
Ascon-Sign
Submission to the NIST Post-quantum Project

Vikas Srivastava1, Naina Gupta2, Arpan Jati2, Anubhab Baksi2, Jakub Breier3,
Anupam Chattopadhyay2, Sumit Kumar Debnath1, and Xiaolu Hou4

1National Institute of Technology Jamshedpur, India
2Nanyang Technological University, Singapore

3Silicon Austria Labs, Graz, Austria
4Slovak University of Technology, Bratislava

12020rsma011@nitjsr.ac.in, naina003@e.ntu.edu.sg, arpan.jati@ntu.edu.sg,
anubhab.baksi@ntu.edu.sg, jbreier@jbreier.com, anupam@ntu.edu.sg,

sdebnath.math@nitjsr.ac.in, xiaolu.hou@stuba.sk

June 1, 2023

1

CONTENTS 2

Contents

Contents 2

1 Introduction 3

2 Brief Description of Ascon-Hash/Ascon-XOF 3

3 Hash Function Usage in Ascon-Sign 4

4 Proposed Signature Based on ASCON Hash Function Family 6
4.1 Primary Structure: Few Time Signature . 6
4.2 Secondary Structure: One Time Signature . 6
4.3 Tertiary Structure: Merkle Tree Based Signatures . 11
4.4 Quaternary Structure: Hypertree Based Signatures 11
4.5 Ascon-Sign: Combining Everything Together . 11

5 Parameters, Size, and Security of Ascon-Sign 15

6 Performance Analysis 18

7 Advantages and Limitations 19

References 20

1 INTRODUCTION 3

1 Introduction

As with the progress of quantum computing in recent times, we can see the need to develop a
relatively new type of cryptographic primitives which can be considered secure. The underlying
security assumptions of these primitives are such that the currently best known algorithms (classical
and quantum alike) cannot break it. Since the digital signature schemes which are commonly used in
today’s electronic communication are not considered secure enough against the quantum computers,
there is a push for the so-called post-quantum signatures. Based on the existing literature, we can
see a variety of post-quantum signatures, like hash based [13, 11, 2, 16], lattice based [9, 8], code
based [14], multivariate polynomial based [6, 15], isogeny based [5].

Each of the varieties has its own strengths and weaknesses, and the choice of which post-quantum
signature scheme to use will depend on the specific requirements and constraints of the application.
Among these, hash based signatures are considered promising. The concept of hash functions is
quite well-known/well-studied in the symmetric key cryptography over the past couple of decades,
this gives an edge for these signatures. Symmetric key ciphers typically are known to be quantum
resistant (see, e.g., [12]), it makes intuitive sense to use those ciphers for post-quantum application
scenario.

Our Contribution

We introduce Ascon-Sign, which is a variant of the SPHINCS+ signature scheme with ASCON [7]
as a building block. SPHINCS+ was proposed in [3] as a hash-based signature scheme with post-
quantum security. The ASCON cipher suite offers both authenticated encryption with associated
data (AEAD) and hashing capabilities. Thus, the primary goal of Ascon-Sign is to offer efficient and
secure cryptographic operations for immediate use in a resource-constrained environment.

2 Brief Description of Ascon-Hash/Ascon-XOF

We give a brief description of Ascon-XOF [7] and Ascon-Hash [7]. The 320-bit starting state of
Ascon-XOF and Ascon-Hash is determined by a constant value called IV . This constant includes
various parameters for the algorithm, such as k (set to 0), the rate r, the number of rounds a, and
b (set to 0), all represented as 8-bit integers. Additionally, it includes the maximum output length
h in bits, written as a 32-bit integer (where h = l = 256 for Ascon-Hash and h = 0 for unlimited
output in Ascon-XOF). The final part of the constant is a 256-bit value consisting of all zeros.

The state S is initialized by applying the a-round permutation pa. Blocks of r bits are used to
process the message M . In order to make the length of the padded message a multiple of r bits,
a single 1 and the fewest number of 0s are appended to M during the padding procedure. The
resultant padded message is split into s blocks of r bits, M1 ∥ . . . ∥Ms: M1, . . . ,Ms ← r-bit blocks
of M ∥ 1 ∥ 0r−1−(|M | mod r).

The message block Mi with i = 1, . . . , s is Xored to the first r bits Sr of the initialized state S.
In the following, We apply the b-round permutation pb to S if i < s. In the next step, the state S
is transformed by the a-round permutation pa: S ← pa(S). We now extract the hash output from
the state in r-bit blocks Hi until the requested output length o ≤ h is completed after t = ⌈d/r⌉
blocks. After each extraction, the internal state, denoted as S, undergoes a transformation using a
permutation function called pb:

Hi ← Sr

S ← pb(S), 1 ≤ i ≤ t = ⌈l/r⌉

The final output block, referred to as Ht, is shortened to a length of l mod r bits. The resulting
truncated block, along with the previous output blocks H1 through H̃t, are concatenated together

3 HASH FUNCTION USAGE IN ASCON-SIGN 4

to form the overall output H:
H̃t ← ⌊Ht⌋l mod r

The mode of operation for hashing is based on sponges [4]. The hashing algorithm is specified in
Algorithm 1.

