Radboud University

Digital signatures from equivalence problems - A closer look at MEDS and ALTEQ

Simona Samardjiska Radboud University, Netherlands
Youming Qiao University of Technology Sydney, Australia NIST PQC Seminar

Acknowledgement

- The rest of the MEDS team: Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika Trimoska
- The rest of the ALTEQ team: Markus Bläser, Dung Hoang Duong, Anand Kumar Narayanan, Thomas Plantard, Arnaud Sipasseuth, Gang Tang.

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$
Interesting case - when problem is hard! What can we do with it?

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$
Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$
Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

- Zero-Knowledge protocols

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$
Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

- Zero-Knowledge protocols
- Identification schemes (IDS)

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$
Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

- Zero-Knowledge protocols
- Identification schemes (IDS)
- Digital Signatures via Fiat-Shamir transform
- F-S is a common strategy for PQ signatures
- Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$
Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

- Zero-Knowledge protocols
- Identification schemes (IDS)
- Digital Signatures via Fiat-Shamir transform
- F-S is a common strategy for PQ signatures
- Dilithium, MQDSS, Picnic in first 3 rounds of NIST competition
- More than 15 in the additional round!

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$$
\begin{array}{cl}
\mathcal{O}_{0} \xrightarrow{\phi_{0}} \mathcal{O}^{\prime} \\
\phi & \\
\vdots & \\
\mathcal{O}_{1} &
\end{array}
$$

$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

\mathcal{O}_{0}	\mathcal{O}^{\prime}	$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$	$\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$
	$\operatorname{com} \leftarrow \mathcal{O}^{\prime}$		
$\dot{\mathcal{O}}_{1}$			

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

\mathcal{O}_{0}	\mathcal{O}^{\prime}	$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$
		com $\leftarrow \mathcal{O}^{\prime}$	com	
ϕ			ch	ch $\leftarrow R\{0,1\}$
\mathcal{O}_{1}				

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$
$\mathrm{com} \leftarrow \mathcal{O}^{\prime}$	com	
	ch	ch $\leftarrow R\{0,1\}$
resp $\leftarrow \phi_{\text {ch }}$	resp	

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$
com $\leftarrow \mathcal{O}^{\prime}$	com	
	ch	ch $\leftarrow R\{0,1\}$
resp $\leftarrow \phi_{\text {ch }}$	resp	

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich-Micali-Wigderson '91]:
Let ϕ be an isomorphism s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$.
Given $\mathcal{O}_{0}, \mathcal{O}_{1}$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$
com $\leftarrow \mathcal{O}^{\prime}$	com	ch $\leftarrow R\{0,1\}$
resp $\leftarrow \phi_{\text {ch }}$	ch	
	resp	
		$\mathcal{O}^{\prime} \stackrel{?}{=} \phi_{\mathrm{ch}}\left(\mathcal{O}_{\text {ch }}\right)$

Digital Signatures via the Fiat-Shamir transform

$\underline{\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)}$		$\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$
com $\leftarrow \mathcal{O}^{\prime}$	com	$\mathrm{ch} \leftarrow_{R}\{0,1\}$
	ch	
resp $\leftarrow \phi_{\text {ch }}$	resp	
		$\mathcal{O}^{\prime} \stackrel{?}{=} \phi_{\mathrm{ch}}\left(\mathcal{O}_{\mathrm{ch}}\right)$

Digital Signatures via the Fiat-Shamir transform

IDS	$\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$
	$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com	
		$\mathrm{ch}=\left(\mathrm{ch}_{1}, \ldots, \mathrm{ch}_{r}\right)$	ch $\leftarrow R\{0,1\}^{r}$
	resp $\leftarrow \phi_{\text {ch }_{1}}, \phi_{\text {ch2 }^{2}}, \ldots, \phi_{\text {ch }}$	resp	
		\longrightarrow	$\mathcal{O}^{\prime} \stackrel{?}{=} \phi_{\mathrm{ch}_{1}}\left(\mathcal{O}_{\mathrm{ch}_{1}}\right), \ldots, \mathcal{O}^{(r)} \stackrel{?}{=} \phi_{\mathrm{chr}_{r}}\left(\mathcal{O}_{\mathrm{ch}_{r}}\right)$

Digital Signatures via the Fiat-Shamir transform

IDS \begin{tabular}{|lll|}

\hline | $\mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right)$ | | $\mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$ |
| :--- | :--- | :--- |
| $\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$ | | |
| ch $\leftarrow_{R}\{0,1\}^{r}$ | | |
| com | | |
| resp $\leftarrow \phi_{\mathrm{ch}_{1}}, \phi_{\mathrm{ch}_{2}}, \ldots, \phi_{\mathrm{ch}_{r}}$ | resp | |
| | | |
| | | $\mathcal{O}^{\prime} \stackrel{?}{=} \phi_{\mathrm{ch}_{1}}\left(\mathcal{O}_{\mathrm{ch}_{1}}\right), \ldots, \mathcal{O}^{(r)} \stackrel{?}{=} \phi_{\mathrm{ch}_{r}}\left(\mathcal{O}_{\mathrm{ch}_{r}}\right)$ |

