
Digital signatures from equivalence problems - A closer look

at MEDS and ALTEQ

Simona Samardjiska Radboud University, Netherlands
Youming Qiao University of Technology Sydney, Australia

NIST PQC Seminar

1

Acknowledgement

▶ The rest of the MEDS team: Tung Chou, Ruben Niederhagen, Edoardo

Persichetti, Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika

Trimoska

▶ The rest of the ALTEQ team: Markus Bläser, Dung Hoang Duong, Anand

Kumar Narayanan, Thomas Plantard, Arnaud Sipasseuth, Gang Tang.

2

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

▶ Zero-Knowledge protocols

▶ Identifcation schemes (IDS)

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures

▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition
▶ More than 15 in the additional round!

Motivation

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

3

Turns out - a lot!

▶ Zero-Knowledge protocols

▶ Identifcation schemes (IDS)

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures

▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition
▶ More than 15 in the additional round!

Motivation

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

Interesting case - when problem is hard! What can we do with it?

3

▶ Zero-Knowledge protocols

▶ Identifcation schemes (IDS)

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures

▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition
▶ More than 15 in the additional round!

Motivation

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

3

▶ Identifcation schemes (IDS)

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures

▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition
▶ More than 15 in the additional round!

Motivation

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

▶ Zero-Knowledge protocols

3

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures

▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition
▶ More than 15 in the additional round!

Motivation

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

▶ Zero-Knowledge protocols

▶ Identifcation schemes (IDS)

3

▶ More than 15 in the additional round!

Motivation

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

▶ Zero-Knowledge protocols

▶ Identifcation schemes (IDS)

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures
▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition

3

Motivation

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

Interesting case - when problem is hard! What can we do with it? Turns out - a lot!

▶ Zero-Knowledge protocols

▶ Identifcation schemes (IDS)

▶ Digital Signatures via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures
▶ Dilithium, MQDSS, Picnic in frst 3 rounds of NIST competition
▶ More than 15 in the additional round!

3

com← O′
com

ch←R {0, 1}ch

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

ϕ0
O ′ O0

P(O0, O1, ϕ) V(O0, O1)

ϕ
ϕ1

O1

4

com← O′
com

ch←R {0, 1}ch

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

ϕ0
O ′ O0

P(O0, O1, ϕ) V(O0, O1)

ϕ
ϕ1

O1

4

com← O′
com

ch←R {0, 1}ch

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

ϕ0
O ′ O0

P(O0, O1, ϕ) V(O0, O1)

ϕ
ϕ1

O1

4

com

ch←R {0, 1}ch

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

ϕ
ϕ1

com ← O ′

O1

4

ch←R {0, 1}ch

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

com ← O ′ com

ϕ
ϕ1

O1

4

ch

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

com ← O ′ com

ϕ ch ←R {0, 1}ϕ1

O1

4

resp← ϕch resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

com ← O ′ com

ϕ ch ←R {0, 1}ϕ1 ch

O1

4

resp

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

com ← O ′ com

ϕ ch ←R {0, 1}ϕ1 ch

resp ← ϕchO1

4

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

com ← O ′ com

ϕ ch ←R {0, 1}ϕ1 ch

resp ← ϕch respO1

4

O′ ?
= ϕch(Och)

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

com ← O ′ com

ϕ ch ←R {0, 1}ϕ1 ch

resp ← ϕch respO1

4

Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:
Let ϕ be an isomorphism s.t. O1 = ϕ(O0).
Given O0, O1, the prover P wants to prove to the verifer V knowledge of ϕ without revealing
any information about it

P(O0, O1, ϕ) V(O0, O1)ϕ0
O ′ O0

com ← O ′ com

ϕ ch ←R {0, 1}ϕ1 ch

resp ← ϕch respO1

O ′
?
= ϕch(Och)

4

,O′′, . . . ,O(r)

ch←R {0, 1}

r

r

1 , ϕch2 , . . . , ϕchr

1 1 , . . . ,O
(r) ?

= ϕchr (Ochr)

↓ ↓ ↓
FS signature

Signer(pk, sk)

com← (O′,O′′, . . . ,O(r))

ch← H(m, com)

resp← (ϕch1 , ϕch2 , . . . , ϕchr)

output : σ = (com, resp)

Verifer(pk)

ch← H(m, com)

b ← Vf(pk, com, ch, resp)

output : b

Digital Signatures via the Fiat-Shamir transform

P(O0, O1, ϕ) V(O0, O1)IDS
com ← O ′ com

ch ←R {0, 1}ch

resp ← ϕch resp

O ′
?
= ϕch (Och)

5

ch←R {0, 1}

r

↓ ↓ ↓
FS signature

Signer(pk, sk)

com← (O′,O′′, . . . ,O(r))

ch← H(m, com)

resp← (ϕch1 , ϕch2 , . . . , ϕchr)

output : σ = (com, resp)

Verifer(pk)

ch← H(m, com)

b ← Vf(pk, com, ch, resp)

output : b

Digital Signatures via the Fiat-Shamir transform

P(O0, O1, ϕ) V(O0, O1)IDS
, O ′′ com ← O ′ , . . . , O(r)

com

ch ←R {0, 1}r ch = (ch1, . . . , chr)

resp ← ϕch1 , ϕch2 , . . . , ϕchr resp

? ?O ′ = ϕch1 (Och1), . . . , O
(r) = ϕchr (Ochr)

5

ch←R {0, 1}rch = (ch1, . . . , chr)

