
   

       
     

   

       
           

               
  

 
                       

             
                     

            
 

   
 
 

  
 

  
  
  

    
  
  

        
 

 
 

     
 

  

 
  

 
  

 
   

   
  

 

Kerman, Sara J. (F ed ) 

From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to> 
Sent: Monday, July 17, 2023 1:09 PM 
To: pqc-comments 
Cc: pqc-forum 
Subject: [pqc-forum] OFFICIAL COMMENT: KAZ-SIGN 
Attachments: signature.asc 

Running the Sage script below in the 
KAZ-SIGN/Reference_Implementation/kaz458 directory rapidly forges a signature on any desired message under 
essentially any desired public key, and checks that the signature passes verification with the reference 
crypto_sign_open() software. 

The script uses a particular message and the first public key in *.rsp as an example, but I've also tested it with another 
random public key and with various further messages. The reason I'm saying "essentially" 
is that the KAZ-SIGN integer encoding looks like it will fail for 1/256 of all possible inputs; the reference software doesn't 
seem to handle this, and this Sage script also doesn't handle this. 

---D. J. Bernstein 

#!/usr/bin/env sage 

import os 
import subprocess 
import ctypes 
from ctypes import c_int,c_char_p,c_ulonglong,POINTER,byref,create_string_buffer 
import hashlib 
import random 
def hash(seed): h = hashlib.sha256(); h.update(seed); return h.digest() 

proof.all(False) 

# ----- copied from kaz_api.h 

N = 
374708747338379194165632113267540799893248494638181758681727134968599684366339106336802166494168 
058067745412894332797884687187786349732565 
PHIN = 
714674273907598417290597574662894591813690507130195336455573769163911199976370687087959793366369 
64345506399166398464000000000000000000000 
G = 
372600253421538779763660224316312740003230140106999999701117618759644181266325498418931548345929 
963501344215735624839833056513259148603733 
ORDERG = 144070022526464542998162540305862391968000 
PHIORDERG = 17966317053413597259085197820821504000000 
R = 
644118726979324696272980243286295013739668830917438368046033371133998792221018275670388587502690 
57628226431053470498775743682787912336229 

1 



  

 
 

   
   
   
   

   
 

       
 

   
   

  

 
  

 
 

    
 

    
        

 
   

   
   

 
  

     
          
        
 

  
     
      
       
       
      
       
      
    
 

    
 

  
     
     
     

ORDERR = 
881550851860934757277062877441048574992747630881757194651555187746925267330365652992000000000000 
00000000 

ALPHABYTES = 18 
VBYTES = 59 
S1BYTES = 19 
S2BYTES = 58 
SALTBYTES = 4 

# ----- public information copied from *.rsp 

mlen = 32 
msg = 'D81C4D8D734FCBFBEADE3D3F8A039FAA2A2C9957E835AD55B22E75BF57BB556A' 
pk = 
'2020C105E4CE23ABB476713D7805654CF78802EF11CA4B6903B0407FE23897F33CD4B41A4A15AF68E7BCD6B486920E 
5D6E42E5C3E86ECF6FF57F49' 
sm = 
'20019D011CE55E5F96EACC650084407061DC0520085CB9DACF314194F1F254D8EAF6D815D5D7B9D82FDD0D0AE1C63 
F4B9C0FA19DE06D640FFF775FA8DAB052D8576CB53AB7DEF64C26E038B6C2D81C4D8D734FCBFBEADE3D3F8A039FAA 
2A2C9957E835AD55B22E75BF57BB556A7C9935A0' 

# ----- miscellaneous tests 

assert PHIN == euler_phi(N) 
assert ORDERG == Mod(G,N).multiplicative_order() assert ORDERR == Mod(R,PHIN).multiplicative_order() 

msg = bytes.fromhex(msg) 
pk = bytes.fromhex(pk) 
sm = bytes.fromhex(sm) 

def decode(b): 
b = bytearray(b) 
while b[:1] == b' ': b = b[1:] 
return sum(c<<(8*i) for i,c in enumerate(reversed(b))) 

def encode(i,targetbytes): 
result = bytearray() 
while i > 0: 

result = bytearray([i%256])+result 
i >>= 8 

while len(result) < targetbytes: 
result = bytearray([32])+result 

assert len(result) == targetbytes 
return bytes(result) 

assert decode(encode(31415,5)) == 31415 

def open(sm,pk): 
s1,sm = sm[:S1BYTES],sm[S1BYTES:] 
s2,sm = sm[:S2BYTES],sm[S2BYTES:] 
m,salt = sm[:-SALTBYTES],sm[-SALTBYTES:] 