\end{tabular}

$\downarrow \downarrow \downarrow$
FS signature

Signer $(\mathrm{pk}$, sk $)$ $\operatorname{com} \leftarrow\left(\mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}\right)$ $\operatorname{ch} \leftarrow H(m, \operatorname{com})$ $\operatorname{resp} \leftarrow\left(\phi_{\mathrm{ch}_{1}}, \phi_{\mathrm{ch}_{2}}, \ldots, \phi_{\mathrm{ch}_{r}}\right)$ output $: \sigma=($ com, resp $)$

\quadVerifier(pk) ch $\leftarrow H(m$, com $)$ $b \leftarrow \mathrm{Vf}(\mathrm{pk}$, com, ch, resp $)$ output $: b$

The basic protocol is not very eficient

- Challenge space is of size $\mathbf{2} \Rightarrow$ Soundness error is $1 / 2$

The basic protocol is not very eficient

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right) \quad \mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right) \\
& \operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)} \\
& \text { com } \\
& \mathrm{ch}=\left(\mathrm{ch}_{1}, \ldots, \mathrm{ch}_{r}\right) \quad \mathrm{ch} \leftarrow_{R}\{0,1\}^{r} \\
& \text { resp } \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}} \\
& \text { resp } \\
& \mathcal{O}^{\prime} \stackrel{?}{=} \psi_{\mathrm{ch}_{1}}\left(\mathcal{O}_{\mathrm{ch}_{1}}\right) \\
& , \ldots, \mathcal{O}^{(r)} \stackrel{?}{=} \psi_{\text {ch }_{r}}\left(\mathcal{O}_{\text {ch }_{r}}\right)
\end{aligned}
$$

- Challenge space is of size $2 \Rightarrow$ Soundness error is $1 / 2$
- For security of λ bits, needs to be repeated $r=\lambda$ times!

The basic protocol is not very eficient

$$
\begin{array}{lll}
\hline \mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right) & \mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right) \\
\hline \operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)} & & \\
\text { ch } \leftarrow R\{0,1\}^{r} & & \\
\text { resp } \leftarrow \psi_{\mathrm{ch}_{1}}, \psi_{\mathrm{ch}_{2}}, \ldots, \psi_{\mathrm{ch}_{r}} & & \\
& & \mathcal{O}^{\prime} \stackrel{?}{=} \psi_{\mathrm{ch}_{1}}\left(\mathcal{O}_{\mathrm{ch}_{1}}\right) \\
& & , \ldots, \mathcal{O}^{(r)} \stackrel{?}{=} \psi_{\mathrm{ch}_{r}}\left(\mathcal{O}_{\mathrm{ch}_{r}}\right)
\end{array}
$$

- Challenge space is of size $\mathbf{2} \Rightarrow$ Soundness error is $1 / 2$
- For security of λ bits, needs to be repeated $r=\lambda$ times!
- \Rightarrow Signature contains λ isometries (from λ rounds)

The basic protocol is not very eficient

$$
\begin{array}{lll}
\hline \mathcal{P}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \phi\right) & \mathcal{V}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right) \\
\hline \operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)} & & \\
\text { ch } \leftarrow R\{0,1\}^{r} & & \\
\text { resp } \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}} & & \\
& & \mathcal{O}^{\prime} \stackrel{?}{=} \psi_{\text {chesp }}\left(\mathcal{O}_{\text {ch }_{1}}\right) \\
& & , \ldots, \mathcal{O}^{(r)} \stackrel{?}{=} \psi_{\text {ch }_{r}}\left(\mathcal{O}_{\text {ch }_{r}}\right)
\end{array}
$$

- Challenge space is of size $\mathbf{2} \Rightarrow$ Soundness error is $1 / 2$
- For security of λ bits, needs to be repeated $r=\lambda$ times!
- \Rightarrow Signature contains λ isometries (from λ rounds)
$\Rightarrow \Rightarrow$ All operations in signing and verification need to be repeated λ times

Optimization 1: Make the challenge space bigger (Multiple public keys)

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$
com $\leftarrow \mathcal{O}^{\prime}$	com	ch $\leftarrow_{\sim}\{0, N-1\}$
resp $\leftarrow \psi_{\text {ch }}$	ch	
	resp	
		$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\mathrm{ch}_{i}}\left(\mathcal{O}_{\mathrm{ch}_{i}}\right)$

- Challenge space is now of size $N \Rightarrow$ Soundness error is $1 / N$

Optimization 1: Make the challenge space bigger (Multiple public keys)

$$
\begin{aligned}
& \underline{\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right) \quad \mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)} \\
& \operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)} \\
& \text { com } \\
& \mathrm{ch}=\left(\mathrm{ch}_{1}, \ldots, \mathrm{ch}_{r}\right) \quad \mathrm{ch} \leftarrow_{R}\{0, N-1\}^{r} \\
& \operatorname{resp} \leftarrow \psi_{\mathrm{ch}_{1}}, \psi_{\mathrm{ch}_{2}}, \ldots, \psi_{\mathrm{ch}_{r}} \\
& \text { resp } \\
& \mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\mathrm{ch}_{i}}\left(\mathcal{O}_{\mathrm{ch}_{i}}\right)
\end{aligned}
$$

- Challenge space is now of size $N \Rightarrow$ Soundness error is $1 / N$
- For security of λ bits, needs to be repeated $r=\frac{\lambda}{\log N}$ times!

