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Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

▶ Zero-Knowledge protocols

▶ Identifcation schemes (IDS)

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures

▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition
▶ More than 15 in the additional round!

Motivation 

Generic hard equivalence problem EQ(O0, O1): 

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0) 
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com← O′
com

ch←R {0, 1}ch

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems 

[Goldreich–Micali–Wigderson ’91]: 
Let ϕ be an isomorphism s.t. O1 = ϕ(O0). 
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing 
any information about it 

ϕ0 
O ′ O0 

P(O0, O1, ϕ) V(O0, O1) 

ϕ 
ϕ1 

O1 
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,O′′, . . . ,O(r)

ch←R {0, 1}

r

r

1 , ϕch2 , . . . , ϕchr

1 1 , . . . ,O
(r) ?

= ϕchr (Ochr )

↓ ↓ ↓
FS signature

Signer(pk, sk)

com← (O′,O′′, . . . ,O(r))

ch← H(m, com)

resp← (ϕch1 , ϕch2 , . . . , ϕchr )

output : σ = (com, resp)

Verifer(pk)

ch← H(m, com)

b ← Vf(pk, com, ch, resp)

output : b

Digital Signatures via the Fiat-Shamir transform 

P(O0, O1, ϕ) V(O0, O1)IDS 
com ← O ′ com 

ch ←R {0, 1}ch 

resp ← ϕch resp 

O ′ 
? 
= ϕch (Och ) 
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,O′′, . . . ,O(r)

ch←R {0, 1}

r

r

1 , ψch2 , . . . , ψchr

1 1

, . . . ,O(r) ?
= ψchr (Ochr )

▶ For security of λ bits, needs to be repeated r = λ times!

▶ ⇒ Signature contains λ isometries (from λ rounds)

▶ ⇒ All operations in signing and verifcation need to be repeated λ times

The basic protocol is not very efcient 

P(O0, O1, ϕ) V(O0, O1)ψ0 
O ′ O0 

ch ←R {0, 1}chϕ 
ψ1 

resp ← ψch resp 

com ← O ′ com 

O ′ 
?O1 = ψch (Och ) 

▶ Challenge space is of size 2 ⇒ Soundness error is 1/2 
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,O′′, . . . ,O(r)

ch←R {0,N − 1}

r

r

1 , ψch2 , . . . , ψchr

▶ For security of λ bits, needs to be repeated r = λ
logN times!

▶ ⇒ Signature contains λ
logN isometries

▶ ⇒ All operations in signing and verifcation need to be repeated λ
logN times

▶ There is a cost - N-fold increase in public and private key

▶ Always necessary to fnd the best trade-of

Optimization 1: Make the challenge space bigger (Multiple public keys) 

P(O0, . . . , ON , ϕ1, . . . , ϕN ) V(O0, . . . , ON )ψ0 
O0 O ′ 

com ← O ′ com 

ϕ2 ϕi ϕNψ1 ψ2 ψi 

ch ←R {0, N − 1}chϕ1 
ψN 

resp ← ψch resp 

?O(i )O1 O2 . . . ON = ψchi (Ochi ) 

▶ Challenge space is now of size N ⇒ Soundness error is 1/N 
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,O′′, . . . ,O(r)

ch←R {0,N − 1}

r

r

1 , ψch2 , . . . , ψchr

• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N

• ⇒ not a big beneft in general

• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges

• We need a special hash function that always produces fxed weight outputs

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds 
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O0 O ′ 
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ϕ2 ϕi ϕN 
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ψN 
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?O(i )O1 O2 . . . ON = ψchi (Ochi ) 

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature 
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▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems? 

Generic hard equivalence problem EQ(O0, O1): 

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0) 
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Equivalence problems for MEDS and 

ALTEQ 



Matrix Code Equivalence (MCE) problem [Berger,2003]

MCE(k, n,m, q, C,D):
Input: Two k-dimensional matrix codes C,D ⊂Mm,n(q)

Question: Find – if any – A ∈ GLm(q),B ∈ GLn(q) s.t. for all C ∈ C, it holds that

ACB ∈ D

MEDS: Matrix Code Equivalence 

▶ MEDS is based on the following equivalence problem. 