Algorithm 1 ASCON Hashing

Input: message M ∈ {0, 1}∗, output bit size o ≤ h or o arbitrary if h = 0
#Output: hash H ∈ {0, 1}

1: function Initialization
2: S ← pa(IVh,r,a ∥ 0c)
3: end function
4: function Absorbing
5: M1 . . .Ms ←M ∥ 1 ∥ 0∗
6: for i = 1, . . . , s do
7: S ← pa((Sr ⊕Mi) ∥ Sc)
8: end for
9: end function

10: function Squeezing
11: for i = 1, . . . , t = ⌈o/r⌉ do
12: Hi ← Sr

13: S ← pa(S)
14: end for
15: return ⌊H1 ∥ . . . ∥Ht⌋o
16: end function

ASCON Security Claim

Both Ascon-Hash and Ascon-XOF provide 128-bit security against collision attacks and (second) pre-
image attacks, as stated in Table 1. Note that the security of Ascon-XOF is reduced if the output
size is less than 256 bits. Like other sponge based hash functions, both Ascon-Hash and Ascon-XOF
also resist other attacks, including length extension attacks and second pre-image attacks for long
messages.

Table 1: Security claims for recommended parameter configurations of Ascon-Hash and Ascon-XOF

Requirement
Security in bits

Ascon-Hash Ascon-XOF
Collision resistance 128 min(128, o/2)

(Second) Pre-image resistance 128 min(128, o)
Ascon-Hash gives 256-bit output
Ascon-XOF gives o-bit output

As the designers of Ascon-Hash claimed, ideal properties for the permutations are not necessary
regarding security features [7]. For more details about the security claims and the state-of-the-art
analysis of Ascon-Hash and Ascon-XOF, we refer to [7, Section 6.4].

3 Hash Function Usage in Ascon-Sign

The hash function usage in Ascon-Sign is summarized in Table 2.

3 HASH FUNCTION USAGE IN ASCON-SIGN 5

Table 2: Hash function calls in Ascon-Sign
Task Input Notation
Generation of pseudorandom
string from the message

Secret seed SK.prf, optional
random value OptRand, mes-
sage M

PRFmsg(SK.prf,OptRand,M)

Computation of message di-
gest

R, public seed PK.seed, pub-
lic XMSS-MT root PK.root,
message M

Hmsg(R,PK.seed,PK.root,M)

Generation of FTS secret key
elements

Secret seed SK.seed, element
address ADRS

PRF(SK.seed,ADRS)

Hash-tree construction of
FTS

Public seed PK.seed, address
of node to compute ADRS,
hash strings of two children
nodes M1,M2

H(PK.seed,ADRS,M1,M2)

FTS tree roots compression Public seed PK.seed, address
in XMSSMT tree ADRS, k
roots of FORS trees roots[]

Tlen(PK.seed,ADRS, roots[])

Generation of underlying
OTS secret key

Secret seed SK.seed, WOTS+
key element address ADRS

PRF(SK.seed,ADRS)

Chain function iteration in
WOTS+

Public seed PK.seed, chain
address of node to compute
ADRS, previous element in
chain

F(T,PK.seed,ADRS)

Compression of public keys of
the underlying OTS

Public seed PK.seed,
WOTS+ keypair address
ADRS, WOTS+ public key
elements pub[]

Tlen(PK.seed,ADRS, pub[])

Computation of subtree tree
on top of compressed OTS
keys

Public seed PK.seed, address
of node to compute ADRS,
hash strings of two children
nodes M1,M2

H(PK.seed,ADRS,M1,M2)

We define the functions for Ascon-Sign as

Hmsg(R,PK.seed,PK.root,M) = Ascon-XOF(R||PK.seed||PK.root||M, 8m),

PRF(SEED,ADRS) = Ascon-Hash(SEED||ADRS),

PRFmsg(SK.prf,OptRand,M) = Ascon-Hash(SK.prf||OptRand||M).

For the robust variant, we further define the tweakable hash functions as

F(PK.seed,ADRS,M1) = Ascon-Hash(PK.seed||ADRS||M⊕
1),

H(PK.seed,ADRS,M1||M2) = Ascon-Hash(PK.seed||ADRS||M⊕
1 ||M

⊕
2)

Tl(PK.seed,ADRS,M) = Ascon-Hash(PK.seed||ADRS||M⊕),

For the simple variant, we instead define the tweakable hash functions as

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 6

F(PK.seed,ADRS,M1) = Ascon-Hash(PK.seed||ADRS||M1),

H(PK.seed,ADRS,M1||M2) = Ascon-Hash(PK.seed||ADRS||M1||M2)

Tl(PK.seed,ADRS,M) = Ascon-Hash(PK.seed||ADRS||M),

Generating the Masks. Ascon-Hash can be used to construct Ascon-XOF. For a message M with
l bytes we compute

M⊕ = M⊕ Ascon-XOF(PK.seed||ADRS, l).

Variants of Ascon-Sign: Simple and Robust

In the case of Ascon-Sign, two variants are proposed, namely the ‘simple’ version and the ‘robust’
version, similar to the approach used in SPHINCS+[3]. For the ‘robust’ instances, the process
involves generating pseudorandom bitmasks, which are then XORed with the input message. These
masked messages are represented as M⊕. On the other hand, the ‘simple’ instances do not include
the generation of bitmasks. The ‘simple’ instantiations offer faster performance since they eliminate
the need for additional calls to the PRF to generate bitmasks. The advantage of the ‘simple’
instantiations lies in their improved speed, but the security argument for these instances relies
entirely on the assumption of the random oracle model. In contrast, the ‘robust’ instantiations
provide a more conservative security argument but are slower in terms of performance.