Digital Signatures via the Fiat-Shamir transform

P(O0, O1, ϕ) V(O0, O1)IDS
, O ′′ com ← O ′ , . . . , O(r)

com

ch ←R {0, 1}r

resp ← ϕch1 , ϕch2 , . . . , ϕchr resp

? ?O ′ = ϕch1 (Och1), . . . , O
(r) = ϕchr (Ochr)

FS signature
Signer(pk, sk)

, O ′′ com ← (O ′ , . . . , O(r))

ch ← H(m, com)

resp ← (ϕch1 , ϕch2 , . . . , ϕchr)

output : σ = (com, resp)

↓ ↓ ↓

Verifer(pk)

ch ← H(m, com)

b ← Vf(pk, com, ch, resp)

output : b

5

,O′′, . . . ,O(r)

ch←R {0, 1}

r

r

1 , ψch2 , . . . , ψchr

1 1

, . . . ,O(r) ?
= ψchr (Ochr)

▶ For security of λ bits, needs to be repeated r = λ times!

▶ ⇒ Signature contains λ isometries (from λ rounds)

▶ ⇒ All operations in signing and verifcation need to be repeated λ times

The basic protocol is not very efcient

P(O0, O1, ϕ) V(O0, O1)ψ0
O ′ O0

ch ←R {0, 1}chϕ
ψ1

resp ← ψch resp

com ← O ′ com

O ′
?O1 = ψch (Och)

▶ Challenge space is of size 2 ⇒ Soundness error is 1/2

6

ch←R {0, 1}

r

▶ ⇒ Signature contains λ isometries (from λ rounds)

▶ ⇒ All operations in signing and verifcation need to be repeated λ times

The basic protocol is not very efcient

ψ0
O ′ O0

P(O0, O1, ϕ) V(O0, O1)

ϕ
ψ1

, O ′′ com ← O ′ , . . . , O(r)

com

ch ←R {0, 1}r ch = (ch1, . . . , chr)

resp ← ψch1 , ψch2 , . . . , ψchr resp

O1 O ′
?
= ψch1 (Och1)

, . . . , O(r) =
?
ψchr (Ochr)

▶ Challenge space is of size 2 ⇒ Soundness error is 1/2

▶ For security of λ bits, needs to be repeated r = λ times!

6

ch←R {0, 1}rch = (ch1, . . . , chr)

▶ ⇒ All operations in signing and verifcation need to be repeated λ times

The basic protocol is not very efcient

P(O0, O1, ϕ) V(O0, O1)ψ0
O ′ O0

ch ←R {0, 1}r ϕ
ψ1

resp ← ψch1 , ψch2 , . . . , ψchr resp

, O ′′ com ← O ′ , . . . , O(r)

com

O ′
?O1 = ψch1 (Och1)

, . . . , O(r) ?
= ψchr (Ochr)

▶ Challenge space is of size 2 ⇒ Soundness error is 1/2

▶ For security of λ bits, needs to be repeated r = λ times!

▶ ⇒ Signature contains λ isometries (from λ rounds)

6

ch←R {0, 1}rch = (ch1, . . . , chr)

The basic protocol is not very efcient

P(O0, O1, ϕ) V(O0, O1)ψ0
O ′ O0

ch ←R {0, 1}r ϕ
ψ1

resp ← ψch1 , ψch2 , . . . , ψchr resp

, O ′′ com ← O ′ , . . . , O(r)

com

O1 O ′
?
= ψch1 (Och1)

, . . . , O(r) ?
= ψchr (Ochr)

▶ Challenge space is of size 2 ⇒ Soundness error is 1/2

▶ For security of λ bits, needs to be repeated r = λ times!

▶ ⇒ Signature contains λ isometries (from λ rounds)

▶ ⇒ All operations in signing and verifcation need to be repeated λ times

6

,O′′, . . . ,O(r)

ch←R {0,N − 1}

r

r

1 , ψch2 , . . . , ψchr

▶ For security of λ bits, needs to be repeated r = λ
logN times!

▶ ⇒ Signature contains λ
logN isometries

▶ ⇒ All operations in signing and verifcation need to be repeated λ
logN times

▶ There is a cost - N-fold increase in public and private key

▶ Always necessary to fnd the best trade-of

Optimization 1: Make the challenge space bigger (Multiple public keys)

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

com ← O ′ com

ϕ2 ϕi ϕNψ1 ψ2 ψi

ch ←R {0, N − 1}chϕ1
ψN

resp ← ψch resp

?O(i)O1 O2 . . . ON = ψchi (Ochi)

▶ Challenge space is now of size N ⇒ Soundness error is 1/N

7

ch←R {0,N − 1}

r

▶ ⇒ Signature contains λ
logN isometries

▶ ⇒ All operations in signing and verifcation need to be repeated λ
logN times

▶ There is a cost - N-fold increase in public and private key

▶ Always necessary to fnd the best trade-of

Optimization 1: Make the challenge space bigger (Multiple public keys)

O0 O ′
ψ0 P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕNψ1 ψ2 ψi

ch ←R {0, N − 1}r ch = (ch1, . . . , chr)ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

?O1 O2 . . . ON O(i) = ψchi (Ochi)

▶ Challenge space is now of size N ⇒ Soundness error is 1/N
▶ For security of λ bits, needs to be repeated r = λ times!log N

7

ch←R {0,N − 1}rch = (ch1, . . . , chr)

▶ ⇒ All operations in signing and verifcation need to be repeated λ
logN times

▶ There is a cost - N-fold increase in public and private key

▶ Always necessary to fnd the best trade-of

Optimization 1: Make the challenge space bigger (Multiple public keys)

