
The AIMer Signature Scheme
Submission to the NIST PQC project

Version 1.0

Principal Submitter: Seongkwang Kim
� Samsung SDS

� sk39.kim@samsung.com

Ó +82-10-9930-6241
� 56, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea

Auxiliary Submitter: Jihoon Cho
Mingyu Cho
Jincheol Ha

Jihoon Kwon
Byeonghak Lee

Joohee Lee

Jooyoung Lee

Sangyub Lee

Dukjae Moon

Mincheol Son

Hyojin Yoon

Inventors: Jincheol Ha
Seongkwang Kim

Jihoon Kwon
Byeonghak Lee

Joohee Lee

Jooyoung Lee

Sangyub Lee

Dukjae Moon

Mincheol Son

Developers/Owners: All listed submitters

Homepage: https://www.aimer-signature.org

Alternative Point of Contact: Jooyoung Lee
� KAIST

� hicalf@kaist.ac.kr

Ó +82-10-8757-7831
� 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

Thursday 1st June, 2023

Seongkwang Kim (Signature)

sk39.kim@samsung.com
https://www.aimer-signature.org
hicalf@kaist.ac.kr

Contents

1 Introduction 3
1.1 Overview of the Algorithm . 3
1.2 Notation . 4

2 Background 4
2.1 MPC-in-the-Head Paradigm . 4
2.2 BN++ Proof System . 5
2.3 Fiat-Shamir Transform . 6

3 Symmetric Primitive AIM 7
3.1 Specification . 7
3.2 Design Rationale . 8

4 Mathematical Description of the AIMer Signature Scheme 9
4.1 Features . 10
4.2 Signature Generation . 10
4.3 Signature Verification . 11
4.4 Recommended Parameters . 13

5 Formal Security Analysis 13
5.1 EUF-CMA Security of AIMer in the Random Oracle Model . 13
5.2 Information-Theoretic Security of AIM in the Random Permutation Model 20

6 Security Evaluation 22
6.1 Summary of Expected Security Strength . 22
6.2 Soundness Analysis . 23
6.3 Known Attacks to AIM . 23

6.3.1 Brute-force Attack . 23
6.3.2 Algebraic Attacks . 24
6.3.3 Differential and Linear Cryptanalysis . 29
6.3.4 Quantum Attacks . 30

6.4 Attacks in the Multi-User Setting . 32
6.5 Side-Channel Attacks . 33

7 Specification of the AIMer Signature Scheme 33
7.1 Field Representation . 33
7.2 Hash Functions and Extendable-Output Functions . 34
7.3 Key Generation . 34
7.4 Signature Generation . 35
7.5 Signature Verification . 38
7.6 Supporting Functions . 40

7.6.1 Seed Trees: make seed tree, reveal all but, reconstruct seed tree 40
7.6.2 Committing to the party’s seed and expanding tape: commit to seed and expand tape 42
7.6.3 Computing the Challenge: h 1 commitment, h 2 commitment 42
7.6.4 Expanding the Challenge Hash: h 1 expand, h 2 expand 43
7.6.5 MPC Simulation: aim mpc . 44
7.6.6 Serialization of Signatures . 44
7.6.7 Deserialization of Signatures . 45

1

8 Implementation and Performance 45
8.1 Implementation Details . 45
8.2 Performance . 46

8.2.1 Description of the Benchmarking Environments . 46
8.2.2 Key and Signature Sizes . 46
8.2.3 Timing Results . 46
8.2.4 Memory Usage . 48

9 Advantages and Limitations 48
9.1 General . 48
9.2 Compatibility with Existing Protocols . 49

2

1 Introduction

AIMer is a signature scheme which is obtained from a zero-knowledge proof of preimage knowledge for a
certain one-way function. AIMer consists of two parts: a non-interactive zero-knowledge proof of knowledge
(NIZKPoK) system, and a one-way function. The security of both parts solely depends on the security of the
underlying symmetric primitives.

The NIZKPoK system in AIMer can be viewed as a customized version of the BN++ proof system [KZ22].
BN++ is a NIZKPoK system based on the MPC-in-the-Head (MPCitH) paradigm [IKOS07], which efficiently
proves large-field arithmetic. The difference between our system and BN++ is as follows.

• Our system integrates Commit and ExpandTape to CommitAndExpand. It reduces significant amount of
signing and verification time without loss of security in the random oracle model.

• Hash functions and extendable-output functions used in our system are domain-separated for stronger
concrete security.

The one-way function of AIMer is AIM [KHS+22], which is a tweakable one-way function dedicated
to the BN++ system. AIM has been designed to have strong security against algebraic attacks producing
short signatures when combined with BN++. The AIM function fully exploits the optimization techniques
of BN++ using repeated multipliers for checking multiplication triples and locally computed output shares to
reduce the overall signature size.

1.1 Overview of the Algorithm

The AIMer signature algorithm consists of key generation, signing, and verification algorithms. To provide an
intuitive understanding of the AIMer signature scheme, we will briefly describe the three algorithms below.
The detailed specification for mathematical understanding and implementation is given in Section 4 and
Section 7, respectively.

KEY GENERATION. The key generation is simply a computation of AIM, which proceeds as follows.

1. A tweak iv and a plaintext pt are sampled uniformly at random.

2. ct = AIM(iv, pt) is computed.

3. The secret key is set to sk = pt, and the corresponding public key is defined as pk = (iv, ct).

SIGNING ALGORITHM. The signing algorithm is a virtual MPC simulation of AIM. The multiple parties
involved in the MPC evaluation are not real participants, but a simulation by the signer (MPCitH). As both
signing and verification algorithms are non-interactive, random challenges are computed by hash functions
(via the Fiat-Shamir transform). The signing algorithm proceeds as follows.

1. The signer prepares the MPC simulation; it generates seeds for each party, and shares of the input and
intermediate values appearing in the computation of AIM from each seed. The signer commits each
seed.

2. The signer computes a multiplication-checking protocol from a challenge.

3. The signer opens all the views except one determined by another challenge.

VERIFICATION ALGORITHM. The verification algorithm is a recomputation of the signing algorithm to check
whether the MPC simulation has been faithfully executed or not. The verification algorithm mainly checks
two steps: preparation of the MPC simulation, and the multiplication-checking protocol. The verification
algorithm proceeds as follows.

3

1. The verifier recomputes shares of all the parties except the unopened one, and computes the first
challenge.

2. The verifier recomputes the multiplication-checking protocol, and computes the second challenge.

3. The verifier checks whether the opened views of the MPC simulation are consistent or not.

1.2 Notation

Unless stated otherwise, all logarithms are to the base 2. For two vectors a and b over a finite field, their
concatenation is denoted by a∥b. For a positive integer n, hw(n) denotes the Hamming weight of n in its
binary representation, and we write [n] = {1, · · · , n}. We will write a ← b to denote assignment of b to a.

For a set S, a→ S denotes that a is added to S as an element and a
$←− S denotes that a is chosen uniformly

at random from S.
In this document, additions are usually operated on a binary field, in which case additions are exclusive-

OR (XOR). Nevertheless, when we want to emphasize that an addition is actually XOR, we denote the
addition by ⊕. In the multiparty computation setting, x(i) denotes the i-th party’s additive share of x, which
implies that

∑
i x

(i) = x. We summarize some notations of parameters and non-conventional notations in
Table 1.

In Section 7, we follow some notations from programming languages. For a vector (array) vec, the
notation vec[n] is used in two different meanings according to its context:

• declaration of a length-n array vec,

• the n-th element of the array vec.

For a vector vec, vec[a : b] denotes a sub-vector of b− a+ 1 elements (vec[a], . . . , vec[b]). Similarly for a ma-
trix mat, mat[a : b][i] (resp. mat[i][a : b]) denotes a vector of b− a+ 1 elements mat[a][i], . . . , mat[b][i] (resp.
mat[i][a], . . . , mat[i][b]). For a bitstring str, we write str[a:b] to denote a substring from bit-position a to b
(both-inclusive). For an integer a and b, we denote a ≪ b (resp. a ≫ b) the left (resp. right) shift of a by b
bits.

λ Security parameter
n S-box size of AIM
ℓ Number of S-boxes in front of the linear layer
τ Number of the parallel repetitions
N Number of the parties
H Hash function

XOF Extendable-output function

Table 1: The notation used in the document.

2 Background

2.1 MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm, proposed by Ishai et al. [IKOS07], allows one to construct a zero-
knowledge proof (ZKP) system from a multi-party computation (MPC) protocol. Consider an MPC protocol
where N parties collaborate to securely evaluate a function f on an input x with perfect correctness. Suppose
that the views of k parties leak no information on x. Then, one can build a ZKP from the MPC protocol as
follows.

4

1. The prover generates random secret shares x(1), . . . , x(N) such that x(1) + · · · + x(N) = x, and assign
them to N parties, say P1, . . . ,PN .

2. The prover simulates the MPC protocol “in her head” by simulating each Pi, i = 1, . . . , N .

3. The prover commits to each party’s view which includes its random tape, the secret input share, and
the communicated messages from and to the party. She sends the commitments to the verifier.

4. The prover possibly gets random challenges for MPC simulation from the verifier when needed, and
conducts local computations on each party. She may repeat this step for several times.

5. The prover completes the MPC simulation and hands over requested output shares of the MPC protocol
to the verifier.

Note that the verifier interactively joins the above procedure to provide random challenges to the prover.
After that, the verifier selects k parties and asks the prover to open their views. Once the views are received,
the verifier checks

1. if the opened views are consistent, i.e., the messages sent from and to a party match and the commit-
ments are correctly evaluated from the resulting views, and

2. if the output recovered from the output share is y.

Since only k views are opened, no information on x is leaked from the revealed views. Also, since the verifier
opens the random views, any cheating adversary’s winning probability is upper bounded by (N − k)/N . We
fix k = N − 1 throughout this proposal.

The practicality of MPCitH is demonstrated by the ZKBoo scheme, the first efficient MPCitH-based proof
scheme proposed by Giacomelli et al. [GMO16]. One of the main applications of the MPCitH paradigm is
to construct a post-quantum signature. Picnic [CDG+17] is the first and the most famous signature scheme
based on the MPCitH paradigm; it combines an MPC-friendly block cipher LowMC [ARS+15] and an MPCitH
proof system called ZKB++, which is an optimized variant of ZKBoo. Katz et al. [KKW18] proposed a new
proof system KKW by further improving the efficiency of ZKB++ with pre-processing, and updated Picnic
accordingly. The updated version of Picnic was the only MPCitH-based scheme that advanced to the third
round of the NIST PQC competition. BBQ [dSGMOS19] and Banquet [BSGK+21] are AES-based signature
schemes, where BBQ employs the KKW proof system and Banquet improves BBQ by injecting shares for
intermediate states.

To fully exploit efficient multiplication over a large field in the Banquet proof system, Dobraunig et
al. [DKR+22] proposed MPCitH-friendly ciphers LS-AES and Rain. They are substitution-permutation ci-
phers based on the inverse S-box over a large field. This design strategy increases the efficiency of the
resulting MPCitH-based signature scheme, while the number of rounds should be carefully determined by
comprehensive analysis on any possible algebraic attack due to their simple algebraic structures. Kales and
Zaverucha [KZ22] proposed several optimization techniques to further improve the efficiency of the Baum
and Nof’s proof system [BN20], and their variant is called BN++.

2.2 BN++ Proof System

In this section, we briefly review the BN++ proof system [KZ22], one of the state-of-the-art MPCitH zero-
knowledge protocols. The BN++ protocol will be combined with our symmetric primitive AIM to construct
the AIMer signature scheme. At a high level, BN++ is a variant of the BN protocol [BN20] with several
optimization techniques applied to reduce the signature size.

PROTOCOL OVERVIEW. The BN++ protocol follows the MPCitH paradigm [IKOS07]. In order to check C
multiplication triples (xj , yj , zj = xj · yj)Cj=1 over a finite field F in the multiparty computation setting with
N parties, helping triples ((aj , bj)Cj=1, c) are required, where aj ∈ F, bj = yj , and c =

∑C
j=1 aj · bj . Each party

holds secret shares of the multiplication triples (xj , yj , zj)
C
j=1 and the helping triples ((aj , bj)

C
j=1, c). Then

the protocol proceeds as follows.

5

• A prover is given random challenges ϵ1, · · · , ϵC ∈ F.

• For i ∈ [N], the i-th party locally sets α(i)
1 , · · · , α(i)

C where α
(i)
j = ϵj · x(i)

j + a
(i)
j .

• The parties open α1, · · · , αC by broadcasting their shares.

• For i ∈ [N], the i-th party locally sets

v(i) =

C∑
j=1

ϵj · z(i)j −
C∑

j=1

αj · b(i)j + c(i).

• The parties open v by broadcasting their shares and output Accept if v = 0.

The probability that there exist incorrect triples and the parties output Accept in a single run of the above
steps is upper bounded by 1/|F|.
SIGNATURE SIZE. By applying the Fiat-Shamir transform [DFM20], one can obtain a signature scheme from
the BN++ proof system. In this signature scheme, the signature size is given as

6λ+ τ · (3λ+ λ · ⌈log2(N)⌉+M(C)),

where λ is the security parameter, τ is the number of parallel repetitions of the multiplication checking pro-
tocol for reducing the soundness error, C is the number of multiplication gates in the underlying symmetric
primitive, andM(C) = (2C+1)·log2(|F|). In particular,M(C) has been defined so from the observation that
sharing the secret share offsets for (zj)Cj=1 and c, and opening shares for (αj)

C
j=1 occurs for each repetition,

using C, 1, and C elements of F, respectively. For more details, we refer to [KZ22].

OPTIMIZATION TECHNIQUES. If multiplication triples use an identical multiplier in common, for example,
given (x1, y, z1) and (x2, y, z2), then the corresponding α values can be batched to reduce the signature size.
Instead of computing α1 = ϵ1 · x1 + a1 and α2 = ϵ2 · x2 + a2, α = ϵ1 · x1 + ϵ2 · x2 + a is computed, and v is
defined as

v = ϵ1 · z1 + ϵ2 · z2 − α · y + c,

where c = a · y. This technique is called repeated multiplier technique. Our symmetric primitive design
allows us to take full advantage of this technique to reduce the number of α values in each repetition of the
protocol.

If the output of the multiplication zi can be locally generated from each share, then the secret share offset
is not necessarily included in the signature.

2.3 Fiat-Shamir Transform

The Fiat-Shamir transform [FS87] is a technique for taking an interactive proof of knowledge and creating
a non-interactive counterpart, or a digital signature based on it. The core of the technique is to replace
challenges from the verifier by random oracle access which is realized by hashing of the transcript obtained
so far.

The Fiat-Shamir transform was originally targeted at a Σ-protocol, a three-round interactive proof of
knowledge. Let R be a relation such that, for a given x, it is difficult to find an w such that R(x,w) = 1.
Given public R and x, the value w such that R(x,w) = 1 becomes the secret information that a prover P
wants to prove the knowledge of to the verifier V. Then, a Σ-protocol proceeds as follows.

1. Commitment: a random number r is generated, committed to by the prover, and sent to the verifier.

P
com−−−→ V, where com = Commit(r).

2. Challenge: on receiving the commitment, the verifier sends a random challenge ch the prover.

P
ch←−− V.

6

3. Response: the prover creates an appropriate response corresponding to the challenge.

P
res−−→ V, where res = Response(w, r, ch).

Then, the verifier checks the validity of the response together with com and ch. This Σ-protocol is trans-
formed into a non-interactive version, by replacing the challenge sent by the verifier by a random oracle
access, using the previous transcript (x, com). Denoting the random oracle as RO, the challenge step of the
above procedure is replaced by ch ← RO(x, com). This approach can be extended to multi-round proofs.
The security loss is known to be linear in the number of attacker’s queries to the random oracle [AFK22].

3 Symmetric Primitive AIM

3.1 Specification

AIM is designed to be a “tweakable” one-way function so that it offers multi-target one-wayness. Given
input/output size n and an (ℓ + 1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1, AIM : {0, 1}n × F2n → F2n is
defined by

AIM(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ](pt)⊕ pt

where each function will be described below. See Figure 1 for the pictorial description of AIM with ℓ = 3.

Mer[e1]

Mer[e2]

Mer[e3]

Linpt Mer[e∗] ct

XOF[iv]

Figure 1: The AIM-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature
scheme, and (iv, ct) (in blue) is the corresponding public key.

S-BOXES. In AIM, S-boxes are exponentiation by Mersenne numbers over a large field. More precisely, for
x ∈ F2n ,

Mer[e](x) = x2e−1

for some e. Note that this map is a permutation if gcd(e, n) = 1. As an extension, Mer[e1, . . . , eℓ] : F2n → Fℓ
2n

is defined by
Mer[e1, . . . , eℓ](x) = Mer[e1](x)∥ . . . ∥Mer[eℓ](x).

LINEAR COMPONENTS. AIM includes two types of linear components: an affine layer and feed-forward. The
affine layer is multiplication by an n × ℓn random binary matrix Aiv and addition by a random constant
biv ∈ Fn

2 . The matrix
Aiv =

[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2)ℓ

7

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an
extendable-output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented
by a linearized polynomial Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n)

ℓ,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

By abuse of notation, we will denote Ax as the same meaning as
∑

1≤i≤ℓ Liv,i(xi). Feed-forward operation,
which is addition by the input itself, makes the entire function non-invertible.

RECOMMENDED PARAMETERS. Recommended sets of parameters for λ ∈ {128, 192, 256}-bit security are given
in Table 2. The number of S-boxes is determined by taking into account the complexity of the XL attack,
which is described in Section 6.3.2. Exponents e1 and e∗ are chosen as small numbers to provide smaller
differential probability, and exponent e2 is chosen so that e2 · e∗ ≥ λ, while all the exponents are distinct in
the same set of parameters. The irreducible polynomials for extension fields F2128 , F2192 , and F2256 are the
same as those used in Rain [DKR+22].

Scheme λ n ℓ e1 e2 e3 e∗

AIM-I 128 128 2 3 27 - 5
AIM-III 192 192 2 5 29 - 7
AIM-V 256 256 3 3 53 7 5

Table 2: Recommended sets of parameters of AIM.

3.2 Design Rationale

CHOICE OF FIELD. When a symmetric primitive is built upon field operations, the field is typically binary since
bitwise operations are cheap in most of modern architectures. However, when the multiplicative complexity
of the primitive becomes a more important metric for efficiency, it is hard to generally specify which type of
field has merits with respect to security and efficiency.

Focusing on a primitive for MPCitH-style zero-knowledge protocols, a primitive over a large field gen-
erally requires a small number of multiplications, leading to shorter signatures. However, any primitive
operating on a large field of large prime characteristic might permit algebraic attacks since the number of
variables and the algebraic degree will be significantly limited for efficiency reasons. On the other hand, bi-
nary extension fields enjoy both advantages from small and large fields. In particular, matrix multiplication
is represented by a polynomial of high algebraic degree without increasing the proof size.

ALGEBRAICALLY SOUND S-BOXES. In an MPCitH-style zero-knowledge protocol, the proof size of a circuit is
usually proportional to the number of nonlinear operations in the circuit. In order to minimize the number
of multiplications, one might introduce intermediate variables for some wires of the circuit. For example,
the inverse S-box (S(x) = x−1) has high (bitwise) algebraic degree n− 1, while it can be simply represented
by a quadratic equation xy = 1 by letting the output from the S-box be a new variable y. When an S-
box is represented by a quadratic equation of its input and output, we will say it is implicitly quadratic. In
particular, we consider implicitly quadratic S-boxes which are represented by a single multiplication over
F2n . This feature makes the proof size short and mitigates algebraic attacks at the same time.