▶ Matrix code - a subspace of Mm×n(Fq) of dimension k endowed with rank 

metric. 
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Alternating Trilinear Form Equivalence (ATFE) [Grochow-Qiao-Tang, 2021]

ALTEQ(n, q, ϕ, ψ):

Input: Two alternating trilinear forms ϕ, ψ : Fn
q × Fn

q × Fn
q → Fq.

Question: Find – if any – A ∈ GLn(q) s.t. for any u, v ,w ∈ Fn
q, ϕ(u, v ,w) =

ψ(At(u),At(v),At(w)).

ALTEQ: Alternating Trilinear Form Equivalence 

▶ ALTEQ is based on the following equivalence problem. 

▶ Alternating trilinear form - a map ϕ : Fn
q × Fn

q × Fn
q → Fq that 

(1) is linear in each argument, and 

(2) evaluates to 0 whenever two arguments are the same. 
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A
B

MCE:

▶ matrix codes of rectangular matrices

▶ isometry (A,B)

MCE and ATFE look very similar! 

Matrix codes: 

D2 
D1 

Dk 
. . . 

D3 
C2 

C1 

Ck 
. . . 

C3 
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. .
.
Dn

D3

D2

D1

. .
.
Cn

C3

C2

C1

A A⊤

ATFE:

▶ matrix codes with “symmetries in the three directions”.

▶ isometry (A,A⊤) and A on the third direction too

MCE and ATFE look very similar! 

▶ An alternating trilinear form is ϕ : Fn × Fn × Fn → Fq.q q q 

▶ We can record ϕ as an n × n × n 3-way array C = [ci,j,k ], where ci,j,k = ϕ(ei , ej , ek ). 
• Note that ci,j,k = −cj,i,k = −ck,j,i = −ci,k,j = cj,k,i = ck,i,j . 

▶ A 3-way array C can also be represented as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q). 

13 



1

MCE and ATFE look very similar! 

▶ An alternating trilinear form is ϕ : Fn × Fn × Fn → Fq.q q q 

▶ We can record ϕ as an n × n × n 3-way array C = [ci,j,k ], where ci,j,k = ϕ(ei , ej , ek ). 
• Note that ci,j,k = −cj,i,k = −ck,j,i = −ci,k,j = cj,k,i = ck,i,j . 

▶ A 3-way array C can also be represented as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q). 

. . 
. 
Dn 

D3 
D2 

D1 

. . 
. 
Cn 

C3 
C2 

C 

A A⊤ 

ATFE: 

▶ matrix codes with “symmetries in the three directions”. 
▶ isometry (A, A⊤) and A on the third direction too 

13 



▶ The isomorphisms in MCE and ATFE are both invertible matrices.

• L,R ∈ GLn(q) sends C ∈Mn(q) to LtCR.

• L,R,T = (ti,j) ∈ GLn(q) sends (C1, . . . ,Cn) ∈Mn(q)
n to (LtC ′

1R, . . . , L
tC ′

nR),

where C ′
i =

P
j ti,jCj .

• The isomorphism in ATFE imposes that L = R = T .

Theorem ([Grochow-Qiao-Tang, 2023])

MCE and ATFE are polynomial-time equivalent.

MCE and ATFE are polynomial-time equivalent 

▶ The objects in MCE and ATFE are both 3-way arrays. 

• A 2-way array, [ci,j ], is a matrix. 
• A 3-way array, [ci,j,k ], is sometimes called a 3-tensor. 
• The 3-way arrays from ATFE are subject to certain structural constraints. 
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▶ The complexity class TI was defned in [Grochow-Qiao], consisting of problems

polynomial-time reducible to MCE.

• MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].

• In analogy with the complexity class GI for Graph Isomorphism.

