Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Standardization Process

Updated October 2022 to reflect that IP statements can be accepted digitally.

Table of Contents
1. Background
2. Requirements for Submission Packages
 2.A Cover Sheet
 2.B Algorithm Specifications and Supporting Documentation
 2.C Digital and Optical Media
 2.D Intellectual Property Statements / Agreements / Disclosures
 2.E General Submission Requirements
 2.F Technical Contacts and Additional Information
3. Minimum Acceptability Requirements
4. Evaluation Criteria
 4.A Contribution to NIST PQC Digital Signature Portfolio Diversity
 4.B Security
 4.C Cost
 4.D Algorithm and Implementation Characteristics
5. Evaluation Process
 5.A Overview
 5.B Technical Evaluation
 5.C Initial Planning for the PQC Standardization Conference

Authority: This work is being initiated pursuant to NIST’s responsibilities under the Federal Information Security Management Act (FISMA) of 2002, Public Law 107–347.

1. Background

The National Institute of Standards and Technology (NIST) initiated a public process to select quantum-resistant public-key cryptographic algorithms for standardization in response to the substantial development and advancement of quantum computing. NIST issued the public call for submissions to the PQC Standardization Process in December 2016 and, after three rounds of evaluation and analysis, announced the selection of the first algorithms to be standardized. The public-key encapsulation mechanism (KEM) that will be standardized is CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium, FALCON, and SPHINCS+. Except for SPHINCS+, all these schemes are based on the computational hardness of problems involving structured lattices.

NIST announced that the PQC standardization process is continuing with a fourth round, with the following KEMs still under consideration: BIKE, Classic McEliece, HQC, and SIKE. However, there are no remaining digital signature candidates under consideration. As such, NIST is calling for additional digital signature proposals to be considered in the PQC standardization process.
NIST is primarily interested in additional general-purpose signature schemes that are not based on structured lattices. For certain applications, such as certificate transparency, NIST may also be interested in signature schemes that have short signatures and fast verification. NIST is open to receiving additional submissions based on structured lattices, but is intent on diversifying the post-quantum signature standards. As such, any structured lattice-based signature proposal would need to significantly outperform CRYSTALS-Dilithium and FALCON in relevant applications and/or ensure substantial additional security properties to be considered for standardization.

2. Requirements for the Submission Packages

Submission packages must be received by NIST by June 1, 2023. Submission packages received before March 1, 2023, will be reviewed for completeness by NIST; the submitters will be notified of any deficiencies by March 31, 2023, allowing time for deficient packages to be amended by the submission deadline. No amendments to packages will be permitted after the submission deadline, except at specified times during the evaluation phase (see Section 5).

Previously, NIST has required the signed intellectual property statements specified in Section 2.D to be mailed in. NIST can now accept digitally signed (or digitally scanned) versions of the intellectual property statements. The entire submission package can be sent as email to: pqc-submissions@nist.gov. Alternatively, it can be mailed to Dustin Moody, Information Technology Laboratory, Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop 8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930.

“Complete and proper” submission packages will be posted at https://csrc.nist.gov/projects/pqc-dig-sig. To be considered as a “complete” submission, packages must contain the following:

- Cover Sheet.
- Algorithm Specifications and Supporting Documentation.
- Optical Media.
- Intellectual Property Statements / Agreements / Disclosures.

These requirements are detailed below.

To be considered as a “proper” submission, packages must meet the minimum acceptability requirements 1-4, as specified in Section 3.
2.A Cover Sheet

The cover sheet of a submission package shall contain the following information:

• Name of the proposed cryptosystem.
• Principal submitter’s name, e-mail address, telephone, organization, and postal address.
• Name(s) of auxiliary submitter(s).
• Name of the inventor(s)/ developer(s) of the cryptosystem.
• Name of the owner, if any, of the cryptosystem (normally expected to be the same as the submitter).
• Signature of the submitter.
• (optional) Backup point of contact (with telephone, fax, postal address, and e-mail address).

2.B Algorithm Specifications and Supporting Documentation

Each submission must include:

1) a complete written specification
2) a detailed performance analysis
3) Known Answer Test values
4) a thorough description of the expected security strength
5) an analysis of the algorithm with respect to known attacks
6) a statement of advantages and limitations.

Further details are described below.

2.B.1
A complete written specification of the algorithms shall be included, consisting of all necessary mathematical operations, equations, tables, and diagrams that are needed to implement the algorithms. The document shall also include a design rationale, and an explanation for all the important design decisions that have been made.

Each submission package shall describe a collection of algorithms, also called a cryptosystem or cryptographic scheme, that implements a digital signature. Digital-signature schemes shall include algorithms for key generation, signature generation and signature verification.

For algorithms that have tunable parameters (such as the dimension of some underlying vector space, or the number of equations and variables), the submission document shall specify concrete values for these parameters. If possible, the submission should specify several parameter sets that allow the selection of a range of possible security/performance tradeoffs. In addition, the submitter should provide an analysis of how the security and performance of the algorithms depend on these parameters. To facilitate the analysis of these algorithms by the cryptographic community, submitters are encouraged to also specify parameter sets that provide lower security levels, and to provide concrete
examples that demonstrate how certain parameter settings affect the feasibility of known cryptanalytic attacks.