The inverse S-box is one of the well-studied implicitly quadratic S-boxes. The inverse S-box has been
widely adopted to symmetric ciphers [DR02, AIK+01, SSA+07] due to its nice cryptographic properties.
It is invertible, is of high-degree, has good enough differential uniformity and nonlinearity. Recently, it
is used in symmetric primitives for advanced cryptographic protocols such as multiparty computation and
zero-knowledge proof [GKR+21, GLR+20, DKR+22].

8

Meanwhile, the inverse S-box has one minor weakness; a single evaluation of the n-bit inverse S-box as a
form of xy = 1 produces 5n− 1 linearly independent quadratic equations over F2 [CDG06]. The complexity
of an algebraic attack is typically bounded (with heuristics) by the degree and the number of equations,
and the number of variables. In particular, an algebraic attack is more efficient with a larger number of
equations, while this aspect has not been fully considered in the design of recent symmetric ciphers based
on algebraic S-boxes. When the number of rounds is small, this issue might be critical to the overall security
of the cipher. For more details, see Section 6.3.2.

With the above observation, we tried to find an invertible S-box of high-degree which is moderately
resistant to differential/linear cryptanalysis as well as implicitly quadratic, and producing only a small number
of quadratic equations. Since our attack model does not allow multiple queries to a single instance of AIM,
we allow a relaxed condition on the DC/LC resistance, not being necessarily maximal. As a family of S-boxes
that beautifully fit all the conditions, we choose a family of Mersenne S-boxes; they are exponentiation
by Mersenne numbers 2e − 1 such that gcd(n, e) = 1, are invertible, are of high-degree, need only one
multiplication for its proof, produce only 3n Boolean quadratic equations with its input and output, and
provide moderate DC/LC resistance. Furthermore, when the implicit equation xy = x2e of a Mersenne S-box
is computed in the BN++ proof system, it is not required to broadcast the output share since the output of
multiplication x2e can be locally computed from the share of x.

REPETITIVE STRUCTURE. The efficiency of the BN++ proof system partially comes from the optimization
technique using repeated multipliers. When a multiplier is repeated in multiple equations to prove, the proof
can be done in a batched way, reducing the overall signature size. In order to maximize the advantage of
repeated multipliers, we put S-boxes in parallel at the first round in order to make the S-box inputs the same.
Then, we put only one S-box at the second round with feed-forward. In this way, all the implicit equations
have the same multiplier.

AFFINE LAYER GENERATION. The main advantage of using binary affine layers in large S-box-based construc-
tions is to increase the algebraic degree of equations over the large field. Multiplication by a random n × n
binary matrix can be represented as

n−1∑
i=0

aix
2i = a0x+ a1x

21 + a2x
22 + · · ·+ an−1x

2n−1

where a0, a1, . . . , an−1 ∈ F2n . Similarly, our design uses a random affine map from Fℓn
2 to Fn

2 . In order to
mitigate multi-target attacks (in the multi-user setting), the affine map is uniquely generated for each user;
each user’s iv is fed to an XOF, generating the corresponding linear layer.

4 Mathematical Description of the AIMer Signature Scheme

In this section, we review the mathematical specification of AIMer introduced in [KHS+22]. In order to
obtain the AIMer signature scheme, the customized BN++ proof system in Section 2.2 is combined with
AIM. The resulting signature scheme Π = (KeyGen,Sign,Verify) consists of key generation, signing, and
verification algorithms.

• KeyGen(1λ) → (sk, pk) : Sample uniform random pt
$←− F2n , and iv

$←− {0, 1}n. Compute ct ←
AIM(iv, pt) as described in Section 3, and set the public key pk ← (iv, ct) ∈ {0, 1}n × F2n and the
private signing key sk ← pt ∈ F2n .

• Sign((sk, pk),m) → σ : Take as input a pair of signing and public keys (sk = pt, pk = (iv, ct)) and a
message m, and compute the BN++ ZKP π for the AIM one-way function circuit using m as a part
of the input to the challenge hash as described in Algorithm 1. Output the corresponding signature
σ ← π.

9

• Verify(pk, σ)→ Accept or Reject : Take as input a public key pk = (iv, ct), a message m and a signature
σ and conduct the verification of BN++ ZKP for the AIM one-way function circuit as described in
Algorithm 2. Output either Accept or Reject according to the verification result of the ZKP.

The AIMer signing and verification algorithms will be described in detail in the following subsections. The
full specification for implementation is given in Section 7.

4.1 Features

The AIM function has been designed to fully exploit the optimization techniques of the BN++ proof system
using repeated multipliers for checking multiplication triples and locally computed output shares to reduce the
overall signature size.

EXPLOITING REPEATED MULTIPLIERS. If multiplication triples share the same multiplier, then the α values in
the multiplication checking protocol can be batched as mentioned in Section 2.2. The ℓ+1 S-box evaluations
in AIM produce the ℓ+ 1 multiplication triples that need to be verified, reformulated as follows.

pt · ti = pt2
ei

for i = 1, . . . , ℓ, and
pt · Lin[iv](t) = (Lin[iv](t))2

e∗
+ ct · Lin[iv](t)

where ti, i = 1, 2, . . . , ℓ, is the output of the i-th S-box and t
def
= [t1| . . . |tℓ]. Since every multiplication triple

shares the same multiplier pt, a single value of α is included in the signature instead of ℓ+1 different values.

LOCALLY COMPUTED OUTPUT SHARES. For the above multiplication triples, every multiplication output share
on the right-hand side can be locally computed without communication between parties, thanks to the
freshman’s dream over F2n (i.e., the map x 7→ x2e is linear over F2n). Hence, it is possible to remove the
offset ∆z of the output share in the multiplication triples in the BN++ proof from the signature of AIMer.
For the first ℓ multiplications, each party locally computes the output (pt(i))2

ei from their input share pt(i)

using linear operations. For the last multiplication output, the output is determined as follows.{
(Aiv · t(i) + biv)

2e∗ + ct · (Aiv · t(i) + biv) for i = 1,

(Aiv · t(i))2
e∗

+ ct · (Aiv · t(i)) for i ≥ 2,

where t(i) ∈ Fℓn
2 is the output shares of the first ℓ S-boxes for the i-th party: t(i) = [t

(i)
1 | . . . |t

(i)
ℓ].

With the above optimization techniques applied, the signature size is

6λ+ τ · (λ · ⌈log2(N)⌉+ 2λ+ (ℓ+ 3) · n).

Since n = λ in our recommended sets of parameters, it can be represented as

6λ+ τ · (λ · ⌈log2(N)⌉+ (ℓ+ 5) · λ).

OTHER SYMMETRIC PRIMITIVES IN USE. The SHAKE128 (resp. SHAKE256) XOF is used to instantiate hash
functions CommitAndExpand, H1, H2 and a pseudorandom generator Expand in the signature scheme for
λ = 128 (resp. λ ∈ {192, 256}). Sample(tape) samples an element from a random tape tape, which is a part
of the output of CommitAndExpand, tracking the current position of the tape.

4.2 Signature Generation

In this section, we review the signing algorithm of AIMer. The signing algorithm consists of five phases as
commented in Algorithm 1.

10

Phase 1: Committing to the seeds and the execution views of the parties. It samples a random salt salt,
and computes an instance of AIM using the initial vector iv. After that, for each parallel execution k ∈ [τ], it
does the following.

1. It samples a root seed seedk for the k-th execution, and computes the parties’ seeds seed(1)k , · · · , seed(N)
k

as leaves of a binary tree from seedk.

2. It commit to each party’s seed and expand random tape as

(com
(i)
k , tape

(i)
k)← CommitAndExpand(salt, k, i, seed

(i)
k)

for i ∈ [N].

3. It prepares for the multi-party computation among the N parties using the parties’ seeds, by generating
secret shares

(
x
(i)
k,j , pt

(i)
k , z

(i)
k,j

)
of the multiplication triples for each S-box with index j, where z

(i)
k,j =

(pt
(i)
k)2

ej and x
(i)
k,j is the secret share of the injected output of the j-th S-box of the secret key pt for j ∈

{1, · · · , ℓ}. Also, for the (ℓ+1)-th S-box, it formulates the multiplication triple as
(
x
(i)
k,ℓ+1, pt

(i)
k , z

(i)
k,ℓ+1

)
where z

(i)
k,ℓ+1 = (x

(i)
k,ℓ+1)

2e∗ + ct · x(i)
k,ℓ+1, and x

(i)
k,ℓ+1 = Aiv · [t(i)k,1| · · · |t

(i)
k,ℓ] + biv for i = 1 and x

(i)
k,ℓ+1 =

Aiv · [t(i)k,1| · · · |t
(i)
k,ℓ] otherwise. It samples helping triples

(
a
(i)
k , b

(i)
k , c

(i)
k

)
as in BN++ and computes the

linear operations over the secret shares.1

Since we use the additive secret sharing, the witness share and the secret share of the multiplication triples
and the helping triples can be recomputed from the offsets ∆ptk and (∆ck, (∆tk,j)j∈[ℓ]), respectively, com-

bined with the parties’ random seeds. It outputs σ1 ←
(
salt, ((com

(i)
k)i∈[N],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ]

)
.

Phase 2: Challenging the checking protocol. It then computes h1 ← H1(m, iv, ct, σ1) and outputs
((ϵk,j)j∈[ℓ+1])k∈[τ] ← Expand(h1) where ϵk,j ∈ F2n is a challenge value for the multiplication checking
protocol in BN++.

Phase 3: Committing to the simulation of the checking protocol. It computes the broadcast values
α
(i)
k , v

(i)
k for the multiplication checking protocol of BN++. It outputs σ2 ←

(
salt, ((α

(i)
k , v

(i)
k)i∈[N])k∈[τ]

)
.

Phase 4: Challenging the views of the MPC protocol. It computes h2 ← H2(h1, σ2), and outputs a
challenge index īk ∈ [N] for an unopened view by computing (̄ik)k∈[τ] ← Expand(h2).

Phase 5: Opening the views of the MPC and checking protocols. It collects the seeds to open the views
of N−1 parties as seedsk ← {⌈log2(N)⌉ (tree) nodes to compute seed

(i)
k for i ∈ [N]\{̄ik}} for each repetition

k. It then outputs a signature σ ← (salt, h1, h2, (seedsk, com
(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k)k∈[τ]).

4.3 Signature Verification

In this section we review the verification algorithm of AIMer. The verification algorithm takes as input
((iv, ct),m, σ), and outputs Accept or Reject. We refer to Algorithm 2 for the detailed description.

First, given an input iv, it computes an instance of AIM, i.e., computes a binary matrix Aiv and a vector

biv. From the signature parsed as σ =

(
salt, h1, h2,

(
seedsk, com

(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k

)
k∈[τ]

)
, it

expands hash values h1 and h2 to obtain the challenges ((ϵk,j)j∈[ℓ+1])k∈[τ] in Phase 2 and (̄ik)k∈[τ] in Phase
4 of the signing algorithm.

1We note that, by exploiting repeated multipliers, we need to verify only one multiplication for each repetition.

11

Algorithm 1: Sign((pt, (iv, ct)),m) - AIMer signature scheme, signing algorithm.

// Phase 1: Committing to the seeds and the execution views of the parties.

1 Sample a random salt salt $←− {0, 1}2λ.
2 Compute the first ℓ S-boxes’ outputs t1, . . . , tℓ.
3 Derive the binary matrix Aiv ∈ (Fn×n

2)ℓ and the vector biv ∈ Fn
2 from the initial vector iv.

4 for each parallel execution k ∈ [τ] do

5 Sample a root seed : seedk
$←− {0, 1}λ.

6 Compute parties’ seeds seed(1)k , . . . , seed
(N)
k as leaves of binary tree from seedk.

7 for each party i ∈ [N] do
8 Commit to the seed and expand random tape:

(com
(i)
k , tape

(i)
k)← CommitAndExpand(salt, k, i, seed

(i)
k).

9 Sample witness share: pt(i)k ← Sample(tape
(i)
k).

10 Compute witness offset and adjust first witness: ∆ptk ← pt−
∑

i pt
(i)
k , pt(1)k ← pt

(1)
k +∆ptk.

11 for each S-box with index j do
12 if j ≤ ℓ then
13 For each party i, sample an S-box output: t(i)k,j ← Sample(tape

(i)
k).

14 Compute output offset and adjust first share: ∆tk,j = tj −
∑

i t
(i)
k,j , t

(1)
k,j ← t

(1)
k,j +∆tk,j .

15 For each party i, set x(i)
k,j = t

(i)
k,j and z

(i)
k,j = (pt

(i)
k)2

ej .

16 if j = ℓ+ 1 then
17 For i = 1, set x(i)

k,j = Aiv · t(i)k,∗ + biv where t
(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the

first ℓ S-boxes.
18 For each party i ∈ [N]\{1}, set x(i)

k,j = Aiv · t(i)k,∗

19 For each party i, set z(i)k,j = (x
(i)
k,j)

2e∗ + ct · x(i)
k,j .

20 For each party i, set a(i)k ← Sample(tape
(i)
k).

21 Compute ak =
∑N

i=1 a
(i)
k .

22 Set ck = ak · pt.
23 For each party i, set c(i)k ← Sample(tape

(i)
k).

24 Compute offset and adjust first share : ∆ck = ck −
∑

i c
(i)
k , c(1)k ← c

(1)
k +∆ck.

25 Set σ1 ← (salt, ((com
(i)
k)i∈[N],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ]).

// Phase 2: Challenging the checking protocol.

26 Compute challenge hash: h1 ← H1(m, iv, ct, σ1).
27 Expand hash: ((ϵk,j)j∈[ℓ+1])k∈[τ] ← Expand(h1) where ϵk,j ∈ F2n .

// Phase 3: Committing to the simulation of the checking protocol.

28 for each repetition k do
29 Simulate the triple checking protocol as in Section 2.2 for all parties with challenge ϵk,j . The

inputs are ((x
(i)
k,j , pt

(i)
k , z

(i)
k,j)j∈[ℓ+1], a

(i)
k , b

(i)
k , c

(i)
k), where b

(i)
k = pt

(i)
k , and let α(i)

k and v
(i)
k be the

broadcast values.
30 Set σ2 ← (salt, ((α

(i)
k , v

(i)
k)i∈[N])k∈[τ]).

// Phase 4: Challenging the views of the MPC protocol.

31 Compute challenge hash: h2 ← H2(h1, σ2).
32 Expand hash: (̄ik)k∈[τ] ← Expand(h2) where īk ∈ [N].

// Phase 5: Opening the views of the MPC and checking protocols.

33 for each repetition k do
34 seedsk ← {⌈log2(N)⌉ nodes to compute seed

(i)
k for i ∈ [N]\{̄ik}}.

35 Output σ ← (salt, h1, h2, (seedsk, com
(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k)k∈[τ]).

12

Recomputation of Phase 1 and 2. It does the following for each parallel repetition k ∈ [τ]:

• Recomputes a random seed for each i ∈ [N] \ {̄ik}, and

(com
(i)
k , tape

(i)
k)← CommitAndExpand(salt, k, i, seed

(i)
k).

• Recompute all the secret shares for the multiplication triples from the random seed for each i ∈ [N] \
{̄ik}.

Then, it recomputes σ1 ←
(
salt,

(
(com

(i)
k)i∈[N],∆ptk,∆ck, (∆tk,j)j∈[ℓ]

)
k∈[τ]

)
, and the challenge hash h′

1 ←

H1(m, iv, ct, σ1).

Recomputation of Phase 3 and 4. For each parallel repetition k ∈ [τ], it simulates the multiplication
checking protocol in Section 2.2 for each i ∈ [N] \ {̄ik}. It recomputes the broadcast values α

(i)
k and v

(i)
k of

the BN++ protocol for each i ∈ [N] \ {̄ik}. Also, it computes the remaining share of the output value for

the īk-th party as v
(̄ik)
k = 0 −

∑
i ̸=īk

v
(i)
k . Finally, it recomputes σ2 ←

(
salt, ((α

(i)
k , v

(i)
k)i∈[N])k∈[τ]

)
, and the

challenge hash h′
2 = H2(h1, σ2).

Comparison of the hash values. It compares the hash values in the input signature and those in the
recomputation. It outputs Accept only if both h1 = h′

1 and h2 = h′
2 hold, and outputs Reject, otherwise.

4.4 Recommended Parameters

For security levels L1, L3, and L5, recommended sets of parameters are given in Table 3. For each value of
security parameter λ, the corresponding sets of parameters are expected to provide λ-bit security against all
classical attacks, and λ/2-bit security against quantum attacks.

5 Formal Security Analysis

5.1 EUF-CMA Security of AIMer in the Random Oracle Model

In this section, we prove the EUF-CMA (existential unforgeability under adaptive chosen-message attacks
[GMR88]) security of AIMer. To prove the EUF-CMA security, we first show that AIMer is secure against
key-only attack (EUF-KO) in Theorem 1, where an adversary is given the public key and no access to the
signing oracle. Then, we show that AIMer is EUF-CMA secure by proving that the signing can be simulated
without using the secret key in Theorem 2. In our security proof, we followed the same arguments as the
security proof of BN++ in [KZ22].

Theorem 1 (EUF-KO Security of AIMer). Assume that CommitAndExpand, H1 and H2 be modeled as random
oracles, Expand be modeled as a random function, and let (N, τ, λ) be parameters of the AIMer signature scheme.
Let A be an arbitrary adversary against the EUF-KO security of AIMer that makes a total of Q random oracle
queries. Assuming that KeyGen is an ϵOWF-hard one-way function, then A’s advantage in the EUF-KO game is

ϵKO ≤ ϵOWF +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ],

where Pr[X + Y = τ] is as described in the proof.

13

Algorithm 2: Verify((iv, ct),m, σ) - AIMer signature scheme, verification algorithm.

1 Parse σ as
(
salt, h1, h2,

(
seedsk, com

(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k

)
k∈[τ]

)
.

2 Derive the binary matrix Aiv ∈ (Fn×n
2)ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
3 Expand hashes: ((ϵk,j)j∈[ℓ+1])k∈[τ] ← Expand(h1) and (̄ik)k∈[τ] ← Expand(h2).
4 for each parallel repetition k ∈ [τ] do
5 Uses seedsk to recompute seed

(i)
k for i ∈ [N] \ {̄ik}.

6 for each party i ∈ [N] \ {̄ik} do
7 Recompute (com

(i)
k , tape

(i)
k)← CommitAndExpand(salt, k, i, seed

(i)
k), pt(i)k ← Sample(tape

(i)
k).

8 if i = 1 then
9 Adjust first share: pt(i)k ← pt

(i)
k +∆ptk

10 for each S-box with index j do
11 if j ≤ ℓ then
12 Sample an S-box output: t(i)k,j ← Sample(tape

(i)
k).

13 if i = 1 then
14 Adjust first share: t(1)k,j ← t

(1)
k,j +∆tk,j .

15 Set x(i)
k,j = t

(i)
k,j and z

(i)
k,j = (pt

(i)
k)2

ej .

16 if j = ℓ+ 1 then
17 if i = 1 then
18 Set x(i)

k,j = Aiv · t(i)k,∗ + biv where t
(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ

S-boxes.
19 else
20 Set x(i)

k,j = Aiv · t(i)k,∗.

21 Set z(i)k,j = (x
(i)
k,j)

2e∗ + ct · x(i)
k,j .

22 Set a(i)k ← Sample(tape
(i)
k) and c

(i)
k ← Sample(tape

(i)
k).

23 if i = 1 then
24 Adjust first share c

(i)
k ← c

(i)
k +∆ck.

25 Set σ1 ←
(
salt,

(
(com

(i)
k)i∈[N],∆ptk,∆ck, (∆tk,j)j∈[ℓ]

)
k∈[τ]

)
.

26 Set h′
1 ← H1(m, iv, ct, σ1).

27 for each parallel execution k ∈ [τ] do
28 for each party i ∈ [N] \ {̄ik} do
29 Simulate the triple checking protocol as defined in Section 2.2 for all parties with challenge

ϵk,j . The inputs are ((x
(i)
k,j , pt

(i)
k , z

(i)
k,j)j∈[ℓ+1], a

(i)
k , b

(i)
k , c

(i)
k), where b

(i)
k = pt

(i)
k , and let α(i)

k and

v
(i)
k be the broadcast values.