▶ MCE and ATFE are TI-complete.

▶ TI-complete problems include isomorphism problems for tensors, fnite groups,

(associative and Lie) algebras, (systems of) polynomials. . .

A complexity class for isomorphism problems of algebraic structures 

▶ Relations between isomorphism problems for some algebraic structures are studied in 
[Reijnders–Samardjiska–Trimoska, Grochow–Qiao–Tang, D’Alconzo, 
Couvreur–Debris-Alazard–Gaborit. . . ] 
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▶ Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since

1996 [Patarin], are TI-complete.

• Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

▶ Linear code monomial equivalence and graph isomorphism are in TI

[Couvreur–Debris-Alazard–Gaborit, Grochow–Qiao].

• Linear code monomial equivalence supports LESS.

Relations with other isomorphism problems 

▶ TI-complete problems appear in computational group theory, multivariate cryptography, 

and quantum information. 

• Experiences from these areas suggest that TI-complete problems are difcult to solve 
in practice. 
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▶ A strong negative evidence for the “standard technique” to work in this setting

[Hallgren-Moore-Rötteler-Russell-Sen, 2010].

[Moore-Russell-Vazirani] . . . the strongest such insights we have about the lim-

its of quantum algorithms.

Why use MCE and ATFE in post-quantum cryptography? 

▶ A natural development of Shor’s quantum algorithms for integer factorisation and 

discrete logarithm is the hidden subgroup problem framework. 

▶ MCE and ATFE can be cast in this framework for general linear groups. 
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Cryptanalysis for MCE and ATFE 



▶ We will introduce three approaches.

• Direct Gröbner basis attack.

• Hybrid Gröbner basis: qn · poly(n, log q).
• Utilising low-rank points (via birthday paradox and invariants).

Algorithms for MCE and ATFE 

▶ Consider 3-way arrays of size n × n × n over Fq under the action of (L, R, T ) or 

(T , T , T ) ∈ GLn(q) × GLn(q) × GLn(q) . 
n▶ Brute-force algorithm: q 
2 · poly(n, log q). 

• After fxing T , to recover L and R can be done in time poly(n, log q). 
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▶ Recall that L,R,T = (ti ,j) ∈ GLn(q) sends (C1, . . . ,Cn) ∈Mn(q)
n to

(LtC ′1R, . . . , L
tC ′nR), where C ′i =

P
j ti ,jCj .

▶ Viewing the entries of L, R and T as variables, the question is whether

(LtC ′1R, . . . , L
tC ′nR) = (D1, . . . ,Dn).

• This amounts to n3 cubic polynomials in 3n2 variables.

Direct Gröbner basis attack: the basic idea 

▶ Let C = [ci ,j ,k ] and D = [di ,j ,k ] be two n × n × n 3-way arrays over Fq. 

▶ We view C as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q). 
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Quadratic inverse modelling For ATFE, let T ′ = [t ′i,j ]. Then set

(T tC1T , . . . ,T
tCnT ) = (D ′

1, . . . ,D
′
n) where D ′

i =
P

j t
′
i,jDj , and TT ′ = In.

▶ This is by [Bouillaguet-Faugère-Fouque-Perret, 2010].

▶ n ·
�
n
2

�
+ n2 quadratic polynomials in 2n2 variables.

Quadratic dual modelling Use the dual space of D to express that LtCiR ∈ D.
▶ This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-

Samardjiska-Trimoska].

▶ This gives rise to n · (n2 − n) homogeneous quadratic polynomials in 2n2

variables for MCE.

▶ And n · (
�
n
2

�
− n) quadratic polynomials in n2 variables for ATFE.

▶ Note that some syzygies arise, complicating the analysis [MEDS spec].

Direct Gröbner basis attack: more efcient modellings 

P′ ′ ′Cubic modelling (Lt C1R, . . . , L
t CnR) = (D1, . . . , Dn) where Ci = j ti,j Cj . 