Specific parameter sets may permit NIST to select a different performance/security tradeoff than originally specified by the submitter, in light of discovered attacks or other analysis, or in light of the alternative algorithms that are available. NIST will consult with the submitter of the algorithm, as well as the cryptographic community, if it plans to select that algorithm for development as a NIST standard, but with a different parameter set than originally specified by the submitter.

A complete submission shall specify any padding mechanisms and any uses of NIST-approved cryptographic primitives that are needed in order to achieve security. If the scheme uses a cryptographic primitive that has not been approved by NIST, the submitter shall provide an explanation for why a NIST-approved primitive would not be suitable.

To help rule out the existence of possible back-doors in an algorithm, the submitter shall explain the provenance of any constants or tables used in the algorithm.

2.B.2 The submitter must also include a statement regarding the algorithm’s estimated computational efficiency and memory requirements for the “NIST PQC Reference Platform” (specified in Section 5.B). Efficiency estimates for other platforms may be included at the submitter’s discretion. These estimates shall each include the following information, at a minimum:

a. A description of the platform used to generate the estimate, in sufficient detail so that the estimates could be verified in the public evaluation process. For software implementations, include information about the processor, clock speed, memory, and operating system, on which the performance estimates were obtained. For hardware estimates, a gate count (or estimated gate count) should be included.

b. A speed estimate and memory requirements for the algorithm(s) on the reference platform specified in Section 5.B. At a minimum, the number of milliseconds or clock cycles required to perform each required operation (e.g., key generation, sign, verify), and the size of all inputs and outputs (e.g., keys, signatures).

2.B.3 In addition, each submission package is required to include Known Answer Test (KAT) values that can be used to determine the correctness of an implementation of the submitted algorithms. The KATs are individual input tuples that produce single output values, e.g., an input tuple of a key and message resulting in an output of the corresponding signature. If an algorithm uses random values, the KAT should specify a fixed value for the random bits used by the algorithm, in order to force the algorithm to produce a fixed output value. Separate KATs should be provided to test different aspects of the algorithm, e.g., key generation, sign, verify.
The KATs shall be included as specified below. All these KAT values shall be submitted electronically, in separate files, on a CD–ROM, DVD, USB flash drive, or included in a zip file as described in Section 2.C.

Each file must be clearly labeled with header information listing:

1. Algorithm name,
2. Test name,
3. Description of the test, and
4. Other parameters.

The list must be followed by a set of tuples where all values within the tuple are clearly labeled (e.g., Message, PublicKey, RandomBits, Signature). Sample files for these KAT values will be posted at https://csrc.nist.gov/projects/pqc-dig-sig.

All applicable KATs that can be used to verify various features of the algorithm shall be included. A set of KATs shall be included for each submitted parameter set. Required KATs include:

a) If the execution of an algorithm produces intermediate results that are informative (e.g., for debugging an implementation of the algorithm), then the submitter shall include known answers for those intermediate values for submitted parameter set. Examples of providing such intermediate values are available at: http://csrc.nist.gov/groups/ST/toolkit/index.html.

b) If tables are used in an algorithm, then a set of KAT vectors shall be included to make use of the table entries.

Note: The submitter is encouraged to include any other KATs that test different features of the algorithm (e.g., for permutation tables, padding scheme). The purposes of these tests shall be clearly described in the file containing the test values.

2.B.4 The submission package shall include a statement of the expected security strength of the cryptosystem, along with a supporting rationale. For each parameter set, the submitter shall specify an estimated security strength according to the categories given in section 4.B.3. All submitters are advised to be somewhat conservative in assigning parameters to a given category, but submitters of algorithms where the complexity of the best-known attack has recently decreased significantly, or is otherwise poorly understood, should be especially conservative. Submitters should give quantitative estimates for any additional security provided by their settings above and beyond the minimum security strength provided by the relevant security strength category. Such estimates should include, at a minimum, a claimed classical security strength. Furthermore, the statement should address the additional attack scenarios identified in Section 4.B.4.
2.B.5 The submission package shall include a statement that summarizes the known cryptanalytic attacks on the scheme and provide estimates of the complexity of these attacks.

The submitter shall provide a list of references to any published materials describing or analyzing the security of the submitted algorithm or cryptosystem. The submission of copies of these materials (accompanied by a waiver of copyright or permission from the copyright holder for public evaluation purposes) is encouraged.

2.B.6 The submission package shall include a statement that lists and describes the advantages and limitations of the cryptosystem. Such advantages and limitations may involve the assessment of the cryptosystem’s security against classical and quantum attacks, as well as any unusual characteristics of the scheme, such as extra functionalities, performance tradeoffs, and unusual vulnerabilities. This statement may also discuss the ease of implementing and deploying the algorithms, and their compatibility with existing protocols, networks and applications. This could include, for example, the suitability of the algorithm for use in hybrid schemes, which may be part of the transition to post-quantum cryptosystems. Other advantages may include ease of use in advanced cryptographic applications such as secure multi-party computation, zero-knowledge proofs, and threshold implementations.