30 Compute v
(̄ik)
k = 0−

∑
i ̸=īk

v
(i)
k .

31 Set σ2 ←
(
salt, ((α

(i)
k , v

(i)
k)i∈[N])k∈[τ]

)
32 Set h′

2 = H2(h
′
1, σ2).

33 Output Accept if h1 = h′
1 and h2 = h′

2.
34 Otherwise, output Reject.

14

Parameters λ n ℓ e1 e2 e3 e∗ Hash N τ
AIMER L1 PARAM1 128 128 2 3 27 - 5 SHAKE128 16 33
AIMER L1 PARAM2 128 128 2 3 27 - 5 SHAKE128 57 23
AIMER L1 PARAM3 128 128 2 3 27 - 5 SHAKE128 256 17
AIMER L1 PARAM4 128 128 2 3 27 - 5 SHAKE128 1615 13
AIMER L3 PARAM1 192 192 2 5 29 - 7 SHAKE256 16 49
AIMER L3 PARAM2 192 192 2 5 29 - 7 SHAKE256 64 33
AIMER L3 PARAM3 192 192 2 5 29 - 7 SHAKE256 256 25
AIMER L3 PARAM4 192 192 2 5 29 - 7 SHAKE256 1621 19
AIMER L5 PARAM1 256 256 3 3 53 7 5 SHAKE256 16 65
AIMER L5 PARAM2 256 256 3 3 53 7 5 SHAKE256 62 44
AIMER L5 PARAM3 256 256 3 3 53 7 5 SHAKE256 256 33
AIMER L5 PARAM4 256 256 3 3 53 7 5 SHAKE256 1623 25

Table 3: The recommended parameters for AIMer.

Proof. We build an algorithm B that retrieves a pre-image for the AIM one-way function using the EUF-KO
adversary A as a subroutine. Let Hc denote a random oracle (RO) modelling CommitAndExpand. Suppose
that all the queries to Hc, H1 and H2 are listed in Qc, Q1 and Q2, respectively. We extend the output length
of random oracles H1 and H2 instead of making calls to Expand() in our analysis, since Expand is a random
function used to expand outputs from H1 and H2.

Algorithm B takes the AIM one-way function value (iv, ct) as an input, and forwards it to A as a AIMer
public key for the EUF-KO game. B manages a set Bad to keep track of all the answers from the three random
oracles and two tables Tsh and Tin to record the values derived from A’s RO queries as follows:

• Tsh to store secret shares of the parties, and

• Tin to store inputs to the MPC protocol.

We also program the random oracles for A as follows.

• Hc : When A queries random oracle for Hc, B records the query to match the commitments and
expanded random tape with its corresponding seeds. See Algorithm 3.

• H1 : When A commits to seeds and sends the offsets for the preimage pt which is the secret key
and the multiplication triples, B check the query list Qc to see if the commitments were output by its
simulation of Hc. If B finds matching results for all i’s in some repetition k, then it can recover pt. See
Algorithm 4.

• H2 : See Algorithm 5.

After A terminates, B checks whether there is ptk ∈ Tin satisfying AIM(iv, ptk) = ct. If B finds a match ptk, B
outputs it as a pre-image for the AIM, otherwise B outputs ⊥.

Given the algorithm of B as above, the probability that A wins is bounded as below.

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥] + Pr[A wins ∧ B outputs pt]

≤ Pr[B aborts] + Pr[A wins | B outputs ⊥] + Pr[B outputs pt] (1)

We define Qc, Q1 and Q2 as the number of queries made byA to random oracles Hc, H1 and H2, respectively.
Then we can bound the probability that B aborts (The first term on the RHS of (1)) as follows.

15

Algorithm 3: Hc(qc = (salt, k, i, seed)):

1 r
$←− {0, 1}2λ.

2 if r ∈ Bad then
3 abort.

4 r → Bad.

5

(
pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
$←− F2n × F2n × F2n × (F2n)

ℓ

6

(
qc, r, pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
→ Qc.

7 Return
(
r, pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
.

Pr[B aborts] = (#times an r is sampled) · Pr[B aborts at that sample]

≤ (Qc +Q1 +Q2) ·
max |Bad|

22λ
= (Qc +Q1 +Q2) ·

Qc + (τN + 1)Q1 + 2Q2

22λ

≤ (τN + 1)(Qc +Q1 +Q2)
2

22λ
=

(τN + 1)Q2

22λ
, (2)

where Q = Qc +Q1 +Q2.
We now analyze Pr[A wins | B outputs ⊥] (The second term on the RHS of (1)), which means pt corre-

sponding to (iv, ct) is not found. We parse it into two cases, which correspond to cheating in the first round
and the second round.

CHEATING IN THE FIRST ROUND. Let q1 ∈ Q1 be a query to H1, and h1 = ((ϵk,j)j∈[ℓ+1])k∈[τ] be its corre-
sponding answer. We collect the set of indices k ∈ [τ] representing “good executions” such that Tin[q1, k] is
nonempty and vk = 0, say G1(q1, h1). For k ∈ G1(q1, h1), the challenges (ϵk,j)j∈[ℓ+1] were sampled such that
the multiplication check protocol presented in the Section (2.2) is passed in that repetition. By Lemma (1),
since h1 is sampled uniformly at random, this happens with probability at most 1/2λ.

Lemma 1. If the secret-shared input (xj , y, zj)j∈[C] contains an incorrect multiplication triple, or if the shares
of ((aj , y)j∈[C], c) form an incorrect dot product, then the parties output Accept in the sub-protocol with prob-
ability at most 1/2λ.

Proof. Let ∆zj = zj − xj · y and ∆c = −
∑

j∈[C] aj · y + c. Then

v =
∑
j∈[C]

ϵj · zj − α · y + c

=
∑
j∈[C]

ϵj · zj −
∑
j∈[C]

ϵj · xj · y −
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj · (zj − xj · y)−
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj ·∆zj +∆c

Define a multivariate polynomial

Q(X1, . . . , XC) = X1 ·∆z1 + · · ·+XC ·∆zC +∆c

16

Algorithm 4: H1(q1 = σ1):

1 Parse σ1 as
(
salt, ((com

(i)
k)i∈[N],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ]

)
.

2 for k ∈ [τ], i ∈ [N] do
3 com

(i)
k → Bad.

// If the committed seed is known for some k, i, then B records the shares of the

secret key and the multiplication output values for that party, derived from

that seed and the offsets in σ1

4 for k ∈ [τ], i ∈ [N] : ∃seed(i)k : ((salt, k, i, seed
(i)
k), com

(i)
k , pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]) ∈ Qc do

5 if i = 1 then
6 pt

(i)
k ← pt

(i)
k +∆ptk, c

(i)
k ← c

(i)
k +∆ck and (t

(i)
k,j ← t

(i)
k,j +∆tk,j)j∈[ℓ]

7 (pt
(i)
k , c

(i)
k , (t

(i)
k,j))j∈[ℓ] → Tsh[q1, k, i]

// If the shares of the various elements are known for every party in that

repetition, B records the resulting secret key, multiplication inputs and S-box

outputs

8 for each k : ∀i, Tsh[q1, k, i] ̸= ∅ do
9 ptk ←

∑
i pt

(i)
k , ck ←

∑
i c

(i)
k , ak ←

∑
i a

(i)
k , (tk,j ←

∑
i t

(i)
k,j)j∈[ℓ] and t

(i)
k,ℓ+1 = Aiv · t(i)k,∗ + biv where

t
(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ S-boxes.

10 Derive the binary matrix Aiv ∈ (Fn×n
2)ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
11 for j ∈ [ℓ] do
12 Set xk,j = tk,j and zk,j = (ptk)

2ej .

13 for j = ℓ+ 1 do
14 Set xk,j = Aiv · tk,∗ + biv where tk,∗ = [tk,1| . . . |tk,ℓ] is the output shares of the first ℓ S-boxes

and zk,j = (xk,j)
2e∗ + ct · xk,j .

15 (ptk)→ Tin[q1, k].

16 r
$←− {0, 1}2λ.

17 if r ∈ Bad then
18 abort.

19 r → Bad.
20 (q1, r)→ Q1.

// Compute the multiplication check protocol values.

21 (ϵk,j)j∈[ℓ+1] ← Expand(r).
22 for each k : Tin[q1, k] ̸= ∅ do
23 αk =

∑
j∈[ℓ+1] ϵj · xj + ak.

24 vk =
∑

j∈[ℓ+1] ϵj · zk,j − αk · pt+ ck.

25 Return r.

17

Algorithm 5: H2(q2 = (h1, σ2)):

1 h1 → Bad.

2 r
$←− {0, 1}2λ.

3 if r ∈ Bad then
4 abort.

5 r → Bad.
6 (q2, r)→ Q2.
7 Return r.

over F2n and note that v = 0 if and only if Q(ϵ1, . . . , ϵC) = 0. In the case of a cheating prover, Q is nonzero,
and by the multivariate version of the Schwartz-Zippel lemma, the probability that Q(ϵ1, . . . , ϵC) = 0 is at
most 1/2λ, since Q has total degree 1 and (ϵ1, . . . , ϵC) is chosen uniformly at random.

Given B outputs ⊥, the number of elements #G1(q1, h1)|⊥ ∼ Xq1 where Xq1 = B(τ, p1), where B(τ, p1)
is the binomial distribution with τ events, each with success probability p1 = 1/2λ. We select the query-
response pair (qbest1 , hbest1) such that #G1(q1, h1) is the maximum. Then, the following holds.

#G1(qbest1 , hbest1)|⊥ ∼ X = max
q1∈Q1

{Xq1}.

CHEATING IN THE SECOND ROUND. Let q2 = (h1, σ2) be a query to H2. Note that q2 can only be used
in the winning EUF-KO game when the corresponding (q1, h1) ∈ Q1 exists. For the bad repetition k ∈
[τ]\G1(q1, h1), either Tin[q1, k] is empty (which means verification fails so that A loses) or vk ̸= 0 but the
verification passes. Hence, it should be the case that one of the N parties cheated. Since h2 = (̄ik)k∈[τ] ∈
[N]τ is distributed uniformly at random, the probability that one of the N parties have cheated for all bad
executions k is (

1

N

)τ−#G1(q1,h1)

≤
(

1

N

)τ−#G1(qbest1 ,hbest1
)

.

To sum up, we can analyze the probability that A wins conditioning on B outputting ⊥ is

Pr[A wins | B outputs ⊥] ≤ Pr[X + Y = τ], (3)

where X is as before, and Y = maxq2∈Q2
{Yq2} where Yq2 variables are independently and identically dis-

tributed as B(τ −X, 1/N).
Finally, combining (1), (2) and (3) all together, we obtain the following.

Pr[A wins] ≤ (τN + 1) ·Q2

22λ
+ Pr[X + Y = τ] + Pr[B outputs pt],

where Q = Qc + Q1 + Q2, X and Y are defined as above. Setting KeyGen as an ϵOWF-secure OWF, we
achieve (1) as desired.

Theorem 2 (EUF-CMA Security of AIMer). Assume that CommitAndExpand, H1, H2 and Expand are modeled
as random oracles, the seed tree construction is computationally hiding, the (N, τ, λ) parameters of AIMer are
appropriately chosen, and that the key generation is a secure one-way function. Then, the AIMer signature
scheme is EUF-CMA-secure.

Proof. Let A be an EUF-CMA adversary for given (iv, ct). Let G0 be the original EUF-CMA game and B be
an EUF-KO adversary that simulates the EUF-CMA game to A. When A queries one of the random oracles,
B checks if the query has been recorded so that it sends back the recorded answer if so, and otherwise, it
records a pair of query and result it retrieves and forwards the answer to A.

18

• G0: B knows the secret key pt for the forwarded public key (iv, ct).

• G1: B replaces real signatures with simulated ones no longer using pt. B uses the EUF-KO challenge
pt∗(̸= pt) in its simulation with A.

We define G0(resp. G1) as the probability that A succeeds in Game G0(resp. G1). The advantage of A is
ϵCMA = G0 = (G0 − G1) + G1.

HYBRID ARGUMENTS. We bound (G0 − G1) by defining a sequence of games to connect G0 and G1 and
constructing hybrid arguments. Upon receiving a signing query from A, B simulates a signature using
randomly sampled pt∗, selects one of the party Pi∗ for cheating in the verification and the broadcast of the
output shares v(i

∗)
k so that it passes multiplication checking protocols. We show that the signature values are

sampled from a distribution that is computationally indistinguishable from that of real signatures while it is
sampled independently of pt∗. B sets the random oracle H1 and H2 to output uniform random challenges
((ϵk,j)j∈[ℓ+1])k∈[τ] and (̄ik)k∈[τ], respectively. The definition of subgames and hybrid arguments are the same
as in the EUF-CMA proof in [KZ22] (Theorem 7 in Appendix) except that we do not have to cheat on the
broadcast of party Pīk ’s output share ct

(̄ik)
k , since the output broadcast is implicit in our protocol.

1. In G0, B knows pt so that it computes signatures honestly. B aborts only if the salt that it samples in
Phase 1 has already been queried.

2. B randomly chooses h2 and programs the random oracle H2 to output h2 when queried in Phase 4.
The unopened parties (̄ik)k∈[τ] is derived by expanding h2. Simulation is aborted if the queries to H2

have been made previously.

3. B replaces the seed of the unopened parties seed
(̄ik)
k in the binary tree by a random element for each

k ∈ [τ]. It is indistinguishable from the previous subgame since the tree structure is computationally
hiding.

4. B replaces the outputs of CommitAndExpand(salt, k, īk, seed
(̄ik)
k) by random elements and programs

the random oracle Hc to output the same values for the respective queries. B aborts if the replaced
commitment value collides with that in CommitAndExpand(x) where x is queried by A.

5. B randomly chooses h1 and programs the random oracle H1 to output h1 in Phase 2. The checking
values ((ϵk,j)j∈[ℓ+1])k∈[τ] is derived by expanding h1. Simulation is aborted if the queries to H1 have
been made previously.

6. B replaces α
(̄ik)
k with a uniformly random value and sets v

(̄ik)
k ← −

∑
i ̸=īk

v
(i)
k . Note that if the mul-

tiplication triple is wrong, then v
(̄ik)
k ← −

∑
i ̸=īk

v
(i)
k is different from an honest value derived from

legitimate calculation. However (̄ik) is unopened and the multiplication check is still passed.

7. B sets (∆tk,j)j∈[ℓ] and ∆ck to random values in Phase 1.

8. B replaces the real pt by a random key pt∗ as pt
(̄ik)
k is independent from the seeds A observes. The

distribution of ∆ptk is not changed and A has no information about pt∗.

If the algorithm is not aborted, above games are all indistinguishable to each other, which results the
simulated signatures in G1 and the real signatures in G0 are indistinguishable. The abort happens when:

• A1 : The salt it sampled has been used before.

• A2 : The committed value it replaces is queried.

• A3 : Queries to H1 and H2 have been made previously.

19

Let Qsalt be the number of different salts queried during the game (by both A and B), Qc be the number
of queries made to Commit by A including those made during signature queries and Q1(resp. Q2) be the
number of queries made to H1(resp. H2) during the game. Then the probability of each event occurring is
bounded by Pr[A1] ≤ Qsalt/2

2λ, Pr[A2] ≤ Qc/2
λ, and Pr[A3] ≤ Q1/2

2λ +Q2/2
2λ.

Therefore

Pr[B aborts] ≤ Qsalt/2
2λ +Qc/2

λ +Q1/2
2λ +Q2/2

2λ

= (Qsalt +Q1 +Q2)/2
2λ +Qc/2

λ

≤ (Q1 +Q2)/2
2λ−1 +Qc/2

λ (∵ Qsalt ≤ Q1 +Q2)

≤ Q/2λ (where Q = Q1 +Q2 +Qc)

and

G0 − G1 ≤Qs · (ϵTREE + Pr[B aborts])

≤Qs · (ϵTREE +Q/2λ),

where Qs be the total number of signature queries.

BOUNDING G1. If A outputs a valid signature in G1, then B outputs a valid signature in the EUF-KO game.
Finally we have

G1 ≤ ϵKO ≤ ϵOWF +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ],

where the bound on the advantage ϵKO of a EUF-KO attacker follows from Theorem 1. We conclude that

ϵCMA ≤ ϵOWF +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ] +Qs · (ϵTREE +Q/2λ).

Assuming that the seed tree construction is hiding (so that ϵTREE is negligible), that key generation is a
one-way function and that parameters (N, τ, λ) are appropriately chosen implies that ϵCMA is negligible in λ.

5.2 Information-Theoretic Security of AIM in the Random Permutation Model

In this section, we consider the one-wayness of AIM. More precisely, we will prove the everywhere preimage
resistance [RS04] of AIM when the underlying S-boxes are modeled as public random permutations and iv is
(implicitly) fixed.2

For simplicity, we will assume that ℓ = 2. The security of AIM with ℓ > 2 is similarly proved. In the public
permutation model and in the single-user setting, AIM is defined as

AIM(pt) = S3(A1 · S1(pt)⊕A2 · S2(pt)⊕ b)⊕ pt

for pt ∈ {0, 1}n, where S1, S2, S3 are independent public random permutations, and A1 and A2 are fixed
n× n invertible matrices, and b is a fixed n× 1 vector over F2.

In the preimage resistance experiment, a computationally unbounded adversary A with oracle access to
Si, i = 1, 2, 3, selects and announces a point ct ∈ {0, 1}n before making queries to the underlying permuta-
tions. After making q forward and backward queries in total, A obtains a query history

Q = {(ij , xj , yj)}qj=1

2We do not claim that the algebraic S-boxes of AIM behave like random permutations. The point of the provable security of AIM is
that one cannot break the one-wayness of AIM without exploiting any particular properties of the underlying S-boxes.

20

such that Sij (xj) = yj and A’s j-th query is either Sij (xj) = yj or S−1
ij

(yj) = xj for j = 1, . . . q. We say that
A succeeds in finding a preimage of ct if its query history Q contains three queries S1(x1) = y1, S2(x2) = y2
and S3(x3) = y3 such that x1 = x2, x3 = A1 ·y1⊕A2 ·y2⊕ b and ct = y3⊕pt. In this case, we say that A wins
the preimage-finding game, breaking the one-wayness of AIM. Assuming that A is information-theoretic, we
can prove that A’s winning probability, denoted Advepre

AIM(q), is upper bounded as follows.

Advepre
AIM(q) ≤

2q

2n − q
. (4)

PROOF OF (4). Since A is information-theoretic, we can assume that A is deterministic. Furthermore, we
assume that A does not make any redundant query. We will also slightly modify A so that whenever A
makes a (forward or backward) query to S1 (resp. S2) obtaining S1(x) = y (resp. S2(x) = y), A makes
an additional forward query to S2 (resp. S1) with x for free. This additional query will not degrade A’s
preimage-finding advantage since A is free to ignore it.

An evaluation AIM(pt) = ct consists of three S-box queries. Among the three S-box queries, the lastly
asked one is called the preimage-finding query. We distinguish two cases.

Case 1. The preimage-finding query is made to either S1 or S2. Since A consecutively obtains a pair of
queries of the form S1(x) = y1 and S2(x) = y2, any preimage-finding query to either S1 or S2 should
be forward. If it is S1(x) (without loss of generality), then there should be queries S2(x) = y for some
y and S3(z) = x ⊕ ct for some z that have already been made by A. In order for S1(x) to be the
preimage-finding query, it should be the case that

S3(A1 · S1(x)⊕A2 · S2(x)⊕B) = x⊕ ct

or equivalently,
S1(x) = A−1

1 · (z ⊕ b⊕A2 · y)
which happens with probability at most 1

2n−q . Therefore, the probability of this case is upper bounded
by q

2n−q .