Optimization 1: Make the challenge space bigger (Multiple public keys)

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$			
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- Challenge space is now of size $N \Rightarrow$ Soundness error is $1 / N$
- For security of λ bits, needs to be repeated $r=\frac{\lambda}{\log N}$ times!
$\Rightarrow \Rightarrow$ Signature contains $\frac{\lambda}{\log N}$ isometries

Optimization 1: Make the challenge space bigger (Multiple public keys)

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$			
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- Challenge space is now of size $N \Rightarrow$ Soundness error is $1 / N$
- For security of λ bits, needs to be repeated $r=\frac{\lambda}{\log N}$ times!
$\triangleright \Rightarrow$ Signature contains $\frac{\lambda}{\log N}$ isometries
$>\Rightarrow$ All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times

Optimization 1: Make the challenge space bigger (Multiple public keys)

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$			
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- Challenge space is now of size $N \Rightarrow$ Soundness error is $1 / N$
- For security of λ bits, needs to be repeated $r=\frac{\lambda}{\log N}$ times!
$\triangleright \Rightarrow$ Signature contains $\frac{\lambda}{\log N}$ isometries
$>\Rightarrow$ All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- There is a cost - N-fold increase in public and private key

Optimization 1: Make the challenge space bigger (Multiple public keys)

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$			
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- Challenge space is now of size $N \Rightarrow$ Soundness error is $1 / N$
- For security of λ bits, needs to be repeated $r=\frac{\lambda}{\log N}$ times!
$\Rightarrow \Rightarrow$ Signature contains $\frac{\lambda}{\log N}$ isometries
- \Rightarrow All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- There is a cost - N-fold increase in public and private key
- Always necessary to find the best trade-off

Optimization 2: Reduce signature size by using seeds

$\underline{\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)}$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$
$\mathrm{com} \leftarrow \mathcal{O}^{\prime}$	com	ch $\leftarrow R\{0, N-1\}$
resp $\leftarrow \psi_{\text {ch }}$	ch	
	resp	
		$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\mathrm{ch}_{i}}\left(\mathcal{O}_{\mathrm{ch}_{\mathrm{i}}}\right)$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature

Optimization 2: Reduce signature size by using seeds

$$
\begin{array}{lll}
\hline \mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right) & \mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right) \\
\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)} & \begin{array}{l}
\mathrm{com} \\
\text { ch }=\left(\mathrm{ch}_{1}, \ldots, \mathrm{ch}_{r}\right)
\end{array} & \text { ch } \leftarrow_{R}\{0, N-1\}^{r} \\
\text { resp } \leftarrow \psi_{\mathrm{ch}_{1}}, \psi_{\mathrm{ch}_{2}}, \ldots, \psi_{\mathrm{ch}_{r}} & \begin{array}{l}
\text { resp } \\
~ \\
\end{array} & \mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\mathrm{ch}_{i}\left(\mathcal{O}_{\mathrm{ch}_{i}}\right)} \\
\hline
\end{array}
$$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed

Optimization 2: Reduce signature size by using seeds

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com	
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$		
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp	
		$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed
- Problem: This works only for $\mathrm{ch}=0$, and probability of choosing challenge 0 is $1 / N$

Optimization 2: Reduce signature size by using seeds

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com	
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$		
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp	
		$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed
- Problem: This works only for $\mathrm{ch}=0$, and probability of choosing challenge 0 is $1 / N$
- \Rightarrow not a big benefit in general

Optimization 2: Reduce signature size by using seeds

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$			
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed
- Problem: This works only for $\mathrm{ch}=0$, and probability of choosing challenge 0 is $1 / N$
- \Rightarrow not a big benefit in general
- \Rightarrow signature is not of constant size

Optimization 2: Reduce signature size by using seeds

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
ch $\leftarrow R\{0, N-1\}^{r}$			
resp $\leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed
- Problem: This works only for $\mathrm{ch}=0$, and probability of choosing challenge 0 is $1 / N$
- \Rightarrow not a big benefit in general
- \Rightarrow signature is not of constant size
- Idea: Always have a fixed number M of 0 challenges

Optimization 2: Reduce signature size by using seeds

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com	
ch $\leftarrow_{R}\{0, N-1\}^{r}$		
resp $\leftarrow \psi_{\text {ch }_{1}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}}$	resp	
		$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}\left(\mathcal{O}_{\text {chi }_{i}}\right)}$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed
- Problem: This works only for $\mathrm{ch}=0$, and probability of choosing challenge 0 is $1 / N$
- \Rightarrow not a big benefit in general
- \Rightarrow signature is not of constant size
- Idea: Always have a fixed number M of 0 challenges
- We need a special hash function that always produces fixed weight outputs

Optimization 2: Reduce signature size by using seeds

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$			
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed
- Problem: This works only for $\mathrm{ch}=0$, and probability of choosing challenge 0 is $1 / N$
- \Rightarrow not a big benefit in general
- \Rightarrow signature is not of constant size
- Idea: Always have a fixed number M of 0 challenges
- We need a special hash function that always produces fixed weight outputs
- Always necessary to find the best trade-off