▶ This gives rise to n3 cubic polynomials in 3n2 variables for MCE.� � 
n▶ And cubic polynomials in n2 variables for ATFE. 3 
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▶ For ATFE, knowing one row of T is enough, leading to a qn · poly(n, log q)-time

algorithm.

▶ For MCE, knowing two rows of L is enough, leading to an q2n · poly(n, log q)-time

algorithm.

▶ Further observations from [Beullens, 2023]:

• Knowing one row of T up to scalar is enough.

• For low-rank points, the kernel information can be incorporated.

Hybrid Gröbner basis attacks 

′▶ We set up n × n variable matrices L and R for MCE (or T and T for ATFE). 

▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, 
provided that one (or two) rows of L are known. 
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Hybrid Gröbner basis attacks 

′▶ We set up n × n variable matrices L and R for MCE (or T and T for ATFE). 

▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time, 
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▶ Algorithms based on birthday paradox and hybrid Gröbner basis

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

• Suppose there exist ≈ qk -many rank-r points for a random ϕ.

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.

(2) For every pair, use hybrid Gröbner basis to fnd a “matched” pair.

• Algorithm cost: O(qk/2 · samp-cost + qk · gb-cost).
▶ Sampling step: min-rank or graph-walking [Beullens, 2023]

Utilising low-rank points 

▶ Let ϕ : Fn
q × Fn

q × Fn
q → Fq be an alternating trilinear form. 

▶ For u ∈ Fn
q, let ϕu : Fn

q × Fn
q → Fq by ϕu(v , w) = ϕ(u, v , w). 

▶ An isomorphism invariant for u: r = Rank(ϕu). 
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(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.

(2) For every point, compute the isomorphism invariant.

(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid

Gröbner basis to complete.

• Algorithm cost: O(qk/2 · (samp-cost + inv-cost) + gb-cost).

▶ Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank

points, and more [Narayanan-Qiao-Tang].

Utilising low-rank points, cont’d 

▶ Algorithms based on distinguishing isomorphism invariants with low-rank points 

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023]. 
k• Suppose there exist ≈ q -many rank-r points for a random ϕ. 

• Suppose there exist distinguishing isomorphism invariants associated with such 
points. 
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Parameters and performances of 

MEDS and ALTEQ 



Parameters and performance of MEDS 

Level param. set 
public key 

size (KB) 

signature 

size (KB) 

key gen 

(ms) 

sign 

(ms) 

verify 

(ms) 

I 
MEDS-9923 9.9 9.9 1 272 271 
MEDS-13220 13.2 13 1.3 46.7 46 

III 
MEDS-41711 41.7 41 5.1 779 762 
MEDS-69497 55.6 54.7 6.7 203.8 200.4 

Table: An overview of the parameters and performance of MEDS. 

Optimizations: 

▶ Standard: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree 

▶ New: Public Key Compression 
• generate public key partially from seed ⇒ signature size reduction 
• Work in progress: use similar idea during signing 
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Parameters and performance of ALTEQ 

Level mode 
public key 

size (KB) 

signature 

size (KB) 

key gen 

(ms) 

sign 

(ms) 

verify 

(ms) 

I 
Balanced 8 16 0.093 0.629 0.496 
ShortSig 512 10 1.902 0.194 0.092 

III 
Balanced 32 48 0.582 6.986 6.483 
ShortSig 1024 24 5.152 1.705 1.304 

Table: An overview of the parameters and performance of ALTEQ. 

Optimizations: 

▶ Standard: Multiple Public Keys + Fixed-Weight Challenge Strings (+ Seed tree) 

▶ New: Invertible matrix decomposition 
• Represent an invertible matrix as a product of column matrices for faster signing and 

verifcation 
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Summary 

▶ Digital signature based on equivalence problems: design and optimisations 

▶ Matrix code equivalence (MCE) and alternating trilinear form equivalence (ATFE) 

▶ Algorithms for MCE and ATFE 

▶ MEDS and ALTEQ: parameters and performances 
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Thank you for listening! 
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