Case 2. The preimage-finding query is made to S3. In order to address this case, we use the notion of a wish
list, which was first introduced in [AFK+11]. Namely, whenever A makes a pair of queries S1(x) = y1
and S2(x) = y2, the evaluation

S3 : A1 · y1 ⊕A2 · y2 ⊕ b 7→ x⊕ ct

is included in the wish list W. In order for an S3-query to complete an evaluation AIM(pt) = ct for
any pt, at least one ”wish” in W should be made come true. Each evaluation in W is obtained with
probability at most 1

2n−q , and |W| ≤ q. Therefore, the probability of this case is upper bounded by
q

2n−q .

Overall, we can conclude that

Advepre
AIM(q) ≤

2q

2n − q
.

ONE-WAYNESS IN THE MULTI-USER SETTING. In the multi-user setting with u users, A is given u different
target images, where the adversarial goal is to invert any of the target images. In this setting, the adversarial
preimage finding advantage is upper bounded by

2uq

2n − q
. (5)

The proof of (5) follows the same line of argument as the single-user security proof. The difference is that
the probability that each query to either S1 or S2 becomes the preimage-finding one is upper bounded by
uq

2n−q and the size of the wish list (in the second case) is upper bounded by uq.

21

We note that the above bound does not mean that AIM provides only the birthday-bound security in the
multi-user setting. The straightforward birthday-bound attack is mitigated since AIM is based on a distinct
linear layer for every user.

6 Security Evaluation

6.1 Summary of Expected Security Strength

The AIMer signature scheme provides three levels of security: L1 (AES-128), L3 (AES-192), and L5 (AES-
256). Each security level corresponds to the security of AES in the parentheses, and it implies that we expect
AIMer with L1, L3, and L5 parameters to be as secure as AES-128, AES-192, AES-256 respectively, against
both classical and quantum attacks. In this section, we examine the concrete security of the three components
of AIMer: the non-interactive zero-knowledge proof of knowledge (NIZKPoK), the one-way function, and the
hash functions.

SECURITY OF THE NIZKPOK SYSTEM. The NIZKPoK system in AIMer is BN++ [KZ22] with slight modification
on the hash functions in use. We will look into this modification later in this section. The security of BN++ is
proved in the random oracle model, and the security of AIMer can be proved similarly in the random oracle
model.

In the quantum-accessible random oracle model (QROM), an adversary is allowed to make superposition
queries to the random oracle. The NIZKPoK system in AIMer (and BN++) follows the spirit of the Fiat-
Shamir transform [FS87], and there has been a significant amount of research on the QROM security of
the Fiat-Shamir transform [LZ19, DFMS19, DFM20, DFMS22a, DFMS22b]. The NIZKPoK system of AIMer
should be seen as a variant of the original Fiat-Shamir transform, while its security is not immediate from
the above results, and we will prove it as a future work.

The parameters N and τ are fixed based on the soundness analysis given in [KZ22]; we see that an
attacker should make at least 2λ guesses in order to produce a valid forgery without any knowledge of
the secret key. Since a single guess involves at least 3N hash or XOF calls (where a single call of hash is
more costly than AES), AIMer with our recommended sets of parameters would provide a sufficient level of
security.

SECURITY OF AIM. AIM is a one-way function, which does not follow the traditional design rationale of
symmetric primitives. It takes random strings iv and pt as input, and outputs ct = AIM(iv, pt). We expect
that finding pt∗ for a given pair (iv, ct) such that ct = AIM(iv, pt∗) is as hard as key recovery of AES with
the same security level. To support our claim, we not only prove the information-theoretic security of AIM
but also investigate its security against brute-force attack, algebraic attacks, statistical attacks, and quantum
attacks in Section 6.3.

We prove the everywhere preimage resistance [RS04] of AIM in the random permutation model. The
one-wayness is proved assuming that the S-boxes are modeled as public random permutations. Although
our choice of S-boxes is far from a random permutation, the proof itself exhibits that AIM is one-way unless
any particular properties of the underlying S-boxes are exploited.

For the algebraic attacks, we analyzed the security of AIM against XL, Gröbner basis algorithm, and
Dinur’s equation solving algorithm [Din21]. We found out that AIM is secure even if the equations generated
while running the XL algorithm are all independent. All the algebraic attacks on AIM requires more gate-
count complexity than those on AES, or requires more than 2λ memory bits. For the statistical attacks,
we bounded the weights of differential/linear trails although statistical attacks are impossible with a single
input-output pair. AIM has the minimum differential weight less than λ, while it does not link to any
collision. For the quantum attacks, we looked into Grover’s algorithm, quantum algebraic attacks, and
quantum generic attacks. The most powerful attack among them turns out to be the Grover’s algorithm
while its complexity against AIM is not lower than applied to AES with the same security level.

In the multi-user setting, we expect that finding one of pti given multiple pairs {(ivi, cti)} such that
cti = AIM(ivi, pti) for some i is hard assuming that iv’s are randomly chosen. If iv’s are arbitrarily chosen,

22

collision of cti can be connected to a forgery. For example, if an IV value iv∗ collides q times in a set of public
keys, an attacker may compute the function AIM(iv∗, pt) for c times with distinct pt’s. Then, the probability
of collision is approximately qc/2n, which implies a security degradation.

Except the risk of collision, multiple pairs {(ivi, cti)} do not lead to a strengthened attack on AIM to the
best of our knowledge. For algebraic attacks, any two sets of equations built for distinct pt’s are not compat-
ible. For statistical attacks, any two public-key pairs are not compatible to differential/linear cryptanalysis if
corresponding pt’s are distinct.

HASH FUNCTION SECURITY. The AIMer signature scheme requires a lot of calls to hash functions and ex-
tendable output functions (XOFs). All the hash functions and XOFs are based on NIST-standardized XOF
SHAKE [NIS15]. SHAKE-128 is used for the L1 parameters, and SHAKE-256 is used for the L3 and L5
parameters. All the hash functions use 2λ-bit digests of the SHAKE output.

We expect the concrete security provided by SHAKE for collision and preimage resistance as claimed in
[NIS15]. For λ = 128, 256, the preimage resistance of SHAKE-λ with k-bit digest is claimed to be min(2k, 22λ)
in the classical setting, and a cryptographic hash function with k-bit digest is generally believed to have
O(2k/2) preimage resistance in the quantum setting [Gro96]. In both cases, hash functions with 2λ-bit
digests provide λ-bit preimage resistance. For collision resistance, while a generic quantum algorithm of
finding a hash collision is of complexity O(2k/3) when the output size is k bits [BHT98], Bernstein pointed
out that the quantum hash collision algorithm has worse performance compared to classical algorithms in
practice [Ber09]. Since it is claimed that k-bit digests of SHAKE-λ has collision resistance of min(2k/2, λ)
against classical attacks, the 2λ-bit digest also allows λ-bit collision resistance against classical and quantum
attacks.

6.2 Soundness Analysis

In this section, we analyze the soundness error of the AIMer signature scheme to determine the set of
parameters (λ,N, τ). A more formal analysis is given in Section 5.1. Let τ1 and τ2 denote the number of
repetitions for which the attacker need to make correct guesses on the first challenge ϵk,j in Phase 2 and the
second challenge īk in Phase 4 in Algorithm 1, respectively. Then, it should be the case that τ = τ1 + τ2.
For i = 1, 2, let Pi be the probability that the attacker makes correct guesses for τi challenges in the i-th
challenge space.

The first challenge is sampled from the set of size 2n, so the probability of correctly guessing τ1 challenges
in the first challenge space is given as

P1 =

τ∑
k=τ1

(
τ
k

)
pk · (1− p)τ−k

where p = 2−λ. On the other hand, since the second challenge space is of size N , and the attacker needs to
make correct guesses in the remaining repetitions, one has

P2 = 1/Nτ2 = 1/Nτ−τ1 .

Overall, the attack complexity is given as

C = min
0≤τ1≤τ

(1/P1 + 1/P2).

Our parameters are set in a way such that C ≥ 2λ.

6.3 Known Attacks to AIM

6.3.1 Brute-force Attack

Although a brute-force attack on a symmetric primitive is rather trivial (compared to public key cryptosys-
tems), we estimate its gate-count complexity to compare the concrete security of AIM and AES.

23

By using addition chain exponentiation technique [Knu97], the numbers of required finite field multipli-
cations are 11, 14, and 17 for AIM-I, AIM-III, and AIM-V, respectively (see Table 6). Assuming that a single
F2n -multiplication requires n2 AND gates and n2 XOR gates, the gate-count complexity of a brute-force at-
tack is given as 2146.4, 2211.9, and 2277 for AIM-I, AIM-III, and AIM-V, respectively. It implies that a brute-force
attack on AIM is more costly than AES for each category of security strength.

6.3.2 Algebraic Attacks

Since our attack model does not allow multiple evaluations for a single instance of AIM, we do not con-
sider interpolation, higher-order differential, and cube attacks. As discussed in [KHS+22], we focus on the
Gröbner basis and the XL attacks using a single evaluation of AIM. We also consider algebraic attacks which
have been recently studied for MPC/ZK-friendly ciphers such LowMC [ARS+15] and large S-box-based ones.

HOW TO BUILD BOOLEAN SYSTEMS OF EQUATIONS FROM AIM. There are multiple ways of building a system
of equations from an evaluation of AIM. We can categorize them according to the number of (Boolean)
variables and find the optimal choice of variables to obtain a system of the lowest degree. Since ℓ ∈ {2, 3} is
recommended, we consider 4 types of systems of equations as follows.

1. Systems in n variables.

2. Systems in 2n variables.

3. Systems in 3n variables.

4. Systems in 4n variables (only for AIM-V).

Using the quadratic relation between an input and the output of each Mersenne S-box, we can establish
a system of quadratic equations in (ℓ + 1)n variables. With fewer variables, the resulting systems would
have higher degrees. The goal of this section is to find a system of equations of the lowest degree for each
type, where such systems of equations are denoted S1, S2, . . . , Squad, respectively. The optimal systems of
equations will be defined using the following variables.

- x: the input of AIM, i.e., pt

- yi: the output of Mer[ei] for i = 1, . . . , ℓ

- z: the output of Lin

The underlying ℓ+1 Mersenne S-boxes determine explicit and implicit relations between these variables.
For example, Mer[ei] implicitly determines 3n quadratic equations in x and yi, while yi (resp. x) can be
explicitly represented by a polynomial in x (resp. yi). We can also explicitly represent yi using yj for j ̸= i
or z as follows.

Mer[ei] ◦Mer[ej]
−1(yj) = yi = Mer[ei]

(
Mer[e∗](z)⊕ ct

)
.

The degree of yi with respect to z might be greater than the degree of Mer[ei] ◦Mer[e∗] due to the constant
addition, while we will ignore the effect by ct for simplicity. Table 4 shows the degrees of all the possible
explicit relations from AIM, and this table can be used to find the optimal systems of equations.

After exhaustive search, we found the optimal systems S1, S2, S3 and Squad. First, in order to obtain the
S1 systems, choose z as an n-bit variable. Then x and yi can be represented as polynomials in z; x is of degree
e∗, y1 is of degree deg(Mer[e1] ◦ Mer[e∗]), and y3 (only for AIM-V) is of degree deg(Mer[e3] ◦ Mer[e∗]) with
respect to z. Let Lin′ denote a linear function such that y2 = Lin′(y1, y3, z) (which is uniquely determined by
Lin). Then we have the following equation.(

Mer[e∗](z)⊕ ct
)2e2

=
(
Mer[e∗](z)⊕ ct

)
· Lin′

(
Mer[e1]

(
Mer[e∗](z)⊕ ct

)
,Mer[e3]

(
Mer[e∗](z)⊕ ct

)
, z
)
.

24

Relation AIM-I AIM-III AIM-V

Mer[e1] 3 5 3
Mer[e1]

−1 43 77 171
Mer[e2] 27 29 53
Mer[e2]

−1 19 53 29
Mer[e2] ◦Mer[e1]

−1 9 121 103
Mer[e1] ◦Mer[e2]

−1 57 73 87
Mer[e∗] 5 7 5
Mer[e∗]

−1 77 55 205
Mer[e1] ◦Mer[e∗] 5 7 5
Mer[e2] ◦Mer[e∗] 27 29 53
Mer[e∗]

−1 ◦Mer[e1]
−1 67 78 171

Mer[e∗]
−1 ◦Mer[e2]

−1 64 100 110

Mer[e3] - - 7
Mer[e3]

−1 - - 183
Mer[e3] ◦Mer[e1]

−1 - - 173
Mer[e3] ◦Mer[e2]

−1 - - 203
Mer[e1] ◦Mer[e3]

−1 - - 37
Mer[e2] ◦Mer[e3]

−1 - - 227
Mer[e3] ◦Mer[e∗] - - 7
Mer[e∗]

−1 ◦Mer[e3]
−1 - - 125

Table 4: Degrees of the compositions and the inverses of the Mersenne S-boxes of AIM.

Since every Mersenne S-box used in AIM is represented by 3n quadratic equations, the above system of
equations can be seen as a system of 3n (Boolean) equations of degree

e∗ +max
(
deg(Mer[e1] ◦Mer[e∗]),deg(Mer[e3] ◦Mer[e∗])

)
.

Second, in order to obtain the S2 systems, we begin with x and y2, and using y1 = Mer[e1](x) and
y3 = Mer[e3](x) (only for AIM-V), we establish the following system of equations.

x · y2 = x2e2 ,

Lin
(
Mer[e1](x), y2,Mer[e3](x)

)
· (x⊕ ct) = Lin

(
Mer[e1](x), y2,Mer[e3](x)

)2e∗
We note that 3n quadratic equations are obtained from the first equation, and 3n equations of degree
max(e1, e3) + 1 from the second one.

Third, in order to obtain the S3 system for AIM-V, we begin with x, y2 and y3, and using y1 = Mer[e1](x),
we establish the following system of equations.

x · y2 = x2e2

x · y3 = x2e3

Lin
(
Mer[e1](x), y2, y3

)
· (x⊕ ct) = Lin

(
Mer[e1](x), y2, y3

)2e∗
.

We note that 6n quadratic equations are obtained from the first and the second equations, and 3n equations
of degree e1 + 1 are from the third one.

Finally, the Squad systems are quadratic with x and all the yi’s being variables. Using the implicit relations

25

for all ℓ+ 1 S-boxes, we establish the following system of equations.

x · y1 = x2e1

x · y2 = x2e2

...

x · yℓ = x2eℓ

Lin(y1, y2, . . . , yℓ) · (x⊕ ct) = Lin(y1, y2, . . . , yℓ)
2e∗ ,

which can be extended to a system of 3(ℓ+ 1)n quadratic equations in (ℓ+ 1)n variables.

Scheme Name #Var Variables (#Eq, Deg) Gröbner Basis XL Dinur [Din21]

dreg Time D Time Time Memory

AIM-I S1 n z (3n, 10) 51 300.8 52 244.8 137.3 138.3
S2 2n x, y2 (3n, 2) + (3n, 4) 22 214.9 14 150.4 248.3 253.7

Squad 3n x, y1, y2 (9n, 2) 20 222.8 12 148.0 330.1 346.3

AIM-III S1 n z (3n, 14) 82 474.0 84 375.3 202.1 203.3
S2 2n x, y2 (3n, 2) + (3n, 6) 31 310.6 18 203.0 377.5 382.9

Squad 3n x, y1, y2 (9n, 2) 27 310.8 15 194.1 487.7 512.1

AIM-V S1 n z (3n, 12) 100 601.1 101 489.7 264.1 265.9
S2 2n x, y2 (3n, 2) + (3n, 8) 40 406.2 26 289.5 506.3 511.7
S3 3n x, y2, y3 (6n, 2) + (3n, 4) 47 510.4 20 260.6 716.1 732.3

Squad 4n x, y1, y2, y3 (12n, 2) 45 530.3 19 266.1 854.4 897.7

Table 5: Optimal systems of equations and their security against algebraic attacks. (#Eq,Deg) = (a, b) means
that the system contains a equations of degree b. The degree of regularity (resp. the target degree) of the
system is denoted dreg (resp. D). The time and the memory complexities are estimated in bits.

Table 5 summarizes the number of variables, the number of equations, and their degrees for the optimal
systems of equations, and their security against the Gröbner basis attack, the XL attack, and Dinur’s algorithm
based on the polynomial method [Din21].

GRÖBNER BASIS ATTACK. The Gröbner basis attack is to solve a system of equations by computing its Gröbner
basis. The complexity of Gröbner basis computation can be estimated using the degree of regularity of the
system of equations [BFS04]. Consider a system of m equations in n variables {fi}mi=1. Let di denote the
degree of fi for i = 1, 2, . . . ,m. If the system of equations is over-defined, i.e., m > n, then the degree of
regularity can be estimated by the smallest of the degrees of the terms with non-positive coefficients for the
following Hilbert series under the semi-regular assumption [Frö85].

HS(z) =
1

(1− z)n

m∏
i=1

(1− zdi).

Given the degree of regularity dreg, the complexity of computing a Gröbner basis of the system is known to
be

O

((
n+ dreg
dreg

)ω)
where ω is the linear algebra constant.3 See [KHS+22] for the details.

3It means that the complexity matrix multiplication of two n× n matrices is O(nω). We will conservatively set this constant to be 2
in this document.

26

For AIM, the system S2 turns out to permit the most efficient computation of a Gröbner basis; the corre-
sponding Hilbert series is given as

(1− z2)5n(1− zd)3n

(1− z)2n

including the field equations of degree 2 in all variables in S2, where d = max(e1, e3) + 1. The estimated
degrees of regularity and the corresponding time complexities of computing Gröbner bases are given in
Table 5 for AIM-I, III, V.

XL ATTACK. The XL algorithm, proposed by Courtois et al. [CKPS00], can be viewed as a generalization
of the relinearization attack [KS99]. For a system of m quadratic equations in n variables over F2, the XL
algorithm extends the system of equations by multiplying all the monomials of degree at most D − 2 for
some D > 2 to obtain a larger number of linearly independent equations than the number of monomials
appearing in the system. Since the number of monomials of degree at most D− 2 is

∑D−2
i=1

(
n
i

)
, the resulting

system consists of (
∑D−2

i=0

(
n
i

)
)m equations of degree at most D with at most

∑D
i=1

(
n
i

)
monomials of degree

at most D. When the number of equations equals the number of monomials as D grows, one can solve the
extended system of equations by linearization.

The complexity of the XL attack depends on the number of linearly independent equations obtained
from the XL algorithm, while we can loosely upper bound the number of linearly independent equations
by (

∑D−2
i=0

(
n
i

)
)m. Under the assumption that all the equations obtained from the XL algorithm are linearly

independent, which is in favor of the attacker, we can search for the (smallest) degree D such that(
D−2∑
i=0

(
n

i

))
m ≥ TD (6)

where TD denotes the exact number of monomials appearing in the extended system of equations, which
is upper bounded by

∑D
i=1

(
n
i

)
. Once D is fixed, the extended system of equations can be solved by trivial

linearization whose time complexity is given as O (Tω
D) .

For AIM-I and III, the system Squad permits the most efficient XL attack. For the system Squad, the target
degree D is determined as the smallest one satisfying(

D−2∑
i=0

(
3n

i

))
9n ≥ TD

where the number of monomials TD is assumed to be
∑D

i=1

(
3n
i

)
.

On the other hand, the system S3 is the most efficient system for AIM-V. We note that more careful
analysis is required for the other systems of equations of different degrees with a particular structure. For
example, the S2 system of AIM-V consists of two types of equations of different degrees: 3n equations of
degree 2, and 3n equations of degree d, all in x and y2, where d = max(e1, e3) + 1. We observe that each
type of equations have 2n solutions since y2 is uniquely determined for each x, and this property makes one
to compute the target degree in a different way.