Optimization 2: Reduce signature size by using seeds

$\mathcal{P}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}, \phi_{1}, \ldots, \phi_{N}\right)$		$\mathcal{V}\left(\mathcal{O}_{0}, \ldots, \mathcal{O}_{N}\right)$	
$\operatorname{com} \leftarrow \mathcal{O}^{\prime}, \mathcal{O}^{\prime \prime}, \ldots, \mathcal{O}^{(r)}$	com		
$\operatorname{ch} \leftarrow_{R}\{0, N-1\}^{r}$			
$\operatorname{resp} \leftarrow \psi_{\text {ch }_{1}}, \psi_{\text {ch }_{2}}, \ldots, \psi_{\text {ch }_{r}}$	resp		
			$\mathcal{O}^{(i)} \stackrel{?}{=} \psi_{\text {ch }_{i}}\left(\mathcal{O}_{\text {ch }_{i}}\right)$

- The map ψ_{0} is chosen at random \Rightarrow one can include only seed in signature - ψ_{0} can be reconstructed from the seed
- Problem: This works only for $\mathrm{ch}=0$, and probability of choosing challenge 0 is $1 / N$
- \Rightarrow not a big benefit in general
- \Rightarrow signature is not of constant size
- Idea: Always have a fixed number M of 0 challenges
- We need a special hash function that always produces fixed weight outputs
- Always necessary to find the best trade-off

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998
- Quasigroup isotopy - Identification scheme, [Denes 2001]

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998
- Quasigroup isotopy - Identification scheme, [Denes 2001]
- Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998
- Quasigroup isotopy - Identification scheme, [Denes 2001]
- Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al. 2021]

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998
- Quasigroup isotopy - Identification scheme, [Denes 2001]
- Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al. 2021]
- Alternate trilinear form equivalence - [Tang et al. 2022]

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998
- Quasigroup isotopy - Identification scheme, [Denes 2001]
- Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al. 2021]
- Alternate trilinear form equivalence - [Tang et al. 2022]
- Lattice isomorphism - [Ducas-van Woerden 2022]

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998
- Quasigroup isotopy - Identification scheme, [Denes 2001]
- Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al. 2021]
- Alternate trilinear form equivalence - [Tang et al. 2022]
- Lattice isomorphism - [Ducas-van Woerden 2022]
- Matrix code equivalence - [Reijnders-Samardjiska-Trimoska 2022]

Generic hard equivalence problem $\mathrm{EQ}\left(\mathcal{O}_{0}, \mathcal{O}_{1}\right)$:
Given \mathcal{O}_{0} and \mathcal{O}_{1}, find (if any) an isomorphism ϕ s.t. $\mathcal{O}_{1}=\phi\left(\mathcal{O}_{0}\right)$

- Isomorphism of polynomials - Patarin's signature, 1998
- Quasigroup isotopy - Identification scheme, [Denes 2001]
- Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]
- Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al. 2021]
- Alternate trilinear form equivalence - [Tang et al. 2022]
- Lattice isomorphism - [Ducas-van Woerden 2022]
- Matrix code equivalence - [Reijnders-Samardjiska-Trimoska 2022]
- . .

Equivalence problems for MEDS and ALTEQ

- MEDS is based on the following equivalence problem.
- Matrix code - a subspace of $\mathcal{M}_{m \times n}\left(\mathbb{F}_{q}\right)$ of dimension k endowed with rank metric.

MEDS: Matrix Code Equivalence

- MEDS is based on the following equivalence problem.
- Matrix code - a subspace of $\mathcal{M}_{m \times n}\left(\mathbb{F}_{q}\right)$ of dimension k endowed with rank metric.

```
Matrix Code Equivalence (MCE) problem [Berger,2003]
\(\operatorname{MCE}(k, n, m, q, \mathcal{C}, \mathcal{D})\) :
Input: Two \(k\)-dimensional matrix \(\operatorname{codes} \mathcal{C}, \mathcal{D} \subset \mathcal{M}_{m, n}(q)\)
Question: Find - if any \(-\mathbf{A} \in \mathrm{GL}_{m}(q), \mathbf{B} \in \mathrm{GL}_{n}(q)\) s.t. for all \(\mathbf{C} \in \mathcal{C}\), it holds that
\(\mathrm{ACB} \in \mathcal{D}\)
```

- ALTEQ is based on the following equivalence problem.
- Alternating trilinear form - a map $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ that
(1) is linear in each argument, and
(2) evaluates to 0 whenever two arguments are the same.

ALTEQ: Alternating Trilinear Form Equivalence

- ALTEQ is based on the following equivalence problem.
- Alternating trilinear form - a map $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ that
(1) is linear in each argument, and
(2) evaluates to 0 whenever two arguments are the same.