4 Proposed Signature Based on ASCON Hash Function Fam-
ily

In this section, we describe the design of Ascon-Sign. Ascon-Sign comprises four level of structure:
primary, secondary, tertiary and quaternary. The idea behind Ascon-Sign sign is that we replace the
internal hash function in SPHINCS+ by Ascon-Hash and Ascon-XOF.

4.1 Primary Structure: Few Time Signature

We first discuss the primary structure of Ascon-Sign. At the bottom level of Ascon-Sign hyper
tree, we have a level of a few time signature (FORS, see [3]). It contains the private keys used
for signing messages. When a message needs to be signed, Ascon-Sign selects a FORS tree to
sign the message and generates the signature SIGFORS . Algorithm 2 describes the computation of
trees. Algorithm 3 and Algorithm 6 describes respectively the public key and private key generation
of FORS. Algorithm 4 presents the signature generation algorithm for FORS, while Algorithm 5
describes the computation of public key from the signature.

4.2 Secondary Structure: One Time Signature

As discussed before, Ascon-Sign like SPHINCS+ uses a hypertree structure. These subtrees are
generated using the one time signature, namley WOTS+ [10, 2]. We use the compressed public keys
as the leaves of the subtree. The private keys of WOTS+ are used to sign the roots of the subtrees
at the lowest level. The fundamental building block used in WOTS+ is the chaining function. We
describe the computation of chaining function in Algorithm 7. The key generation and signature
generation of one time signature employed in the secondary structure of Ascon-Sign is presented in
Algorithm 9, 8, and 10 respectively. In the end, we give the process of computing the public from
the WOTS+ signature in Algorithm 11. Algorithm 11 will be used as sub process during Ascon-Sign
verification.

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 7

Algorithm 2 FORS tree hash

Input: SK.seed, s, z, PK.seed, ADRS
Output: n-byte root node-top node on Stack

1: function FORS-TREE-HASH(SK.seed, s, z, PK.seed, ADRS)
2: if s%(1≪ z)! = 0 then
3: return -1;
4: end if
5: for i = 0; i < 2z; i = i+ 1 do
6: ADRS.setTreeHeight(0);
7: ADRS.setTreeIndex(s+ i);
8: sk = PRF(SK.seed, ADRS);
9: node = F(PK.seed, ADRS, sk);

10: ADRS.setTreeHeight(1);
11: ADRS.setTreeIndex(s+ i);
12: while Top node on Stack has same height as node do
13: ADRS.setTreeIndex((ADRS.getTreeIndex() −1) / 2)
14: node = H(PK.seed, ADRS, (Stack.pop() ∥node));
15: ADRS.setTreeHeight(ADRS.getTreeHeight() +1);
16: end while
17: return Stack.push(node)
18: end for
19: return Stack.pop()
20: end function

Algorithm 3 FORS public key

Input: SK.seed, PK.seed, ADRS
Output: PKFORS

1: function FORS-PK-GEN(SK.seed, PK.seed, ADRS)
2: forspkADRS = ADRS
3: for i = 0; i < k; i = i+ 1 do
4: root[i] = FORS-TREEHASH(SK.seed, i× t, a, PK.seed, ADRS)
5: end for
6: forspkADRS.setType(FORSROOTS)
7: forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
8: PKFORS = Tk(PK.seed, forspkADRS, root)
9: return PKFORS

10: end function

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 8

Algorithm 4 FORS signature

Input: Bit string M, SK.seed, ADRS, PK.seed
Output: FORS signature SIGFORS

1: function FORS-SIGNATURE(M, SK.seed, PK.seed, ADRS)
2: for i = 0; i < k; i++ do
3: unsigned int idx = bits i× log(t) to (i+ 1)× log(t)− 1 of M
4: ADRS.setTreeHeight(0)
5: ADRS.setTreeIndex(i× t+ idx);
6: SIGFORS = SIGFORS ∥PRF(SK.seed,ADRS)
7: for j = 0; j < a; j = j + 1 do
8: s = floor(idx/(2j))⊕ 1;
9: AUTH[j] = FORS-TREEHASH(SK.seed, i× t+ s× 2j , j,PK.seed,ADRS);

10: end for
11: SIGFORS = SIGFORS ∥AUTH
12: end for
13: return SIGFORS

14: end function

Algorithm 5 FORS public key from signature

Input: SIGFORS , k log(t)-bit string M, PK.seed, ADRS
Output: FORS public key PKFORS

1: function FORS-PK-FROM-SIGN(SIGFORS ,M, PK.seed, ADRS)
2: for i = 0; i < k; i = i+ 1 do
3: unsigned int idx = bits i× log(t) to (i+ 1)× log(t)− 1 of M;
4: sk = SIGFORS .getSK(i)
5: ADRS.setTreeHeight(0)
6: ADRS.setTreeIndex(i× t + idx)
7: node[0] = F(PK.seed, ADRS, sk)
8: auth = SIGFORS .getAUTH(i);
9: ADRS.setTreeIndex(i× t+ idx);