With target degree D, the extended system of equations for S2 is represented as

Mv =

 M2

M∗

v = c

where v is a vector of monomials of degree at most D in x and y2, M2 (resp. M∗) is the matrix whose
rows are the coefficients of the extended system from Mer[e2] (resp. Mer[e∗]), and c is the corresponding
constant vector. The number of rows of M2 is greater than that of M∗ since the original system from Mer[e2]
has a lower degree than Mer[e∗]. In order for the XL attack to work with the target degree D, the matrix M

27

should have full rank and the number of rows should not be smaller than the number of columns, so that v
is uniquely determined.

On the other hand, the submatrix M2 itself cannot have full rank since M2v = c should have 2n solutions
(one for each x) as its original system from Mer[e2] does. More precisely, the nullity of M2 should not be
smaller than

∑D
j=1

(
n
j

)
. Otherwise, it implies that there is a linear relation on the monomials consisting of

only x variables, for example, ∑
a

cax
a = 0

where xa =
∏n

i=1 x
ai
i for x = (x1, . . . , xn) and a = (a1, . . . , an) such that

∑n
i=1 ai ≤ D, and ca is a Boolean

constant. This relation cannot hold for all x, which is a contradiction. Then, for M to have full rank, the
rank of M∗ should be at least the nullity of M2, yielding a necessary condition that the number of rows of M∗
should be at least

∑D
j=1

(
n
j

)
provided that M has no nonzero column.4 As the number of rows of M∗ is the

number of equations in the extended system from Mer[e∗], the target degree D should satisfy the following.

3n ·
D−d∑
j=0

(
2n

j

)
≥

D∑
j=1

(
n

j

)
. (7)

For the S2 system of AIM-III and AIM-V, the target degree is determined by the minimum D satisfying
(7), whereas it is not for AIM-I. The difference comes from the small value of d = 4 of AIM-I compared to
d = 6 and d = 8 of AIM-III and AIM-V, respectively. A similar argument also holds for the S3 system of AIM-V,
but it does not determine the target degree either due to the small value of d = 4 in S3.

Table 5 shows the target degree and corresponding attack complexity for each system of AIM. We note
that the time complexity of the XL attack has been estimated under the strong assumption that all the
equations obtained by the XL algorithm are linearly independent, which might not be the case in general.
Even with this strong assumption, we see that AIM is secure against the XL attack for all the parameter sets.

ALGEBRAIC ATTACKS ON SYMMETRIC PRIMITIVES WITH LARGE S-BOX. Several symmetric primitives based on
large fields have been proposed with applications to zero-knowledge proof systems such as MiMC [AGR+16],
Starkad/Poseidon [GKR+21], and Jarvis [AD18]. Some of them have been analyzed with algebraic attacks
exploiting the property that their linear layers are represented as polynomials of low degrees over large
fields [ACG+19, EGL+20]. However, AIM uses a randomized linear layer which is expected to have degree
2n−1 over F2n . For this reason, the above attacks would not apply to AIM.

APPLICABILITY OF ALGEBRAIC ATTACKS ON LOWMC. LowMC [ARS+15] is the first FHE/MPC-friendly block
cipher, and one of its applications is to the Picnic signature scheme. LowMC has been analyzed in the context
of the signature scheme, where an adversary is given only a single plaintext-ciphertext pair. In this setting,
a number of algebraic attacks have been proposed [BBDV20, BBVY21, LIM21b, Din21, LMSI22, BBCV22],
mainly based on two algebraic techniques: linearization by guessing, and the polynomial method [Bei93].

The main idea of linearization-based algebraic attacks on LowMC, first proposed in [BBDV20], is to
linearize the underlying S-boxes by guessing a single output bit for each S-box evaluation. In this way, one
obtains a system of low-degree polynomial equations at the cost of guessing a small number of bits, and it can
be solved efficiently. This linearization technique has been further extended [BBVY21, LIM21b]. However,
this type of attacks work only when the underlying S-boxes are of small size. When it comes to AIM, its large
S-boxes yield dense implicit equations over F2, which makes the guess-and-linearization infeasible.

The polynomial method [Bei93] has been studied in complexity theory, and later found its application
to the design of algorithms for certain problems [Wil14], one of which is to solve a system of polynomial
equations over a finite field. The resulting algorithm is known as the first algorithm that achieves expo-
nential speedup over the exhaustive search even in the worst case [LPT+17]. Recently, Dinur [Din21]
proposed a generic equation-solving algorithm based on the polynomial method with time complexity O(n2 ·

4This condition is satisfied by the assumption that all monomials of degrees up to D appear in the extended system, which can be
assumed in the case of AIM.

28

2(1−1/(2.7d))n) where n is the number of variables and d is the degree of the system. One arguable issue of
this algorithm is its high memory complexity of O(n2 · 2(1−1/(1.35d))n), making it infeasible in practice. For
AIM, the memory complexity required by Dinur’s algorithm exceeds the security level, i.e., more than 2λ bits
of memory is required for each level of security λ. Table 5 shows the time and the memory complexity of
the Dinur’s method for each system of AIM. Subsequent works [LMSI22, BBCV22] proposed to reduce the
memory complexity of the algorithm at the cost of slightly increased time complexity, while these variants
do not apply to AIM since they all follow the guess-and-linearization strategy.

6.3.3 Differential and Linear Cryptanalysis

An adversary is allowed to evaluate AIM with an arbitrary input pair (pt, iv) in an offline manner. However,
such an evaluation is independent of the actual secret key pt∗, so the adversary is not able to collect a suffi-
cient amount of statistical data which are related to pt∗. Furthermore, the linear layer of AIM is generated
independently at random for every user. For this reason, we believe that our construction is secure against
any type of statistical attacks including (impossible) differential, boomerang, and integral attacks.

In the multi-target scenario, an adversary has no information on which users have the same secret. Even
for multiple users with the same iv, statistical attacks would not be feasible since all the inputs and their
differences are unknown to the adversary. That said, to prevent any unexpected variant of differential and
linear cryptanalysis, we summarize a lower bound of the weight of differential and correlation trails in this
section.

DIFFERENTIAL CRYPTANALYSIS. Since AIM is a key-less primitive, we will estimate the security of AIM against
differential cryptanalysis by lower bounding the weight of a differential trail (for example, as in [DVA12]).

Given a function f : {0, 1}n → {0, 1}m, the weight of a differential (∆x,∆y) ∈ {0, 1}n×{0, 1}m is defined
by

wd(∆x
f−→ ∆y)

def
= n− log2 |{x ∈ {0, 1}n : f(x⊕∆x)⊕ f(x) = ∆y}| .

The weight is not defined if there is no x such that f(x⊕∆x)⊕ f(x) = ∆y. Otherwise, we say that ∆x and
∆y are compatible.

A differential trail is the composition of compatible differentials. For AIM, a differential trail from an
input to the output (ignoring the feed-forward) can be represented as follows.

Q = ∆0
Mer[e1,...,eℓ]−−−−−−−−→ ∆1

Lin−−→ ∆2
Mer[e∗]−−−−→ ∆3.

Then the weight of the differential trail Q is defined as

wd(Q)
def
=

2∑
i=0

wd(∆i → ∆i+1).

The weight of a Mersenne S-box is determined by the number of solutions to Mer[e](x⊕∆x)⊕Mer[e](x) = ∆y,
which is a polynomial equation of degree 2e−2. Therefore, there are at most 2e−2 solutions to this equation,
which implies for ∆x ̸= 0,

wd(∆x
Mer[e]−−−−→ ∆y) ≥ n− log2(2

e − 2) ≥ n− e.

Then we have

wd(Q) =
∑
i

wd(∆i → ∆i+1)

≥ max
1≤i≤ℓ

(n− ei) = n− e1.

So, for any differential trail Q, wd(Q) is close to λ with λ = n. We note that a trail Q such that wd(Q) < λ
never incur a collision, and the existence of such trail does not imply the feasibility of differential crypt-
analysis since an adversary is not given a large enough number of plaintext-ciphertext pairs to mount the
analysis.

29

DIFFERENCE ENUMERATION ATTACK. Recently, difference enumeration attacks to LowMC have been proposed
[RST18, LIM21a, LSW+22], which require only a couple of chosen plaintext-ciphertext pairs. In such attacks,
an adversary enumerates all possible input and output differences and tries to find a collision and recover the
unknown key. This type of attacks work for LowMC since it is based on small S-boxes. So one can easily find
all possible differentials in LowMC. On the other hand, AIM is based on n-bit S-boxes, making it infeasible
to enumerate all possible differences of each S-box.

LINEAR CRYPTANALYSIS. In contrast to differential cryptanalysis, security against linear cryptanalysis has
been rarely evaluated for key-less primitives since its goal is to retrieve the secret key, not finding a collision
or a second-preimage. That said, we lower bound the weight of a correlation trail for completeness in a
similar way to differential cryptanalysis.

Given a function f : {0, 1}n → {0, 1}m, the weight of a correlation (α, β) ∈ {0, 1}n×{0, 1}m is defined by

wl(α
f−→ β)

def
= n− log2

∣∣2 ∣∣{x ∈ {0, 1}n : α⊤x = β⊤f(x)
}∣∣− 2n

∣∣ .
The weight is not defined if there are exactly 2n−1 values for x such that α⊤x = β⊤f(x). Otherwise, we say
that α and β are compatible.

A correlation trail is the composition of compatible correlations. For AIM, a correlation trail from an
input to the output (ignoring the feed-forward) can be represented as follows.

Q = α0
Mer[e1,...,eℓ]−−−−−−−−→ α1

Lin−−→ α2
Mer[e∗]−−−−→ α3.

Then the weight of the correlation trail Q is defined as

wl(Q)
def
=

2∑
i=0

wl(αi → αi+1).

When d is not a power-of-2 and f(x) = xd is invertible over F2n , one has the following generic bound [KSW19].∣∣2 ∣∣{x : α⊤x = β⊤f(x)
}∣∣− 2n

∣∣ ≤ (d− 1)2n/2

for any compatible correlation (α, β). Therefore the weight of a correlation trail of a Mersenne S-box is lower
bounded by wl(Q) ≥ n

2 − e. Then we have

wl(Q) =
∑
i

wl(αi → αi+1)

≥ max
1≤i≤ℓ

(n/2− ei) + wl(α2 → α3)

≥ max
1≤i≤ℓ

(n/2− ei) + (n/2− e∗)

= n− e1 − e∗.

As Lin is a (full-rank) compression function, α2 cannot be the zero mask. Since linear cryptanalysis requires
22wl(Q) plaintext-ciphertext pairs, AIM would be secure against linear cryptanalysis if

2(n− e1 − e∗) ≥ λ

which is the case for AIM. We emphasize again that linear cryptanalysis is not practically relevant in our
setting since AIM does not use any secret key, while all the inputs are kept secret and every user is assigned
a distinct linear layer.

6.3.4 Quantum Attacks

Quantum attacks are classified into two types according to the attack model. In the Q1 model, an adversary
is allowed to use quantum computation without making any quantum query, while in the Q2 model, both
quantum computation and quantum queries are allowed [Zha12].

30

As a generic algorithm for exhaustive key search, Grover’s algorithm has been known to give quadratic
speedup compared to the classical brute-force attack [Gro96]. In this section, we investigate if any special-
ized quantum algorithm targeted at AIM might possibly achieve better efficiency than Grover’s algorithm in
the Q1 model.

COST OF GROVER’S ALGORITHM. We consider the cost metric of NIST [NIS22], which is defined as the
product of the quantum circuit size and the quantum circuit depth with respect to Clifford and T gates.

Given a one-way function f taking n bits as input, the circuit size and the depth of the preimage-finding
attack on f using Grover’s algorithm is estimated as follows [JBK+22].

(Grover’s circuit size/depth) = (size/depth of f)× 2×
⌊π
4

√
2n
⌋
.

The quantum circuit size and the depth of AIM can be computed in a modular manner. AIM is based on
three types of operations: finite field multiplication, finite field squaring, and random matrix multiplication.
The cost of finite field multiplication is estimated based on the state-of-the-art result of Toffoli-depth one im-
plementation of finite field multiplication [JKL+22], while we ignore the cost of modular reduction in finite
field multiplication and finite field squaring since they are far more efficient than other operations [MCT17].
For random matrix multiplication and Toffoli gate decomposition, we refer to the recent implementation of
LowMC [JBK+22] and the implementation of [AMMR13] (using 8 Clifford gates and 7 T gates with depth
8), respectively.

Table 6 summarizes the total number of operations and the number of operations executed in serial (depth)
for each type of operation where all the S-boxes are implemented with addition chain exponentiation by each
shortest chain (see Section 8.1 for the detail). Based on these numbers and the above references, the total
cost of Grover’s algorithm on AIM is also estimated (in log) for each level of security. We see that AIM-I,
AIM-III and AIM-V satisfy the security level I, III and V, respectively.5 Recently, Jang et al. [JKO+23] analyzed
the cost of the Grover’s algorithm on AIM-I, and the cost is given as 2160.11 which implies the security level
L1.

Scheme
#Operations, Depth Total

Cost
Level of
SecurityFF Mul FF Square Mat Mul

AIM-I 11, 9 32, 30 1, 1 159.79 I (≥157)
AIM-III 14, 11 38, 34 1, 1 225.22 III (≥221)
AIM-V 17, 11 64, 56 1, 1 291.74 V (≥285)

Table 6: The number of operations and the depth for each type of operation used in AIM, and the total cost
of Grover’s algorithm on AIM for each level of security.

QUANTUM ALGEBRAIC ATTACK. When an algebraic root-finding algorithm works over a small field, the guess-
and-determine strategy might be effectively combined with Grover’s algorithm, reducing the overall time
complexity.

The GroverXL algorithm [BY18] is a quantum version of the FXL algorithm [CKPS00], which solves a
system of multivariate quadratic equations over a finite field. A single evaluation of AIM can be represented
by Boolean quadratic equations using intermediate variables. Precisely, we have a system of 4(ℓ + 1)n
quadratic equations (including field equations) in (ℓ + 1)n variables. For this system of equations, the time
complexity of GroverXL is given as 2(0.3496+o(1))(ℓ+1)n when using ω = 2, which is worse than Grover’s
algorithm.

The QuantumBooleanSolve algorithm [FHK+17] is a quantum version of the BooleanSolve algorithm
[BFSS13], which solves a system of Boolean quadratic equations. In [FHK+17], its time complexity has
been analyzed only for a system of equations with the same number of variables and equations. A single

5In the call for proposals by NIST [NIS22], the security level I, III, V are defined as the strength of AES-128, AES-192, AES-256,
respectively, against Grover’s algorithm.

31

evaluation of AIM can be represented by 4(ℓ+1)n quadratic equations in (ℓ+1)n variables. In this case, the
complexity of QuantumBooleanSolve is given as O(20.462(ℓ+1)n), which is worse than Grover’s algorithm.

In contrast to the algorithms discussed above, Chen and Gao [CG22] proposed a quantum algorithm
to solve a system of multivariate equations using the Harrow-Hassidim-Lloyd (HHL) algorithm [HHL09]
that solves a sparse system of linear equations with exponential speedup. In brief, Chen and Gao’s algorithm
solves a system of linear equations from the Macaulay matrix by the HHL algorithm. It has been claimed that
this algorithm enjoys exponential speedup for a certain set of parameters. When applied to AIM, the ham-
ming weight of the secret key should be smaller than O(log n) to achieve exponential speedup [DGG+21].
Otherwise, this algorithm is slower than Grover’s algorithm [DGG+21].

QUANTUM GENERIC ATTACK. A generic attack does not use any particular property of the underlying com-
ponents (e.g., S-boxes for AIM). The underlying smaller primitives are typically modeled as public random
permutations or functions. The Even-Mansour cipher [EM97], the FX-construction [KR01] and a Feistel ci-
pher [LR86] have been analyzed in the classic and generic attack model. As their quantum analogues, the
Even-Mansour cipher [KM12, BHNP+19], the FX-construction [LM17, HS18] and a Feistel cipher [KM10]
have been analyzed in the Q1 or Q2 model. Most of these attacks can be seen as a combination of Simon’s
period finding algorithm [Sim97] (in the Q2 model), and Grover’s/offline Simon’s algorithms [BHNP+19]
(in the Q1 model). Since Simon’s period finding algorithm requires multiple queries to a keyed construc-
tion (which is not the case for AIM), we believe that the above attacks do not apply to AIM in a straightfor-
ward manner.

6.4 Attacks in the Multi-User Setting

The analysis of the multi-user security of a cryptographic scheme is crucial, as most cryptographic schemes
are used by multiple users in practice. In this setting, an adversary is given multiple users’ instances (e.g.,
public keys and corresponding signatures), and it aims to attack one of them.

MULTI-USER EUF-CMA SECURITY. Since the EUF-CMA security is a fundamental requirement for digital
signatures, it is natural to consider Multi-User EUF-CMA (MU-EUF-CMA) security in the multi-user setting.
Here, the adversary is given multiple signing oracles (corresponding to distinct public keys), and tries to
generate a valid forgery under one of given public keys through a chosen message attack. Thanks to the
generic reduction from EUF-CMA security to MU-EUF-CMA security [GMLS02], AIMer provides MU-EUF-
CMA security with losses that are (at most) linear in the number of users. In addition, the concrete design
of AIMer takes into account multi-user attacks, or more generally, multi-target attacks.

MULTI-TARGET ATTACKS. In the multi-target attack, an adversary is given a multiple number of targets, for
example, the outputs of a cryptosystem computed with different secret keys. This is inherently possible in
the multi-user setting, and even in a single-user setting, when multiple targets are available to the adversary.

There are many examples of successful multi-target attacks. In [DN19], Dinur and Nadler proposed an
effective multi-target attack on Picnic version 1.0. The main idea is that an attacker collects multiple outputs
generated from unknown seeds of the unopened party in the MPCitH protocol, compares them to the outputs
from guessed ones, trying to find a collision using a certain efficient algorithm such as hash tables to recover
the seed of the unopened party. Once the seed is revealed, the secret key is also recovered from its additive
shares. The above attack is mitigated in the next version of the Picnic signature by using a random salt and
domain seperation prefixes as an additional input of underlying hash functions and XOFs.

Multi-target attacks have also been proposed on hash-based signature schemes [BXKSN21, YAG21]. As
many hash outputs are used as secret keys of the underlying one-time signature (OTS), the seed guessing
technique also works in hash-based signatures, and the recovered seed reveals the corresponding secret
keys. It can be mitigated by domain separation of the hash functions according to the position of the OTS
instances. Another multi-target attack on SPHINCS+ of the L5 parameter set exploits the small state size of
SHA-256 [PKC22], but it is not applicable when SHAKE256 is used as the underlying hash function.

When it comes to AIMer, the use of iv mitigates multi-target attacks. AIM generates its linear layer from
a random iv, so not only each user has a different secret key (i.e., the input of AIM), but also the functions

32

themselves are all different. Moreover, similarly to the mitigation techniques described above, a random 2λ-
bit salt is used, and domain separation is applied to each hash function and the XOF used in the signature.
It would prevent any type of efficient multi-target preimage search attack, such as time/memory/data trade-
off attacks [BS00] and parallel quantum multi-target preimage attacks [BB18]. We refer to Section 7.2 for
detailed specifications of the hash functions.

KEY SUBSTITUTION ATTACKS. In a key substitution attack (KSA), an adversary is given a signature σA under
a public key pkA. Then the adversary tries to produce a fake public key pkE such that σA is also a valid
signature under pkE . This type of attacks were first considered in [BWM99], under the name unknown
key-share attacks, and later formalized in [MS04]. Although the possibility of KSA does not violate the MU-
EUF-CMA security, it may need to be considered in practical applications of digital signatures, in particular,
when non-repudation property is required [KM13]. Fortunately, the security against KSAs can be achieved
in the generic way using the following theorem.

Theorem 3 (Theorem 6 in [MS04]). Let Π = (Gen,Sign,Verify) be an EUF-CMA secure digital signature
scheme. Then, Π′ = (Gen,Sign′,Verify) is a secure digital signature scheme against KSAs with

Sign′ = Sign(sk,Encode(pk,m))

where Encode is an unambiguous encoding scheme of public keys and messages.