In addition, this statement may address the ability to implement the algorithms in various environments, including, but not limited to 8-bit processors (e.g., smartcards), voice applications, satellite applications, or other environments where low power, constrained memory, or limited real-estate are consideration factors. To demonstrate the efficiency of a hardware implementation of the algorithm, the submitter may include a specification of the algorithm in a nonproprietary hardware description language (HDL).

2.C Digital and Optical Media

All electronic data shall be provided either in a zip file, or on a single CD-ROM, DVD, or USB flash drive labeled with the submitter’s name, as well as the name of the proposed cryptosystem.

2.C.1 Implementations Two implementations are required in the submission package: a reference implementation and an optimized implementation. The goal of the reference implementation is to promote understanding of how the submitted algorithm may be implemented. Since this implementation is intended for reference purposes, clarity in the implementation code is more important than the efficiency of the code. The reference implementation should include appropriate comments and clearly map to the algorithm description included in Section 2.B.1. The optimized implementation, targeting the Intel x64 processor (a 64-bit implementation), is intended to demonstrate the performance of the algorithm. Both implementations shall consist of source code written in ANSI C.
Both implementations shall be capable of fully demonstrating the operation of the proposed algorithm. This includes support for all core features of the algorithm, e.g., key generation, public-key validation, and digital signature generation and verification.

A separate document specifying a set of cryptographic service calls, i.e., a cryptographic API, for the ANSI C implementations, will be made available at https://csrc.nist.gov/projects/pqc-dig-sig. Both the reference implementation and the optimized implementation shall adhere to the provided API. Separate source code for implementing the KATs shall also be included and shall adhere to the provided API.

The reference implementation shall be provided in a directory labeled: Reference_Implementation.

The optimized implementation shall be provided in a directory labeled: Optimized_Implementation.

Submitters may, at their discretion, submit additional implementations for other platforms. These implementations may be useful during the evaluation process.

2.C.2 Known Answer Tests The files included in the zip file or on the CD–ROM, DVD, or USB flash drive shall contain all the required test values as specified in Section 2.B.3.

These test values shall be provided in a directory labeled: KAT.

2.C.3 Supporting Documentation To facilitate the electronic distribution of submissions to all interested parties, copies of all written materials must also be submitted in electronic form in the PDF file format. Submitters are encouraged to use the thumbnail and bookmark features, to have a clickable table of contents (if applicable), and to include other links within the PDF as appropriate.

The electronic version of the supporting documentation shall be provided in a directory labeled: Supporting_Documentation.

2.C.4 General Requirements for Digital and Optical Media For the portions of the submission that may be provided electronically, the information shall be provided using the ISO 9660 format. This media shall have the following structure:

- README
- Reference_Implementation
- Optimized_Implementation
- KAT
- Supporting_Documentation

The “README” file shall be a plain text file and list all files that are included on the disc with a brief description of each.
All optical media presented to NIST must be free of viruses or other malicious code. The submitted media will be scanned for the presence of such code. If malicious code is found, NIST will notify the submitter and ask that a clean version of the optical media be submitted.

2.D Intellectual Property Statements / Agreements / Disclosures

Each submitted algorithm, together with each submitted reference implementation and optimized implementation, must be made freely available for public review and evaluation purposes worldwide during the period of the post-quantum algorithm search and evaluation. The following signed statements will be required for a submission to be considered complete: 1) statement by the submitter, 2) statement by patent (and patent application) owner(s) (if applicable) from the submission team, and 3) statement by reference/optimized implementations' owner(s). Note that for the last two statements, separate statements must be completed if multiple individuals are involved. The submission should also include disclosure, where known, of the existence of U.S. or foreign patents (or pending applications) relating to their submission. Submission teams are not required to submit signed statements from third party patent holders. Given the nature and use of cryptographic algorithms, NIST’s PQC goals include identifying technically robust algorithms and facilitating their widespread adoption. NIST does not object in principle to algorithms or implementations which may require the use of a patent claim, where technical reasons justify this approach, but will consider any factors which could hinder adoption in the evaluation process.

NIST has observed that royalty-free availability of cryptosystems and implementations has facilitated adoption of cryptographic standards in the past. For that reason, NIST believes it is critical that this process leads to cryptographic standards that can be freely implemented in security technologies and products. As part of its evaluation of a PQC cryptosystem for standardization, NIST will consider assurances made in the statements by the submitter(s) and any patent owner(s), with a strong preference for submissions as to which there are commitments to license, without compensation, under reasonable terms and conditions that are demonstrably free of unfair discrimination.
2.D.1 Statement by Each Submitter

I, _____ (print submitter’s full name) _____, of _____(print full postal address)______,
do hereby declare that the cryptosystem, reference implementation, or optimized
implementations that I have submitted, known as ____ (print name of cryptosystem)____,
is my own original work, or if submitted jointly with others, is the original work of the
joint submitters.

