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1 Introduction

This paper introduces 3WISE, a new cryptosystem based on Multivariate Public Key Cryp-
tography (MPKC) . The idea behind 3WISE is to hide the cubic element-wise multiplication
of a given vector over a prime p, where 3 has a multiplicative inverse in Zp−1 in order to
be able to sign or decipher.

2 Algorithm Specification (part of 2.B.1)

2.1 Tensor Algebra

The Public Key of the schemes proposed in Multivariate Cryptography are composed of
m equations in n variables having quadratic or cubic monomials. These equations can
be expressed in terms of quadratic forms or tensors. Quadratic schemes are simply m
quadratic forms of size n × n. In the cubic case, we have n quadratic forms per equation
thus m equations involving n quadratic forms of size n × n, which adds to a rectangular
matrix m× n3. As every quadratic form can be expressed as a tensor qi · (x⊗ x) then the
Public Key of a MPKC scheme can be viewed as a rectangular matrix times the tensor
product of the input vector.
This will give us a rectangular m× n2 (quadratic case ) or m× n3 (cubic case).
These representations can be encoded up to a matrix of size m×

(
n+d−1

d

)
reducing the size

of the Public Key matrix. For d = 2 we have m× n(n+1)
2

and for d = 3 the matrix has size
m× 1

6
n(1 + n)(2 + n)

2.2 Hadamard product and Face-Splitting product

The Hadamard product of vectors is equivalent to the element-wise operation between their
components. Here the idea is to take the Hadamard product of a vector x = (x1, . . . , xn) ∈
F n
p three times such that x◦x◦x = (x3

1, . . . , x
3
n). However, dealing with symbolic expressions

is non convenient as a the cryptosystem would use the expression Public Key P (x) =
T · (Sx◦Sx◦Sx). If we expand the expression symbolically, let z = S(x) then T · (z ◦ z ◦ z)
so the computation of every symbolic expression z3i = (

∑n
j=1 Si,jxj)

3 is an expensive task
as n ≥ 64.
Here the approach is to use the fact that the d-th Hadamard product z ◦ z ◦ z is equivalent
to the d-th Face Splitting product of their transformation matrix S times the d-th tensor
product of the input vector x where d is the degree, here d = 3.

P (x) = T · (S • S • S) · (x⊗ x⊗ x) = T · (Sx ◦ Sx ◦ Sx)
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The Face-Splitting product of matrices is represented as the tensor between their rows.
GivenM = [r1, . . . , rn] ∈ F n×n

p in row format, the operation givesM •M = [r1⊗r1, . . . , rn⊗
rn] ∈ F n×n2

p in row format.

Then the cubic Face-Splitting product isM •M •M = [r1⊗r1⊗r1, . . . , rn⊗rn⊗rn] ∈ F n×n3

p .
Further we show how to eliminate redundancies from the public key reducing from a rect-
angular n× n3 to a n×

(
n+2
3

)
matrix.

2.3 3WISE Scheme

In MPKC we are interested on functions P (X) = T◦F◦S(X) such that T, S are linear/affine
maps and F (X) is a quadratic or cubic set of equations. This is because P (X) is non-linear
thanks to the internal structure of F (X). However, we need F (X) to be a trapdoor function
since recovering X from the public key P−1(Y ) = X is considered hard.

To build such trapdoor functions a new family of private polynomials F (X) is presented.
The construction guarantees that is easy to evaluate the map but hard to recover the original
point, in theory. Let’s give a detailed description

2.3.1 Description

The base field prime p is an odd-prime where the order of the multiplicative group of units
Z∗

p is coprime with 3, this is gcd(p− 1, 3) = 1. This guarantees that 3 has a multiplicative
inverse p− 1 this is 3 · d ≡ 1 (mod p− 1).
This fact enables us to decipher a ciphertext or sign a message, depending on the selected
mode of the cryptosystem, as ydi = (z3i )

d = zi

2.3.2 Trapdoor Permutation

Matrices T, S being invertible and the condition gcd(3, p−1) ̸= 1 guarantee that the scheme
is a Trapdoor Permutation. As exponentiation by 3 has an inverse d then z = x3 = x◦x◦x◦
is recoverable as zd = x3·d = x1 = x. All the operations are computed through bijective
Fp 7→ Fp maps.