In AIMer, a (fixed length) public key is always appended to the message before hashing, so we believe that
AIMer is secure against KSAs.

6.5 Side-Channel Attacks

The key generation of AIMer is executed in constant time. The signing algorithm is not executed in constant
time while the timing difference originates only from public information. When N is not a power-of-two, the
time that it takes to construct seedsk in Algorithm 1 (Line 33) depends on the undisclosed index īk which is
public information. Therefore, we conclude that the secret information of AIMer does not affect the running
time of AIMer.

Many masking techniques to thwart side-channel attacks follow the form of secret-sharing [ISW03,
BBP+17, KR19]. As AIMer generates a signature by simulating secret-shared computation of an one-way
function, it seemingly provides a natural mitigation to some side-channel attacks. Nevertheless, we expect
that AIMer will be vulnerable to power [KJJ99] attacks, electromagnetic radiation (EM) attacks [QS01] and
fault-injection attacks [BDL97] without any protection in its implementation. Recently, machine learning
has also been combined with a number of existing side-channel attacks on conventional/post-quantum en-
cryption schemes [DGD+19, WD20, DNG22]. We will prepare appropriate countermeasures against these
attacks in the future.

7 Specification of the AIMer Signature Scheme

7.1 Field Representation

In AIM, fields F2128 , F2192 , and F2256 are used for AIM-I, AIM-III, and AIM-V, respectively. Each field is defined
by F2[X]/(f(X)) with a primitive polynomial f(X). The primitive polynomials of low weights have been
chosen for efficient implementation as follows.

• AIM-I: f(X) = X128 +X7 +X2 +X + 1,

• AIM-III: f(X) = X192 +X7 +X2 +X + 1,

• AIM-V: f(X) = X256 +X10 +X5 +X2 + 1.

33

Prefix Description Functions
0x01 Computing challenge hash in phase 2. h 1 commitment

0x02 Computing challenge hash in phase 4. h 2 commitment

0x03 Computing parties’ seeds as binary tree leaves. expand seed, expand seed x4

0x04 Committing to parties’ seeds and generating tapes. commit to seed and expand tape,
commit to seed and expand tape x4

- Expanding hash in phase 2. h 1 expand

- Expanding hash in phase 4. h 2 expand

- Generating affine layer. generate matrices L and U

Table 7: The prefix of each types of input in SHAKE.

Let x[i] denote the i-th coefficient bit of x ∈ F2n for i = 0, . . . , n − 1, where the most (resp. least)
significant bit is x[0] (resp. x[n− 1]). A field element is also written in hexadecimal format. For example,
we will write a hexadecimal number 0xA0 0 . . . 0︸ ︷︷ ︸

28

01 in F2128 to denote x ∈ F2128 such that x[127] = x[125] =

x[0] = 1 and x[i] = 0 for the other indices i, which corresponds to X127 +X125 + 1 as a polynomial.

7.2 Hash Functions and Extendable-Output Functions

All the hash functions in AIMer are based on SHAKE128 or SHAKE256 [NIS15]. We use SHAKE128 with
256-bit outputs for n = 128 and SHAKE256 with 384 and 512-bit outputs for n = 192, 256, respectively.
As SHAKE supports arbitrary length of outputs, the extendable-output functions (XOFs) are also based on
SHAKE. We use SHAKE128 for n = 128 and SHAKE256 for n = 192, 256 in a similar manner to hash
functions. We summarize all the hash functions and XOFs in Table 7.

As the SHAKE implementation supports parallel execution of four instances, we computed them in
batches of four if it is possible to compute the hashes in parallel, such as expanding parties’ seeds as bi-
nary tree leaves (expand seed x4) and committing to parties’ seeds and generating tapes (commit to seed

and expand tape x4).
When the SHAKE hash functions are used for different types of input, we separated the hash functions by

adding 1-byte prefix in each input to prevent hash collisions, except functions h 1 expand, h 2 expand, and
generate matrices L and U.

The function h 1 expand (resp. h 2 expand) is a function expanding hash values in Phase 2 (resp. Phase
4). The domain separation is not applied to h 1 expand (resp. h 2 expand) because the input of the hash
function is a hash digest derived from h 1 commitment (resp. h 2 commitment), which is already hashed by
a domain-separated function.

In the function generate matrices L and U, the input to the hash function is an iv of size n. On the
other hand, the input to the other hash functions is at least 3n bits or longer. Therefore the input to the hash
function in the generate matrices L and U function would not collide with any input to the hash functions
used in the other functions. For this reason, domain separation is not applied to the generate matrices L

and U function.
The functions hash init and hash init x4 are used for hash functions with no prefix, and the functions

hash init prefix and hash init prefix x4 are used for hash functions with 1-byte prefix.

7.3 Key Generation

Key generation is executed via a function aimer keygen. First, the input of AIM pt, and the initial vector
iv are randomly chosen. Then the outputs of AIM ct is determined by ct = AIM(iv, pt). The input pt is the
secret key of AIMer and (iv, ct) is the corresponding public key.

The affine layer in AIM consists of an n× ℓn binary matrix A and a vector b of size n, derived from iv. The
matrix A = [A1| . . . |Aℓ] is composed of ℓ invertible matrices Ai. Each invertible matrix Ai = Li × Ui is obtained

34

by multiplying an n× n lower triangular matrix Li and an n× n upper triangular matrix Ui where an lower
triangular matrix L (resp. upper triangular matrix U) is a square matrix in which all the entries above (resp.
below) the main diagonal are zero. In matrix L (resp. U), we say that L[i][j] (resp. U[i][j]) is a fixed bit if
i ≤ j (resp. i ≥ j) and L[i][j] (resp. U[i][j]) is a free bit if i > j (resp. i < j). In summary, L is of the form

L[i][j] =


1 if i = j,

0 if i < j,

0 or 1 if i > j,

and U is of the form

U[i][j] =


1 if i = j,

0 or 1 if i < j,

0 if i > j.

XOF is initialized with the initial vector iv, and the free bits in each matrices and the vector b are deter-
mined by the outputs of the XOF. The procedure to generate the lower triangular matrix L and the upper
triangular matrix U is described in Algorithm 6 and 7, respectively. In the pseudocodes, XOF.squeeze(t) de-
notes a t-byte sequence squeezed from the XOF. After generating L1, U1, . . . , Lℓ, Uℓ in the order as presented,
b is generated by b ← XOF.squeeze(n/8) in little endian order. Note that XOF is stateful, as it is initialized
by iv and maintains its state throughout the generation of the matrices and the vector.

The matrices and the vector are generated from the function generate matrices L and U. In this func-
tion, matrix A corresponds to L1, U1, . . . , Lℓ, Uℓ. Since each matrix Ai is multiplied by the vector Mer[ei](pt)
only once during key generation, Ai ·Mer[ei](pt) is computed in the order of Li · (Ui ·Mer[ei](pt)).

Algorithm 6: Algorithm to generate the lower triangular matrix L:

1 for each i ∈ [n] do
2 for each j ∈ [n] do
3 if i < j then
4 L[i][j] = 0.

5 if i = j then
6 L[i][j] = 1.

7 for each j ∈ [n] do
8 for each i ∈ [n/8] do
9 if There is a free bit in L[8i : 8i+ 7][j] then

10 x← XOF.squeeze(1).
11 for each t ∈ [8] do
12 if L[8i+ t][j] is a free bit then
13 L[8i+ t][j]← (t+ 1)-th least significant bit in x.

7.4 Signature Generation

Input: Signer’s key pair (pk = (iv, ct), sk = pt), msg as a byte array to be signed.

Output: Signature σ on msg as a byte array.

// Phase 1

35

Algorithm 7: Algorithm to generate the upper triangular matrix U:

1 for each i ∈ [n] do
2 for each j ∈ [n] do
3 if i > j then
4 U[i][j] = 0.

5 if i = j then
6 U[i][j] = 1.

7 for each j ∈ [n] do
8 for each i ∈ [n/8] do
9 if There is a free bit in U[8i : 8i+ 7][j] then

10 x← XOF.squeeze(1).
11 for each t ∈ [8] do
12 if U[8i+ t][j] is a free bit then
13 U[8i+ t][j]← (t+ 1)-th least significant bit in x.

1. Declare a list of commitments party seed commitments[τ][N] (byte arrays, each of length 2n bits), a
list of random tapes random tapes[τ][N] (each of length n+ ℓn+ n+ n bits), and a 2n-bit value salt.

2. Generate the affine layer of AIM; (matrix A, vector b)← generate matrix LU(iv).

3. Compute outputs of the first ℓ S-boxes of AIM; sbox outputs[ℓ]← compute sbox outputs(pt).

4. Sample a 2n-bit random salt salt.

5. For each parallel repetition k from 0 to τ − 1:

(a) Sample a n-bit random master seed.

(b) Generate seeds of the parties from the master seed;

seed trees[k]← make seed tree(master seed, salt,N, k)

(c) For each party i from 0 to N − 1, commit to the party’s seed and expand tape after committing;

(party seed commitments[k][i], random tapes[k][i])

← commit to seed and expand tape(get leaf(seed trees[k], salt, k, i)).

6. Declare lists of finite field elements shared x[τ][N][ℓ+ 1], shared z[τ][N][ℓ+ 1], shared t[τ][N][ℓ],
shared dot a[τ][N], shared dot c[τ][N], and a list of byte arrays shared pt[τ][N] (each of length n
bits).

7. For each parallel repetition k from 0 to τ − 1:

(a) Zero-initialize the adjusting value ∆pt; proof[k].pt delta← 0.

(b) For each party i from 0 to N − 1:

i. Sample the tape; shared pt[k][i]← random tapes[k][i][0:n−1].
ii. proof[k].pt delta← proof[k].pt delta⊕ shared pt[k][i].

(c) Compute the difference; proof[k].pt delta← proof[k].pt delta⊕ pt.

(d) Adjust the first share; first pt share← shared pt[k][0]⊕ proof[k].pt delta.

36

(e) Zero-initialize the adjusting values ∆z, which are proof[k].z delta[0], . . . , proof[k].z delta[ℓ− 1].

(f) For each party i from 0 to N − 1:

i. For each AIM S-Box index j from 0 to ℓ− 1:
A. Sample the tape; shared t[k][i][j]← random tapes[k][i][jn:(j+1)n−1].
B. proof[k].z delta[j]← proof[k].z delta[j]⊕ shared t[k][i][j].

(g) For each AIM S-Box index j from 0 to ℓ− 1:

i. proof[k].z delta[j]← proof[k].z delta[j]⊕ sbox outputs[j].
ii. Adjust the first shares; shared t[k][0][j]← shared t[k][0][j]⊕ proof[k].z delta[j].

(h) Compute MPC multiplication triples described in Section 4.2, Step 3 of Phase 1;
(shared z[k], shared x[k])← aim mpc(shared pt[k], ct, matrix A, vector b, shared t[k]).
The details is in Section 7.6.5.

8. For each parallel repetition k from 0 to τ − 1:

(a) Initialize a field element a as zero.

(b) Zero-initialize the adjusting value ∆c; proof[k].c delta← 0.

(c) For each party i from 0 to N − 1:

i. a share← a share⊕ random tapes[k][i][(ℓ+1)n:(ℓ+2)n−1].
ii. shared dot c[k][i]← random tapes[k][i][(ℓ+2)n:(ℓ+3)n−1].

iii. proof[k].c delta← proof[k].c delta⊕ shared dot c[k][i].

(d) a← a× pt.

(e) proof[k].c delta← a⊕ proof[k].c delta.

(f) shared dot c[k][0]← shared dot c[k][0]⊕ proof[k].c delta.

// Phase 2

9. Declare a list of challenge values epsilons[τ][ℓ+ 1].

10. Compute the first challenge hash; h 1← h 1 commitment() as described in Section 7.6.3 with input

0x01 ∥ msg ∥ pk ∥ salt ∥ party seed commitments ∥ proof.pt delta ∥ proof.z delta ∥ proof.c delta.

11. Expand the challenge from the hash; epsilons← h 1 expand(h 1).

// Phase 3

12. Declare lists of field elements alpha shares[τ][N] and v shares[τ][N].

13. For each parallel repetition k from 0 to τ − 1:

(a) Initialize a field element alpha as zero.

(b) For each party i from 0 to N − 1:

i. alpha shares[k][i]← shared x[k][i][0]× epsilons[k][0]⊕ shared dot a[k][i] using the mul-
tiplication over F2λ .

ii. For each AIM S-Box index j from 1 to ℓ, construct the shares α(i)
k :

A. alpha shares[k][i]← shared x[k][i][j]× epsilons[k][j]⊕ alpha shares[k][i].
iii. alpha← alpha⊕ alpha shares[k][i].

(c) For each party i from 0 to N − 1, compute the multiplication-checking protocol:

i. v shares[k][i]← alpha× shared pt[k][i]⊕ shared dot c[k][i].

37

ii. For each AIM S-Box index j from 0 to ℓ:
A. v shares[k][i]← epsilons[k][j]× shared z[k][i][j]⊕ v shares[k][i].

// Phase 4

14. Compute the second challenge hash; h 2← h 2 commitment() as described in Section 7.6.3 with input

0x02 ∥ salt ∥ h 1 ∥ (alpha shares, v shares).

15. Expand the challenge from the hash; missing parties[τ]← h 2 expand(h 2).

// Phase 5

16. For each parallel repetition k from 0 to τ − 1, reveal the view of the disclosed parties and the commit-
ment of the undisclosed party:

(a) proof[k].reveal list← reveal all but(seed trees[k], missing parties[k]).

(b) proof[k].missing commitment← party seed commitments[missing parties[k]].

(c) proof[k].missing alpha share← alpha shares[k][missing parties[k]].

17. Serialize (salt, h 1, h 2, proof) as described in Section 7.6.7 and output it as the signature.

7.5 Signature Verification

Input: Signer’s public key pk = (iv, ct), a message msg as a byte array, a signature σ as a byte array.

Output: Accept if σ is a valid signature of msg with respect to (iv, ct) or Reject otherwise.

1. Deserialize the signature σ to (salt, h 1, h 2, proof[τ]) and derive the challenge indices
missing parties[τ] as described in Section 7.6.6, where proof consists of
(reveal list, missing commitment, pt delta, c delta, z delta[0 : ℓ− 1], missing alpha share).
If deserialization fails, reject the signature and output Reject.

2. Generate the affine layer of AIM; (matrix A, vector b)← generate matrix LU(iv).

3. Expand the first challenge epsilons← h 1 expand(h 1) as described in Section 7.6.4.

4. For each parallel repetition k from 0 to τ − 1:

(a) Reconstruct the seed tree as described in Section 7.6.1;
seed trees[k]← reconstruct seed tree(reveal list, salt, N , k),
where reveal list is included in the proof[k].

(b) For each party i from 0 to N − 1:

i. If i ̸= missing parties[k], recompute the commitment and the tapes;
(party seed commitments[k][i], random tapes[k][i])←
commit to seed and expand tape(get leaf(seed trees[k], salt, k, i)).

ii. If i = missing parties[k], move the missing commitment to party seed commitments;
party seed commitments[k][i]← missing commitment,
where missing commitment is included in the proof[k].

5. Declare lists of field elements shared x[τ][N][ℓ+ 1], shared z[τ][N][ℓ+ 1],
shared t[τ][N][ℓ], shared dot a[τ][N], shared dot c[τ][N], a list of byte array shared pt[τ][N].

6. For each parallel repetition k from 0 to τ − 1:

38

(a) For each party i from 0 to N − 1:

i. If i ̸= missing parties[k], sample the tapes;
shared pt[k][i]← random tapes[k][i][0:n−1].

(b) Adjust the first share of pt; shared pt[k][0]← shared pt[k][0]⊕ pt delta,
where pt delta is included in the proof[k].

(c) For each party i from 0 to N − 1:

i. If i ̸= missing parties[k]:
A. For each AIM S-Box index j from 0 to ℓ− 1, Sample the tapes;

shared t[k][i][j]← random tapes[k][i][(j+1)n:(j+2)n−1].

(d) For each AIM S-Box index j from 0 to ℓ− 1:

i. Adjust the first share; shared t[k][0][j]← shared t[k][0][j]⊕ z delta[j],
where z delta[j] is included in the proof[k].

(e) Recompute the multiplication triples;
(shared z[k], shared x[k])← aim mpc(shared pt[k], ct, matrix A, vector b, shared t[k]).

7. For each parallel repetition k from 0 to τ − 1:

(a) For each party i from 0 to N − 1:

i. If i ̸= missing parties[k]:
A. Sample the tapes; shared dot a[k][i]← random tapes[k][i][(ℓ+1)n:(ℓ+2)n−1].
B. Sample the tapes; shared dot c[k][i]← random tapes[k][i][(ℓ+2)n:(ℓ+3)n−1].

(b) If missing parties[k] ̸= 0, adjust the first share;
shared dot c[k][0]← shared dot c[k][0]⊕ c delta,
where c delta is provided in the proof[k].

8. Declare lists of field elements alpha shares[τ][N] and v shares[τ][N].

9. For each parallel repetition k from 0 to τ − 1:

(a) For each party i from 0 to N − 1:

i. If i ̸= missing parties[k]:
A. Initialize a field element alpha as zero.
B. Recompute alpha shares[k][i]← shared x[k][i][0]× epsilons[k][0]⊕ shared dot a[k][i].
C. For each AIM S-Box index j from 1 to ℓ, recompute

alpha shares[k][i]← shared x[k][i][j]× epsilons[k][j]⊕ alpha shares[k][i].
D. alpha← alpha⊕ alpha shares[k][i].

(b) Compute alpha← alpha⊕ missing alpha share,
where missing alpha share is included in the proof[k].

(c) For each party i from 0 to N − 1, recompute the multiplication-checking protocol:

i. If i ̸= missing parties[k]:
A. Recompute v shares[k][i]← alpha× shared pt[k][i]⊕ shared dot c[k][i].
B. For each AIM S-Box index j from 0 to ℓ, recompute

v shares[k][i]← epsilons[k][j]× shared z[k][i][j]⊕ v shares[k][i].

(d) For each party i from 0 to N − 1:

i. If i ̸= missing parties[k]:
A. Compute the v-share of the missing party;

v shares[k][missing parties[k]]← v shares[k][missing parties[k]]⊕ v shares[k][i].

39

10. Recompute the first challenge hash; h 1 prime← h 1 commitment() as described in Section 7.6.3 with
input

0x01 ∥ msg ∥ pk ∥ salt ∥ party seed commitments ∥ proof.pt delta ∥ proof.z delta ∥ proof.c delta.

11. Recompute the second challenge hash; h 2 prime← h 2 commitment() as described in Section 7.6.3
with input

0x02 ∥ salt ∥ h 1 ∥ (alpha shares, v shares).

12. Compare h 1 to h 1 prime and h 2 to h 2 prime, respectively. If they match, σ is a valid signature;
return Accept, otherwise return Reject.

7.6 Supporting Functions

7.6.1 Seed Trees: make seed tree, reveal all but, reconstruct seed tree

In this section, we describe some functions to compute or reconstruct the seed tree. The total number of
nodes num nodes is 2d − 1 + N , where d = ⌈log(N)⌉. The seed tree consists of three arrays of num nodes

elements: data with n-bit data, have value and exists with integers, i.e.,

seed tree = (data, have value, exists).

Integer arrays have value and exists are all initially set to zero. The root is the node of index 0 (data[0]).
When the index of a parent node is i, the index of the left (resp. right) child node is 2i+ 1 (resp. 2i+ 2).

PROCESS OF make seed tree. The function make seed tree generates the seed of each party using binary
tree structure. Hash function expand seed outputting a 2n-bit digest is used to make two children nodes
from a parent node. The leaf nodes are only used for seeds. The details are described as follows.