I further declare that (check one):

☐ I do not hold and do not intend to hold any patent or patent application with a
claim or that could be amended to include a claim that may cover the
cryptosystem, reference implementation, or optimized implementations that I
have submitted, known as ____ (print name of cryptosystem)____; OR (check
one or both of the following):

☐ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as
____ (print name of cryptosystem)____, may be covered by the following U.S.
and/or foreign patents: _____ (describe and enumerate or state “none” if
applicable)______;

☐ to the best of my knowledge, the following pending U.S. and/or foreign patent
applications may cover the practice of my submitted cryptosystem, reference
implementation or optimized implementations: _____ (describe and enumerate
or state “none” if applicable) _____.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to
the public for review and will be evaluated by NIST, and that it might not be selected for
standardization by NIST. I further acknowledge that I will not receive financial or other
compensation from the U.S. Government for my submission. I certify that, to the best of
my knowledge, I have fully disclosed all patents and patent applications which may cover
my cryptosystem, reference implementation or optimized implementations. I also
acknowledge and agree that the U.S. Government may, during the public review and the
evaluation process, and, if my submitted cryptosystem is selected for standardization,
during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to
publish the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below,
for any patent or patent application identified to cover the practice of my cryptosystem,
reference implementation or optimized implementations and the right to use such
implementations for the purposes of the public review and evaluation process.
I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosystem) is removed from consideration for standardization or withdrawn from consideration by all submitter(s) and owner(s), I understand that rights granted and assurances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:
Title:
Date:
Place:

If there are any patents (or patent applications) identified by the submitter, including those held by the submitter, the following statement must be signed by each and every owner, or each owner’s authorized representative, of each patent and patent application identified.

I, _____ (print full name) _____ , of _____(print full postal address)______ , am the owner or authorized representative of the owner (print full name, if different than the signer) of the following patent(s) and/or patent application(s): ______ (enumerate) ______ , and do hereby commit and agree to grant to any interested party on a worldwide basis, if the cryptosystem known as _____(print name of cryptosystem) ______ is selected for standardization, in consideration of its evaluation and selection by NIST, a non-exclusive license for the purpose of implementing the standard (check one):

☐ without compensation and under reasonable terms and conditions that are demonstrably free of any unfair discrimination, OR

☐ under reasonable terms and conditions that are demonstrably free of any unfair discrimination.

I further do hereby commit and agree to license such party on the same basis with respect to any other patent application or patent hereafter granted to me, or owned or controlled by me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring ownership of each patent and patent application, provisions to ensure that the commitments and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by me to be binding on successors-in-interest of each patent and patent application, regardless of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable, paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into the standard.

Signed:
Title:
Date:
Place:
2.D.3 Statement by Reference/Optimized Implementations’ Owner(s)

The following must also be included:

I, _____ (print full name) _____ , (print full postal address)______ , am the owner or authorized representative of the owner (print full name, if different than the signer) of the submitted reference implementation and optimized implementations and hereby grant the U.S. Government and any interested party the right to reproduce, prepare derivative works based upon, distribute copies of, and display such implementations for the purposes of the post-quantum algorithm public review and evaluation process, and implementation if the corresponding cryptosystem is selected for standardization and as a standard, notwithstanding that the implementations may be copyrighted or copyrightable.

Signed:
Title:
Date:
Place:

2.E General Submission Requirements

NIST welcomes both domestic and international submissions; however, in order to facilitate analysis and evaluation, it is required that the submission packages be in English. This requirement includes the cover sheet, algorithm specification and supporting documentation, source code, and intellectual property information. Any required information that is not submitted in English shall render the submission package “incomplete.” Optional supporting materials (e.g., journal articles) in another language may be submitted.

Classified and/or proprietary submissions will not be accepted.

2.F Technical Contacts and Additional Information

For technical inquiries, send e-mail to pqc-comments@nist.gov, or contact Dustin Moody, National Institute of Standards and Technology, 100 Bureau Drive—Stop 8930, Gaithersburg, MD 20899–8930; telephone: +1 301–975–8136 or via fax at +1 301–975–8670, e-mail: dustin.moody@nist.gov.

Answers to germane questions will be posted at https://csrc.nist.gov/projects/pqc-dig-sig. Questions and answers that are not pertinent to this announcement may not be posted. NIST will endeavor to answer all questions in a timely manner.

3. Minimum Acceptability Requirements

Those submission packages that are deemed by NIST to be “complete” will be evaluated for the inclusion of a “proper” post-quantum public-key cryptosystem. To be considered as a “proper” post-quantum public-key cryptosystem (and continue further in the
standardization process), the scheme shall meet the following minimum acceptability requirements:

1. The algorithms shall be publicly disclosed and made available for public review and the evaluation process, and for standardization if selected, freely (i.e., shall be dedicated to the public), or shall be made available in accordance with Sections 2.D.1, 2.D.2 and 2.D.3, as applicable.
2. The algorithms shall not incorporate major components that are believed to be insecure against quantum computers. (For example, hybrid schemes that include signatures based on factoring or discrete logs will not be considered for standardization by NIST in this context.)
3. The digital signature schemes shall include algorithms for key generation, signature, and verification. The key generation algorithm shall generate public and private keys, such that a message signed with the private key will be successfully verified with the corresponding public key. The scheme shall be capable of supporting a message size up to 2^{63} bits.
4. The submission package shall provide concrete values for any parameters and settings required to achieve the claimed security properties (to the best of the submitter’s knowledge.)