2.3.3 Key Generation

For building the Private and Public key we need first to select invertible matrices S, T ∈
F n×n
p . With that in mind, le’ts define both key generation procedures:

2.3.3.1 Public Key Construction

In order to generate a public key we must set-up the parameters of the scheme:
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• Select an odd-prime where gcd(p− 1, 3) = 1, for example p = 17. Here 3 is a unit in
Z∗

p−1 .

• Select invertible linear matrices T, S ∈ F n×n
p which are used to hide the private

polynomial map F (X).

• Compute the cubic Face-Splitting productM = S•S•S = [r1⊗r1⊗r1, . . . , rn⊗rn⊗rn]

• Compute P = T ·M where · is the dot product.

• Now P · (x⊗ x⊗ x) is a representation of T · (Sx ◦ Sx ◦ Sx)

• Reduce Public Key’s size from a n× n3 matrix to a n×
(
n+2
3

)
as further seen.

2.3.3.2 Private Key Construction

The owner must retain matrices T−1, S−1 ∈ F n×n
p

2.3.4 Signing process

2.3.4.1 Message Signing

• For signing a message m of any size compute the digest of the message via a Hash
Function H(m) = y. Each numeric coefficient of the hash must be less than p. For
example, in parametrization we select p = 17 so each coefficient is in hexadecimal (0
to 15).

• Compute T−1 · y = y′ ∈ F n
p .

• Compute vector z by exponentiating every y′di ∀1 ≤ i ≤ n such that y′di = (z3i )
d = zi.

• Recover the signature as x = S−1 · z.

• Send the signature-message pair (x,m) to the requester.

2.3.4.2 Message Verification

• The verifier must posses the Public Key in Tensor form P (x) = A · (x ⊗ x) = y.
Reduced tensor version is used so the input vector is of

(
n+2
3

)
length instead of n3.

• Verifier receives a triplet (H, x,m) where H is the Hash function, x is the signature
and m the message to be validated.

• Verifier computes P (x) = H(m) = y and if its correct the signature is trusted as only
the owner of the private key can issue valid signatures.
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2.3.5 Key Sizes

The advantage of MPKC over other PQC candidates is the reduced signature bit length.
However, it’s been widely commented that MPKC has notorious trade-off between the
signature bit length and public/private key pairs (specially HFE variants). Let’s examine
these cases:

2.3.5.1 Public Key

Recall that the Tensor representation of the Public Key is P (x) = T ·(S•S•S)·(x⊗x⊗x) =
A · (x ⊗ x ⊗ x). The matrix A ∈ F n×n3

q is the un-reduced public key, thus after reduction

it takes log2p× n×
(
n+2
3

)
size.

2.3.5.2 Reducing Public Key size

As the base field Fp is commutative we can reduce the tensor representation as tensor
products of vectors x⊗ x⊗ x have monomials xixjxk that can be categorized into multiple
cases:

• Case where i ̸= j ̸= k: Here we have 6 possible combinations, these are ijk, ikj, jik, jki, kij, kji.
So we must sum up the coefficients of those matrices i.e Mi,jk + . . .+Mk,j,i

• Case where i = j ̸= k: Here we have 3 possible combinations, being: iik, iki, kii

• Case where i ̸= j = k: 3 possible combinations: ijj, jij, jji

Every row of the un-reduced Public Key matrix of size n×n3 has n matrices of size n×n,
this is, every subrow of length n2 is one of those matrices.
This method can be expanded to other multi-dimensional size like quadratic (d = 2) degree,
where i ̸= j then xixj = xjxi are equal so we must sum up quadratic form coefficients into
just 1 coefficient, thus reducing public key’s size.

