

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of Markku-Juhani O. Saarinen
<mjos.crypto@gmail.com>

Sent: Saturday, September 2, 2023 9:02 AM
To: pqc-forum
Subject: [pqc-forum] Round 1 (Additional Signatures) OFFICIAL COMMENT: AIMer

Summary

We observe that the bit complexity of recovering x in AIM-1/3/5 is lower than the key search circuit for AES-
128/192/256. Since the inversion of AIM is equivalent to solving the AIMer signature scheme secret key from its public
key, the security of AIMer does not appear to meet its security claims.

Similar (or quantitatively somewhat better) observations have also been made in [1], which presents an algebraic attack
that sheds 2^13,2^14,2^15 from operations against AIM-1/3/5. Based on their analysis, one can estimate that the
security of AIMer falls short of the target by at least 16 bits.

[1] Fukang Liu, Mohammad Mahzoun, Morten Øygarden, Willi Meier, "Algebraic Attacks on RAIN and AIM Using
Equivalent Representations." IACR ePrint 2023/1133 https://eprint.iacr.org/2023/1133

The extremely simple structure of AIM encourages one to look for significantly faster attacks; AIM would be almost
revolutionary as a symmetric primitive if it proves to have even this level of security. I've made a simple Python
implementation of AIM-1/3/5 (with some test vectors) available at https://github.com/mjosaarinen/aim-sym-
py/blob/main/aim.py to encourage further analysis by cryptographers.

Background

AIMer is a first-round PQC on-ramp candidate that builds a signature scheme from a symmetric one-way function
(named AIM) and a non-interactive zero-knowledge proof of knowledge (NIZKPoK) system based on the MPC-in-the-
Head paradigm.

AIMer Public key consists of a pair pk = (iv, c) where "c" is the output of the one-way function c = AIM(x, iv). The secret
key is the quantity x (slightly confusingly, "plaintext" in the context of the AIM function.).

A direct way of breaking AIMer is to attack its one-way function: Solving the secret key x, given (iv, c) from the public
key. There is no need to consider the NIZKPoK scheme in this type of attack; one determines the secret key and then
constructs forgeries using the standard signing procedure.

Brief description of AIM

Let n in {128,192,256} be the security level for AIM-I/III/V. This is also the secret key "x" size. AIM uses binary fields size
of F = GF(2^n).

The finite field exponentiation function Mer[e](x) = x^(2^e-1) is the only nonlinear component in the algorithm.
Internally, SHAKE is used to derive affine transforms from "Ai": two or three invertible n*n binary matrices A1, A2(, A3)
and an n-bit vector/field element "b." However, the complexity of SHAKE does not affect the complexity of the search
for secret key "x" -- the affine transform can be considered a constant in this task.

1

https://eprint.iacr.org/2023/1133
https://py/blob/main/aim.py
https://github.com/mjosaarinen/aim-sym
https://github.com/mjosaarinen/aim-sym-py/blob/main/aim.py
https://github.com/mjosaarinen/aim-sym-py/blob/main/aim.py

--

In the following, + is a field addition (XOR), ^ is exponentiation, * is a binary vector-matrix multiplication. The AIM one-
way functions are:

AIM-1: c = ((x^(2^3-1))*A1 + (x^(2^27-1))*A2 + b)^(2^5-1) + x
AIM-3: c = ((x^(2^5-1))*A1 + (x^(2^29-1))*A2 + b)^(2^7-1) + x
AIM-5: c = ((x^(2^3-1))*A1 + (x^(2^53-1))*A2 + (x^(2^7-1))*A3 + b)^(2^5-1) + x

There is no iteration. In terms of symmetric cryptography, AIM could be characterized as a 1-round or 2-round SPN PRF.

Simple Key Search Manipulations

Recall that in a binary field, we have (x+y)^2 = x^2 + y^2, and squaring is bitwise linear. Hence, repeated squaring (i.e.,
computing x^(2^n)) is also linear. We use "Ei" matrices to represent power-of-2 exponentiations; x*Ei = x^(2^i) and
x*EMi = x^(-2^i) = x^(2^(n-i)).

Substitute z = x^-1. If this variable is available, we can turn the nonlinear exponentiations into a single multiplication:
Mer[e](x) = Ee*z.