Input: master seed, salt, repetition index.

Output: a (almost) complete binary tree seed tree having N leftmost leaves with master seed as the root
node.

1. Set elements in exists corresponding to leaf nodes to be 1.

2. For each of non-leaf nodes, set elements in exists to be 1 if the corresponding nodes have at least one
child.

3. Set data[0]← master seed, and initialize parent node ← data[0].

4. For the index parent node index from 0 to (num nodes −N), if exists[parent node index] = 1, the
data of children nodes are computed by expand seed with input

0x03 ∥ data[parent node index] ∥ salt ∥ repetition index ∥ parent node index

and the left child gets the first n-bit output then the right child gets the rest of n-bit if it exists (other-
wise, the corresponding output is discarded).

PROCESS OF has sibling.

Input: A tree structure and the index of a node index.

Output: Return 1 if the node of the input index has sibling, otherwise return 0.

1. If exists[index] = 0, return 0.

40

2. If (index%2 = 1) ∧ (exists[index+ 1] ̸= 1), return 0.

3. Return 1.

PROCESS OF reveal all but. The function reveal all but outputs reveal list, which is the set of inter-
mediate nodes required to rebuild the (punctured) seed tree. Any node on the path from the missing leaf
to the root are excluded, and the other siblings of those nodes are recorded in the reveal list. In our
implementation, reveal list always is an array of the same length ⌈log(N)⌉ with n-bit elements.

Input: A tree structure tree and the index of the missing leaf missing index.

Output: An array of n-bit data reveal list of length ⌈log(N)⌉.

1. Zero-initialize reveal list.

2. path index← 0.

3. Set the first node index node ← num nodes − N + missing index. This index will be updated as the
index of the parent nodes in the next loop.

4. While node ̸= 0:

(a) If has sibling(tree, node) = 0:

i. increase path index by 1,
ii. set node←

⌊
node−1

2

⌋
.

(b) Else:

i. record the data of the sibling node to the reveal list[path index],
ii. increase path index by 1,

iii. set node←
⌊
node−1

2

⌋
.

5. Return reveal list.

PROCESS OF reconstruct seed tree. The function reconstruct seed tree rebuilds the punctured seed
tree from reveal list.

Input: reveal list, salt, repetition index, missing index.

Output: A recovered seed tree structure tree.

1. Allocate the tree structure to tree.

2. Set exists[node]← 1 if node indicates leaf nodes or the root node.

3. Set exists[node]← 1 if node indicates a non-leaf node with at least one child.

4. Set the first node index node ← num nodes − N + missing index. This index will be updated as the
index of the parent nodes in the next loop.

5. While node ̸= 0:

(a) If has sibling(tree, node) = 0:

i. increase path index by 1,
ii. set node←

⌊
node−1

2

⌋
.

(b) Else:

41

i. record reveal list[path index] to data[sibling node] where sibling node is the sibling’s
index of node,

ii. set have value[sibling node]← 1,
iii. increase path index by 1,
iv. set node←

⌊
node−1

2

⌋
.

6. For an index node from 0 to (num nodes−N):

(a) If have value[node] = exists[node] = 1 and node ≤ num nodes, compute the data of children
nodes, similarly as Step 4 of function make seed tree.

7. Return tree.

7.6.2 Committing to the party’s seed and expanding tape: commit to seed and expand tape

Input: The salt salt, repetition index, party index, the input party’s seed seed.

Output: The commitment party seed commitments and the random tape random tapes.

1. Absorb the hash prefix 0x04, salt, repetition index, party index, and seed to XOF in this order.

2. Squeeze 2n/8 bytes from XOF to party seed commitments[repetition index][party index].

3. Squeeze (ℓ+ 3)n/8 bytes from XOF to random tapes[repetition index][party index].

4. Output party seed commitments and random tapes.

7.6.3 Computing the Challenge: h 1 commitment, h 2 commitment

PROCESS OF h 1 commitment.

Input: The message msg, the public key pk = (iv, ct), the salt salt,
the commitments party seed commitments[τ][N],
the share-adjusting values pt delta[τ], c delta[τ], and z delta[τ][ℓ].

Output: The challenge hash h 1.

1. Absorb the hash prefix 0x01, msg, pk, and salt to XOF in this order.

2. For each parallel repetition k from 0 to τ − 1:

(a) For each party i from 0 to N − 1, absorb party seed commitments[k][i] to XOF.

(b) Absorb pt delta[k] to XOF.

(c) For each AIM S-Box index j from 0 to ℓ− 1, absorb z delta[k][j] to XOF.

(d) Absorb c delta[k] to XOF.

3. Squeeze 2n/8 bytes from XOF to h 1.

4. Output the challenge hash h 1.

PROCESS OF h 2 commitment.

Input: The challenge hash h 1, the salt salt,
the broadcast values alpha shares[τ][N], and v shares[τ][N].

Output: The challenge hash h 2.

42

1. Absorb the hash prefix 0x02, salt, and h 1 to XOF in this order.

2. For each parallel repetition k from 0 to τ − 1:

(a) For each party i from 0 to N − 1:

i. Absorb alpha shares[k][i] to XOF.
ii. Absorb v shares[k][i] to XOF.

3. Squeeze 2n/8 bytes from XOF to h 2.

4. Output the challenge hash h 2.

7.6.4 Expanding the Challenge Hash: h 1 expand, h 2 expand

PROCESS OF h 1 expand.

Input: The challenge hash h 1.

Output: The challenge value epsilons[τ][ℓ+ 1].

1. Absorb h 1 to XOF.

2. Declare the challenge value epsilons.
For each parallel repetition k from 0 to τ − 1:

(a) For each AIM S-Box index j from 0 to ℓ:

i. Squeeze n/8 bytes from XOF, and convert to a field element epsilons[k][j].

3. Output the challenge value epsilons[τ][ℓ+ 1].

PROCESS OF h 2 expand.

Input: The challenge hash h 2.

Output: The challenge index missing parties[τ].

1. Absorb h 2 to XOF.

2. Initialize squeeze bytes← N > 256 ? 2 : 1.

3. Initialize mask← (1≪ ⌈log(N)⌉)− 1.

4. Declare list of challenge indices missing parties[τ].
For each parallel repetition k from 0 to τ − 1:

(a) Squeeze squeeze bytes bytes from XOF to party.

(b) Compute party← party & mask.

(c) If party ≥ N , continue at Step 4.(a),
else missing parties[k]← party.

5. Output the challenge index missing parties[τ].

43

7.6.5 MPC Simulation: aim mpc

It computes MPC multiplication triples shared x[N][ℓ+ 1] and shared z[N][ℓ+ 1] as described in Section
4.2, Step 3 of Phase 1.

Input: The shares of the input pt of the parties shared pt[N], the output of AIM ct, the linear components
of AIM (matrix A, vector b), the number of parties N , and the shares of S-box outputs shared t[N][ℓ].

Output: The shares of multiplication triples shared z[N][ℓ+ 1] and shared x[N][ℓ+ 1].

1. Convert the output ct to a field element.

2. For each party i from 0 to N − 1:

(a) Convert shared pt[i] to a field element.

(b) For each AIM S-Box index j from 0 to ℓ− 1:

i. Compute shared x[i][j]← transposed matmul(shared t[i][j], matrix A[j]).

(c) Compute shared x[i][ℓ]← shared x[i][0]⊕ · · · ⊕ shared x[i][ℓ− 1].

(d) If i = 0, compute shared x[i][ℓ]← shared x[i][ℓ]⊕ vector b.

(e) For each AIM S-Box index j from 0 to ℓ− 1:

i. Compute shared x[i][j]← shared t[i][j].
ii. Compute shared z[i][j]← power of 2 exponentiation with ej+1(shared pt[i]).

(f) Compute
shared z[i][ℓ]← ct× shared x[i][ℓ]⊕ power of 2 exponentiation with e∗(shared x[i][ℓ]).

3. Output shared z[N][ℓ+ 1] and shared x[N][ℓ+ 1].

7.6.6 Serialization of Signatures

Input: The signature σ = (salt, h 1, h 2, proof[τ]), where proof consists of (reveal list,
missing commitment, pt delta, c delta, z delta[ℓ], missing alpha share).

Output: A byte array sig, encoding the signature σ.

1. Write salt to sig, using 2n/8 bytes.

2. Write h 1 to sig, using 2n/8 bytes.

3. Write h 2 to sig, using 2n/8 bytes.

4. Append tuples of proof of each repetition k from 0 to τ − 1,

(a) Append reveal list to sig, which is ⌈log(N)⌉n/8 bytes.

(b) Append missing commitment to sig, which is 2n/8 bytes.

(c) Append pt delta to sig, which is n/8 bytes.

(d) Append c delta to sig, which is n/8 bytes.

(e) Append z delta[ℓ] to sig, which is ℓn/8 bytes.

(f) Append missing alpha share to sig, which is n/8 bytes.

5. Output sig.

44

7.6.7 Deserialization of Signatures

Input: A byte array sig, encoding the signature σ.

Output: The signature σ = (salt, h 1, h 2, proof[τ]), where proof consists of (reveal list,
missing commitment, pt delta, c delta, z delta[ℓ], missing alpha share),
challenge indices missing parties[τ].

1. Read the first 2n/8 bytes from sig, and assign them to salt.

2. Read the next 2n/8 bytes from sig, and assign them to h 1.

3. Read the next 2n/8 bytes from sig, and assign them to h 2.

4. Expand missing parties[τ] = h 2 expand(h 2) as described in Section 7.6.4.

5. Read tuples from sig, and append them to proof[k] of each repetition k from 0 to τ − 1,

(a) Read the next ⌈log2(N)⌉n/8 bytes from sig, and assign them to reveal list.

(b) Read the next 2n/8 bytes from sig, and assign them to missing commitment.

(c) Read the next n/8 bytes from sig, and assign them to pt delta.

(d) Read the next n/8 bytes from sig, and assign them to c delta.

(e) Read the next ℓn/8 bytes from sig, and assign them to z delta[ℓ].

(f) Read the next n/8 bytes from sig, and assign them to missing alpha share.

6. Output (σ, missing parties[τ]).

8 Implementation and Performance

The implementation is available at https://aimer-signature.org. Our source codes are implemented
with the BN++ repository6 as a reference.

8.1 Implementation Details

TRANSPOSED MATRIX. In general, if the matrix is given in transposed form, matrix multiplication can be done
more efficiently. Therefore, algorithms in AIMer for generating matrices from iv (Algorithm 6 and 7) are al-
ready well designed to generate transposed matrices directly, and we recommend performing all matrix mul-
tiplications in transposed form. In our implementation, the matrices e2 power matrix defined in aim.h, and
matrix A generated in the functions generated matrices L and U and generated matrices LU are stored
in the transposed form, and the multiplication of transposed matrices is done in GF transposed matmul.

MATRIX-BASED POWER-OF-2 EXPONENTIATION. During the MPC process in aim mpc, for the k-th repetition
and the i-th party, (pt(i)k)2

ej is evaluated for j ∈ {1, . . . , ℓ}. As exponentiation of 2ej in F2n is linear over
F2, (pt(i)k)2

ej can be also derived from power matrix · (pt(i)k), where power matrix is an n × n binary ma-
trix corresponding to the 2ej -th power. The matrix multiplication can be faster than direct squaring for
large exponents. Therefore, matrix-based power-of-2 exponentiation is applied for e2 since e2 has been
chosen as a large number. The binary matrix corresponding to the 2e2 exponentiation has been named as
e2 power matrix.

ADDITION CHAIN EXPONENTIATION. As described in Section 3.1, the S-boxes in AIM are defined as exponen-
tiation by Mersenne numbers over a large field such as x2ej−1 where j ∈ {1, . . . , ℓ} and x2e∗−1 for x ∈ F2n .

6https://github.com/IAIK/bnpp_helium_signatures/tree/main/bnpp_rain

45

https://aimer-signature.org
https://github.com/IAIK/bnpp_helium_signatures/tree/main/bnpp_rain

Addition chain exponentiation [Knu97] by the shortest addition chain requires fewer field multiplications
than binary exponentiation. For example, in the case of x227−1 for AIM-I, binary exponentiation requires 26
field squarings and 26 field multiplications but addition chain exponentiation requires 26 field squarings and
only 6 field multiplications by an addition chain x→ x22−1 → x23−1 → x26−1 → x212−1 → x224−1 → x227−1.
All the S-boxes have been implemented using addition chain exponentiation by each shortest chain.

8.2 Performance

8.2.1 Description of the Benchmarking Environments

We describe our two implementations of AIMer signature scheme:

Reference. Our reference implementation was optimized using only C.

Optimized. We also provide an optimized implementation using AVX2 vector instructions.

We measured our reference and optimized implementations in Intel Xeon E5-1650 v3 @ 3.50 GHz with
128 GB of RAM on the Ubuntu 18.04 operating system. We also disabled TurboBoost and Hyper-threading
features, and used the taskset command. All implementations used in the benchmarks were compiled using
gcc 7.5.0 compiler with the optimization level -O3.

8.2.2 Key and Signature Sizes

In Table 8, we provide the size of AIMer public key, secret key, and signature for various parameter sets.
These numbers are the same for both reference and optimized implementations.

Parameters
Public key size Secret key size Signature size

(bytes) (bytes) (bytes)

AIMER L1 PARAM1 32 16 5,904
AIMER L1 PARAM2 32 16 4,880
AIMER L1 PARAM3 32 16 4,176
AIMER L1 PARAM4 32 16 3,840

AIMER L3 PARAM1 48 24 13,080
AIMER L3 PARAM2 48 24 10,440
AIMER L3 PARAM3 48 24 9,144
AIMER L3 PARAM4 48 24 8,352

AIMER L5 PARAM1 64 32 25,152
AIMER L5 PARAM2 64 32 19,904
AIMER L5 PARAM3 64 32 17,088
AIMER L5 PARAM4 64 32 15,392

Table 8: Key and signature sizes for various parameter sets.

8.2.3 Timing Results

In Tables 9 and 10, we provide the timing results as milliseconds and CPU clock cycles of reference and
optimized implementations on the benchmark platform. The timing results were measured by the average
clock cycles executed 104 times.

46

Parameters
Keygen Sign Verify

(ms) (cycles) (ms) (cycles) (ms) (cycles)

AIMER L1 PARAM1 0.02 59,483 1.23 4,294,114 1.15 4,011,553
AIMER L1 PARAM2 0.02 59,654 2.94 10,284,335 2.88 10,077,658
AIMER L1 PARAM3 0.02 59,593 9.66 33,819,763 9.59 33,555,727
AIMER L1 PARAM4 0.02 59,582 48.16 168,559,507 47.55 166,436,892

AIMER L3 PARAM1 0.04 131,234 3.08 10,767,276 2.92 10,222,797
AIMER L3 PARAM2 0.04 130,656 8.07 28,254,891 7.93 27,738,451
AIMER L3 PARAM3 0.04 131,852 23.63 82,706,117 23.93 83,765,726
AIMER L3 PARAM4 0.04 131,911 120.14 420,497,831 114.99 402,461,878

AIMER L5 PARAM1 0.09 311,887 6.06 21,217,778 5.83 20,395,571
AIMER L5 PARAM2 0.09 312,090 15.56 54,457,539 15.29 53,516,330
AIMER L5 PARAM3 0.09 313,543 47.85 167,472,963 46.66 163,325,301
AIMER L5 PARAM4 0.09 314,257 231.94 811,789,935 227.73 797,067,009

Table 9: Performance of reference implementation for various parameter sets.

Parameters
Keygen Sign Verify

(ms) (cycles) (ms) (cycles) (ms) (cycles)

AIMER L1 PARAM1 0.02 54,552 0.59 2,079,167 0.53 1,840,810
AIMER L1 PARAM2 0.02 54,143 1.36 4,747,229 1.28 4,474,325
AIMER L1 PARAM3 0.02 54,178 4.42 15,476,644 4.31 15,075,635
AIMER L1 PARAM4 0.02 54,435 22.29 78,022,625 21.09 73,813,256

AIMER L3 PARAM1 0.03 118,533 1.38 4,838,748 1.28 4,494,766
AIMER L3 PARAM2 0.03 119,231 3.59 12,562,067 3.44 12,048,460
AIMER L3 PARAM3 0.03 118,816 9.77 34,202,905 9.62 33,670,751
AIMER L3 PARAM4 0.03 118,691 53.38 186,813,161 50.73 177,567,471

AIMER L5 PARAM1 0.08 284,746 2.45 8,573,223 2.34 8,181,552
AIMER L5 PARAM2 0.08 283,908 6.26 21,925,850 6.07 21,245,240
AIMER L5 PARAM3 0.08 283,931 18.66 65,302,783 17.75 62,135,635
AIMER L5 PARAM4 0.08 285,114 91.76 321,174,411 88.83 310,906,616

Table 10: Performance of AVX2 optimized implementation for various parameter sets.

47

8.2.4 Memory Usage

In this section, we list the memory usage for our implementations. Since our implementations focus on the
timing and signature size, optimization for memory usage are not considered. Memory usage was measured
by the Valgrind7-3.13.0 with the subtool Massif. We utilized Massif using the following command:

valgrind --tool=massif --stacks=yes ./tests/test sign

Then, for profiling output file, we utilized the tool ms print using the following command:

ms print massif.out.pid

The peak memory usage of reference and optimized implementations was described in Table 11.

Parameters
Reference Optimized

Sign Verify Sign Verify
(KB) (KB) (KB) (KB)

AIMER L1 PARAM1 195.6 193.1 195.8 192.9
AIMER L1 PARAM2 439.7 440.6 439.7 440.6
AIMER L1 PARAM3 1,395.5 1,397.6 1,395.5 1,397.6
AIMER L1 PARAM4 6,759.1 6,761.3 6,759.1 6,761.2

AIMER L3 PARAM1 426.6 421.3 492.7 487.8
AIMER L3 PARAM2 1,039.8 1,042.1 1,212.7 1,211.6
AIMER L3 PARAM3 3,060.8 3,065.4 3,564.9 3,569.6
AIMER L3 PARAM4 14,797.0 14,802.4 17,206.9 17,211.8

AIMER L5 PARAM1 854.9 846.7 855.0 846.7
AIMER L5 PARAM2 2,066.1 2,058.4 2,068.4 2,058.3
AIMER L5 PARAM3 6,174.7 6,183.0 6,174.6 6,182.9
AIMER L5 PARAM4 29.740.7 29,749.2 29,740.6 29,749.2

Table 11: Peak memory usage of reference and optimized implementations

9 Advantages and Limitations

9.1 General

AIMer shares similar advantages with other MPCitH-based signature schemes as follows.

• The security of AIMer depends only on the security of the underlying symmetric primitives. In particu-
lar, the security of AIMer is reduced to the one-wayness of AIM in the random oracle model.

• Among the signature schemes whose security depends only on symmetric primitives, AIMer enjoys the
smallest signature size.

• AIMer enjoys the small secret and public key size; the small key size makes it easier to apply to many
PKI applications based on multi-chain certificates or frequent certificate transmission.

• Key generation is simple and fast.

• AIMer provides a granular trade-off between the execution time and the signature size. This feature
makes it possible to adjust the performance based on the user’s requirements.

7https://valgrind.org/docs/manual/ms-manual.html

48

https://valgrind.org/docs/manual/ms-manual.html

• AIMer is resistant to the reuse of the public randomnesses such as iv and salt. To the best of our
knowledge, multiple uses of an identical value of iv or salt linearly increase the probability of a pk-
collision or a multi-target hash collision, respectively.

AIMer also has similar limitations to other MPCitH-based signature schemes as follows.

• The signature size is relatively large compared to standardized lattice-based schemes.

• Signing and verification is slower compared to standardized lattice-based schemes.