10: for j = 0; j < a; j = j + 1 do
11: ADRS.setTreeHeight(j + 1);
12: if (floor(idx/(2j))%2) == 0 then
13: ADRS.setTreeIndex(ADRS.getTreeIndex() / 2)
14: node[1] = H(PK.seed, ADRS, (node[0] ∥ auth[j]))
15: else
16: ADRS.setTreeIndex((ADRS.getTreeIndex() −1)/2)
17: node[1] = H(PK.seed, ADRS, (auth[j] ∥ node[0]))
18: end if
19: node[0] = node[1];
20: end for
21: root[i] = node[0];
22: end for
23: forspkADRS = ADRS
24: forspkADRS.setType(FORSROOTS);
25: forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
26: PKFORS = Tk(PK.seed, forspkADRS, root)
27: return PKFORS

28: end function

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 9

Algorithm 6 FORS private key

Input: SK.seed, ADRS, idx
Output: FORS private key skFORS

1: function FORS-SK-GEN(SK.seed, ADRS, idx)
2: ADRS.setTreeHeight(0);
3: ADRS.setTreeIndex(idx);
4: skFORS= PRF(SK.seed, ADRS);
5: return skFORS

6: end function

Algorithm 7 WOTS+ chaining function

Input: Input string X, start index i, number of steps s, public seed PK.seed, ADRS
Output: Computation of F iterated s times on the input string X

1: function WOTS-Chain(X, i, s,PK.seed,ADRS)
2: if s = 0 then
3: return X
4: end if
5: if i+ 1 > w − 1 then
6: return NULL
7: end if
8: byte[n] tmp = WOTS-Chain(X, i, s− 1, PK.seed, ADRS)
9: ADRS.setHashAddress(i+ s− 1)

10: tmp = F(PK.seed, ADRS, tmp);
11: return tmp
12: end function

Algorithm 8 Private key generation WOTS+

Input: SK.seed, ADRS
Output: skWOTS+

1: function SKGen-WOTS+(SK.seed, ADRS)
2: for i = 0; i < len; i = i+ 1 do
3: ADRS.setChainAddress(i)
4: ADRS.setHashAddress(0)
5: skWOTS+[i] = PRF(SK.seed,ADRS)
6: end for
7: return skWOTS+

8: end function

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 10

Algorithm 9 Public key generation WOTS+

Input: SK.seed, ADRS, PK.seed
Output: pkWOTS+

1: wotspkADRS = ADRS
2: function PKGen-WOTS+(SK.seed,PK.seed, ADRS)
3: for i = 0; i < len, i = i+ 1 do
4: ADRS.setChainAddress(i)
5: ADRS.setHashAddress(0)
6: skWOTS+[i] = PRF(SK.seed,ADRS)
7: tmp[i] = WOTS-Chain(pkWOTS+[i], 0, w − 1, PK.seed, ADRS)
8: end for
9: wotspkADRS.setType(WOTS-PK)

10: wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
11: pkWOTS+= Tlen(PK.seed, wotspkADRS, tmp)
12: return pkWOTS+

13: end function

Algorithm 10 Signature generation WOTS+

Input: M, SK.seed, PK.seed, ADRS
Output: SIGWOTS+

1: function WOTS-Sign(M, SK.seed, PK.seed, ADRS)
2: csum=0
3: M’=base w(M, w, l1)
4: for i = 0, i < l1, i = i+ 1 do
5: csum = csum+ w − 1−M′[i]
6: end for
7: if log(w)%8! = 0 then
8: csum = csum≪ (8− ((l2 × log(w))%8))
9: end if

10: l2 bytes = ceil((l2 × log(w))/8)
11: M′ = M′ || base w(toByte(csum, l2 bytes), w, l2)
12: for i = 0, i < len, i = i+ 1 do
13: ADRS.setChainAddress(i)
14: ADRS.setHashAddress(0)
15: skWOTS+[i] = PRF(SK.seed, ADRS)
16: SIGWOTS+[i] = WOTS-Chain(skWOTS+[i], 0, M’[i], PK.seed, ADRS)
17: end for
18: return SIGWOTS+

19: end function

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 11

Algorithm 11 WOTS public key from signature

Input: M, SIGWOTS+, PK.seed, ADRS
Output: pk SIGWOTS+

1: function WOTS-PK-from-Sign(M, SIGWOTS+, PK.seed, ADRS)
2: csum = 0
3: wotspkADRS = ADRS
4: M’ = base-w(M, w, l1)
5: for i = 0, i < l1, i = i+ 1 do
6: csum = csum+ w − 1−M′[i]
7: end for
8: csum = csum≪ (8− ((l2 × log(w))%8))
9: l2 bytes = ceil((l2 × log(w))/8)

10: M′ = M′ ||base w(toByte(csum, l2 bytes), w, l2)
11: for i = 0, i < len, i = i+ 1 do
12: ADRS.setChainAddress(i)
13: ADRS.setHashAddress(0)
14: skWOTS+[i] = PRF(SK.seed, ADRS)
15: tmp[i] = WOTS-Chain(SIGWOTS+[i], 0, M[i], PK.seed, ADRS)
16: end for
17: wotspkADRS.setType(WOTS-PK)
18: wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
19: pk SIGWOTS+= Tlen(PK.seed, wotspkADRS, tmp)
20: return pk SIGWOTS+

21: end function

4.3 Tertiary Structure: Merkle Tree Based Signatures

In tertiary structure of Ascon-Sign, we use a Merkle tree based signature. Ascon-Sign combines
WOTS+ with binary hash tree to construct subtrees inside the hypertree. The leaves of these
trees are public keys of WOTS+. To compute the internal nodes of binary hash trees, we use the
Algorithm 12. Algorithm 13 and Algorithm 14 describes the process of key generation and signature
generation corresponding to the subtree. Additionally, the Algorithm 15 is used as a subroutine
in the verification process of Ascon-Sign. It provies a method of computing public keys from the
signature.