A submission package that is complete (as defined in Section 2) and meets the minimum acceptability requirements (as defined immediately above) will be deemed to be a “complete and proper” submission. A submission that NIST deems otherwise at the close of the submission period will receive no further consideration. Submissions that are “complete and proper” will be posted at https://csrc.nist.gov/projects/pqc-dig-sig for public review.

4. Evaluation Criteria

NIST will form an internal selection panel composed of NIST employees to analyze the submitted algorithms; the evaluation process will be discussed in Section 5. All of NIST’s analysis results will be made publicly available.

Although NIST will be performing its own analyses of the submitted algorithms, NIST strongly encourages public evaluation and publication of the results. NIST will take into account its own analysis, as well as the public comments that are received in response to the posting of the “complete and proper” submissions, to make its decisions.

To avoid unnecessary duplication of effort, and to streamline the evaluation process, NIST encourages researchers who are developing similar cryptosystems to combine their efforts and produce a single submission package.
4.A Contribution to NIST PQC Digital Signature Portfolio Diversity

NIST is primarily looking to diversify its signature portfolio, so signature schemes that are not based on structured lattices are of greatest interest. NIST would like submissions for general-purpose signature schemes, as well as those which have short signatures and fast verification. Submissions should not significantly overlap with signature schemes that have already been selected by NIST for standardization. At a minimum:
- lattice-based schemes should provide at least one large performance advantage over both Dilithium and Falcon.
- non-lattice-based algorithms should provide at least one large performance advantage over SPHINCS+.

4.B Security

The security provided by a cryptographic scheme is the most important factor in the evaluation. Schemes will be judged on the following factors:

4.B.1 Applications of Digital Signatures NIST intends to standardize additional post-quantum alternatives to its existing and proposed standards for digital signatures (FIPS 186, CRYSTALS-Dilithium, FALCON, and SPHINCS+). These standards are used in a wide variety of Internet protocols, such as TLS, SSH, IKE, IPsec, OCSP and DNSSEC, as well as other applications like certificate transparency, document signing, code signing and firmware updates. Schemes will be evaluated by the security they provide in these applications, and in additional applications that may be brought up by NIST or the public during the evaluation process. Claimed applications will be evaluated for their practical importance if this evaluation is necessary for deciding which algorithms to standardize.

4.B.2 Security Definition for Digital Signatures NIST intends to standardize one or more schemes that enable existentially unforgeable digital signatures with respect to an adaptive chosen message attack. (This property is generally denoted EUF-CMA security in academic literature.)

The above security definition should be taken as a statement of what NIST will consider to be a relevant attack. Submitted algorithms for digital signatures will be evaluated based on how well they appear to provide this property when used as specified by the submitter. Submitters are not required to provide a proof of security, although such proofs will be considered if they are available.

For the purpose of estimating security strengths, it may be assumed that the attacker has access to signatures for no more than 2^{64} chosen messages; however, attacks involving more messages may also be considered. Additionally, it should be noted that NIST is primarily concerned with attacks that use classical (rather than quantum) queries to the signing oracle.
4.B.3 Security Strength Categories NIST anticipates that there will be significant uncertainties in estimating the security strengths of these post-quantum cryptosystems. These uncertainties come from two sources: first, the possibility that new quantum algorithms will be discovered, leading to new cryptanalytic attacks; and second, our limited ability to predict the performance characteristics of future quantum computers, such as their cost, speed and memory size.

In order to address these uncertainties, NIST proposes the following approach. Instead of defining the strength of a submitted algorithm using precise estimates of the number of “bits of security,” NIST will define a collection of broad security strength categories. Each category will be defined by a comparatively easy-to-analyze reference primitive, whose security will serve as a floor for a wide variety of metrics that NIST deems potentially relevant to practical security. A given cryptosystem may be instantiated using different parameter sets in order to fit into different categories. The goals of this classification are:

1. To facilitate meaningful performance comparisons between the submitted algorithms, by ensuring, insofar as possible, that the parameter sets being compared provide comparable security.
2. To allow NIST to make prudent future decisions regarding when to transition to longer keys.
3. To help submitters make consistent and sensible choices regarding what symmetric primitives to use in padding mechanisms or other components of their schemes requiring symmetric cryptography.
4. To better understand the security/performance tradeoffs involved in a given design approach.