2 



      
      
      
     
     
      
    
 

           
 

   
   

   
   

 
  

     
     
     
     
      
    
 

    
    
    

 
   

   
 

  
     
     
     
     
     
        
     
     
      
     
     
      
     
     
     
      
    
 

    
  

     

assert len(s1) == S1BYTES 
assert len(s2) == S2BYTES 
assert len(salt) == SALTBYTES 
h = hash(m+salt+m+salt) 
pk,s1,s2,h = map(decode,(pk,s1,s2,h)) 
assert Mod(G,N)^(Mod(s1,PHIN)^s2) == Mod(pk,N)^(Mod(R,PHIN)^h) 
return m 

subprocess.run('gcc -shared -o libkaz.so kaz_api.c sign.c rng.c sha256.c -fPIC -lcrypto -lgmp',shell=True) 

libkaz = ctypes.CDLL(f'{os.getcwd()}/libkaz.so') 
libkaz_open = libkaz.crypto_sign_open 
libkaz_open.argtypes = c_char_p,POINTER(c_ulonglong),c_char_p,c_ulonglong,c_char_p 
libkaz_open.restype = c_int 

def reference_open(sm,pk): 
smlen = c_ulonglong(len(sm)) 
m = create_string_buffer(len(sm)) 
mlen = c_ulonglong(0) 
pk = create_string_buffer(pk) 
assert libkaz_open(m,byref(mlen),sm,smlen,pk) == 0 
return m.raw[:mlen.value] 

assert open(sm,pk) == msg 
assert reference_open(sm,pk) == msg 
assert reference_open(sm,pk) == msg 

phiphin = euler_phi(PHIN) 
realRorder = Mod(R,ORDERG).multiplicative_order() 

def forge(m,pk): 
salt = os.urandom(SALTBYTES) 
h = hash(m+salt+m+salt) 
pk = decode(pk) 
h = decode(h) 
r = random.randrange(2**256) 
while not Mod(r,ORDERG).is_unit(): r += 1 
s1 = ZZ(Mod(R,ORDERG)^r) 
loggV = Mod(pk,N).log(Mod(G,N)) 
assert Mod(G,N)^loggV == Mod(pk,N) 
alpha = Mod(loggV,ORDERG).log(Mod(R,ORDERG)) 
alpha += realRorder*random.randrange(2**256) 
assert Mod(R,ORDERG)^alpha == Mod(loggV,ORDERG) 
s2 = ZZ(Mod(alpha+h,ORDERG)/r) 
s2 += ORDERG*random.randrange(2**256) 
s2 %= phiphin 
assert Mod(G,N)^(Mod(s1,PHIN)^s2) == Mod(pk,N)^(Mod(R,PHIN)^h) 
return encode(s1,S1BYTES)+encode(s2,S2BYTES)+m+salt 

newmsg = b'forged message' 
while True: 
sm = forge(newmsg,pk) 

3 

https://ctypes.CDLL(f'{os.getcwd()}/libkaz.so
https://libkaz.so


   
        
        
     
   
     
 

    
    

  
  

 
 

              
                
        

 

--

try: 
assert newmsg == open(sm,pk) 
assert newmsg == reference_open(sm,pk) 
break 

except: 
pass 

assert newmsg == open(sm,pk) 
assert newmsg == reference_open(sm,pk) 
print(f'newmsg: {newmsg}') 
print(f'sm: {sm.hex()}') 

You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20230717170839.436000.qmail%40cr.yp.to. 