4.4 Quaternary Structure: Hypertree Based Signatures

At the quaternary level, we have hypertree which consists of several layers of XMSS trees described
in the tertiary structure (Section 4.3). The Key generation, signature generation, and verification
algorithm of hypertree is described respectively in Algorithm 16, Algorithm 17 and Algorithm 18.

4.5 Ascon-Sign: Combining Everything Together

In the end, primary, secondary, tertiary, and quaternary structures combines together to give the
design of Ascon-Sign. The key generation algorithm of Ascon-Sign is presented in Algorithm 19.
Algorithm 20 and Algorithm 21 contains the description of signature generation and verification
algorithm of Ascon-Sign.

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 12

Algorithm 12 Tree hash

Input: SK.seed, s, z, PK.seed, ADRS
Output: n-byte root node-top node on Stack

1: function Treehash(SK.seed, s, z, PK.seed, ADRS)
2: if s%(1≪ z)! = 0 then
3: return -1;
4: end if
5: for i = 0; i < 2z; i = i+ 1 do
6: ADRS.setType(WOTS HASH)
7: ADRS.setKeyPairAddress(s+ i);
8: node = PKGEN-WOTS+(SK.seed, PK.seed, ADRS)
9: ADRS.setType(TREE)

10: ADRS.setTreeHeight(1)
11: ADRS.setTreeIndex(s+ i)
12: while Top node on Stack has same height as node do
13: ADRS.setTreeIndex((ADRS.getTreeIndex() −1) / 2)
14: node = H(PK.seed, ADRS, (Stack.pop() || node))
15: ADRS.setTreeHeight(ADRS.getTreeHeight() +1)
16: end while
17: return Stack.push(node)
18: end for
19: return Stack.pop()
20: end function

Algorithm 13 XMSS key generation

Input: SK.seed, PK.seed, ADRS
Output: XMSS public key pk

1: function XMSS-PK-GEN(SK.seed, PK.seed, ADRS)
2: pk = TREEHASH(SK.seed,0, h′, PK.seed, ADRS)
3: return pk
4: end function

Algorithm 14 XMSS signature generation

Input: M, SK.seed idx, PK.seed, ADRS
Output: XMSS signature SIGXMSS = (SIG||AUTH)

1: function XMSS-SIGN(M, SK.seed idx, PK.seed, ADRS)
2: for j = 0; j < h′; j = j + 1 do
3: k = floor(idx/(2j))

⊕
1;

4: AUTH[j] = TREEHASH(SK.seed, k × 2j , j,PK.seed,ADRS)
5: end for
6: ADRS.setType(WOTS HASH)
7: ADRS.setKeyPairAddress(idx)
8: SIG = WOTS-SIGN(M, SK.seed, PK.seed, ADRS)
9: SIGXMSS = SIG||AUTH

10: return SIGXMSS

11: end function

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 13

Algorithm 15 Public key from signature

Input: idx, SIGXMSS , M, PK.seed, ADRS
Output: n-byte root value node[0]

1: function XMSS-PK-FROM-SIG(idx, SIGXMSS , M, PK.seed, ADRS)
2: ADRS.setType(WOTSHASH)
3: ADRS.setKeyPairAddress(idx)
4: SIG = SIGXMSS .getWOTSSig()
5: AUTH = SIGXMSS .getXMSSAUTH();
6: node[0] = WOTS-PK-FROM-SIGN(SIG, M, PK.seed, ADRS);
7: ADRS.setType(TREE);
8: ADRS.setTreeIndex(idx);
9: for k = 0; k < h′; k ++ do

10: ADRS.setTreeHeight(k + 1)
11: if (floor(idx/(2k))%2) == 0 then
12: ADRS.setTreeIndex(ADRS.getTreeIndex() /2);
13: node[1] = H(PK.seed, ADRS, (node[0] ∥ AUTH[k]));
14: else
15: ADRS.setTreeIndex((ADRS.getTreeIndex() −1)/2);
16: node[1] = H(PK.seed, ADRS, (AUTH[k] ∥ node[0]));
17: end if
18: node[0] = node[1];
19: end for
20: return node[0]
21: end function

Algorithm 16 Hypertree key generation

Input: SK.seed, PK.seed
Output: PKHT

1: function HT-PK-GEN(SK.seed, PK.seed)
2: ADRS = toByte(0, 32);
3: ADRS.setLayerAddress(d− 1);
4: ADRS.setTreeAddress(0);
5: root = XMSS-PK-GEN(SK.seed, PK.seed, ADRS);
6: return root;
7: end function

4 PROPOSED SIGNATURE BASED ON ASCON HASH FUNCTION FAMILY 14

Algorithm 17 Hypertree signature

Input: Message M, SK.seed, PK.seed, tree index idxtree, leaf index idxleaf
Output: SIGHT

1: function HT-SIGN(M, SK.seed, PK.seed, idxtree, idxleaf)
2: ADRS = toByte(0, 32);
3: ADRS.setLayerAddress(0);
4: ADRS.setTreeAddress(idxtree);
5: SIGtmp = XMSS-SIGN(M, SK.seed, idxleaf, PK.seed, ADRS);
6: SIGHT = SIGHT ∥ SIGtmp
7: root = XMSS-PK-FROM-SIGN(idxleaf, SIGtmp, M, PK.seed, ADRS);
8: for j = 1; j < d; j = j + 1 do
9: idxleaf = (h/d) least significant bits of idxtree;

