice.
- Isomorphism problems for <u>cubic forms</u> and <u>quadratic polynomial systems</u>, as studied since 1996 [Patarin], are TI-complete.
 - Results from the study of polynomial isomorphism are valuable for MCE and ATFE.
- Linear code monomial equivalence and graph isomorphism are in TI [Couvreur–Debris-Alazard–Gaborit, Grochow–Qiao].
 - Linear code monomial equivalence supports LESS.

- A natural development of Shor's quantum algorithms for integer factorisation and discrete logarithm is the hidden subgroup problem framework.
- ▶ MCE and ATFE can be cast in this framework for general linear groups.
- A natural development of Shor's quantum algorithms for integer factorisation and discrete logarithm is the hidden subgroup problem framework.
- ▶ MCE and ATFE can be cast in this framework for general linear groups.
- ► A strong negative evidence for the "standard technique" to work in this setting [Hallgren-Moore-Rötteler-Russell-Sen, 2010].

[Moore-Russell-Vazirani] . . . the strongest such insights we have about the limits of quantum algorithms.

Cryptanalysis for MCE and ATFE

- ▶ Consider 3-way arrays of size $n \times n \times n$ over \mathbb{F}_q under the action of (L, R, T) or $(T, T, T) \in GL_n(q) \times GL_n(q) \times GL_n(q)$.
- ▶ Brute-force algorithm: $q^{n^2} \cdot \operatorname{poly}(n, \log q)$.
 - After fixing T, to recover L and R can be done in time $poly(n, \log q)$.

- ▶ Consider 3-way arrays of size $n \times n \times n$ over \mathbb{F}_q under the action of (L, R, T) or $(T, T, T) \in GL_n(q) \times GL_n(q) \times GL_n(q)$.
- ▶ Brute-force algorithm: $q^{n^2} \cdot \operatorname{poly}(n, \log q)$.
 - After fixing T, to recover L and R can be done in time $poly(n, \log q)$.
- ▶ We will introduce three approaches.
 - Direct Gröbner basis attack.
 - Hybrid Gröbner basis: $q^n \cdot \text{poly}(n, \log q)$.
 - Utilising low-rank points (via birthday paradox and invariants).

- ▶ Let $C = [c_{i,j,k}]$ and $D = [d_{i,j,k}]$ be two $n \times n \times n$ 3-way arrays over \mathbb{F}_q .
- ▶ We view C as a matrix tuple (C_1, \ldots, C_n) , $C_i \in \mathcal{M}_n(q)$.

- ▶ Let $C = [c_{i,j,k}]$ and $D = [d_{i,j,k}]$ be two $n \times n \times n$ 3-way arrays over \mathbb{F}_q .
- ▶ We view C as a matrix tuple (C_1, \ldots, C_n) , $C_i \in \mathcal{M}_n(q)$.
- ▶ Recall that $L, R, T = (t_{i,j}) \in GL_n(q)$ sends $(C_1, \ldots, C_n) \in \mathcal{M}_n(q)^n$ to $(L^t C'_1 R, \ldots, L^t C'_n R)$, where $C'_i = \sum_j t_{i,j} C_j$.

- ▶ Let $C = [c_{i,j,k}]$ and $D = [d_{i,j,k}]$ be two $n \times n \times n$ 3-way arrays over \mathbb{F}_q .
- ▶ We view C as a matrix tuple (C_1, \ldots, C_n) , $C_i \in \mathcal{M}_n(q)$.
- ▶ Recall that $L, R, T = (t_{i,j}) \in GL_n(q)$ sends $(C_1, \ldots, C_n) \in \mathcal{M}_n(q)^n$ to $(L^t C'_1 R, \ldots, L^t C'_n R)$, where $C'_i = \sum_j t_{i,j} C_j$.
- ▶ Viewing the entries of *L*, *R* and *T* as variables, the question is whether $(L^t C'_1 R, ..., L^t C'_n R) = (D_1, ..., D_n).$
 - This amounts to n^3 cubic polynomials in $3n^2$ variables.

Direct Gröbner basis attack: more efficient modellings

Cubic modelling $(L^t C'_1 R, \ldots, L^t C'_n R) = (D_1, \ldots, D_n)$ where $C'_i = \sum_j t_{i,j} C_j$.

- ▶ This gives rise to n^3 cubic polynomials in $3n^2$ variables for MCE.
- ▶ And $\binom{n}{3}$ cubic polynomials in n^2 variables for ATFE.