4 

https://forum/20230717170839.436000.qmail%40cr.yp.to
https://groups.google.com/a/list.nist.gov/d/msgid/pqc
mailto:pqc-forum+unsubscribe@list.nist.gov


1

Kerman, Sara J. (Fed)

From: 'Scott Fluhrer (sfluhrer)' via pqc-forum <pqc-forum@list.nist.gov>
Sent: Monday, July 17, 2023 1:46 PM
To: Scott Fluhrer (sfluhrer); pqc-forum
Subject: [pqc-forum] RE: KAZ-SIGN

Immediately a er hi ng send, I no ced that they specify that N is a product of a number of smallish primes; this makes 
the discrete log problem easy – however it makes all the steps I outlined below in solving the hard problem also easy for 
a classical computer… 

From: 'Scott Fluhrer (sfluhrer)' via pqc-forum <pqc-forum@list.nist.gov> 
Sent: Monday, July 17, 2023 1:28 PM 
To: pqc-forum@list.nist.gov 
Subject: [pqc-forum] KAZ-SIGN 

I have examined KAZ-SIGN (h ps://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/kaz-
sign-spec-web.pdf), and it would appear that the hard problem it relies on is not Quantum Resistant (and hence the 
signature algorithm it is based on is not). 

The problem they state is, given A, g, N (composite) and Q, find x such that: 

g^{Q^x} = A \bmod N 

However, it would appear that three applica ons of Shor’s algorithm would be sufficient to recover x: 

1) Find z with g^z = A \pmod N
2) Factor N to be able to compute \phi(N) (actually, with KAZ, we don’t need to do this step, as it has \phi(N) in the

system parameters)
3) Find x with Q^x = z \pmod \phi(N)

Being able to solve this allows us to recover the private key from the public key 

Sec on 4 of the submission (which covers Quantum Resistance) only addresses Grover’s algorithm. 

In addi on, this being hard is also in conflict with the key genera on, signing and verifica on algorithms they give 
(Algorithms 1-3) – those have several steps where you are expected to solve a discrete logarithm (either to base N or to 
base \phi(N)). 

Hence, unless either I completely misunderstood this submission, I think we can drop this one. 
--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/DM4PR11MB5455CFFD58AE7AE779BFDB37C13BA%40DM4PR11MB5455.namprd11.prod.outlook.com. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>
Sent: Tuesday, July 18, 2023 5:36 AM
To: pqc-forum
Subject: Re: [pqc-forum] KAZ-SIGN
Attachments: signature.asc

KAZ-SIGN, like SIKE, doesn't claim that discrete logs are hard. It says that they're easy for the selected groups. It uses 
them in the stated algorithms and software. It then argues that the ways that the attacker can use discrete logs are 
blocked by the details of the verification process. See the documentation, especially Sections 8 and 9. 
 
'Scott Fluhrer (sfluhrer)' via pqc-forum writes: 
> Being able to solve this allows us to recover the private key from the  
> public key 
 
No. There are many solutions to this equation, and whichever solution you pick (even if you get past the existence 
question in your step 3) has negligible chance of being the private key. 
 
Perhaps you meant "a private key", but then you have to define this concept and, more to the point, argue that 
signatures produced by this replacement key will pass verification. 
 
It's not hard to see that they won't _always_ pass. A full analysis is trickier than one might expect. In any case, for 
verifiability, claims of fast attacks should be consistently backed up by scripts that demonstrate those attacks against the 
official software. 
 
(In cases where quantum computers are claimed to be essential for a fast attack, the risk of error is even higher, and 
there should be even more attention to applying known error-detection techniques.) 
 
I wrote an attack script in a way that should be reasonably robust against variations in the verification details. I don't see 
how the verification procedure could be tweaked to block this attack while still accepting the signatures generated by 
the legitimate signer. 
 
---D. J. Bernstein 
 
-- 
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20230718093601.489963.qmail%40cr.yp.to. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of MUHAMMAD REZAL BIN KAMEL ARIFFIN / FS 
<rezal@upm.edu.my>

Sent: Thursday, August 3, 2023 3:20 AM
To: pqc-forum
Subject: [pqc-forum] [KAZ-SIGN OFFICIAL]

Dear all, 

 

First and foremost, KAZ-Team would like to extend our thanks to Prof. Bernstein for his 

comment/concern. It was really an eye opener. It has been approximately 2 weeks since Prof. Bernstein 

hinted about tweaking KAZ-SIGN to identify the forged signature equation. As Prof. Bernstein correctly 

pointed out in his response to an earlier comment, KAZ-SIGN aspires not to be dependent on the Discrete 

Logarithm Problem. Rather we coin our hard problem as the Second Order Discrete Logarithm Problem (2-

DLP) as defined in our Algorithm Specifications and Supporting Documentation write-up. 