In accordance with the second and third goals above, NIST will base its classification on the range of security strengths offered by the existing NIST standards in symmetric cryptography, which NIST expects to offer significant resistance to quantum cryptanalysis. In particular, NIST will define a separate category for each of the following security requirements (listed in order of increasing strength1):

1. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 128-bit key (e.g., AES-128)
2. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 256-bit hash function (e.g., SHA-256/SHA3-256)

Note that, barring some truly surprising technological development during the standardization process, NIST will assume that the five security strengths are correctly ordered in terms of practical security. (E.g., NIST will assume that a brute-force collision attack on SHA-256 will be technologically feasible before a brute-force key search attack on AES-192.)
3. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 192-bit key (e.g., AES-192)

4. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 384-bit hash function (e.g., SHA-384/SHA3-384)

5. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 256-bit key (e.g., AES-256)

Here, computational resources may be measured using a variety of different metrics (e.g., number of classical elementary operations, quantum circuit size). In order for a cryptosystem to satisfy one of the above security requirements, any attack must require computational resources comparable to or greater than the stated threshold, with respect to all metrics that NIST deems to be potentially relevant to practical security.

NIST intends to consider a variety of possible metrics, reflecting different predictions about the future development of quantum and classical computing technology, and the cost of different computing resources (such as the cost of accessing extremely large amounts of memory). NIST will also consider input from the cryptographic community regarding this question.

In an example metric provided to submitters, NIST suggests an approach where quantum attacks are restricted to a fixed running time, or circuit depth. Call this parameter MAXDEPTH. This restriction is motivated by the difficulty of running extremely long serial computations. Plausible values for MAXDEPTH range from 2^{40} logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year) through 2^{64} logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than 2^{96} logical gates (the approximate number of gates that atomic scale qubits with speed of light propagation times could perform in a millennium). The most basic version of this cost metric ignores costs associated with physically moving bits or qubits so they are physically close enough to perform gate operations. This simplification may result in an underestimate of the cost of implementing memory-intensive computations on real hardware.

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers can be compared to the resources required to break AES and SHA3. At the

present time, NIST would give the following estimates for the classical and quantum gate counts for the optimal key recovery and collision attacks on AES and SHA3, respectively, where circuit depth is limited to MAXDEPTH4, 5:

<table>
<thead>
<tr>
<th>AES</th>
<th>SHA3</th>
<th>AES</th>
<th>SHA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>2157/MAXDEPTH quantum gates or 2143 classical gates</td>
<td>2146 classical gates</td>
<td>2210 classical gates</td>
</tr>
<tr>
<td>192</td>
<td>2221/MAXDEPTH quantum gates or 2207 classical gates</td>
<td>2210 classical gates</td>
<td>2272 classical gates</td>
</tr>
<tr>
<td>256</td>
<td>2285/MAXDEPTH quantum gates or 2272 classical gates</td>
<td>2274 classical gates</td>
<td>2274 classical gates</td>
</tr>
</tbody>
</table>

It is worth noting that the security categories based on these reference primitives provide substantially more quantum security than a naïve analysis might suggest. For example, categories 1, 3 and 5 are defined in terms of block ciphers, which can be broken using Grover’s algorithm, with a quadratic quantum speedup. But Grover’s algorithm requires a long-running serial computation, which is difficult to implement in practice. In a realistic attack, one has to run many smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic.6

Finally, for attacks that use a combination of classical and quantum computation, one may use a cost metric that rates logical quantum gates as being several orders of magnitude more expensive than classical gates. Presently envisioned quantum computing architectures typically indicate that the cost per quantum gate could be billions or trillions of times the cost per classical gate. However, especially when considering algorithms claiming a high security strength (e.g., equivalent to AES-256 or SHA-384), it is likely prudent to consider the possibility that this disparity will narrow significantly or even be eliminated.

NIST asks submitters to provide a preliminary classification, according to the above categories, for all parameter sets that they intend to be considered for standardization. All submitters are advised to be somewhat conservative in their preliminary classifications, but submitters of algorithms where the complexity of the best known attack has recently decreased significantly, or is otherwise poorly understood, should be especially conservative.

NIST will not require submitters to provide distinct parameter sets for all five security-strength categories. Submitted parameter sets meeting the requirements of a higher

4 Quantum circuit sizes are based on the work in [Jaques, Samuel & Naehrig, Michael & Roetteler, Martin & Virdia, Fernando. (2020). Implementing Grover Oracles for Quantum Key Search on AES and LowMC. 10.1007/978-3-030-45724-2_10.].

5 NIST believes the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH, and may understate the quantum security of AES for very large values of MAXDEPTH.

6 See [C. Zalka, Grover’s quantum searching algorithm is optimal, Phys. Rev. A 60, 2746 (1999)]
category will be automatically considered to meet the requirements of all lower categories. Submitters may also provide more than one parameter set in the same category, in order to demonstrate how parameters can be tuned to offer better performance or higher security margins.

NIST recommends that submitters primarily focus on parameters meeting the requirements for categories 1, 2 and/or 3, since these are likely to provide sufficient security for the foreseeable future. To hedge against future breakthroughs in cryptanalysis or computing technology, NIST also recommends that submitters provide at least one parameter set that provides a substantially higher level of security, above category 3. Submitters can try to meet the requirements of categories 4 or 5, or they can specify some other level of security that demonstrates the ability of their cryptosystem to scale up beyond category 3.