2.3.5.3 Private Key

The private key is comprised of matrices T−1, S−1 ∈ F n×n
p having log2 p×2×n×n bit size.

2.3.5.4 Signature Length

The signature x = (x1, . . . , xn) ∈ F n
p has bit size equal to log2 p× n.
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2.3.6 Key Encoding and Decoding

NIST proposed a template for KAT values where Public and Private keys are represented
as an unsigned char vector, this is, a byte vector. In the Parametrization section we define
prime modulus p < 256 so every number in Fp fits in a byte (unsigned char).
For decoding, take an unsigned char that ranges from 0− 255 and convert it to an integer
modulo p. By the condition stated above, as p < 255 there’s no need to reduce modulo p,
and the original encoded coefficient is preserved.

2.3.7 Signature encoding

As p < 256 the signature x = (x1, . . . , xn) ∈ F n
p fits in a byte (unsigned char) vector of

length n. This is, every element xi is encoded as an integer from 0− 255.

3 List of parameter sets (part of 2.B.1)

• p is an odd prime defining Fp. The order of F
∗
p must be coprime with 3. Here p = 17

is used as every coefficient of the hash of the message is viewed as an hexadecimal
digit 0-15. The signature has characters ranging 0-16. This guarantees that every
coefficient of the signature and message tuple are encoded as an integer into a byte.

• n is the number of variables and equations. The value is fixed depending on the
utilized Hash Function, for example SHA-256 has 32 bytes or 64 hex digits. Truncated
SHA-256 to 128 has 16 Bytes or 32 hex digits, for 192 we have 24 Bytes or 48 hex
digits. Here every hex digit is taken as a whole byte i.e AF is taken as 10 15, thus
every digit is taken as an integer, which is set to a byte variable.

• | pk | is the reduced Public Key size so it has byte size equal to n×
(
n+2
3

)
Scheme Security Level p n | pk | (KB) | sk | (KB) sign (B)

3WISE-128 2 17 32 187 2 32
3WISE-192 4 17 48 918.75 4.5 48
3WISE-256 5 17 64 2860 8 64

Table 1: Parameter list for Security Levels KB:Kilo-Byte, B:Byte

8



4 Design rationale (part of 2.B.1)

The field of Multivariate Public Key Cryptography counts with a taxonomy that catego-
rizes schemes into families: BigField, MediumField, Stepwise, Oil-Vinegar [WP]. Schemes
based on these families play an important role in the development and study of Post-
Quantum schemes as there is a need for strengthening key exchange found in the Internet
(i.e: SSL/TLS) and for digital signatures. It’s theorized that in next decades Quantum
computers will be ready to break the schemes that we use today, as they’re based in com-
mon problems found in commutative cryptography where the security relies in the Discrete
Logarithm Problem and Integer Factorization.
With the introduction of the C* scheme by Matsumoto-Imai the field of MPKC started
to gain attention [TH]. The C* scheme was broken in the work of Patarin [Pata] by a
Differential attack. Attacker gathers plaintext and ciphertext pairs and mounts a linear
equation system that recovers the coefficient of the quadratic equations obtained by the
Differential. With these equations Patarin demonstrated that plaintext recovery is doable
for C*. Other variations were done like the Perturbation modifier.
After this breakthrough HFE [Patb] gained attention, which is a Dembowski-Ostrom pri-
vate polynomial, that is represented as a quadratic set (system of quadratic equations).
HFE has its weakness on decipher stage, where the Degree of the central polynomial F (X)
must be small to apply root finding (e.g: Berlekamp’s Trace). Kipnis and Shamir pub-
lished a work [KS] demonstrating that private polynomial computation is feasible solving
the Minrank problem by solving a multivariate system of equations using the relinearization
technique. This is because the rank of the private polynomial is considered small.
Variations of HFE appeared to protect from these key recovery attacks. (Gui, HFEv-,
GeMMs, QUARTZ), that nowadays are considered not secure as it’s been proved that are
not resistant to recent discoveries [STV] [TV]. In addition, the underlying problems of
MPKC have been broadly studied: PoSSo, Minrank [Bus], Isomorphism of Polynomials
(IP2) [Pata] .