 

The design of KAZ-SIGN also aspires to be flexible, that is when a forgery mechanism has been obtained, 

KAZ-SIGN can identify such forgery during verification. 

 

We note here that, in our endeavor after Prof. Bernstein comments, the aim is to tweak the signature 

scheme to be able to identify the forged signature without amending the foundations and increasing the key 

and digital signature lengths significantly. As an overview, minor changes have been made and we have 

managed to omit time consuming procedures and also the need to use salt. 

 

Let us recall; let Gg be the order of g in N. That is, g^{Gg}=1 mod N. Let GRg be the order of R in Gg. That 

is, R^{GRg}=1 mod Gg. 

 

To this end, we have realized that the 2-DLP is an "expensive" way of describing the underlying 

mathematical hard problem of KAZ-SIGN. In reality, the private signing key α is kept unknown to the 

adversary via the relation α=αF mod GRg. This situation can be viewed via t=(α-αF)/GRg. When αF 

and GRg are known, the length of t, will determine the difficulty level of retrieving back the private signing 

key α. For KAZ-SIGN documentation formality we coin this as the Modular Reduction Problem (MRP). 

Details are in the write-up. 

 

As for the extra overhead, the private signing key and public verification key have increased. It has 

increased approximately 400, 700 and 1,000 bits for the public verification keys for security levels 1, 3 and 

5. As for the private signing key, it sees an increase of approximately 128, 192 and 256 for security levels 1, 

3 and 5. However, the signature size remains approximately the same. 

 

Even though the size has increased, KAZ-SIGN procedures has been strip down from its heavy 

computations and hence a speed up of more than 500% (to say the least). One can make comparison from 

both write-ups for a more accurate figure. 

 

In brief we defined the public verification key-1 as V1=α mod GRg, the public verification key-2 as a 



2

random k-bit prime (where k is the security level value 128 or 192 or 256) and V3=α mod V2. Observe 

that to obtain α from V1 or V3 is the MRP. 

 

Then we sign as S1=R^(r mod GRg) mod Gg, S2=(α^(r mod V2) +h)/r mod GRgV2 and S3=r mod V2. 

 

The verification procedure is as follows: 

 

Compute w0=S2S3-h mod V2 and w1=V3^(S3) mod V2. If w0 ≠ w1 reject signature. Else continue to verify 

(the same procedures in our NIST submission, see write-up). 

 

Note, the suggested Prof. Bernstein forgery mechanism (which can be utilized for this new setup) is of the 

form S2F=(V1^(r mod V2)+h+GRgx)/r mod GRgV2 for some random x in Z_{GRg} (Prof. Bernstein's random 

structure is x=x1+x2r for some random x1 and x2). S2F will still pass our verification procedures. But it will 

not pass our filtering procedures via computing w0 and w1 and making comparison. 

 

Its clear that w0=S2FS3-h mod V2 and w1=V3^(S3) mod V2 would result in w0 ≠ w1. This is because 

S2FS3 - h ≠ V3^(S3) mod V2. 

 

Thus, the adversary will have to forge S3 also (i.e. denoted as S3F). To do this, the adversary will need to 

resolve 

 

V3^(S3F)-S2FS3F+h = 0 mod V2. After substitutions, this would mean the adversary needs to solve 

V3^(S3F)-V1^(S3F)-GRgx = 0 mod V2 ---(eq A). And after obtaining S3F, the adversary can set 

S1=R^(S3F) mod Gg. All these forged parameters will pass the filtering and verification procedures. 

 

Observe that, to solve (eq A), the complexity is O(V2). Furthermore, V2 is a prime number of k-bits and the 

adversary will not be able to execute the Chinese Remainder Theorem to reduce this complexity. 

 

KAZ-Team has setup a website (https://www.antrapol.com/KAZ-SIGN) that lists our C codes and 

Algorithm Specifications and Supporting Documentation write-up according to version. The version sent to 

NIST prior to Prof. Bernstein comment will be known as Version 1.0 (v1.0). The version with the new 

procedures as mentioned above will be known as Version 1.1 (v1.1). 

 

Thank you for the precious comment. KAZ-Team hopes that this minor tweak will not be a hindrance for 

KAZ-SIGN to be further evaluated. 