10: idxtree = (h− (j + 1)× (h/d)) most significant bits of idxtree;
11: ADRS.setLayerAddress(j);
12: ADRS.setTreeAddress(idxtree);
13: SIGtmp = XMSS-SIGN(root, SK.seed, idxleaf, PK.seed, ADRS);
14: SIGHT = SIGHT ∥ SIGtmp
15: if j < d− 1 then
16: root = XMSS-PK-FROM-SIGN(idxleaf, SIGtmp, M, PK.seed, ADRS);
17: end if
18: end forreturn SIGHT

19: end function

Algorithm 18 Hypertree verification

Input: Message M, signature SIGHT , public seed PK.seed, tree index idxtree, leaf index idxleaf,
PKHT .
Output: Boolean

1: function HT-VERIFY(M, SIGHT , PK.seed, idxtree, idxleaf, PKHT)
2: ADRS = toByte(0, 32);
3: SIGtmp = SIGHT .getXMSSSignature(0);
4: ADRS.setLayerAddress(0);
5: ADRS.setTreeAddress(idxtree)
6: node = XMSS-PK-FROM-SIGN(idxleaf, SIGtmp, M, PK.seed, ADRS);
7: for j = 1; j < d; j = j + 1 do
8: idxleaf = (h/d) least significant bits of idxtree
9: idxtree = (h− (j + 1)× h/d) most significant bits of idxtree

10: SIGtmp = SIGHT .getXMSSSignature(j)
11: ADRS.setLayerAddress(j)
12: ADRS.setTreeAddress(idxtree)
13: node = XMSS-PK-FROM-SIGN(idxleaf, SIGtmp, node, PK.seed, ADRS)
14: end for
15: if node= PKHT then
16: return True;
17: else
18: return False;
19: end if
20: end function

5 PARAMETERS, SIZE, AND SECURITY OF ASCON-SIGN 15

Algorithm 19 Ascon-Sign key generation

Output: Ascon-Sign key pair (SK,PK)
1: function Ascon-Sign-KG
2: SK.seed= sec rand(n)
3: SK.PRF= sec rand(n)
4: PK.seed= sec rand(n)
5: PK.seed= HT-PK-GEN(SK.seed, PK.seed)
6: return ((SK.seed, SK.prf, PK.seed, PK.root), (PK.seed, PK.root))
7: end function

5 Parameters, Size, and Security of Ascon-Sign

Ascon-Sign has the following parameters:

• n : the security parameter in bytes.

• w : the Winternitz parameter

• h : the height of the hypertree

• d : the number of layers in the hypertree

• k : the number of trees in FORS

• t : the number of leaves of a FORS tree

Note that a = log t. Moreover, from these values the values m and len are computed as

• m: the message digest length in bytes. It is computed as

m = ⌊(k log t+ 7)/8⌋+ ⌊(h− h/d+ 7)/8⌋+ ⌊(h/d+ 7)/8⌋

While only h + k log t bits would be needed, using the longer m as defined above simplifies imple-
mentations significantly.

• len: the number of n-byte string elements in a WOTS + private key, public key, and signature.
It is computed as len = l1 + l2 , with

l1 = ⌈8n/ logw⌉

and
l2 = ⌈log(len1(w − 1))/ log(w)⌉

Table 3: Hash calls in Ascon-Sign
F H PRF T1en

Key Generation 2h/dw len 2h/d − 1 2h/dlen 2h/d

Signing kt+ d(2h/d)w len k(t− 1) + d(2h/d − 1) kt+ d(2h/d)len d2h/d

Verification k + dw len k log t+ h - d

Table 3 gives a brief overview of the number of hash function calls we require for each operation
in Ascon-Sign. Single calls to Hmsg, PRFmsg, and Tk for signing and single calls to Hmsg and Tk

5 PARAMETERS, SIZE, AND SECURITY OF ASCON-SIGN 16

Algorithm 20 Ascon-Sign signature generation

Input: Message M, private key SK = (SK.seed,SK.prf,PK.seed,PK.root)
Output: SIGASCON

1: function Ascon-Sign-SIGN(M,SK)
2: Intialize ADRS

Generate randomizer
3: opt = toByte(0, n)
4: if Randomize then
5: opt = rand(n)
6: end if
7: R = PRFmsg(SK.prf, opt,M);
8: SIGASCON = SIGASCON ∥R

Compute message digest and index
9: digest = Hmsg(R,PK.seed,PK.root,M);

10: tmp md = first floor((ka+ 7)/8) bytes of digest;
11: tmp idx tree = next floor((h− h/d+ 7)/8) bytes of digest;
12: tmp idx leaf = next floor((h/d+ 7)/8) bytes of digest;

13: md = first ka bits of tmp md;
14: idx tree = first h− h/d bits of tmp idx tree;
15: idx leaf = first h/d bits of tmp idx leaf

FORS sign
16: ADRS.setLayerAddress(0);
17: ADRS.setTreeAddress(idx tree);
18: ADRS.setType(FORS TREE);
19: ADRS.setKeyPairAddress(idx leaf);
20: SIGFORS = FORS-SIGNATURE(md,SK.seed,PK.seed,ADRS);
21: SIGASCON = SIGASCON||SIGFORS ;