Alternating Trilinear Form Equivalence (ATFE) [Grochow-Qiao-Tang, 2021]
$\operatorname{ALTEQ}(n, q, \phi, \psi)$:
Input: Two alternating trilinear forms $\phi, \psi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$.
Question: Find - if any - $\mathbf{A} \in \mathrm{GL}_{n}(q)$ s.t. for any $u, v, w \in \mathbb{F}_{q}^{n}, \phi(u, v, w)=$ $\psi\left(\mathbf{A}^{t}(u), \mathbf{A}^{t}(v), \mathbf{A}^{t}(w)\right)$.

MCE and ATFE look very similar!

Matrix codes:

MCE and ATFE look very similar!

Matrix codes:

MCE:

- matrix codes of rectangular matrices

MCE and ATFE look very similar!

Matrix codes:

MCE:

- matrix codes of rectangular matrices
\rightarrow isometry (A, B)

MCE and ATFE look very similar!

- An alternating trilinear form is $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$.
- We can record ϕ as an $n \times n \times n 3$-way array $\mathrm{C}=\left[c_{i, j, k}\right]$, where $c_{i, j, k}=\phi\left(e_{i}, e_{j}, e_{k}\right)$.
- Note that $c_{i, j, k}=-c_{j, i, k}=-c_{k, j, i}=-c_{i, k, j}=c_{j, k, i}=c_{k, i, j}$.
- A 3 -way array C can also be represented as a matrix tuple $\left(C_{1}, \ldots, C_{n}\right), C_{i} \in \mathcal{M}_{n}(q)$.

MCE and ATFE look very similar!

- An alternating trilinear form is $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$.
- We can record ϕ as an $n \times n \times n 3$-way array $\mathrm{C}=\left[c_{i, j, k}\right]$, where $c_{i, j, k}=\phi\left(e_{i}, e_{j}, e_{k}\right)$.
- Note that $c_{i, j, k}=-c_{j, i, k}=-c_{k, j, i}=-c_{i, k, j}=c_{j, k, i}=c_{k, i, j}$.
- A 3 -way array C can also be represented as a matrix tuple $\left(C_{1}, \ldots, C_{n}\right), C_{i} \in \mathcal{M}_{n}(q)$.

ATFE:

- matrix codes with "symmetries in the three directions".
- isometry ($\mathbf{A}, \mathbf{A}^{\top}$) and \mathbf{A} on the third direction too

MCE and ATFE are polynomial-time equivalent

- The objects in MCE and ATFE are both 3-way arrays.
- A 2-way array, $\left[c_{i, j}\right]$, is a matrix.
- A 3-way array, [$c_{i, j, k}$], is sometimes called a 3-tensor.
- The 3-way arrays from ATFE are subject to certain structural constraints.

MCE and ATFE are polynomial-time equivalent

- The objects in MCE and ATFE are both 3-way arrays.
- A 2-way array, $\left[c_{i, j}\right]$, is a matrix.
- A 3-way array, [$c_{i, j, k}$], is sometimes called a 3-tensor.
- The 3-way arrays from ATFE are subject to certain structural constraints.
- The isomorphisms in MCE and ATFE are both invertible matrices.
- $L, R \in \mathrm{GL}_{n}(q)$ sends $C \in \mathcal{M}_{n}(q)$ to $L^{t} C R$.
- $L, R, T=\left(t_{i, j}\right) \in \mathrm{GL}_{n}(q)$ sends $\left(C_{1}, \ldots, C_{n}\right) \in \mathcal{M}_{n}(q)^{n}$ to $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)$, where $C_{i}^{\prime}=\sum_{j} t_{i, j} C_{j}$.
- The isomorphism in ATFE imposes that $L=R=T$.

MCE and ATFE are polynomial-time equivalent

- The objects in MCE and ATFE are both 3-way arrays.
- A 2-way array, $\left[c_{i, j}\right]$, is a matrix.
- A 3-way array, [$c_{i, j, k}$], is sometimes called a 3-tensor.
- The 3-way arrays from ATFE are subject to certain structural constraints.
- The isomorphisms in MCE and ATFE are both invertible matrices.
- $L, R \in \mathrm{GL}_{n}(q)$ sends $C \in \mathcal{M}_{n}(q)$ to $L^{t} C R$.
- $L, R, T=\left(t_{i, j}\right) \in \mathrm{GL}_{n}(q)$ sends $\left(C_{1}, \ldots, C_{n}\right) \in \mathcal{M}_{n}(q)^{n}$ to $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)$, where $C_{i}^{\prime}=\sum_{j} t_{i, j} C_{j}$.
- The isomorphism in ATFE imposes that $L=R=T$.

Theorem ([Grochow-Qiao-Tang, 2023])

MCE and ATFE are polynomial-time equivalent.

A complexity class for isomorphism problems of algebraic structures

- Relations between isomorphism problems for some algebraic structures are studied in [Reijnders-Samardjiska-Trimoska, Grochow-Qiao-Tang, D'Alconzo, Couvreur-Debris-Alazard-Gaborit. . .]

A complexity class for isomorphism problems of algebraic structures

- Relations between isomorphism problems for some algebraic structures are studied in [Reijnders-Samardjiska-Trimoska, Grochow-Qiao-Tang, D'Alconzo, Couvreur-Debris-Alazard-Gaborit. . .]
- The complexity class TI was defined in [Grochow-Qiao], consisting of problems polynomial-time reducible to MCE.
- MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
- In analogy with the complexity class GI for Graph Isomorphism.
- MCE and ATFE are TI-complete.