O0 O ′
ψ0 P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕNψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

?O1 O2 . . . ON O(i) = ψchi (Ochi)

▶ Challenge space is now of size N ⇒ Soundness error is 1/N
▶ For security of λ bits, needs to be repeated r = λ times!log N

▶ ⇒ Signature contains λ isometrieslog N

7

ch←R {0,N − 1}rch = (ch1, . . . , chr)

▶ There is a cost - N-fold increase in public and private key

▶ Always necessary to fnd the best trade-of

Optimization 1: Make the challenge space bigger (Multiple public keys)

O0 O ′
ψ0 P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕNψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

?O1 O2 . . . ON O(i) = ψchi (Ochi)

▶ Challenge space is now of size N ⇒ Soundness error is 1/N
▶ For security of λ bits, needs to be repeated r = λ times!log N

▶ ⇒ Signature contains λ isometrieslog N

▶ ⇒ All operations in signing and verifcation need to be repeated λ timeslog N

7

ch←R {0,N − 1}rch = (ch1, . . . , chr)

▶ Always necessary to fnd the best trade-of

Optimization 1: Make the challenge space bigger (Multiple public keys)

O0 O ′
ψ0 P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕNψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

?O1 O2 . . . ON O(i) = ψchi (Ochi)

▶ Challenge space is now of size N ⇒ Soundness error is 1/N
▶ For security of λ bits, needs to be repeated r = λ times!log N

▶ ⇒ Signature contains λ isometrieslog N

▶ ⇒ All operations in signing and verifcation need to be repeated λ timeslog N

▶ There is a cost - N-fold increase in public and private key

7

ch←R {0,N − 1}rch = (ch1, . . . , chr)

Optimization 1: Make the challenge space bigger (Multiple public keys)

O0 O ′
ψ0 P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕNψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

?O1 O2 . . . ON O(i) = ψchi (Ochi)

▶ Challenge space is now of size N ⇒ Soundness error is 1/N
▶ For security of λ bits, needs to be repeated r = λ times!log N

▶ ⇒ Signature contains λ isometrieslog N

▶ ⇒ All operations in signing and verifcation need to be repeated λ timeslog N

▶ There is a cost - N-fold increase in public and private key
▶ Always necessary to fnd the best trade-of

7

,O′′, . . . ,O(r)

ch←R {0,N − 1}

r

r

1 , ψch2 , . . . , ψchr

• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N

• ⇒ not a big beneft in general

• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges

• We need a special hash function that always produces fxed weight outputs

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

com ← O ′ com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}chϕ1
ψN

resp ← ψch resp

?O(i)O1 O2 . . . ON = ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature

8

ch←R {0,N − 1}

r

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N

• ⇒ not a big beneft in general

• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges

• We need a special hash function that always produces fxed weight outputs

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ch = (ch1, . . . , chr)ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

?O1 O2 . . . ON O(i) = ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

8

ch←R {0,N − 1}rch = (ch1, . . . , chr)

• ⇒ not a big beneft in general

• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges

• We need a special hash function that always produces fxed weight outputs

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

?O1 O2 . . . ON O(i) = ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N

8

ch←R {0,N − 1}rch = (ch1, . . . , chr)

• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges

• We need a special hash function that always produces fxed weight outputs

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

O1 O2 . . . ON O(i) ?
= ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N
• ⇒ not a big beneft in general

8

ch←R {0,N − 1}rch = (ch1, . . . , chr)

▶ Idea: Always have a fxed number M of 0 challenges

• We need a special hash function that always produces fxed weight outputs

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

O1 O2 . . . ON O(i) ?
= ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N
• ⇒ not a big beneft in general
• ⇒ signature is not of constant size

8

ch←R {0,N − 1}rch = (ch1, . . . , chr)

• We need a special hash function that always produces fxed weight outputs

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

O1 O2 . . . ON O(i) ?
= ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N
• ⇒ not a big beneft in general
• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges

8

ch←R {0,N − 1}rch = (ch1, . . . , chr)

• Always necessary to fnd the best trade-of

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

O1 O2 . . . ON O(i) ?
= ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N
• ⇒ not a big beneft in general
• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges
• We need a special hash function that always produces fxed weight outputs

8

ch←R {0,N − 1}rch = (ch1, . . . , chr)

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

O1 O2 . . . ON O(i) ?
= ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N
• ⇒ not a big beneft in general
• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges
• We need a special hash function that always produces fxed weight outputs
• Always necessary to fnd the best trade-of 8

ch←R {0,N − 1}rch = (ch1, . . . , chr)

Optimization 2: Reduce signature size by using seeds

P(O0, . . . , ON , ϕ1, . . . , ϕN) V(O0, . . . , ON)ψ0
O0 O ′

, O ′′ com ← O ′ , . . . , O(r)

com

ϕ2 ϕi ϕN
ψ1 ψ2 ψi

ch ←R {0, N − 1}r ϕ1
ψN

resp ← ψch1 , ψch2 , . . . , ψchr resp

O1 O2 . . . ON O(i) ?
= ψchi (Ochi)

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature
• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N
• ⇒ not a big beneft in general
• ⇒ signature is not of constant size

▶ Idea: Always have a fxed number M of 0 challenges
• We need a special hash function that always produces fxed weight outputs
• Always necessary to fnd the best trade-of 8

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

9

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

9

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

9

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

9

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

9

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

9

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

9

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

9

▶ . . .