With that all in mind the design of 3WISE is based on concepts that have not been
extensively covered as cubic degree schemes has not attracted the same level of attention
as quadratic scheme did. For the perspective of security are believed to be stronger than
quadratic ones, but in terms of data representation (storage) and performance it seems that
perform worse than quadratics. The advantage of 3WISE being cubic is that it’s internal
operations are quite simpler than other schemes that require a full matrix tensor to be
represented like HFE based schemes. So being cubic is not a non-stopper for building the
public key faster than a quadratic scheme for the same parametrization m,n, q. This has
been demonstrated as the Face Splitting product is faster than the full tensor approach.
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5 Detailed performance analysis (part of 2.B.2)

5.1 Testing Platform

The reference and optimized implementation have been tested on a single platform. KAT
values have been generated on the same workstation too.

Computer Processor Frequency (MHz) Max freq. (MHz)
Workstation AMD Ryzen 3700x 3600 4200
Embedded Raspberry PI 4b 1500 1500

Table 2: Description of the testing platform.

Computer OS Kernel RAM
Workstation Arch Linux 6.1.12 32GB
Embedded OpenBSD 7.3 GENERIC.MP 4GB

Table 3: Description of OS and RAM

5.2 Third Party Open Source Libraries

The reference and optimized implementation make use of the C library FLINT, which is
used for implementing all low level Linear Linear algebra operations related to compressed
cubic kronecker products. FLINT has native support for some operations related to matrix
multiplication, matrix inverses, rank, random number generation, finite field operations,
etc. Other references to libraries and function calls should be POSIX compatible.

5.2.1 Differences between Operating Systems

There are major differences between the packaging found among Unix-like OS and GNU/Linux
distributions.

5.2.1.1 GNU/LINUX

In Arch Linux and Kali (Debian based) FLINT is at version 2.9.0 which guarantees that
some primitives like fmpz mod mat rank(), fmpz mod mat inv do exist. The implementa-
tions do rely on these primitives which are not present for example in Ubuntu 22.04. Manual
installation of FLINT 2.9.0 is mandatory in those cases since compilation with GCC will
throw errors as it cannot find those function calls.
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5.2.1.2 BSD

In the case of other Unix-Like OS, OpenBSD has been tested on a Raspberry PI 4b
(aarch64). FLINT was manually compiled and installed with gmake ang gcc. The im-
plementations compiled by passing the argument ”-I /usr/local/includes” so the compiler
locates FLINT’s header files. Here the Clang C compiler has been used.

5.3 Reference vs Optimized implementation

The reference and optimized implementations are the same at code level.

5.3.1 Benchmark

The MAKEFILE has an available benchmark build option called the ”Fast Test” which
is compiled with optimizations with the ”-Ofast” compiler flag. The results indicate that
signing is faster than verifying as the operations involved on signing are faster than the
linear algebra done on the tensor reduction of x⊗ x⊗ x for the cubic degree case.

Scheme Gen Sign Verify
3WISE-128 34.11ms 38µs 1.11ms
3WISE-192 255.51ms 60µs 5.22ms
3WISE-256 958.42ms 93µs 15.33ms

Table 4: Median time of distinct Parametrizations in 20 rounds in Workstation

Scheme Gen Sign Verify
3WISE-128 263.1ms 170µs 9.14ms
3WISE-192 1.5s 339µs 58.5ms
3WISE-256 5.3s 569µs 165.31ms

Table 5: Median time of distinct Parametrizations in 20 rounds in Embedded

5.4 Workstation vs Embedded

Embedded machines are great candidates for running the scheme in all modes (Sign, Verify
and KeyGen). In general, tested machines run quite fast in every parametrization case:
128, 192 and 256.
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6 Expected Strength (part of 2.B.4)

6.1 EUF-CMA security

The presented scheme must be analyzed from the perspective of the EUF-CMA security
model applied to digital signatures. The model proposes the following conditions:

• Challenger C generates a pair of public-private keys (pk, sk) and sends the public key
pk to the adversary A.