Get FORS public key
22: PKFORS = FORS-PK-FROM-SIGN(SIGFORS ,M,PK.seed,ADRS);

Sign FORS public key with hypertree
23: ADRS.setType(TREE);
24: SIGHT = HT-SIGN(PKFORS ,SK.seed,PK.seed, idx tree, idx leaf);
25: SIGASCON = SIGASCON ∥ SIGHT ;
26: return SIGASCON

27: end function

5 PARAMETERS, SIZE, AND SECURITY OF ASCON-SIGN 17

Algorithm 21 Ascon-Sign verification

Input: Message M, public key PK = (PK.seed,PK.root), SIGASCON

Output: Boolean
1: function ASCON-Verify(M,PK,SIGASCON)
2: Intialize ADRS
3: R = SIGASCON.getR()
4: SIGFORS = SIGASCON.getSIGFORS()
5: SIGHT = SIGASCON.getSIGHT()

Compute message digest and index
6: digest = Hmsg(R,PK.seed, PK.root,M);
7: tmp md = first floor((ka+ 7)/8) bytes of digest;
8: tmp idx tree = next floor((h− h/d+ 7)/8) bytes of digest;
9: tmp idx leaf = next floor((h/d+ 7)/8) bytes of digest;

10: md = first ka bits of tmp md;
11: idx tree = first h− h/d bits of tmp idx tree;
12: idx leaf = first h/d bits of tmp idx leaf

13: ADRS.setLayerAddress(0);
14: ADRS.setTreeAddress(idx tree);
15: ADRS.setType(FORS TREE);
16: ADRS.setKeyPairAddress(idx leaf);

17: PKFORS = FORS-PK-FROM-SIGN(SIGFORS ,M,PK.seed,ADRS);

18: ADRS.setType(TREE);
19: return HT-VERIFY(M, SIGHT , PK.seed, idxtree, idxleaf, PKHT)
20: end function

6 PERFORMANCE ANALYSIS 18

for verification are omitted. because their effect on speed is negligible. Table 4 summarizes the size
of secret key, public key, and signature in bytes for a given set of parameters.

Table 4: Key and signature sizes for Ascon-Sign
Secret key Public key Signature

Size 4n 2n (h+ k(log t+ 1) + d · len+ 1)n

Table 5 discusses the example parameter for Ascon-Sign targeting different security levels and
different tradeoffs between size and speed. Since the design is basically the same of SPHINCS+,
we expect the same security claims [1, Table 3] would hold. Here, the suffix ‘s’ denotes that the
parameter set focus on size of the signature on the cost of lower speed, while the suffix ‘f’ denotes
that the given parameter set focus on speed rather than the size of the signature. Based on the
application scenario, appropriate parameter set can be chosen.

Table 5: Example parameter sets for Ascon-Sign
n h d log(t) k w Expected security level Signature size

Ascon-Sign-128s 16 63 7 12 14 16 1 7856
Ascon-Sign-128f 16 66 22 6 33 16 1 17088
Ascon-Sign-192s 24 63 7 14 17 16 3 16224
Ascon-Sign-192f 24 66 22 8 33 16 3 35664

Security claim for Ascon-Sign

Ascon-Sign is based on the SPHINCS+ [3] signature framework with Ascon-Hash and Ascon-XOF as
the internal hash function. Similar to SPHINCS+ [3], the security of Ascon-Sign is achieved through
the inherent properties of the function families described in Section 3. These properties are derived
from the characteristics of the ASCON hash functions used to instantiate those function families.
Note that ASCON cipher suite is well analyzed, and therefore, Ascon-Sign is expected to have the
same security strength as SPHINCS+.

6 Performance Analysis

To obtain performance benchmarks, we assess our reference implementation and optimized imple-
mentation on a machine with following hardware and software specification:

• CPU: Intel Core i5 10210U

• Architecture: x64

• Number of cores: 4

• Base clock speed: 1.60 GHz

• Memory (RAM): 8 GiB

• Operating System: Linux Lite 5.2

• Linux kernel version: 5.4.0-113-generic

• Compiler: GCC 9.4.0

• Compiler optimization flag: -Wall -Wextra -Wpedantic -03 -std=c99

7 ADVANTAGES AND LIMITATIONS 19

For the parameter sets mentioned in Table 5, the cycle counts for reference and optimized
implementation of Ascon-Sign ‘simple’ variant are mentioned in Table 6. In addition, We also list
the performance result for reference and optimized implementations for robust version of Ascon-Sign
in the Table 7. In Table 8, we list the key and signature sizes (in bytes) for the defined parameter
sets.