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

9

Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0, O1):

Given O0 and O1, fnd (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identifcation scheme, [Denes 2001]

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, [De Feo et al.]

▶ Code equivalence - LESS - [Biasse et al. 2020], LESS-FM - [Barenghi et al.

2021]

▶ Alternate trilinear form equivalence - [Tang et al. 2022]

▶ Lattice isomorphism - [Ducas–van Woerden 2022]

▶ Matrix code equivalence - [Reijnders–Samardjiska–Trimoska 2022]

▶ . . .

9

Equivalence problems for MEDS and

ALTEQ

Matrix Code Equivalence (MCE) problem [Berger,2003]

MCE(k, n,m, q, C,D):
Input: Two k-dimensional matrix codes C,D ⊂Mm,n(q)

Question: Find – if any – A ∈ GLm(q),B ∈ GLn(q) s.t. for all C ∈ C, it holds that

ACB ∈ D

MEDS: Matrix Code Equivalence

▶ MEDS is based on the following equivalence problem.

▶ Matrix code - a subspace of Mm×n(Fq) of dimension k endowed with rank

metric.

10

MEDS: Matrix Code Equivalence

▶ MEDS is based on the following equivalence problem.

▶ Matrix code - a subspace of Mm×n(Fq) of dimension k endowed with rank

metric.

Matrix Code Equivalence (MCE) problem [Berger,2003]

MCE(k, n, m, q, C, D):
Input: Two k-dimensional matrix codes C, D ⊂Mm,n(q)
Question: Find – if any – A ∈ GLm(q), B ∈ GLn(q) s.t. for all C ∈ C, it holds that

ACB ∈ D

10

Alternating Trilinear Form Equivalence (ATFE) [Grochow-Qiao-Tang, 2021]

ALTEQ(n, q, ϕ, ψ):

Input: Two alternating trilinear forms ϕ, ψ : Fn
q × Fn

q × Fn
q → Fq.

Question: Find – if any – A ∈ GLn(q) s.t. for any u, v ,w ∈ Fn
q, ϕ(u, v ,w) =

ψ(At(u),At(v),At(w)).

ALTEQ: Alternating Trilinear Form Equivalence

▶ ALTEQ is based on the following equivalence problem.

▶ Alternating trilinear form - a map ϕ : Fn
q × Fn

q × Fn
q → Fq that

(1) is linear in each argument, and

(2) evaluates to 0 whenever two arguments are the same.

11

ALTEQ: Alternating Trilinear Form Equivalence

▶ ALTEQ is based on the following equivalence problem.

▶ Alternating trilinear form - a map ϕ : Fn × Fn × Fn → Fq thatq q q

(1) is linear in each argument, and

(2) evaluates to 0 whenever two arguments are the same.

Alternating Trilinear Form Equivalence (ATFE) [Grochow-Qiao-Tang, 2021]

ALTEQ(n, q, ϕ, ψ):
Input: Two alternating trilinear forms ϕ, ψ : Fn × Fn × Fn → Fq .q q q

Question: Find – if any – A ∈ GLn(q) s.t. for any u, v , w ∈ Fn , ϕ(u, v , w) = q

ψ(At (u), At (v), At (w)).

11

A
B

MCE:

▶ matrix codes of rectangular matrices

▶ isometry (A,B)

MCE and ATFE look very similar!

Matrix codes:

D2
D1

Dk
. . .

D3
C2

C1

Ck
. . .

C3

12

A
B

▶ isometry (A,B)

MCE and ATFE look very similar!

Matrix codes:

D2
D1

Dk
. . .

D3
C2

C1

Ck
. . .

C3

MCE:

▶ matrix codes of rectangular matrices

12

1

MCE and ATFE look very similar!

Matrix codes:

Dk
. . .

D3

Ck
. . .

C3

B

D2
D1

C2
C

A

MCE:

▶ matrix codes of rectangular matrices

▶ isometry (A, B)

12

. .
.
Dn

D3

D2

D1

. .
.
Cn

C3

C2

C1

A A⊤

ATFE:

▶ matrix codes with “symmetries in the three directions”.

▶ isometry (A,A⊤) and A on the third direction too

MCE and ATFE look very similar!

▶ An alternating trilinear form is ϕ : Fn × Fn × Fn → Fq.q q q

▶ We can record ϕ as an n × n × n 3-way array C = [ci,j,k], where ci,j,k = ϕ(ei , ej , ek).
• Note that ci,j,k = −cj,i,k = −ck,j,i = −ci,k,j = cj,k,i = ck,i,j .

▶ A 3-way array C can also be represented as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q).

13

1

MCE and ATFE look very similar!

▶ An alternating trilinear form is ϕ : Fn × Fn × Fn → Fq.q q q

▶ We can record ϕ as an n × n × n 3-way array C = [ci,j,k], where ci,j,k = ϕ(ei , ej , ek).
• Note that ci,j,k = −cj,i,k = −ck,j,i = −ci,k,j = cj,k,i = ck,i,j .

▶ A 3-way array C can also be represented as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q).

. .
.
Dn

D3
D2

D1

. .
.
Cn

C3
C2

C

A A⊤

ATFE:

▶ matrix codes with “symmetries in the three directions”.
▶ isometry (A, A⊤) and A on the third direction too

13

▶ The isomorphisms in MCE and ATFE are both invertible matrices.

• L,R ∈ GLn(q) sends C ∈Mn(q) to LtCR.

• L,R,T = (ti,j) ∈ GLn(q) sends (C1, . . . ,Cn) ∈Mn(q)
n to (LtC ′

1R, . . . , L
tC ′

nR),

where C ′
i =

P
j ti,jCj .