• The adversary A has access to the oracle and queries for the message m.

• The oracle returns the signature θ ← Sign(sk,m) and stores the message m into the
message list Q, so every submitted message by A has to be not repeated or it will be
discarded by the Oracle and/or the Challenger C.

• A wins when finds a valid pair (m∗, θ∗) where Verifypk(m
∗, θ∗) = 1 and m∗ ̸∈ Q, this

is, the message m∗ must not be submitted to the oracle and θ∗ is a valid signature
for m∗.

6.1.1 Signature Forgery

The adversary A has the public key and at most 264 valid message and signature pairs
generated by the Oracle. With this information, A cannot generate a linear attack as the
scheme is non-linear. In addition, the scheme consists a bijective map (trapdoor permuta-
tion), given m∗ ̸∈ Q there exists an unique signature θ∗ such that its image on the public
key gives the digest of m∗, this is: P (θ∗) = H(m∗). Such unique relation can only be found
by inverting the trapdoor, which would require to solve an instance of the PoSSo (Poly-
nomial System Solving) problem over Fp or the IP2 problem, which is the Isomorphism of
Polynomials, where T and S are to be found, or equivalent ones such that the public key
generated by T ′ and S ′ gives the relation P (X) = P ′(X). In the case of solving PoSSo,
it can be addressed by direct Gröbner bases attack which would involve n cubic equations
in n variables. Other technique is to compute the Multivariate Differential of the cubic
map P (X), which is a quadratic system of n equations in n variables. Both techniques
are computationally infeasible for the given parameter list. The internal structure of the
scheme must be exploited in order to cut off a significant magnitude on the general time
complexity of these attacks.
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7 Analysis of known attacks (part of 2.B.5)

The proposed scheme consists of n cubic equations in n variables, which is not a common
area of research in the field of MPKC. The most remarkable schemes are ABC cryptosystem
[PW] and the cubic variant of HFE [Ea], which both have vulnerabilities in their internal
structure [PST] that eventually lead to rupture. Therefore, do not take the following
analysis as the representation of the possible reality of the required attack complexity.

7.1 Index & Degree Regularity

There are distinct cases for estimating attacks using Gröbner in multivariate polynomial
equation systems. For example, under some conditions, over-defined systems are easier
to solve than under-determined or systems where m = n which is the case of 3WISE.
The goal is to demonstrate that a system belongs to the worst-case family of polynomials
such that the computed Gröbner basis has (almost) maximal degree of regularity, this is
dreg ≤ #MB =

∑n
i=1(di− 1) + 1, where MB is the Macaulay Bound, an upper bound that

defines the highest degree that a term can have in the resulting Gröbner basis.
In general, for regular systems where m = n the index of regularity plus one coincides with
the upper bound MB so we conclude that dreg ≤ ireg + 1. The index of regularity, ireg is

the degree of HSI(t) =
∏n

i=1(1−tdegpi )

(1−t)n
, the Hilbert Series polynomial of the Ideal generated

by the polynomials of the system P (X)− Y = 0.

7.2 Gröbner Bases

The Polynomial System Solving (PoSSo) problem in MPKC is based on finding the set
of roots over Fp from the Tensor representation of the public key P (x) − y = 0. The
normal approach is to solve it by using Gröbner Basis, which finds an Algebraic Variety
that contains the roots (solution) of the system.
Testing has been conducted on instances of 3WISE where 5 ≤ n ≤ 10 using Wolfram
Mathematica for generating the symbolic public key and SAGE for computing Gröbner
basis, ireg and dreg. Cubic equations are placed in a text file, then loaded via Sage to
generate a Gröbner basis. dreg is the highest degree found among the polynomials in the
basis. For computing ireg, the program finds the degree of the Hilbert series of the Ideal
generated by the leading monomial terms of the basis. In all instances dreg is close to ireg
or ireg + 1 which equals to the Macaulay’s bound, theorizing that generated instances are
in the ”worst-case” space of multivariate equations. Monomial ordering selected is degree
reverse lexicographic. MB stands for Macaulay’s Bound.
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7.2.1 Results