A complexity class for isomorphism problems of algebraic structures

- Relations between isomorphism problems for some algebraic structures are studied in [Reijnders-Samardjiska-Trimoska, Grochow-Qiao-Tang, D'Alconzo, Couvreur-Debris-Alazard-Gaborit. . .]
- The complexity class TI was defined in [Grochow-Qiao], consisting of problems polynomial-time reducible to MCE.
- MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
- In analogy with the complexity class GI for Graph Isomorphism.
- MCE and ATFE are TI-complete.
- Tl-complete problems include isomorphism problems for tensors, finite groups, (associative and Lie) algebras, (systems of) polynomials.
- TI-complete problems appear in computational group theory, multivariate cryptography, and quantum information.
- Experiences from these areas suggest that TI-complete problems are difficult to solve in practice.
- TI-complete problems appear in computational group theory, multivariate cryptography, and quantum information.
- Experiences from these areas suggest that TI-complete problems are difficult to solve in practice.
- Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since 1996 [Patarin], are TI-complete.
- Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

Relations with other isomorphism problems

- TI-complete problems appear in computational group theory, multivariate cryptography, and quantum information.
- Experiences from these areas suggest that TI-complete problems are difficult to solve in practice.
- Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since 1996 [Patarin], are TI-complete.
- Results from the study of polynomial isomorphism are valuable for MCE and ATFE.
- Linear code monomial equivalence and graph isomorphism are in TI
[Couvreur-Debris-Alazard-Gaborit, Grochow-Qiao].
- Linear code monomial equivalence supports LESS.
- A natural development of Shor's quantum algorithms for integer factorisation and discrete logarithm is the hidden subgroup problem framework.
- MCE and ATFE can be cast in this framework for general linear groups.
- A natural development of Shor's quantum algorithms for integer factorisation and discrete logarithm is the hidden subgroup problem framework.
- MCE and ATFE can be cast in this framework for general linear groups.
- A strong negative evidence for the "standard technique" to work in this setting [Hallgren-Moore-Rötteler-Russell-Sen, 2010]. [Moore-Russell-Vazirani] . . . the strongest such insights we have about the limits of quantum algorithms.

Cryptanalysis for MCE and ATFE

Algorithms for MCE and ATFE

- Consider 3-way arrays of size $n \times n \times n$ over \mathbb{F}_{q} under the action of (L, R, T) or $(T, T, T) \in \mathrm{GL}_{n}(q) \times \mathrm{GL}_{n}(q) \times \mathrm{GL}_{n}(q)$.
- Brute-force algorithm: $q^{n^{2}} \cdot \operatorname{poly}(n, \log q)$.
- After fixing T, to recover L and R can be done in time $\operatorname{poly}(n, \log q)$.

Algorithms for MCE and ATFE

- Consider 3-way arrays of size $n \times n \times n$ over \mathbb{F}_{q} under the action of (L, R, T) or $(T, T, T) \in \mathrm{GL}_{n}(q) \times \mathrm{GL}_{n}(q) \times \mathrm{GL}_{n}(q)$.
- Brute-force algorithm: $q^{n^{2}} \cdot \operatorname{poly}(n, \log q)$.
- After fixing T, to recover L and R can be done in time $\operatorname{poly}(n, \log q)$.
- We will introduce three approaches.
- Direct Gröbner basis attack.
- Hybrid Gröbner basis: $q^{n} \cdot \operatorname{poly}(n, \log q)$.
- Utilising low-rank points (via birthday paradox and invariants).
- Let $\mathrm{C}=\left[c_{i, j, k}\right]$ and $\mathrm{D}=\left[d_{i, j, k}\right]$ be two $n \times n \times n 3$-way arrays over \mathbb{F}_{q}.
- We view C as a matrix tuple $\left(C_{1}, \ldots, C_{n}\right), C_{i} \in \mathcal{M}_{n}(q)$.
- Let $\mathrm{C}=\left[c_{i, j, k}\right]$ and $\mathrm{D}=\left[d_{i, j, k}\right]$ be two $n \times n \times n 3$-way arrays over \mathbb{F}_{q}.
- We view C as a matrix tuple $\left(C_{1}, \ldots, C_{n}\right), C_{i} \in \mathcal{M}_{n}(q)$.
- Recall that $L, R, T=\left(t_{i, j}\right) \in \mathrm{GL}_{n}(q)$ sends $\left(C_{1}, \ldots, C_{n}\right) \in \mathcal{M}_{n}(q)^{n}$ to $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)$, where $C_{i}^{\prime}=\sum_{j} t_{i, j} C_{j}$.
- Let $\mathrm{C}=\left[c_{i, j, k}\right]$ and $\mathrm{D}=\left[d_{i, j, k}\right]$ be two $n \times n \times n 3$-way arrays over \mathbb{F}_{q}.
- We view C as a matrix tuple $\left(C_{1}, \ldots, C_{n}\right), C_{i} \in \mathcal{M}_{n}(q)$.
- Recall that $L, R, T=\left(t_{i, j}\right) \in \mathrm{GL}_{n}(q)$ sends $\left(C_{1}, \ldots, C_{n}\right) \in \mathcal{M}_{n}(q)^{n}$ to $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)$, where $C_{i}^{\prime}=\sum_{j} t_{i, j} C_{j}$.
- Viewing the entries of L, R and T as variables, the question is whether $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)=\left(D_{1}, \ldots, D_{n}\right)$.
- This amounts to n^{3} cubic polynomials in $3 n^{2}$ variables.