• The isomorphism in ATFE imposes that L = R = T .

Theorem ([Grochow-Qiao-Tang, 2023])

MCE and ATFE are polynomial-time equivalent.

MCE and ATFE are polynomial-time equivalent

▶ The objects in MCE and ATFE are both 3-way arrays.

• A 2-way array, [ci,j], is a matrix.
• A 3-way array, [ci,j,k], is sometimes called a 3-tensor.
• The 3-way arrays from ATFE are subject to certain structural constraints.

14

Theorem ([Grochow-Qiao-Tang, 2023])

MCE and ATFE are polynomial-time equivalent.

MCE and ATFE are polynomial-time equivalent

▶ The objects in MCE and ATFE are both 3-way arrays.

• A 2-way array, [ci,j], is a matrix.
• A 3-way array, [ci,j,k], is sometimes called a 3-tensor.
• The 3-way arrays from ATFE are subject to certain structural constraints.

▶ The isomorphisms in MCE and ATFE are both invertible matrices.

• L, R ∈ GLn(q) sends C ∈Mn(q) to Lt CR.
′ ′ • L, R, T = (ti,j) ∈ GLn(q) sends (C1, . . . , Cn) ∈Mn(q)

n to (Lt C1R, . . . , L
t C R),nP′ where C = i j ti,j Cj .

• The isomorphism in ATFE imposes that L = R = T .

14

MCE and ATFE are polynomial-time equivalent

▶ The objects in MCE and ATFE are both 3-way arrays.

• A 2-way array, [ci,j], is a matrix.
• A 3-way array, [ci,j,k], is sometimes called a 3-tensor.
• The 3-way arrays from ATFE are subject to certain structural constraints.

▶ The isomorphisms in MCE and ATFE are both invertible matrices.

• L, R ∈ GLn(q) sends C ∈Mn(q) to Lt CR.
′ ′ • L, R, T = (ti,j) ∈ GLn(q) sends (C1, . . . , Cn) ∈Mn(q)

n to (Lt C1R, . . . , L
t C R),nP′ where C = i j ti,j Cj .

• The isomorphism in ATFE imposes that L = R = T .

Theorem ([Grochow-Qiao-Tang, 2023])

MCE and ATFE are polynomial-time equivalent.

14

▶ The complexity class TI was defned in [Grochow-Qiao], consisting of problems

polynomial-time reducible to MCE.

• MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].

• In analogy with the complexity class GI for Graph Isomorphism.

▶ MCE and ATFE are TI-complete.

▶ TI-complete problems include isomorphism problems for tensors, fnite groups,

(associative and Lie) algebras, (systems of) polynomials. . .

A complexity class for isomorphism problems of algebraic structures

▶ Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders–Samardjiska–Trimoska, Grochow–Qiao–Tang, D’Alconzo,
Couvreur–Debris-Alazard–Gaborit. . .]

15

▶ TI-complete problems include isomorphism problems for tensors, fnite groups,

(associative and Lie) algebras, (systems of) polynomials. . .

A complexity class for isomorphism problems of algebraic structures

▶ Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders–Samardjiska–Trimoska, Grochow–Qiao–Tang, D’Alconzo,
Couvreur–Debris-Alazard–Gaborit. . .]

▶ The complexity class TI was defned in [Grochow-Qiao], consisting of problems

polynomial-time reducible to MCE.

• MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
• In analogy with the complexity class GI for Graph Isomorphism.

▶ MCE and ATFE are TI-complete.

15

A complexity class for isomorphism problems of algebraic structures

▶ Relations between isomorphism problems for some algebraic structures are studied in
[Reijnders–Samardjiska–Trimoska, Grochow–Qiao–Tang, D’Alconzo,
Couvreur–Debris-Alazard–Gaborit. . .]

▶ The complexity class TI was defned in [Grochow-Qiao], consisting of problems

polynomial-time reducible to MCE.

• MCE was called 3-Tensor Isomorphism in [Grochow-Qiao].
• In analogy with the complexity class GI for Graph Isomorphism.

▶ MCE and ATFE are TI-complete.

▶ TI-complete problems include isomorphism problems for tensors, fnite groups,
(associative and Lie) algebras, (systems of) polynomials. . .

15

▶ Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since

1996 [Patarin], are TI-complete.

• Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

▶ Linear code monomial equivalence and graph isomorphism are in TI

[Couvreur–Debris-Alazard–Gaborit, Grochow–Qiao].

• Linear code monomial equivalence supports LESS.

Relations with other isomorphism problems

▶ TI-complete problems appear in computational group theory, multivariate cryptography,

and quantum information.

• Experiences from these areas suggest that TI-complete problems are difcult to solve
in practice.

16

▶ Linear code monomial equivalence and graph isomorphism are in TI

[Couvreur–Debris-Alazard–Gaborit, Grochow–Qiao].

• Linear code monomial equivalence supports LESS.

Relations with other isomorphism problems

▶ TI-complete problems appear in computational group theory, multivariate cryptography,

and quantum information.

• Experiences from these areas suggest that TI-complete problems are difcult to solve
in practice.

▶ Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since

1996 [Patarin], are TI-complete.

• Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

16

Relations with other isomorphism problems

▶ TI-complete problems appear in computational group theory, multivariate cryptography,

and quantum information.

• Experiences from these areas suggest that TI-complete problems are difcult to solve
in practice.

▶ Isomorphism problems for cubic forms and quadratic polynomial systems, as studied since

1996 [Patarin], are TI-complete.