9.2 Compatibility with Existing Protocols

The signature size of AIMer is larger than NIST selected algorithms such as CRYSTALS-Dilithium [LDK+22]
and Falcon [PFH+22] except SPHINCS+ [HBD+22], while the bandwidth of AIMer is sufficiently small
so that it is still compatible with many existing protocols. We experimentally checked the compatibil-
ity of the optimized implementation of AIMer at all security levels with the Open Quantum Safe (OQS)
project.8 After creating X.509 certificates signed with AIMer, we were able to establish TLS 1.3 connections
without message fragmentation, where the key exchange algorithm was the hybrid protocol with ECDH
(p256/p384/p521) [BCR+18] and CRYSTALS-Kyber [SAB+22] (512/768/1024) algorithms in OQS.

References

[ACG+19] Martin R Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger, and Markus Schofnegger. Algebraic cryptanalysis of STARK-friendly de-
signs: application to MARVELlous and MiMC. In ASIACRYPT 2019, pages 371–397. Springer,
2019.

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-Friendly Family of Cryptographic
Primitives. Cryptology ePrint Archive, Paper 2018/1098, 2018. https://eprint.iacr.org/
2018/1098.

[AFK+11] Frederik Armknecht, Ewan Fleischmann, Matthias Krause, Jooyoung Lee, Martijn Stam, and
John Steinberger. The preimage security of double-block-length compression functions. In
ASIACRYPT 2011, pages 233–251. Springer, 2011.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-Shamir Transformation of Multi-round
Interactive Proofs. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography,
pages 113–142, Cham, 2022. Springer Nature Switzerland.

[AGR+16] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC:
Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. In
ASIACRYPT 2016, pages 191–219. Springer, 2016.

[AIK+01] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai, Junko
Nakajima, and Toshio Tokita. Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms
— Design and Analysis. In SAC 2001, pages 39–56. Springer, 2001.

[AMMR13] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A Meet-in-the-Middle
Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(6):818–830, 2013.

[ARS+15] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael
Zohner. Ciphers for MPC and FHE. In EUROCRYPT 2015, pages 430–454. Springer, 2015.

8http://github.com/open-quantum-safe/liboqs

49

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
http://github.com/open-quantum-safe/liboqs

[BB18] Gustavo Banegas and Daniel J. Bernstein. Low-Communication Parallel Quantum Multi-Target
Preimage Search. In Selected Areas in Cryptography – SAC 2017, pages 325–335. Springer,
2018.

[BBCV22] Subhadeep Banik, Khashayar Barooti, Andrea Caforio, and Serge Vaudenay. Memory-Efficient
Single Data-Complexity Attacks on LowMC Using Partial Sets. Cryptology ePrint Archive,
Paper 2022/688, 2022. https://eprint.iacr.org/2022/688.

[BBDV20] Subhadeep Banik, Khashayar Barooti, F. Betül Durak, and Serge Vaudenay. Cryptanalysis
of LowMC instances using single plaintext/ciphertext pair. IACR Transactions on Symmetric
Cryptology, 2020(4):130–146, Dec. 2020.

[BBP+17] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and
Damien Vergnaud. Private Multiplication over Finite Fields. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 397–426, Cham, 2017.
Springer International Publishing.

[BBVY21] Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and Hailun Yan. New Attacks on
LowMC Instances with a Single Plaintext/Ciphertext Pair. In ASIACRYPT 2021, pages 303–
331. Springer, 2021.

[BCR+18] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard Davis. Recommenda-
tion for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography, 2018.
NIST SP 800-56A Rev.3.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of Checking Cryp-
tographic Protocols for Faults. In Walter Fumy, editor, Advances in Cryptology — EUROCRYPT
’97, pages 37–51, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[Bei93] R. Beigel. The polynomial method in circuit complexity. In [1993] Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, pages 82–95, 1993.

[Ber09] Daniel J Bernstein. Cost analysis of hash collisions: Will quantum computers make SHARCS
obsolete, 2009.

[BFS04] Magali Bardet, Jean-Charles Faugere, and Bruno Salvy. On the complexity of Gröbner ba-
sis computation of semi-regular overdetermined algebraic equations. In Proceedings of the
International Conference on Polynomial System Solving, pages 71–74, 2004.

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the
complexity of solving quadratic Boolean systems. Journal of Complexity, 29(1):53–75, 2013.

[BHNP+19] Xavier Bonnetain, Akinori Hosoyamada, Maŕıa Naya-Plasencia, Yu Sasaki, and André Schrot-
tenloher. Quantum Attacks Without Superposition Queries: The Offline Simon’s Algorithm.
In ASIACRYPT 2019, pages 552–583. Springer, 2019.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free
functions. In LATIN’98: Theoretical Informatics: Third Latin American Symposium Campinas,
Brazil, April 20–24, 1998 Proceedings 3, pages 163–169. Springer, 1998.

[BN20] Carsten Baum and Ariel Nof. Concretely-Efficient Zero-Knowledge Arguments for Arithmetic
Circuits and Their Application to Lattice-Based Cryptography. In PKC 2020, pages 495–526.
Springer, 2020.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ci-
phers. In Advances in Cryptology — ASIACRYPT 2000, pages 1–13. Springer, 2000.

50

https://eprint.iacr.org/2022/688

[BSGK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter
Scholl, and Greg Zaverucha. Banquet: Short and fast signatures from AES. In PKC 2021,
pages 266–297. Springer, 2021.

[BWM99] Simon Blake-Wilson and Alfred Menezes. Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol. In Public Key Cryptography, pages 154–170. Springer, 1999.

[BXKSN21] Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini. An Intermediate
Secret-Guessing Attack on Hash-Based Signatures. In Toru Nakanishi and Ryo Nojima, editors,
Advances in Information and Computer Security, pages 195–215. Springer, 2021.

[BY18] Daniel J. Bernstein and Bo-Yin Yang. Asymptotically Faster Quantum Algorithms to Solve
Multivariate Quadratic Equations. In PQCrypto 2018, pages 487–506. Springer, 2018.

[CDG06] Nicolas T. Courtois, Blandine Debraize, and Eric Garrido. On Exact Algebraic [Non-]Immunity
of S-Boxes Based on Power Functions. In ACISP 2006, pages 76–86. Springer, 2006.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In ACM CCS 2017, pages 1825–1842, 2017.

[CG22] Yu-Ao Chen and Xiao-Shan Gao. Quantum Algorithm for Boolean Equation Solving and
Quantum Algebraic Attack on Cryptosystems. Journal of Systems Science and Complexity,
35(1):373–412, Feb 2022.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms
for solving overdefined systems of multivariate polynomial equations. In EUROCRYPT 2000,
pages 392–407. Springer, 2000.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The Measure-and-Reprogram Technique 2.0:
Multi-Round Fiat-Shamir and More. In CRYPTO 2020, page 602–631. Springer, 2020.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir
Transformation in the Quantum Random-Oracle Model. In Advances in Cryptology – CRYPTO
2019, volume 11693 of Lecture Notes in Computer Science, pages 356–383. Springer, 2019.

[DFMS22a] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Efficient NIZKs and Sig-
natures from Commit-and-Open Protocols in the QROM. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages 729–757. Springer Nature
Switzerland, 2022.

[DFMS22b] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-Extractability in the
Quantum Random-Oracle Model. In Orr Dunkelman and Stefan Dziembowski, editors, Ad-
vances in Cryptology – EUROCRYPT 2022, pages 677–706. Springer International Publishing,
2022.

[DGD+19] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury, and
Shreyas Sen. X-DeepSCA: Cross-Device Deep Learning Side Channel Attack. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2019.

[DGG+21] Jintai Ding, Vlad Gheorghiu, András Gilyén, Sean Hallgren, and Jianqiang Li. Limitations of
the Macaulay matrix approach for using the HHL algorithm to solve multivariate polynomial
systems. arXiv 2111.00405, 2021. https://arxiv.org/abs/2111.00405.

[Din21] Itai Dinur. Cryptanalytic Applications of the Polynomial Method for Solving Multivariate Equa-
tion Systems over GF(2). In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology – EUROCRYPT 2021, pages 374–403, Cham, 2021. Springer.

51

https://arxiv.org/abs/2111.00405

[DKR+22] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg Za-
verucha. Shorter Signatures Based on Tailor-Made Minimalist Symmetric-Key Crypto. In ACM
CCS 2022, pages 843–857. Association of Computing Machinery, November 2022.

[DN19] Itai Dinur and Niv Nadler. Multi-target Attacks on the Picnic Signature Scheme and Related
Protocols. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT
2019, pages 699–727, Cham, 2019. Springer.

[DNG22] Elena Dubrova, Kalle Ngo, and Joel Gärtner. Breaking a Fifth-Order Masked Implementa-
tion of CRYSTALS-Kyber by Copy-Paste. Cryptology ePrint Archive, Paper 2022/1713, 2022.
https://eprint.iacr.org/2022/1713.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael, volume 2. Springer, 2002.

[dSGMOS19] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P Smart.
BBQ: Using AES in picnic signatures. In SAC 2019, pages 669–692. Springer, 2019.

[DVA12] Joan Daemen and Gilles Van Assche. Differential Propagation Analysis of Keccak. In Anne
Canteaut, editor, Fast Software Encryption, pages 422–441. Springer, 2012.

[EGL+20] Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygarden, Christian Rech-
berger, Markus Schofnegger, and Qingju Wang. An algebraic attack on ciphers with low-
degree round functions: application to full MiMC. In ASIACRYPT 2020, pages 477–506.
Springer, 2020.

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom
permutation. Journal of Cryptology, 10(3):151–161, Jun 1997.

[FHK+17] Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan, Elham Kashefi, and
Ludovic Perret. Fast Quantum Algorithm for Solving Multivariate Quadratic Equations. Cryp-
tology ePrint Archive, Paper 2017/1236, 2017. https://eprint.iacr.org/2017/1236.

[Frö85] Ralf Fröberg. An Inequality for Hilbert Series of Graded Algebras. MATHEMATICA SCANDI-
NAVICA, 56, Dec. 1985.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86,
pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofneg-
ger. Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. In USENIX Security
2021, pages 519–535. USENIX Association, 2021.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru, and Markus
Schofnegger. On a Generalization of Substitution-Permutation Networks: The HADES De-
sign Strategy. In EUROCRYPT 2020, pages 674–704. Springer, 2020.

[GMLS02] Steven D Galbraith, John Malone-Lee, and Nigel Paul Smart. Public key signatures in the
multi-user setting. Information Processing Letters, 83(5):263–266, 2002.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster Zero-Knowledge for
Boolean Circuits. In USENIX Security 2016, pages 1069–1083. USENIX Association, 2016.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme Secure
against Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308, apr 1988.

[Gro96] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In ACM STOC ’96,
page 212–219. Association for Computing Machinery, 1996.

52

https://eprint.iacr.org/2022/1713
https://eprint.iacr.org/2017/1236

[HBD+22] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M. Lauridsen,
Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe,
Jean-Philippe Aumasson, Bas Westerbaan, and Ward Beullens. SPHINCS+. Technical report,
National Institute of Standards and Technology, 2022, 2022. available at https://csrc.

nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for Linear Systems
of Equations. Phys. Rev. Lett., 103:150502, Oct 2009.

[HS18] Akinori Hosoyamada and Yu Sasaki. Cryptanalysis Against Symmetric-Key Schemes with On-
line Classical Queries and Offline Quantum Computations. In CT-RSA 2018, pages 198–218.
Springer, 2018.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from Secure
Multiparty Computation. In ACM STOC 2007, pages 21–30, 2007.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 463–
481, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[JBK+22] Kyungbae Jang, Anubhab Baksi, Hyunji Kim, Hwajeong Seo, and Anupam Chattopadhyay.
Improved Quantum Analysis of SPECK and LowMC (Full Version). Cryptology ePrint Archive,
Paper 2022/1427, 2022. https://eprint.iacr.org/2022/1427.

[JKL+22] Kyungbae Jang, Wonwoong Kim, Sejin Lim, Yeajun Kang, and Hwajeong Seo. Optimized Im-
plementation of Quantum Binary Field Multiplication with Toffoli Depth One. In Information
Security Applications. Springer, 2022. To appear.

[JKO+23] Kyungbae Jang, Dukyoung Kim, Yujin Oh, Sejin Lim, Yujin Yang, Hyunji Kim, and Hwajeong
Seo. Quantum Implementation of AIM: Aiming for Low-Depth. Cryptology ePrint Archive,
Paper 2023/337, 2023. https://eprint.iacr.org/2023/337.

[KHS+22] Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae Moon, Joohee Lee,
Sangyub Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon, and Jooyoung Lee. AIM: Symmetric
Primitive for Shorter Signatures with Stronger Security (Full Version). Cryptology ePrint
Archive, Paper 2022/1387, 2022. To appear at ACM CCS 2023.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Advances in
Cryptology - CRYPTO’ 99, pages 388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidel-
berg.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-Interactive Zero Knowl-
edge with Applications to Post-Quantum Signatures. In ACM CCS 2018, pages 525–537. ACM,
2018.

[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In 2010 IEEE International Symposium on Information
Theory, pages 2682–2685, 2010.

[KM12] Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type Even-Mansour cipher.
In 2012 International Symposium on Information Theory and its Applications, pages 312–316,
2012.

[KM13] Neal Koblitz and Alfred Menezes. Another look at security definitions, 2013.

53

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/1427
https://eprint.iacr.org/2023/337

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, Boston, third edition, 1997.

[KR01] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). Journal of Cryptology, 14(1):17–35, Jan 2001.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient Cryptography, page
727–794. Association for Computing Machinery, New York, NY, USA, 2019.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Relin-
earization. In CRYPTO ’99, pages 19–30. Springer, 1999.

[KSW19] Daniel J Katz, KU Schmidt, and A Winterhof. Weil sums of binomials: Properties applications
and open problems. In Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudo-
randomness and Applications, volume 23, pages 109–134. De Gruyter, 2019.

[KZ22] Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and
Post-Quantum Signatures. Cryptology ePrint Archive, Paper 2022/588, 2022. https:

//eprint.iacr.org/2022/588.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Institute of
Standards and Technology, 2022, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022.

[LIM21a] Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of full LowMC and LowMC-M with
algebraic techniques. In CRYPTO 2021, pages 368–401. Springer, 2021.

[LIM21b] Fukang Liu, Takanori Isobe, and Willi Meier. Low-Memory Algebraic Attacks on Round-
Reduced LowMC. Cryptology ePrint Archive, 2021.

[LM17] Gregor Leander and Alexander May. Grover Meets Simon – Quantumly Attacking the FX-
construction. In ASIACRYPT 2017, pages 161–178. Springer, 2017.

[LMSI22] Fukang Liu, Willi Meier, Santanu Sarkar, and Takanori Isobe. New Low-Memory Alge-
braic Attacks on LowMC in the Picnic Setting. IACR Transactions on Symmetric Cryptology,
2022(3):102–122, Sep. 2022.

[LPT+17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams, and Huacheng Yu.
Beating Brute Force for Systems of Polynomial Equations over Finite Fields. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2190–2202.
SIAM, 2017.

[LR86] Michael Luby and Charles Rackoff. How to Construct Pseudo-random Permutations from
Pseudo-random Functions. In CRYPTO ’85, pages 447–447. Springer, 1986.

[LSW+22] Fukang Liu, Santanu Sarkar, Gaoli Wang, Willi Meier, and Takanori Isobe. Algebraic Meet-
in-the-Middle Attack on LowMC. Cryptology ePrint Archive, Paper 2022/019, 2022. https:

//eprint.iacr.org/2022/019, to appear Asiacrypt 2022.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting Post-quantum Fiat-Shamir. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 326–355,
Cham, 2019. Springer International Publishing.

[MCT17] Edgard Muñoz-Coreas and Himanshu Thapliyal. Design of Quantum Circuits for Galois Field
Squaring and Exponentiation. In 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 68–73, 2017.

54

https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2022/588
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/019
https://eprint.iacr.org/2022/019

[MS04] Alfred Menezes and Nigel Smart. Security of Signature Schemes in a Multi-User Setting.
Designs, Codes and Cryptography, 33(3):261–274, Nov 2004.

[NIS15] NIST. SHA-3 standard: Permutation-based hash and extendable-output functions, 2015. FIPS
PUB 202.

[NIS22] NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Stan-
dardization Process. Technical report, National Institute of Standards and Technology, 2022,
2022. available at https://csrc.nist.gov/projects/pqc-dig-sig.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.
FALCON. Technical report, National Institute of Standards and Technology, 2022,
2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.

[PKC22] Ray Perlner, John Kelsey, and David Cooper. Breaking Category Five SPHINCS+ with SHA-
256. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum Cryptography, pages
501–522. Springer, 2022.

[QS01] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Measures and
Counter-measures for Smart Cards. In Isabelle Attali and Thomas Jensen, editors, Smart
Card Programming and Security, pages 200–210, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Col-
lision Resistance. In FSE 2004, pages 371–388. Springer, 2004.

[RST18] Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis of Low-Data Instances
of Full LowMCv2. IACR Transactions on Symmetric Cryptology, 2018(3):163–181, 2018.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehle, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology, 2022,
2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.

[Sim97] Daniel R. Simon. On the Power of Quantum Computation. SIAM Journal on Computing,
26(5):1474–1483, 1997.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-Bit
Blockcipher CLEFIA (Extended Abstract). In FSE 2007, pages 181–195. Springer, 2007.

[WD20] Huanyu Wang and Elena Dubrova. Tandem Deep Learning Side-Channel Attack Against FPGA
Implementation of AES. In 2020 IEEE International Symposium on Smart Electronic Systems
(iSES) (Formerly iNiS), pages 147–150, 2020.

[Wil14] Richard Ryan Williams. The Polynomial Method in Circuit Complexity Applied to Algorithm
Design (Invited Talk). In Venkatesh Raman and S. P. Suresh, editors, 34th International Con-
ference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014),
volume 29 of Leibniz International Proceedings in Informatics (LIPIcs), pages 47–60, Dagstuhl,
Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[YAG21] Mahmoud Yehia, Riham AlTawy, and T. Aaron Gulliver. Security Analysis of DGM and GM
Group Signature Schemes Instantiated with XMSS-T. In Yu Yu and Moti Yung, editors, Infor-
mation Security and Cryptology, pages 61–81. Springer, 2021.

55

https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[Zha12] Mark Zhandry. How to Construct Quantum Random Functions. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 679–687, 2012.

56

	Introduction
	Overview of the Algorithm
	Notation

	Background
	MPC-in-the-Head Paradigm
	BN++ Proof System
	Fiat-Shamir Transform

	Symmetric Primitive AIM
	Specification
	Design Rationale

	Mathematical Description of the AIMer Signature Scheme
	Features
	Signature Generation
	Signature Verification
	Recommended Parameters

	Formal Security Analysis
	EUF-CMA Security of AIMer in the Random Oracle Model
	Information-Theoretic Security of AIM in the Random Permutation Model

	Security Evaluation
	Summary of Expected Security Strength
	Soundness Analysis
	Known Attacks to AIM
	Brute-force Attack
	Algebraic Attacks
	Differential and Linear Cryptanalysis
	Quantum Attacks

	Attacks in the Multi-User Setting
	Side-Channel Attacks

	Specification of the AIMer Signature Scheme
	Field Representation
	Hash Functions and Extendable-Output Functions
	Key Generation
	Signature Generation
	Signature Verification
	Supporting Functions
	Seed Trees: make_seed_tree, reveal_all_but, reconstruct_seed_tree
	Committing to the party's seed and expanding tape: commit_to_seed_and_expand_tape
	Computing the Challenge: h_1_commitment, h_2_commitment
	Expanding the Challenge Hash: h_1_expand, h_2_expand
	MPC Simulation: aim_mpc
	Serialization of Signatures
	Deserialization of Signatures

	Implementation and Performance
	Implementation Details
	Performance
	Description of the Benchmarking Environments
	Key and Signature Sizes
	Timing Results
	Memory Usage

	Advantages and Limitations
	General
	Compatibility with Existing Protocols