Direct Gröbner basis attack: more efficient modellings

Cubic modelling $(L^t C'_1 R, \ldots, L^t C'_n R) = (D_1, \ldots, D_n)$ where $C'_i = \sum_j t_{i,j} C_j$.

- ▶ This gives rise to n^3 cubic polynomials in $3n^2$ variables for MCE.
- ▶ And $\binom{n}{3}$ cubic polynomials in n^2 variables for ATFE.

Quadratic inverse modelling For ATFE, let $T' = [t'_{i,i}]$. Then set

 $(T^t C_1 T, \dots, T^t C_n T) = (D'_1, \dots, D'_n)$ where $D'_i = \sum_j t'_{i,j} D_j$, and $TT' = I_n$. This is by [Bouillaguet-Faugère-Fouque-Perret, 2010].

▶ $n \cdot \binom{n}{2} + n^2$ quadratic polynomials in $2n^2$ variables.

Direct Gröbner basis attack: more efficient modellings

Cubic modelling $(L^t C'_1 R, \ldots, L^t C'_n R) = (D_1, \ldots, D_n)$ where $C'_i = \sum_j t_{i,j} C_j$.

- ▶ This gives rise to n^3 cubic polynomials in $3n^2$ variables for MCE.
- ▶ And $\binom{n}{3}$ cubic polynomials in n^2 variables for ATFE.

Quadratic inverse modelling For ATFE, let $T' = [t'_{i,i}]$. Then set

 $(T^tC_1T,\ldots,T^tC_nT)=(D'_1,\ldots,D'_n)$ where $D'_i=\sum_j t'_{i,j}D_j$, and $TT'=I_n$.

▶ This is by [Bouillaguet-Faugère-Fouque-Perret, 2010].

• $n \cdot \binom{n}{2} + n^2$ quadratic polynomials in $2n^2$ variables.

Quadratic dual modelling Use the dual space of \mathcal{D} to express that $L^t C_i R \in \mathcal{D}$.

- This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-Samardjiska-Trimoska].
- ► This gives rise to n · (n² n) homogeneous quadratic polynomials in 2n² variables for MCE.
- ▶ And $n \cdot \binom{n}{2} n$ quadratic polynomials in n^2 variables for ATFE.
- ▶ Note that some syzygies arise, complicating the analysis [MEDS spec].

- ▶ We set up $n \times n$ variable matrices *L* and *R* for MCE (or *T* and *T'* for ATFE).
- ▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, provided that one (or two) rows of *L* are known.

- ▶ We set up $n \times n$ variable matrices *L* and *R* for MCE (or *T* and *T'* for ATFE).
- ▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, provided that one (or two) rows of *L* are known.
- ▶ For ATFE, knowing one row of *T* is enough, leading to a *qⁿ* · poly(*n*, log *q*)-time algorithm.
- ▶ For MCE, knowing two rows of L is enough, leading to an q²ⁿ · poly(n, log q)-time algorithm.

- ▶ We set up $n \times n$ variable matrices *L* and *R* for MCE (or *T* and *T'* for ATFE).
- ▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, provided that one (or two) rows of *L* are known.
- ▶ For ATFE, knowing one row of *T* is enough, leading to a *qⁿ* · poly(*n*, log *q*)-time algorithm.
- ▶ For MCE, knowing two rows of L is enough, leading to an q²ⁿ · poly(n, log q)-time algorithm.
- ▶ Further observations from [Beullens, 2023]:
 - Knowing one row of T up to scalar is enough.
 - For low-rank points, the kernel information can be incorporated.

Utilising low-rank points

- ▶ Let $\phi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ be an alternating trilinear form.
- ▶ For $u \in \mathbb{F}_q^n$, let $\phi_u : \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ by $\phi_u(v, w) = \phi(u, v, w)$.
- ▶ An isomorphism invariant for u: $r = \text{Rank}(\phi_u)$.

Utilising low-rank points

- ▶ Let $\phi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ be an alternating trilinear form.
- ▶ For $u \in \mathbb{F}_q^n$, let $\phi_u : \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ by $\phi_u(v, w) = \phi(u, v, w)$.
- ▶ An isomorphism invariant for u: $r = \text{Rank}(\phi_u)$.
- Algorithms based on birthday paradox and hybrid Gröbner basis [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
 - Suppose there exist $\approx q^k$ -many rank-*r* points for a random ϕ .
 - (1) Sample $q^{k/2}$ -many rank-r points for ϕ and ψ , respectively.
 - (2) For every pair, use hybrid Gröbner basis to find a "matched" pair.
 - Algorithm cost: $O(q^{k/2} \cdot \text{samp-cost} + q^k \cdot \text{gb-cost})$.