 

Best regards 

 

KAZ-Team 

--  

You received this message because you are subscribed to the Google Groups "pqc-forum" group. 

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-

forum+unsubscribe@list.nist.gov. 

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-

forum/02713dce-ea2a-47b3-9340-a6437f2a2923n%40list.nist.gov. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>
Sent: Thursday, August 3, 2023 5:00 AM
To: pqc-forum
Subject: Re: [pqc-forum] [KAZ-SIGN OFFICIAL]
Attachments: kaz11-forge.sage; signature.asc

Here's a Sage script forging signatures for the new version of KAZ-SIGN and checking that the forgeries are accepted by 
the reference software. 
For convenience, this script automatically extracts parameters and public keys from the KAZ-SIGN code in the current 
directory, and automatically tries all public keys from the KATs. I've checked that the script works in the kaz980, 
kaz1703, and kaz2311 directories. 
 
---D. J. Bernstein 
 
-- 
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20230803090009.1043685.qmail%40cr.yp.to. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of MUHAMMAD REZAL BIN KAMEL ARIFFIN / FS 
<rezal@upm.edu.my>

Sent: Thursday, August 17, 2023 5:47 AM
To: pqc-forum
Subject: [pqc-forum] [KAZ-SIGN OFFICIAL]

Dear all, 

 

First and foremost, KAZ-Team would like to extend our heartfelt thanks to Prof. Bernstein for his insights 

again. The usage of the Chinese Remainder Theorem (CRT) to construct a forgery of signature parameter 

S2 by utilizing given public parameters (V1,V3) upon modulars V2 and GRg does indeed bypass our existing 

filtering strategies. 

 

In order to overcome this issue, it is necessary not to introduce more parameters that might open new 

avenues for forgery. A minor tweak was done on the definition of V2. The strategy is as follows: 

 

The public verification key-1 as V1≡α mod GRg, the public verification key-2 is the product of a random 

k-bit prime, denoted as ρ (where k is the security level value 128 or 192 or 256) and the largest factor of 

GRg denoted as β. We denote the public verification key-2 as V2=βρ. Finally the public verification key-

3 is given by V3≡α mod V2. Observe that to obtain a from V1 or V3 is the MRP. To factor V2 is easy. We 

do not intend to deploy the integer factorization problem upon V2. 

 

The signature procedure remains the same as v1.1. The signature parameters are S1≡R^{r mod GRg} mod 

Gg, S2≡(α^{r mod V2}+h)/r mod (GRgV2) and S3≡r mod V2. 

 

The verification procedure is similar to v1.1. At the same time, as a result of Prof Bernstein's 2nd input, we 

add the following procedures during verification: 

 

Procedure 1: Compute w0≡S2S3-h mod V2 and w1≡V3^(S3) mod V2. If w0≠w1, reject the signature. 

 

Procedure 2: From S1, solve the DLP to obtain rF, where rF=DLog_{R} (S1 mod Gg). Compute 

w2≡(GRg/β)S3 mod GRg and w3≡(GRg/β)rF mod GRg. If w2≠w3, reject the signature. 

 

Procedure 3: Compute rF, where rF=DLog_{R} (S1 mod Gg). Compute Chinese Remainder Theorem upon 

w4≡(V3^{S3}+h)S3^{-1} mod ρ and w5≡(V1^{S3}+h)rF^{-1} mod GRg to obtain  w6  mod ρGRg. Compute 

w7=w6-S2. If w7=0, reject the signature. 

 

Further discussion on this matter can be seen in section 8 in v1.2 of our write-up on our website. 

 

As for the extra overhead, the private signing key and public verification key have increased a few bits 

when compared to v1.1. That is approximate 35, 20 and 10 bits for the public verification keys for security 

levels 1, 3 and 5. As for the private signing key, it sees an increase of approximate 13 and 5 bits for 

security levels 1 and 3. There is no increase for security level 5. As for the signature, it sees an increase of 



2

approximate 25, 20 and 10 bits for security levels 1, 3 and 5. 

 

Even though the size has increased, KAZ-SIGN procedures still executes fast. 

 

KAZ-Team has made available our C codes and Algorithm Specifications and Supporting Documentation on 

our website https://antrapol.com/KAZ-SIGN according to version.  