Direct Gröbner basis attack: more efficient modellings

Cubic modelling $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)=\left(D_{1}, \ldots, D_{n}\right)$ where $C_{i}^{\prime}=\sum_{j} t_{i, j} C_{j}$.

- This gives rise to n^{3} cubic polynomials in $3 n^{2}$ variables for MCE.
- And $\binom{n}{3}$ cubic polynomials in n^{2} variables for ATFE.

Direct Gröbner basis attack: more efficient modellings

Cubic modelling $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)=\left(D_{1}, \ldots, D_{n}\right)$ where $C_{i}^{\prime}=\sum_{j} t_{i, j} C_{j}$.

- This gives rise to n^{3} cubic polynomials in $3 n^{2}$ variables for MCE.
- And $\binom{n}{3}$ cubic polynomials in n^{2} variables for ATFE.

Quadratic inverse modelling For ATFE, let $T^{\prime}=\left[t_{i, j}^{\prime}\right]$. Then set
$\left(T^{t} C_{1} T, \ldots, T^{t} C_{n} T\right)=\left(D_{1}^{\prime}, \ldots, D_{n}^{\prime}\right)$ where $D_{i}^{\prime}=\sum_{j} t_{i, j}^{\prime} D_{j}$, and $T T^{\prime}=I_{n}$.

- This is by [Bouillaguet-Faugère-Fouque-Perret, 2010].
- $n \cdot\binom{n}{2}+n^{2}$ quadratic polynomials in $2 n^{2}$ variables.

Direct Gröbner basis attack: more efficient modellings

Cubic modelling $\left(L^{t} C_{1}^{\prime} R, \ldots, L^{t} C_{n}^{\prime} R\right)=\left(D_{1}, \ldots, D_{n}\right)$ where $C_{i}^{\prime}=\sum_{j} t_{i, j} C_{j}$.

- This gives rise to n^{3} cubic polynomials in $3 n^{2}$ variables for MCE.
- And $\binom{n}{3}$ cubic polynomials in n^{2} variables for ATFE.

Quadratic inverse modelling For ATFE, let $T^{\prime}=\left[t_{i, j}^{\prime}\right]$. Then set
$\left(T^{t} C_{1} T, \ldots, T^{t} C_{n} T\right)=\left(D_{1}^{\prime}, \ldots, D_{n}^{\prime}\right)$ where $D_{i}^{\prime}=\sum_{j} t_{i, j}^{\prime} D_{j}$, and $T T^{\prime}=I_{n}$.

- This is by [Bouillaguet-Faugère-Fouque-Perret, 2010].
- $n \cdot\binom{n}{2}+n^{2}$ quadratic polynomials in $2 n^{2}$ variables.

Quadratic dual modelling Use the dual space of \mathcal{D} to express that $L^{t} C_{i} R \in \mathcal{D}$.

- This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-Samardjiska-Trimoska].
- This gives rise to $n \cdot\left(n^{2}-n\right)$ homogeneous quadratic polynomials in $2 n^{2}$ variables for MCE.
- And $\left.n \cdot\binom{n}{2}-n\right)$ quadratic polynomials in n^{2} variables for ATFE.
- Note that some syzygies arise, complicating the analysis [MEDS spec].

Hybrid Gröbner basis attacks

- We set up $n \times n$ variable matrices L and R for MCE (or T and T^{\prime} for ATFE).
- In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, provided that one (or two) rows of L are known.

Hybrid Gröbner basis attacks

- We set up $n \times n$ variable matrices L and R for MCE (or T and T^{\prime} for ATFE).
- In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, provided that one (or two) rows of L are known.
- For ATFE, knowing one row of T is enough, leading to a $q^{n} \cdot \operatorname{poly}(n, \log q)$-time algorithm.
- For MCE, knowing two rows of L is enough, leading to an $q^{2 n} \cdot \operatorname{poly}(n, \log q)$-time algorithm.

Hybrid Gröbner basis attacks

- We set up $n \times n$ variable matrices L and R for MCE (or T and T^{\prime} for ATFE).
- In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, provided that one (or two) rows of L are known.
- For ATFE, knowing one row of T is enough, leading to a $q^{n} \cdot \operatorname{poly}(n, \log q)$-time algorithm.
- For MCE, knowing two rows of L is enough, leading to an $q^{2 n} \cdot \operatorname{poly}(n, \log q)$-time algorithm.
- Further observations from [Beullens, 2023]:
- Knowing one row of T up to scalar is enough.
- For low-rank points, the kernel information can be incorporated.