4.B.4 Additional Security Properties While the previously listed security definitions cover many of the attack scenarios that will be used in the evaluation of the submitted algorithms, there are several other properties that would be desirable:

One such property where security and performance interact is resistance to side-channel attacks. Schemes that can be made resistant to side-channel attack at minimal cost are more desirable than those whose performance is severely hampered by any attempt to resist side-channel attacks. We further note that optimized implementations that address side-channel attacks (e.g., constant-time implementations) are more meaningful than those which do not. Finally, there are many different kinds of side-channel attacks, which require different kinds of access to the device being attacked. Attacks that can be carried out remotely, using only digital communications over a network, without physical access to the device being attacked, may be of special concern.

Another desirable property is resistance to multi-key attacks. Ideally an attacker should not gain an advantage by attacking multiple keys at once, whether the attacker’s goal is to compromise a single key pair, or to compromise a large number of keys.

A third desirable, although ill-defined, property is resistance to misuse. Schemes should ideally not fail catastrophically due to isolated coding errors, random number generator malfunctions, nonce reuse, etc.

Finally, there are additional desirable security properties beyond standard unforgeability, such as: exclusive ownership, message-bound signatures, and non-re-signability.7

4.B.5 Other Consideration Factors As public-key cryptography tends to contain subtle mathematical structure, it is very important that the mathematical structure be well understood in order to have confidence in the security of a cryptosystem. To assess this, NIST will consider a variety of factors. All other things being equal, simple schemes tend

to be better understood than complex ones. Likewise, schemes whose design principles can be related to an established body of relevant research tend to be better understood than schemes that are completely new, or schemes that were designed by repeatedly patching older schemes that were shown vulnerable to cryptanalysis.

NIST will also consider the clarity of the documentation of the scheme and the quality of the analysis provided by the submitter. Clear and thorough analysis will help to develop the quality and maturity of analysis by the wider community. NIST will also consider any security arguments or proofs provided by the submitter. While security proofs are generally based on unproven assumptions, they can often rule out common classes of attacks or relate the security of a new scheme to an older and better studied computational problem.

In addition to NIST’s own expectations for the scheme’s long-term security, NIST will also consider the judgment and opinions of the broader cryptographic community.

4.C Cost

As the cost of a public-key cryptosystem can be measured on many different dimensions, NIST will continually seek public input regarding which performance metrics and which applications are most important. If there are important applications that require radically different performance tradeoffs, NIST may need to standardize more than one algorithm to meet these diverse needs.

4.C.1 Public Key and Signature Size Schemes will be evaluated based on the sizes of the public keys and signatures that they produce. All these may be important consideration factors for bandwidth-constrained applications or in Internet protocols that have a limited packet size. The importance of public-key size may vary depending on the application; if applications can cache public keys, or otherwise avoid transmitting them frequently, the size of the public key may be of lesser importance.

4.C.2 Computational Efficiency of Public and Private Key Operations Schemes will also be evaluated based on the computational efficiency of the signature verification and signing operations. The computational cost of these operations will be evaluated both in hardware and software. The computational cost of both operations is likely to be important for almost all operations, but some applications may be more sensitive to one or the other. For example, signing operations may be done by a computationally constrained device like a smartcard; or alternatively, a server dealing with a high volume of traffic may need to spend a significant fraction of its computational resources verifying client signatures.

4.C.3 Computational Efficiency of Key Generation Schemes will also be evaluated based on the computational efficiency of their key generation operations, where applicable. While key-generation time is typically more important for a public-key encryption or KEM algorithm, it is possible that key generation times may also be important for digital signature schemes in some applications.
4.D Algorithm and Implementation Characteristics

4.D.1 Flexibility Assuming good overall security and performance, schemes with greater flexibility will meet the needs of more users than less flexible schemes, and therefore, are preferable.

Some examples of “flexibility” may include (but are not limited to) the following:
1. The scheme can be modified to provide additional functionalities that extend beyond the minimum requirements of a digital signature (e.g., ring signatures, threshold signatures, blind signatures).
2. It is straightforward to customize the scheme’s parameters to meet a range of security targets and performance goals.
3. The algorithms can be implemented securely and efficiently on a wide variety of platforms, including constrained environments, such as smart cards.
4. Implementations of the algorithms can be parallelized to achieve higher performance.
5. The scheme can be incorporated into existing protocols and applications, requiring as few changes as possible.

4.D.2 Simplicity The submitted scheme will be judged according to its relative design simplicity.

4.D.3 Adoption Factors that might hinder or promote widespread adoption of an algorithm or implementation will be considered in the evaluation process, including, but not limited to, intellectual property covering an algorithm or implementation and the availability and terms of licenses to interested parties. NIST will consider assurances made in the statements by the submitter(s) and any patent owner(s), with a strong preference for submissions as to which there are commitments to license, without compensation, under reasonable terms and conditions that are demonstrably free of unfair discrimination.