Every test has the nomenclature nX − Y where X is the number of variables and Y
the test number, for example, n6-1 is the first test of a random instance of 3WISE with
n = 6. Each test is available in Github and can be replicated with the code found in the
same repository. Gröbner basis computation with giac:gbasis method should provide same
values for the degree of regularity and number of equations, but this may vary depending
the version of libraries found in the system.

#Test dreg ireg MB #npolys
n6-1 12 12 13 172
n6-2 12 12 13 171
n6-3 13 12 13 205
n6-4 13 12 13 197
n6-5 13 12 13 207

#Test dreg ireg MB #npolys
n7-1 14 14 15 496
n7-2 15 14 15 558
n7-3 15 14 15 558
n7-4 14 14 15 470
n7-5 14 14 15 469

Table 6: dreg for 5 instances of 3WISE with n = 6, 7

#Test dreg ireg MB #npolys
n8-1 17 16 17 1526
n8-2 16 16 17 1288
n8-3 17 16 17 1524
n8-4 17 16 17 1525
n8-5 17 16 17 1526

#Test dreg ireg MB #npolys
n9-1 17 18 19 4224
n9-2 17 18 19 4224
n9-3 17 18 19 4221
n9-4 18 18 19 3591
n9-5 18 18 19 3591

Table 7: dreg for 5 instances of 3WISE with n = 8, 9
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7.2.2 Complexity of parameter list

Data indicates that dreg is close to MB for small n. However, it wouldn’t be prudent to
extrapolate this fact to other instances with bigger n as for the parameter list n = 32, 48, 64.
For example, dreg has a difference of two with MB at n = 9. Taking this into account, the
complexity of Gröbner basis computation over Fp is divided into two categories: Bound
and Conservative. In bound dreg equals to Macaulay’s bound (worst-case scenario) and
Conservative has dreg = MB − 4 as the degree of regularity tends to differ from MB as
n increases, for some random instances. This is, there are instances where dreg = MB
however there are some that not, this is why conservative offset of four has been selected.
The nº of field operations required for computing a Gröbner basis can be estimated as:

O(p ·
(
n+ dreg
dreg

)w

)

Where w = 2 is set up conservatively and p = 17 is the selected odd-prime for the scheme.

Scheme MB Conservative
3WISE-128 2175 2170

3WISE-192 2263 2258

3WISE-256 2350 2345

Table 8: Complexity of Gröbner basis computation

7.3 MinRank

The MinRank problem for quadratic schemes MR(m,n, r) consists of finding a linear com-
bination of m matrices of size n×n to obtain a n×n matrix of rank r. MinRank problem is
NP-complete [Bus]. However, the approach employed in 3WISE should be different as the
degree is cubic. Matrices are of type Mi ∈ F n×n×n

p so the rank condition has to be extended
to a three dimensional tensor space. In the cryptosystem ABC column band separation
was derived from the Differential of public key equations [PST]. Other practices require to
express the Differential of a cubic scheme as a quadratic set of equations, where MinRank
is applied. In [Ea] the KS attack is applied to a cubic variant of HFE.
Attacking a scheme via MinRank requires that the internal structure of the underlying
algorithm to be vulnerable to algebraic relations that result in efficient separation of equa-
tions or low-rank matrices that permit recovering matrices T, S or equivalent T ′, S ′ such
that T ◦ F ◦ S = T ′ ◦ F ◦ S ′.
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8 Advantages and limitations (part of 2.B.6)

8.1 Advantages

• Small Signatures: Schemes based on Multivariate Cryptography are well known for
their small signature size. Signatures are sent along with the message to the verifier,
so it doesn’t take much bandwith over a network.