Utilising low-rank points

- Let $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ be an alternating trilinear form.
- For $u \in \mathbb{F}_{q}^{n}$, let $\phi_{u}: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ by $\phi_{u}(v, w)=\phi(u, v, w)$.
- An isomorphism invariant for $u: r=\operatorname{Rank}\left(\phi_{u}\right)$.

Utilising low-rank points

- Let $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ be an alternating trilinear form.
- For $u \in \mathbb{F}_{q}^{n}$, let $\phi_{u}: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ by $\phi_{u}(v, w)=\phi(u, v, w)$.
- An isomorphism invariant for $u: r=\operatorname{Rank}\left(\phi_{u}\right)$.
- Algorithms based on birthday paradox and hybrid Gröbner basis [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
- Suppose there exist $\approx q^{k}$-many rank- r points for a random ϕ.
(1) Sample $q^{k / 2}$-many rank- r points for ϕ and ψ, respectively.
(2) For every pair, use hybrid Gröbner basis to find a "matched" pair.
- Algorithm cost: $O\left(q^{k / 2} \cdot\right.$ samp-cost $+q^{k} \cdot$ gb-cost $)$.

Utilising low-rank points

- Let $\phi: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ be an alternating trilinear form.
- For $u \in \mathbb{F}_{q}^{n}$, let $\phi_{u}: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ by $\phi_{u}(v, w)=\phi(u, v, w)$.
- An isomorphism invariant for $u: r=\operatorname{Rank}\left(\phi_{u}\right)$.
- Algorithms based on birthday paradox and hybrid Gröbner basis [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
- Suppose there exist $\approx q^{k}$-many rank-r points for a random ϕ.
(1) Sample $q^{k / 2}$-many rank- r points for ϕ and ψ, respectively.
(2) For every pair, use hybrid Gröbner basis to find a "matched" pair.
- Algorithm cost: $O\left(q^{k / 2} \cdot\right.$ samp-cost $+q^{k} \cdot$ gb-cost $)$.
- Sampling step: min-rank or graph-walking [Beullens, 2023]
- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
- Suppose there exist $\approx q^{k}$-many rank- r points for a random ϕ.
- Suppose there exist distinguishing isomorphism invariants associated with such points.
- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
- Suppose there exist $\approx q^{k}$-many rank- r points for a random ϕ.
- Suppose there exist distinguishing isomorphism invariants associated with such points.
(1) Sample $q^{k / 2}$-many rank- r points for ϕ and ψ, respectively.
(2) For every point, compute the isomorphism invariant.
(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid Gröbner basis to complete.
- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
- Suppose there exist $\approx q^{k}$-many rank- r points for a random ϕ.
- Suppose there exist distinguishing isomorphism invariants associated with such points.
(1) Sample $q^{k / 2}$-many rank- r points for ϕ and ψ, respectively.
(2) For every point, compute the isomorphism invariant.
(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid Gröbner basis to complete.
- Algorithm cost: $O\left(q^{k / 2} \cdot(\right.$ samp-cost + inv-cost $)+$ gb-cost $)$.

Utilising low-rank points, cont'd

- Algorithms based on distinguishing isomorphism invariants with low-rank points [Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
- Suppose there exist $\approx q^{k}$-many rank- r points for a random ϕ.
- Suppose there exist distinguishing isomorphism invariants associated with such points.
(1) Sample $q^{k / 2}$-many rank- r points for ϕ and ψ, respectively.
(2) For every point, compute the isomorphism invariant.
(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid Gröbner basis to complete.
- Algorithm cost: $O\left(q^{k / 2} \cdot(\right.$ samp-cost + inv-cost $)+$ gb-cost $)$.
- Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank points, and more [Narayanan-Qiao-Tang].

Parameters and performances of MEDS and ALTEQ

Parameters and performance of MEDS

Level	param. set	public key size (KB)	signature size (KB)	key gen (ms)	sign (ms)	verify (ms)
	MEDS-9923	9.9	9.9	1	272	271
	MEDS-13220	13.2	13	1.3	46.7	46
III	MEDS-41711	41.7	41	5.1	779	762
	MEDS-69497	55.6	54.7	6.7	203.8	200.4

Table: An overview of the parameters and performance of MEDS.

Optimizations:

- Standard: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree
- New: Public Key Compression
- generate public key partially from seed \Rightarrow signature size reduction
- Work in progress: use similar idea during signing

Parameters and performance of ALTEQ

Level	mode	public key size (KB)	signature size (KB)	key gen (ms)	sign (ms)	verify (ms)
	Balanced	8	16	0.093	0.629	0.496
	ShortSig	512	10	1.902	0.194	0.092
III	Balanced	32	48	0.582	6.986	6.483
	ShortSig	1024	24	5.152	1.705	1.304

Table: An overview of the parameters and performance of ALTEQ.

Optimizations:

- Standard: Multiple Public Keys + Fixed-Weight Challenge Strings (+ Seed tree)
- New: Invertible matrix decomposition
- Represent an invertible matrix as a product of column matrices for faster signing and verification
- Digital signature based on equivalence problems: design and optimisations
- Matrix code equivalence (MCE) and alternating trilinear form equivalence (ATFE)
- Algorithms for MCE and ATFE
- MEDS and ALTEQ: parameters and performances

Thank you for listening!