 

Thank you for the precious comment. KAZ-Team hopes that this minor tweak will not be a hindrance for 

KAZ-SIGN to be further evaluated. 

 

Best regards 

 

KAZ-Team 

Aug 17, 2023 

--  

You received this message because you are subscribed to the Google Groups "pqc-forum" group. 

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-

forum+unsubscribe@list.nist.gov. 

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-

forum/4e8223cd-9834-45c9-af7b-2888f1402a50n%40list.nist.gov. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>
Sent: Thursday, August 17, 2023 9:14 AM
To: pqc-forum
Subject: Re: [pqc-forum] [KAZ-SIGN OFFICIAL]
Attachments: kaz12-forge.sage; signature.asc

Here's a Sage script forging signatures for KAZ-SIGN 1.2 and checking that the forgeries are accepted by the reference 
software. I've checked that the script works in the kaz989, kaz1713, and kaz2311 directories. 
 
---D. J. Bernstein 
 
-- 
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20230817131334.2121348.qmail%40cr.yp.to. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of Watson Ladd <watsonbladd@gmail.com>
Sent: Thursday, August 17, 2023 11:45 AM
To: pqc-forum
Subject: Re: [pqc-forum] [KAZ-SIGN OFFICIAL]

Furthermore I propose the following to break all KAZ-SIGN 1.x 
 
1: find the email announcing the tweak 
2: wait four hours 
3: read DJBs email breaking it 

On Thu, Aug 17, 2023, 6:13 AM D. J. Bernstein <djb@cr.yp.to> wrote: 
Here's a Sage script forging signatures for KAZ-SIGN 1.2 and checking 
that the forgeries are accepted by the reference software. I've checked 
that the script works in the kaz989, kaz1713, and kaz2311 directories. 
 
---D. J. Bernstein 
 
--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20230817131334.2121348.qmail%40cr.yp.to. 

--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CACsn0c%3DxpSZ_fM6-LV4s3mBfGeWTLrMKmDjM4_dHLe8oOMYopA%40mail.gmail.com. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of MUHAMMAD REZAL BIN KAMEL ARIFFIN / FS 
<rezal@upm.edu.my>

Sent: Thursday, August 31, 2023 12:10 PM
To: pqc-forum
Subject: [pqc-forum] [KAZ-SIGN OFFICIAL]

Dear all, 
 
Based on Prof Bernstein's comments, KAZ-SIGN v1.3 is now available for scrutiny via https://antrapol.com/KAZ-SIGN.  
 
All comments are welcomed. 
 
Best wishes 
 
KAZ-Team 
 
Aug 31, 2023 
--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/4248dd65-0ac1-
4601-a94b-671a5c5c5692n%40list.nist.gov. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>
Sent: Thursday, August 31, 2023 8:19 PM
To: pqc-forum
Subject: Re: [pqc-forum] [KAZ-SIGN OFFICIAL]
Attachments: kaz13-forge.sage; signature.asc

With high probability, a public key and signed message for KAZ-SIGN v1.3 allow the following script to forge signatures 
on attacker-chosen messages under that public key. The script checks that the signatures pass verification with the 
reference software. The success probability is 93/100, 90/100, 90/100 for the KATs in the kaz1662, kaz2667, kaz3783 
directories respectively. 
 
---D. J. Bernstein 
 
-- 
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20230901001854.3275729.qmail%40cr.yp.to. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of MUHAMMAD REZAL BIN KAMEL ARIFFIN / FS 
<rezal@upm.edu.my>

Sent: Monday, September 25, 2023 5:42 AM
To: pqc-forum
Subject: [pqc-forum] [KAZ-SIGN OFFICIAL]

Dear all, 
 
Based on Prof Bernstein's comments on KAZ-SIGN v1.3, in the course of scrutinizing the 10% cases where forgery was 
reported not able to be conducted, we have obtained interesting information. KAZ-SIGN v1.4 is now available for 
scrutiny on our website https://antrapol.com/KAZ-SIGN. 
 
All comments are welcomed. 
 