• Results from the study of polynomial isomorphism are valuable for MCE and ATFE.

▶ Linear code monomial equivalence and graph isomorphism are in TI

[Couvreur–Debris-Alazard–Gaborit, Grochow–Qiao].

• Linear code monomial equivalence supports LESS.

16

▶ A strong negative evidence for the “standard technique” to work in this setting

[Hallgren-Moore-Rötteler-Russell-Sen, 2010].

[Moore-Russell-Vazirani] . . . the strongest such insights we have about the lim-

its of quantum algorithms.

Why use MCE and ATFE in post-quantum cryptography?

▶ A natural development of Shor’s quantum algorithms for integer factorisation and

discrete logarithm is the hidden subgroup problem framework.

▶ MCE and ATFE can be cast in this framework for general linear groups.

17

Why use MCE and ATFE in post-quantum cryptography?

▶ A natural development of Shor’s quantum algorithms for integer factorisation and

discrete logarithm is the hidden subgroup problem framework.

▶ MCE and ATFE can be cast in this framework for general linear groups.

▶ A strong negative evidence for the “standard technique” to work in this setting

[Hallgren-Moore-Rötteler-Russell-Sen, 2010].

[Moore-Russell-Vazirani] . . . the strongest such insights we have about the lim-

its of quantum algorithms.

17

Cryptanalysis for MCE and ATFE

▶ We will introduce three approaches.

• Direct Gröbner basis attack.

• Hybrid Gröbner basis: qn · poly(n, log q).
• Utilising low-rank points (via birthday paradox and invariants).

Algorithms for MCE and ATFE

▶ Consider 3-way arrays of size n × n × n over Fq under the action of (L, R, T) or

(T , T , T) ∈ GLn(q) × GLn(q) × GLn(q) .
n▶ Brute-force algorithm: q
2 · poly(n, log q).

• After fxing T , to recover L and R can be done in time poly(n, log q).

18

Algorithms for MCE and ATFE

▶ Consider 3-way arrays of size n × n × n over Fq under the action of (L, R, T) or

(T , T , T) ∈ GLn(q) × GLn(q) × GLn(q) .
n▶ Brute-force algorithm: q
2 · poly(n, log q).

• After fxing T , to recover L and R can be done in time poly(n, log q).

▶ We will introduce three approaches.

• Direct Gröbner basis attack.
n• Hybrid Gröbner basis: q · poly(n, log q).

• Utilising low-rank points (via birthday paradox and invariants).

18

▶ Recall that L,R,T = (ti ,j) ∈ GLn(q) sends (C1, . . . ,Cn) ∈Mn(q)
n to

(LtC ′1R, . . . , L
tC ′nR), where C ′i =

P
j ti ,jCj .

▶ Viewing the entries of L, R and T as variables, the question is whether

(LtC ′1R, . . . , L
tC ′nR) = (D1, . . . ,Dn).

• This amounts to n3 cubic polynomials in 3n2 variables.

Direct Gröbner basis attack: the basic idea

▶ Let C = [ci ,j ,k] and D = [di ,j ,k] be two n × n × n 3-way arrays over Fq.

▶ We view C as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q).

19

▶ Viewing the entries of L, R and T as variables, the question is whether

(LtC ′1R, . . . , L
tC ′nR) = (D1, . . . ,Dn).

• This amounts to n3 cubic polynomials in 3n2 variables.

Direct Gröbner basis attack: the basic idea

▶ Let C = [ci ,j ,k] and D = [di ,j ,k] be two n × n × n 3-way arrays over Fq.

▶ We view C as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q).

▶ Recall that L, R, T = (ti ,j) ∈ GLn(q) sends (C1, . . . , Cn) ∈Mn(q)
n toP′ ′ ′ (Lt C1R, . . . , L

t C R), where C = n i j ti ,j Cj .

19

Direct Gröbner basis attack: the basic idea

▶ Let C = [ci ,j ,k] and D = [di ,j ,k] be two n × n × n 3-way arrays over Fq.

▶ We view C as a matrix tuple (C1, . . . , Cn), Ci ∈Mn(q).

▶ Recall that L, R, T = (ti ,j) ∈ GLn(q) sends (C1, . . . , Cn) ∈Mn(q)
n toP′ ′ ′ (Lt C1R, . . . , L

t C R), where C = j ti ,j Cj .n i

▶ Viewing the entries of L, R and T as variables, the question is whether
′ ′ (Lt C1R, . . . , L

t C R) = (D1, . . . , Dn).n

• This amounts to n3 cubic polynomials in 3n2 variables.

19

Quadratic inverse modelling For ATFE, let T ′ = [t ′i,j]. Then set

(T tC1T , . . . ,T
tCnT) = (D ′

1, . . . ,D
′
n) where D ′

i =
P

j t
′
i,jDj , and TT ′ = In.

▶ This is by [Bouillaguet-Faugère-Fouque-Perret, 2010].

▶ n ·
�
n
2

�
+ n2 quadratic polynomials in 2n2 variables.

Quadratic dual modelling Use the dual space of D to express that LtCiR ∈ D.
▶ This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-

Samardjiska-Trimoska].

▶ This gives rise to n · (n2 − n) homogeneous quadratic polynomials in 2n2

variables for MCE.

▶ And n · (
�
n
2

�
− n) quadratic polynomials in n2 variables for ATFE.

▶ Note that some syzygies arise, complicating the analysis [MEDS spec].

Direct Gröbner basis attack: more efcient modellings

P′ ′ ′Cubic modelling (Lt C1R, . . . , L
t CnR) = (D1, . . . , Dn) where Ci = j ti,j Cj .