Table 6: Runtime results for reference and optimized implementation of Ascon-Sign (‘simple’ variant)
Key generation Signing Verification

Reference Implementation
Ascon-Sign-128s 315,840,896 2,413,174,678 2,429,047
Ascon-Sign-128f 5,939,611 115,382,780 6,972,950
Ascon-Sign-192s 599,392,072 5,458,909,051 4,696,353
Ascon-Sign-192f 10,939,221 243,023,163 13,058,030

Optimized Implementation
Ascon-Sign-128s 291,925,878 2,224,377,542 2,137,821
Ascon-Sign-128f 5,506,606 107,020,221 6,535,295
Ascon-Sign-192s 557,050,751 5,046,224,790 4,357,430
Ascon-Sign-192f 10,117,696 226,197,880 12,333,664

Table 7: Runtime results for reference and optimized implementation of Ascon-Sign (‘robust’ variant)
Key generation Signing Verification

Ascon-Sign-128s 554,679,600 4,225,825,170 5,516,617
Ascon-Sign-128f 10,156,899 198,139,090 12,469,524
Ascon-Sign-192s 1,046,162,651 9,916,984,141 10,281,218
Ascon-Sign-192f 18,827,117 419,872,255 23,006,148

Optimized Implementation
Ascon-Sign-128s 530,089,300 4,038,032,800 4,232,362
Ascon-Sign-128f 10,678,534 182,601,975 11,279,318
Ascon-Sign-192s 970,639,431 8,893,090,510 7,664,451
Ascon-Sign-192f 17,174,517 381,735,599 21,408,883

Table 8: Key and signature sizes in bytes for Ascon-Sign
Public key Secret key Signature

Ascon-Sign-128s 32 64 7856
Ascon-Sign-128f 32 64 17088
Ascon-Sign-192s 48 96 16224
Ascon-Sign-192f 48 96 35664

7 Advantages and Limitations

• Ascon-Sign is based on ASCON [7]. It is a lightweight AEAD which is recently selected by
NIST for standardization of the lightweight cryptography1.

1https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon

https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon

REFERENCES 20

• Ascon-Sign is a variant of SPHINCS+ where the internal hash function is replaced by Ascon-
Hash and Ascon-XOF. Therefore, the advantages and limitations SPHINCS+ is also inherited
by Ascon-Sign.

References

[1] Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M., Fluhrer, S.,
Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M.M., Mendel,
F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Westerbaan, B.: Sphincs+
– submission to the 3rd round of the nist post-quantum project. v3.1. NIST PQC (2022),
https://sphincs.org/data/sphincs+-r3.1-specification.pdf 18

[2] Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Papachristodoulou,
L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: Sphincs: practical stateless hash-based
signatures. In: Annual international conference on the theory and applications of cryptographic
techniques. pp. 368–397. Springer (2015) 3, 6

[3] Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The
sphincs+ signature framework. In: Proceedings of the 2019 ACM SIGSAC conference on com-
puter and communications security. pp. 2129–2146 (2019) 3, 6, 18

[4] Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: Sponge functions. ecrypt hash workshop
(2007) 4

[5] Beullens, W., Kleinjung, T., Vercauteren, F.: Csi-fish: efficient isogeny based signatures
through class group computations. In: Advances in Cryptology–ASIACRYPT 2019: 25th In-
ternational Conference on the Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8–12, 2019, Proceedings, Part I. pp. 227–247. Springer (2019) 3

[6] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: ACNS.
vol. 5, pp. 164–175. Springer (2005) 3

[7] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2: Lightweight authenti-
cated encryption and hashing. Journal of Cryptology 34, 1–42 (2021) 3, 4, 19

[8] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-
dilithium: A lattice-based digital signature scheme. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems pp. 238–268 (2018) 3

[9] Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T.,
Seiler, G., Whyte, W., Zhang, Z., et al.: Falcon: Fast-fourier lattice-based compact signatures
over ntru. Submission to the NIST’s post-quantum cryptography standardization process 36(5)
(2018) 3

[10] Hülsing, A.: W-ots+–shorter signatures for hash-based signature schemes. In: International
Conference on Cryptology in Africa. pp. 173–188. Springer (2013) 6

[11] Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for xmss mt. In: Security En-
gineering and Intelligence Informatics: CD-ARES 2013 Workshops: MoCrySEn and SeCIHD,
Regensburg, Germany, September 2-6, 2013. Proceedings 8. pp. 194–208. Springer (2013) 3

[12] Jang, K., Baksi, A., Song, G., Kim, H., Seo, H., Chattopadhyay, A.: Quantum analysis of AES.
IACR Cryptol. ePrint Arch. p. 683 (2022), https://eprint.iacr.org/2022/683 3

https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://eprint.iacr.org/2022/683

REFERENCES 21

[13] Merkle, R.C.: A certified digital signature. In: Advances in cryptology—CRYPTO’89 proceed-
ings. pp. 218–238. Springer (2001) 3

[14] Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr. In-
form. Theory 15(2), 157–166 (1986) 3

[15] Patarin, J.: Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new fam-
ilies of asymmetric algorithms. In: Advances in Cryptology—EUROCRYPT’96: International
Conference on the Theory and Application of Cryptographic Techniques Saragossa, Spain, May
12–16, 1996 Proceedings 15. pp. 33–48. Springer (1996) 3

[16] Srivastava, V., Baksi, A., Debnath, S.K.: An overview of hash based signatures. Cryptology
ePrint Archive, Paper 2023/411 (2023), https://eprint.iacr.org/2023/411 3

https://eprint.iacr.org/2023/411

	Contents
	Introduction
	Brief Description of Ascon-Hash/Ascon-XOF
	Hash Function Usage in Ascon-Sign
	Proposed Signature Based on ASCON Hash Function Family
	Primary Structure: Few Time Signature
	Secondary Structure: One Time Signature
	Tertiary Structure: Merkle Tree Based Signatures
	Quaternary Structure: Hypertree Based Signatures
	Ascon-Sign: Combining Everything Together

	Parameters, Size, and Security of Ascon-Sign
	Performance Analysis
	Advantages and Limitations
	References