Utilising low-rank points

- ▶ Let $\phi : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ be an alternating trilinear form.
- ▶ For $u \in \mathbb{F}_q^n$, let $\phi_u : \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$ by $\phi_u(v, w) = \phi(u, v, w)$.
- ▶ An isomorphism invariant for u: $r = \text{Rank}(\phi_u)$.
- Algorithms based on birthday paradox and hybrid Gröbner basis [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
 - Suppose there exist $\approx q^k$ -many rank-*r* points for a random ϕ .
 - (1) Sample $q^{k/2}$ -many rank-r points for ϕ and ψ , respectively.
 - (2) For every pair, use hybrid Gröbner basis to find a "matched" pair.
 - Algorithm cost: $O(q^{k/2} \cdot \text{samp-cost} + q^k \cdot \text{gb-cost})$.
- Sampling step: min-rank or graph-walking [Beullens, 2023]

- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
 - Suppose there exist $\approx q^k$ -many rank-*r* points for a random ϕ .
 - <u>Suppose</u> there exist distinguishing isomorphism invariants associated with such points.

- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
 - Suppose there exist $\approx q^k$ -many rank-*r* points for a random ϕ .
 - <u>Suppose</u> there exist distinguishing isomorphism invariants associated with such points.
 - (1) Sample $q^{k/2}$ -many rank-*r* points for ϕ and ψ , respectively.
 - (2) For every point, compute the isomorphism invariant.
 - (3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid Gröbner basis to complete.

- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
 - Suppose there exist $\approx q^k$ -many rank-*r* points for a random ϕ .
 - <u>Suppose</u> there exist distinguishing isomorphism invariants associated with such points.
 - (1) Sample $q^{k/2}$ -many rank-*r* points for ϕ and ψ , respectively.
 - (2) For every point, compute the isomorphism invariant.
 - (3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid Gröbner basis to complete.
 - Algorithm cost: $O(q^{k/2} \cdot (\text{samp-cost} + \text{inv-cost}) + \text{gb-cost})$.

- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
 - Suppose there exist $\approx q^k$ -many rank-*r* points for a random ϕ .
 - <u>Suppose</u> there exist distinguishing isomorphism invariants associated with such points.
 - (1) Sample $q^{k/2}$ -many rank-*r* points for ϕ and ψ , respectively.
 - (2) For every point, compute the isomorphism invariant.
 - (3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid Gröbner basis to complete.
 - Algorithm cost: $O(q^{k/2} \cdot (\text{samp-cost} + \text{inv-cost}) + \text{gb-cost})$.
- Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank points, and more [Narayanan-Qiao-Tang].

Parameters and performances of MEDS and ALTEQ

Parameters and performance of MEDS

Level	param. set	public key size (KB)	signature size (KB)	key gen (ms)	sign (ms)	verify (ms)
I	MEDS-9923	9.9	9.9	1	272	271
	MEDS-13220	13.2	13	1.3	46.7	46
111	MEDS-41711	41.7	41	5.1	779	762
	MEDS-69497	55.6	54.7	6.7	203.8	200.4

Table: An overview of the parameters and performance of MEDS.

Optimizations:

- ▶ Standard: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
- ▶ New: Public Key Compression
 - generate public key partially from seed \Rightarrow signature size reduction
 - Work in progress: use similar idea during signing

Parameters and performance of ALTEQ

Level	mode	public key size (KB)	signature size (KB)	key gen (ms)	sign (ms)	verify (ms)
I	Balanced	8	16	0.093	0.629	0.496
	ShortSig	512	10	1.902	0.194	0.092
111	Balanced	32	48	0.582	6.986	6.483
	ShortSig	1024	24	5.152	1.705	1.304

Table: An overview of the parameters and performance of ALTEQ.

Optimizations:

- **Standard:** Multiple Public Keys + Fixed-Weight Challenge Strings (+ Seed tree)
- ▶ New: Invertible matrix decomposition
 - Represent an invertible matrix as a product of <u>column matrices</u> for faster signing and verification

- ▶ Digital signature based on equivalence problems: design and optimisations
- ▶ Matrix code equivalence (MCE) and alternating trilinear form equivalence (ATFE)
- ► Algorithms for MCE and ATFE
- $\blacktriangleright\,$ MEDS and ALTEQ: parameters and performances

Thank you for listening!