• Key Generation: Cubic Face Splitting product is way better than a cubic complete
Kronecker Product of matrices. It has a speeduf factor of n. For example a cubic
HFE would be overkill using all the exposed concepts in the paper.

• Fast Verification: The verification of a signature is really fast for all the covered
parameters using compressed tensor forms.

• Fast Signing: Message signing has demonstrated to be the fastest procedure between
generation and verification.

• Arithmetic: The operations done by the scheme are easily handled by any electronic
device as the scheme mainly relies in Linear Algebra over F17.

8.2 Limitations

• Uncommon area: MPKC schemes where equations have cubic degree are uncom-
mon area of study. This is because quadratic degree schemes offer lower bit size in
terms of public key. Here we can notice that the trade-off of changing to d = 3 doesn’t
impact that much on the performance and the bit size of involved key material.
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9 2.D.1 Statement by Each Submitter

I, Borja Gómez Rodŕıguez, of PZ Landabaso 8 - 5ºA, Bilbao 48015, Spain, do hereby de-
clare that the cryptosystem, reference implementation, or optimized implementations that
I have submitted, known as 3WISE, is my own original work, or if submitted jointly with
others, is the original work of the joint submitters. I further declare that (check one):

a.✓□ I do not hold and do not intend to hold any patent or patent application with a
claim or that could be amended to include a claim that may cover the cryptosystem,
reference implementation, or optimized implementations that I have submitted, known
as 3WISE; OR (check one or both of the following):

b.□ to the best of my knowledge, the practice of the cryptosystem, reference implementa-
tion, or optimized implementations that I have submitted, known as
3WISE may be covered by the following U.S. and/or foreign patents: (describe and
enumerate or state “none” if applicable)
None

c.□ to the best of my knowledge, the following pending U.S. and/or foreign patent applica-
tions may cover the practice of my submitted cryptosystem, reference implementation
or optimized implementations: (describe and enumerate or state “none” if applicable)
None

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to
the public for review and will be evaluated by NIST, and that it might not be selected for
standardization by NIST. I further acknowledge that I will not receive financial or other
compensation from the U.S. Government for my submission. I certify that, to the best of
my knowledge, I have fully disclosed all patents and patent applications which may cover my
cryptosystem, reference implementation or optimized implementations. I also acknowledge
and agree that the U.S. Government may, during the public review and the evaluation pro-
cess, and, if my submitted cryptosystem is selected for standardization, during the lifetime
of the standard, modify my submitted cryptosystem’s specifications (e.g., to protect against
a newly discovered vulnerability)
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I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment. I do hereby agree to provide the statements required
by Sections 2.D.2 and 2.D.3, below, for any patent or patent application identified to cover
the practice of my cryptosystem, reference implementation or optimized implementations
and the right to use such implementations for the purposes of the public review and evalu-
ation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may re-
move my cryptosystem from consideration for standardization. If my cryptosystem (or the
derived cryptosystem) is removed from consideration for standardization or withdrawn from
consideration by all submitter(s) and owner(s), I understand that rights granted and assur-
ances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference
and optimized implementations, may be withdrawn by the submitter(s) and owner(s), as
appropriate.

Signed: Borja Gómez Rodŕıguez

Title: 3WISE
Date: 31/05/2023
Place: Santiago, Chile
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10 2.D.3 Statement by Reference/Optimized Imple-

mentation’s Owner

I, Borja Gómez Rodŕıguez, PZ Landabaso 8 - 5ºA, Bilbao 48015, Spain, am the owner or
authorized representative of the owner of the submitted reference implementation and op-
timized implementations and hereby grant the U.S. Government and any interested party
the right to reproduce, prepare derivative works based upon, distribute copies of, and dis-
play such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is selected
for standardization and as a standard, notwithstanding that the implementations may be
copyrighted or copyrightable.

Signed: Borja Gómez Rodŕıguez

Title: 3WISE
Date: 31/05/2023
Place: Santiago, Chile
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