▶ This gives rise to n3 cubic polynomials in 3n2 variables for MCE.� �
n▶ And cubic polynomials in n2 variables for ATFE. 3

20

Quadratic dual modelling Use the dual space of D to express that LtCiR ∈ D.
▶ This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-

Samardjiska-Trimoska].

▶ This gives rise to n · (n2 − n) homogeneous quadratic polynomials in 2n2

variables for MCE.

▶ And n · (
�
n
2

�
− n) quadratic polynomials in n2 variables for ATFE.

▶ Note that some syzygies arise, complicating the analysis [MEDS spec].

Direct Gröbner basis attack: more efcient modellings

P′ ′ ′Cubic modelling (Lt C1R, . . . , L
t CnR) = (D1, . . . , Dn) where Ci = j ti,j Cj .

▶ This gives rise to n3 cubic polynomials in 3n2 variables for MCE.� �
n▶ And cubic polynomials in n2 variables for ATFE. 3

′ ′ Quadratic inverse modelling For ATFE, let T = [t]. Then seti,j P′ ′ ′ ′ ′ (T t C1T , . . . , T t CnT) = (D1, . . . , D) where D = t Dj , and TT = In.n i j i,j

▶ This is by [Bouillaguet-Faugère-Fouque-Perret, 2010]. � �
n▶ n · + n2 quadratic polynomials in 2n2 variables. 2

20

Direct Gröbner basis attack: more efcient modellings

P′ ′ ′Cubic modelling (Lt C1R, . . . , L
t C R) = (D1, . . . , Dn) where C = n i j ti,j Cj .

▶ This gives rise to n3 cubic polynomials in 3n2 variables for MCE.� �
n▶ And cubic polynomials in n2 variables for ATFE. 3

′ ′ Quadratic inverse modelling For ATFE, let T = [t]. Then seti,j P′ ′ ′ ′ ′ (T t C1T , . . . , T t CnT) = (D1, . . . , D) where D = t Dj , and TT = In.n i j i,j

▶ This is by [Bouillaguet-Faugère-Fouque-Perret, 2010]. � �
n▶ n · + n2 quadratic polynomials in 2n2 variables. 2

Quadratic dual modelling Use the dual space of D to express that Lt Ci R ∈ D.
▶ This is by [Chou-Niederhagen-Persichetti-Randrianarisoa-Reijnders-

Samardjiska-Trimoska].
2▶ This gives rise to n · (n2 − n) homogeneous quadratic polynomials in 2n

variables for MCE.� �
n▶ And n · (− n) quadratic polynomials in n2 variables for ATFE. 2

▶ Note that some syzygies arise, complicating the analysis [MEDS spec].

20

▶ For ATFE, knowing one row of T is enough, leading to a qn · poly(n, log q)-time

algorithm.

▶ For MCE, knowing two rows of L is enough, leading to an q2n · poly(n, log q)-time

algorithm.

▶ Further observations from [Beullens, 2023]:

• Knowing one row of T up to scalar is enough.

• For low-rank points, the kernel information can be incorporated.

Hybrid Gröbner basis attacks

′▶ We set up n × n variable matrices L and R for MCE (or T and T for ATFE).

▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time,
provided that one (or two) rows of L are known.

21

▶ Further observations from [Beullens, 2023]:

• Knowing one row of T up to scalar is enough.

• For low-rank points, the kernel information can be incorporated.

Hybrid Gröbner basis attacks

′▶ We set up n × n variable matrices L and R for MCE (or T and T for ATFE).

▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time,
provided that one (or two) rows of L are known.

n▶ For ATFE, knowing one row of T is enough, leading to a q · poly(n, log q)-time
algorithm.

2n▶ For MCE, knowing two rows of L is enough, leading to an q · poly(n, log q)-time
algorithm.

21

Hybrid Gröbner basis attacks

′▶ We set up n × n variable matrices L and R for MCE (or T and T for ATFE).

▶ In [Faugère-Perret, 2006], it was discovered that Gröbner basis runs in polynomial time,
provided that one (or two) rows of L are known.

n▶ For ATFE, knowing one row of T is enough, leading to a q · poly(n, log q)-time
algorithm.

2n▶ For MCE, knowing two rows of L is enough, leading to an q · poly(n, log q)-time
algorithm.

▶ Further observations from [Beullens, 2023]:

• Knowing one row of T up to scalar is enough.
• For low-rank points, the kernel information can be incorporated.

21

▶ Algorithms based on birthday paradox and hybrid Gröbner basis

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].

• Suppose there exist ≈ qk -many rank-r points for a random ϕ.

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.

(2) For every pair, use hybrid Gröbner basis to fnd a “matched” pair.

• Algorithm cost: O(qk/2 · samp-cost + qk · gb-cost).
▶ Sampling step: min-rank or graph-walking [Beullens, 2023]

Utilising low-rank points

▶ Let ϕ : Fn
q × Fn

q × Fn
q → Fq be an alternating trilinear form.

▶ For u ∈ Fn
q, let ϕu : Fn

q × Fn
q → Fq by ϕu(v , w) = ϕ(u, v , w).

▶ An isomorphism invariant for u: r = Rank(ϕu).

22

▶ Sampling step: min-rank or graph-walking [Beullens, 2023]

Utilising low-rank points

▶ Let ϕ : Fn × Fn × Fn → Fq be an alternating trilinear form. q q q

▶ For u ∈ Fn , let ϕu : Fn × Fn → Fq by ϕu(v , w) = ϕ(u, v , w).q q q

▶ An isomorphism invariant for u: r = Rank(ϕu).