5. Evaluation Process

NIST will evaluate the additional digital signature schemes in the same way as the previous rounds of the NIST PQC standardization process. NIST will form an internal selection panel composed of NIST employees for the technical evaluations of the submitted algorithms. This panel will analyze the submitted algorithms and review public comments that are received in response to the posting of the “complete and proper” submissions. The panel will also take into account all presentations, discussions and technical papers presented at the PQC standardization conferences, as well as other pertinent papers and presentations made at other cryptographic research conferences and workshops. NIST will issue a report at the conclusion of each round of the PQC standardization process for additional digital signatures. Final selections of the signature schemes will be made by NIST and the technical rationale for these decisions will be
documented in a final report. The following is an overview of the envisioned submission review process.

5.A Overview

Following the close of the call for submission packages, NIST will review the received packages to determine which are “complete and proper,” as described in Sections 2 and 3 of this notice. NIST will post all “complete and proper” submissions at https://csrc.nist.gov/projects/pqc-dig-sig for public review.

NIST recognizes that the evaluation of additional signature schemes in conjunction with the development of initial PQC draft standards and the 4th round of the NIST PQC process will require a significant amount of attention from NIST and the community. As such, NIST may separate the complete and proper additional signature schemes into a pool of more promising candidates and a pool of secondary candidates in the event that there are a significant number of complete and proper submissions. Algorithms that are included in the secondary pool may potentially still be considered for standardization at a later date, unless they are explicitly removed from consideration by NIST.

NIST expects the first round of the additional signature standardization process to begin no later than August 1, 2023. Submitters of complete and proper signature schemes will have an opportunity to publicly explain and answer questions regarding their submissions at the 5th NIST PQC standardization conference.

The initial phase of evaluation is expected to consist of approximately twelve to eighteen months of public review of the submitted algorithms. During this initial review period, NIST intends to evaluate the submitted algorithms as outlined in Section 5.B. NIST will review the public evaluations of the submitted algorithms’ cryptographic strengths and weaknesses and will use these to narrow the candidate pool for more careful study and analysis. The purpose of this selection process is to identify candidates that are suitable for standardization in the near future. Algorithms that are not included in the narrowed pool may potentially still be considered for standardization at a later date, unless they are explicitly removed from consideration by NIST. Because of limited resources, and also to avoid moving evaluation targets (i.e., modifying the submitted algorithms undergoing public review), NIST will NOT accept modifications to the submitted algorithms during this initial phase of evaluation.

NIST plans to narrow the field of algorithms for further study, based upon its own analysis, public comments, and all other available information that we are aware of. It is envisioned that this narrowing will be done primarily on security, efficiency, and intellectual property considerations. NIST will issue a report describing its findings. Submitters of sufficiently similar algorithms may be asked to merge submissions for the next phase. It is expected that there will be multiple rounds of evaluation.
5.B Technical Evaluation

NIST will invite public comments on all “complete and proper” submissions. The analysis done by NIST during the initial phase of evaluation is intended, at a minimum, to include:

i. Correctness check: The KAT values included with the submission will be used to test the correctness of the reference and optimized implementations, once they are compiled. (It is more likely that NIST will perform this check of the reference code—and possibly the optimized code as well—even before accepting the submission package as “complete and proper.”)

ii. Efficiency testing: Using the submitted optimized implementations, NIST intends to perform various computational efficiency tests. This could include, for example, the time required for key generation, digital signing, or signature verification, as well as the size of keys and signatures.

iii. Other testing: Other features of the submitted algorithms may be examined by NIST.

Platform and Compilers

The above tests will initially be performed by NIST on the NIST PQC Reference Platform, an Intel x64 running Windows or Linux and supporting the GCC compiler.

At a minimum, NIST intends to perform an efficiency analysis on the reference platform; however, NIST invites the public to conduct similar tests and compare results on additional platforms (e.g., smart cards, ARM processors, FPGAs (field programmable gate arrays), ASICs (application-specific integrated circuits)). NIST may also perform efficiency testing using additional platforms.

NIST welcomes comments regarding the efficiency of the submitted algorithms when implemented in hardware. During the second evaluation period, NIST may request specifications of some of the algorithms using a hardware description language, to compare the estimated hardware efficiency of the submitted algorithms.

Note: If the submitter chooses to submit updated optimized implementations prior to the beginning of the second round of evaluation, then some of the tests performed may be performed again using the new optimized implementations. This will be done to obtain updated measurements.

Note: Any changes to the NIST PQC Reference Platform will be noted on https://csrc.nist.gov/projects/pqc-dig-sig.
5.C Initial Planning for the PQC Standardization Conference

An open public conference will be held after the end of the submission period, at which the submitters of each “complete and proper” submission package will be invited to publicly discuss and explain their submitted algorithm. It is anticipated that this conference will be held near the end of 2023. The documentation for these algorithms will be made available before the conference. Details of the conference will be posted at http://www.nist.gov/pqcrypto.

Appreciation

NIST extends its appreciation to all submitters and those providing public comments during the post-quantum algorithm evaluation process.

Dated: September 6, 2022