In case of AIM-1, the search of "x" satisfying

c == ((x^(2^3-1))*A1 + (x^(2^27-1))*A2 + b)^(2^5-1) + x

.. can be transformed to remove all exponentiation operations ..

u = x*E3*z*A1 + x*E27*z*A2 + b
u*E5 == (c + x)*u

In a search for "x" satisfying the condition, one generates a sequence of x1,x2,x3.. and corresponding z1,z2,z3.. z=x^-1 at
the same time using a generator and its inverse. The generator for z is not much more complex than x if LFSRs are used.

We can observe that this circuit consists of 7 multiplications and some n-bit xors. Collapsing the ANDs and XORs of
constant binary matrix A1,A2,E3,E5,E27 multiplication into netlist optimization should allow significant optimizations. It
is much simpler than an AES-128 key search circuit (which contains AES subkey expansion and trial encryption
functions.) Handling the "z" inverse sequence in a quantum oracle may be trickier than in a classical setting, however.

Best Regards,
- markku

You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/f3f6daa4-9f45-
4d14-8974-5b2cdf51bfa9n%40list.nist.gov.

2

https://4d14-8974-5b2cdf51bfa9n%40list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/f3f6daa4-9f45
mailto:pqc-forum+unsubscribe@list.nist.gov

1

Kerman, Sara J. (Fed)

From: 김 성광 <seongkwang.kim23@gmail.com>
Sent: Monday, September 25, 2023 4:27 AM
To: pqc-comments
Cc: pqc-forum
Subject: Round 1 (Additional Signatures) OFFICIAL COMMENT: AIMer Signature Scheme

Dear all,

This is Seongkwang Kim in the AIMer team.

We would like to announce AIM2, an update of our symmetric primitive AIM.

The paper "Mitigation on the AIM cryptanalysis" can be found in our website (https://aimer-signature.org) immediately,

and will be submitted to the Cryptology ePrint Archive soon.

We briefly summarize recently known attacks on AIM, and how AIM2 mitigates them.

[1] F. Liu, M. Mahzoun, M. Øygarden, and W. Meier. Algebraic Attacks on RAIN and AIM Using Equivalent

Representations (https://eprint.iacr.org/2023/1133)

- (Algebraic) fast exhaustive search, giving up to 13-bit security degradation.

- Mitigated by larger exponents of AIM2

[2] F. Liu. Mind Multiple Power Maps: Algebraic Cryptanalysis of Full AIM for Post-quantum Signature Scheme AIMer

(In private communication)

- There was an easier system than expected, security claim error (not broken)

[3] M. O. Saarinen. Efficient brute-force key search method (https://groups.google.com/a/list.nist.gov/g/pqc-

forum/c/BI2ilXblNy0)

- Efficient key search (by implementation), unknown amount of security degradation

- Mitigated by constant addition of AIM2

[4] K. Zhang, Q. Wang, Y. Yu, C. Guo, and H. Cui. Algebraic Attacks on Round-Reduced RAIN and Full AIM-III

(https://eprint.iacr.org/2023/1397, to appear Asiacrypt 2023)

- Guess & determine + linearization attack giving up to 6-bit security degradation

- Mitigated by constant addition of AIM2

To mitigate all the analyses, AIM2 has three changes from AIM.

1. Inverse Mersenne S-box: the S-box in the first round is placed in the opposite direction. In this way, we can make it

harder to build a large number of equations compared to AIM.

2. Constant addition to the inputs of S-box: distinct constants are added to the inputs of first-round S-boxes. It

differentiates the inputs of S-boxes with negligible cost.

3. Increasing exponents for S-boxes: we opt for larger exponents for some Mersenne S-boxes in order to make it harder

to establish a low-degree system of equations in ≈ λ Boolean variables from a single evaluation of AIM.

2

In the paper, we extensively strengthen algebraic cryptanalysis part as 3 out of 4 analyses are related to the algebraic

characteristic.

As we recognized [4] very recently, our paper contains [1, 2, 3], but not [4].

Nevertheless, we found that the constant addition included in our update effectively mitigates the attack in [4].

This update does not affect efficiency much.

The signature size will remain same, and signing and verifying time will be slightly increased (expected ~10%).

We plan to incorporate AIM2 to AIMer, which will be dubbed AIMer2.

The specification document and implementation results will also be updated.

We truly thank all the authors above for pointing out the vulnerabilities of AIM.

Third-party analysis is always welcome!

Best regards,

Seongkwang Kim on behalf of the AIMer team

Windows용 메일에서 발송된 메일입니다.