▶ Algorithms based on birthday paradox and hybrid Gröbner basis

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
k• Suppose there exist ≈ q -many rank-r points for a random ϕ.

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.
(2) For every pair, use hybrid Gröbner basis to fnd a “matched” pair.

k/2 k• Algorithm cost: O(q · samp-cost + q · gb-cost).

22

Utilising low-rank points

▶ Let ϕ : Fn × Fn × Fn → Fq be an alternating trilinear form. q q q

▶ For u ∈ Fq
n , let ϕu : Fq

n × Fq
n → Fq by ϕu(v , w) = ϕ(u, v , w).

▶ An isomorphism invariant for u: r = Rank(ϕu).

▶ Algorithms based on birthday paradox and hybrid Gröbner basis

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
k• Suppose there exist ≈ q -many rank-r points for a random ϕ.

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.
(2) For every pair, use hybrid Gröbner basis to fnd a “matched” pair.

k/2 k• Algorithm cost: O(q · samp-cost + q · gb-cost).
▶ Sampling step: min-rank or graph-walking [Beullens, 2023]

22

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.

(2) For every point, compute the isomorphism invariant.

(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid

Gröbner basis to complete.

• Algorithm cost: O(qk/2 · (samp-cost + inv-cost) + gb-cost).

▶ Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank

points, and more [Narayanan-Qiao-Tang].

Utilising low-rank points, cont’d

▶ Algorithms based on distinguishing isomorphism invariants with low-rank points

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
k• Suppose there exist ≈ q -many rank-r points for a random ϕ.

• Suppose there exist distinguishing isomorphism invariants associated with such
points.

23

• Algorithm cost: O(qk/2 · (samp-cost + inv-cost) + gb-cost).

▶ Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank

points, and more [Narayanan-Qiao-Tang].

Utilising low-rank points, cont’d

▶ Algorithms based on distinguishing isomorphism invariants with low-rank points

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
k• Suppose there exist ≈ q -many rank-r points for a random ϕ.

• Suppose there exist distinguishing isomorphism invariants associated with such
points.

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.
(2) For every point, compute the isomorphism invariant.
(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid

Gröbner basis to complete.

23

▶ Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank

points, and more [Narayanan-Qiao-Tang].

Utilising low-rank points, cont’d

▶ Algorithms based on distinguishing isomorphism invariants with low-rank points

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
k• Suppose there exist ≈ q -many rank-r points for a random ϕ.

• Suppose there exist distinguishing isomorphism invariants associated with such
points.

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.
(2) For every point, compute the isomorphism invariant.
(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid

Gröbner basis to complete.

• Algorithm cost: O(qk/2 · (samp-cost + inv-cost) + gb-cost).

23

Utilising low-rank points, cont’d

▶ Algorithms based on distinguishing isomorphism invariants with low-rank points

[Bouillaguet-Fouque-Véber, 2013; Beullens, 2023].
k• Suppose there exist ≈ q -many rank-r points for a random ϕ.

• Suppose there exist distinguishing isomorphism invariants associated with such
points.

(1) Sample qk/2-many rank-r points for ϕ and ψ, respectively.
(2) For every point, compute the isomorphism invariant.
(3) By birthday paradox, there exists a pair of points of the same invariant. Use hybrid

Gröbner basis to complete.

• Algorithm cost: O(qk/2 · (samp-cost + inv-cost) + gb-cost).

▶ Distinguishing isomorphism invariant candidates: ranks of the neighbours of low-rank
points, and more [Narayanan-Qiao-Tang].

23

Parameters and performances of

MEDS and ALTEQ

Parameters and performance of MEDS

Level param. set
public key

size (KB)

signature

size (KB)

key gen

(ms)

sign

(ms)

verify

(ms)

I
MEDS-9923 9.9 9.9 1 272 271
MEDS-13220 13.2 13 1.3 46.7 46

III
MEDS-41711 41.7 41 5.1 779 762
MEDS-69497 55.6 54.7 6.7 203.8 200.4

Table: An overview of the parameters and performance of MEDS.

Optimizations:

▶ Standard: Multiple Public Keys + Fixed-Weight Challenge Strings + Seed tree

▶ New: Public Key Compression
• generate public key partially from seed ⇒ signature size reduction
• Work in progress: use similar idea during signing

24

Parameters and performance of ALTEQ

Level mode
public key

size (KB)

signature

size (KB)

key gen

(ms)

sign

(ms)

verify

(ms)

I
Balanced 8 16 0.093 0.629 0.496
ShortSig 512 10 1.902 0.194 0.092

III
Balanced 32 48 0.582 6.986 6.483
ShortSig 1024 24 5.152 1.705 1.304

Table: An overview of the parameters and performance of ALTEQ.

Optimizations:

▶ Standard: Multiple Public Keys + Fixed-Weight Challenge Strings (+ Seed tree)

▶ New: Invertible matrix decomposition
• Represent an invertible matrix as a product of column matrices for faster signing and

verifcation
25

Summary

▶ Digital signature based on equivalence problems: design and optimisations

▶ Matrix code equivalence (MCE) and alternating trilinear form equivalence (ATFE)

▶ Algorithms for MCE and ATFE

▶ MEDS and ALTEQ: parameters and performances

26

Thank you for listening!

27

	Equivalence problems for MEDS and ALTEQ
	Cryptanalysis for MCE and ATFE
	Parameters and performances of MEDS and ALTEQ