Best wishes 
 
KAZ-Team 
--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/4f491e27-07ea-
451e-a445-ce3ec8c3c8aen%40list.nist.gov. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>
Sent: Monday, September 25, 2023 11:02 AM
To: pqc-forum
Subject: Re: [pqc-forum] [KAZ-SIGN OFFICIAL]
Attachments: kaz14-forge.sage; signature.asc

Here's a Sage script forging signatures for KAZ-SIGN 1.4 and checking that the forgeries are accepted by the reference 
software. I've checked that the script works for all 100 KATs in the kaz1509, kaz2321, and 
kaz3241 directories. 
 
---D. J. Bernstein 
 
-- 
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20230925150158.770226.qmail%40cr.yp.to. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of MUHAMMAD REZAL BIN KAMEL ARIFFIN / FS 
<rezal@upm.edu.my>

Sent: Thursday, February 1, 2024 11:31 PM
To: pqc-forum
Subject: Re: [pqc-forum] [KAZ-SIGN OFFICIAL]

Dear all, 
 
KAZ-SIGN v1.5 is now available on https://antrapol.com/KAZ-SIGN. We thank Prof Bersntein for discussions leading up to 
v1.5. 
 
All comments are welcomed. 
 
Best wishes 
 
KAZ-Team 
Feb 2, 2024 
--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CALaYo1D4vE8h8aNqs6sxT0vjLCDdyM7BMfTD-rpJ%3DQB_OOp5UA%40mail.gmail.com. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>
Sent: Friday, February 2, 2024 4:24 PM
To: pqc-forum
Subject: Re: [pqc-forum] [KAZ-SIGN OFFICIAL]
Attachments: signature.asc

To answer some off-list questions: I haven't been able to schedule the time to look at KAZ-SIGN v1.5, and I don't have 
comments on it. 
 
---D. J. Bernstein 
 
-- 
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20240202212355.235986.qmail%40cr.yp.to. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of MUHAMMAD REZAL BIN KAMEL ARIFFIN / FS 
<rezal@upm.edu.my>

Sent: Friday, March 15, 2024 7:17 AM
To: pqc-forum
Subject: [pqc-forum] [KAZ-SIGN OFFICIAL]

Dear all, 

KAZ Team thanks anonymous input regarding some missing information in the specification document outlining KAZ-
SIGN version 1.5, released on Feb 2, 2024. 

Namely, 

1. During key generation, there is missing information. The parameter \alpha is a prime. 
2. Steps 3,4,5 during signing is not updated. It should be h=nextprime(H(m||salt)). 

 
 
The reference implementation is correct. Both: 

1. Choosing \alpha as a prime, 
2. Computing h=nextprime(H(m||salt)) is conducted during signing 

 
 
are executed in KAZ-SIGN v1.5 reference implementaiton. Hence, no changes are needed on the KAZ-SIGN v1.5 C codes 
released on Feb 2, 2024. 

We thank the anonymous individual that scrutinized the reference implementation against the specification document. 

We label the updated specification document with these changes as KAZ-SIGN v1.5.1. 

The write-up can be accessed at the following link https://www.antrapol.com/KAZ-SIGN 

All comments are welcomed. 

Best wishes 

KAZ-Team 
March 15, 2024 

--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CALaYo1AwUpebx1_bm2-Uki-Cursoc0QJ2a0KCzvTWmj-G5xOgQ%40mail.gmail.com. 



1

Kerman, Sara J. (Fed)

From: pqc-forum@list.nist.gov on behalf of MUHAMMAD REZAL BIN KAMEL ARIFFIN / FS 
<rezal@upm.edu.my>

Sent: Sunday, April 7, 2024 6:03 AM
To: pqc-forum
Subject: [pqc-forum] Re: [KAZ-SIGN OFFICIAL]

Dear all, 
 
We put forward KAZ-SIGN v1.6. We would like to thank discussion opportunities with Kai Chieh Chang (Jay) and the team 
at Phison Architecture Design Department which triggered discussions that lead towards version 1.6, that resulted in 
reduced number of steps for KAZ-SIGN key gen, sign and verify algorithms. 
 
KAZ-SIGN v1.6 can be accessed at https://antrapol.com/KAZ-SIGN 
 
All comments are welcomed. 
 
Best wishes 
 
KAZ-Team 
April 7, 2024 
--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/CALaYo1Ako79TsFN_ydH774sn80e_77iDSj1vSWmHbQvMKXpnQQ%40mail.gmail.com. 


