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1. Introduction

This document present the digital signature version the multivariate public key cryptosystem DME based on the
composition of linear and exponential maps that produces a public key of very high degree. The main reference for
the description of DME is ([4] ), the core of the scheme is deterministic trapdoor permutation and allows to use as
random padding OAEP for KEM and PSS00 for signature. In this paper the signature scheme DME-SIGN correspond
to the DME-PSS00 of ([4] ).

The main components of the DME are exponential maps EA : Kn → Kn associated to matrices A = (aij) ∈
Mn×n(Z), where K is a finite field given by the following formula:

(1) EA(x1, . . . , xn) = (xa111 · . . . · xa1nn , . . . , xan1
1 · . . . · xann

n ).

The following two facts are extremely useful and also easy to verify:

a) If A,B ∈Mn×n(Z) and C = B ·A, then FC = FB ◦ FA.
b) If det(A) = ±1, then the inverse matrix A−1 has integer entries, FA is invertible on (K \{0})n, and its inverse

is given by FA−1 .

The of monomial maps that EA are extensively used in Algebraic Geometry and produce birrational maps. In [2]
these transformations are used to produce a multivariate public key cryptosystem. If det(A) 6= ±1, the monomial map
is not birrational and

Let q = pe be a prime power and Fq denote a finite field of q elements. It is not necessary to consider exponents
greater than q − 2 since xq−1 = 1 for all x ∈ Fq \ {0}. We take A ∈Mn×n(Zq−1) and then we have:

Proposition 1.1. Let A ∈ Mn×n(Zq−1) and GA : Fnq → Fnq be the corresponding monomial map. If gcd(det(A), q −
1) = 1, and we set b := det(A)−1 ∈ Zq−1 and B := bAdj(A), then A−1 = B ∈ Mn×n(Zq−1) and FA : (Fq \ {0})n →
(Fq \ {0})n is bijective with inverse FA−1 .

For the proof see (([4] ) thm1.2)
The exponential maps FA can be used to build a quadratic multivariate PKC in the standard way by putting powers

of q in the non-zero entries of the matrix A and 2 non zero entries qaij and 2 non zero in each row od A one gets a
quadratic public key, if we allow 3 non zero entries, we get cubic polynomials, and so on. We made extensive computer
tests leading to the conclusion that those systems are not safe against Gröbner basis attack for reasonable key size.

In order to make an scheme stronger against algebraic cryptanalysis we take q = 2e and allow the non-zero entries
of A to be powers of 2 that are not powers of q. This choice produces final polynomials with degree up to q − 1 in
each variable. The kernel of the DME is a composition of r exponentials with n variables and n+ 1 linear maps, that
we denote by DME-(r, n, 2e). We can get very efficient and safe DME-(r, n, 2e) schemes with n = 6, 8 and 3 ≤ r ≤ 6.
FIn order to simplify the notation, we take r = 4 and n = 8 in the following description of the DME.

2. Mathematical description of DME-(4, 8, 2e)

The DME-(4, 8, 2e) cryptosystem works with plain texts and cypher texts in F8
q with q = 2e. Let u2 +au+b ∈ Fq[u]

be an irreducible polynomial, consider the field extension Fq2 = Fq[u]/〈u2 + au + b〉 of degree two over Fq. Let
φ : F2

q → Fq2 be the bijection defined by (x, y) 7→ x + yū and let φ̄ : F8
q → (Fq2)4 be the map (x1, . . . , x8) 7→

(φ(x1, x2), φ(x3, x4), φ(x5, x6), φ(x7, x8)).The values of e, a, b are fixed during the setup of the system.

The DME-(4, 8, 2e) cryptosystem combines 5 linear+affine maps L0, . . . , L4 : F8
q → F8

q with 4 exponential maps

E1, . . . , E4 : (Fq2)4 → (Fq2)4. More precisely, the encryption map

F = Ψ(L0, . . . , Lr, E1, . . . , Er) : F8
q → F8

q

E-mail address: iluengo@ucm.es, mavend01@ucm.es.

1



2 I. LUENGO

is given by the composition
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of the linear+affine and exponential maps interleaved with the bijections φ̄ and φ̄−1.

Each linear+affine map Li is made of four linear maps Li1, . . . , Li4 : F2
q → F2

q and four translation vectors

ai1, . . . , ai4 ∈ F2
q, so that

Li(x1, . . . , x8) = (Li1(x1, x2) + ai1, Li2(x3, x4) + ai2, Li3(x5, x6) + ai3, Li4(x7, x8) + ai4).

The matrices of the blocks Li1, . . . , Li4 are Ai1, . . . , Ai4 ∈ F2×2
q , respectively.

An important setting for the security of DME is the number of steps with translation vectors. In [] Thm 5.2 we proof
that there is not failure of decryption if we use translations only in one intermediate step with non zero 1 ≤ i0 < 4
and set aij = 0 for all i 6= i0. We also proof in the same place that we will have failure of decryption if there are
translations at more than one step

Setting: We set non zero translations the last 3 linear maps Li, this setting will produce failure of decryption, but
for signature use ** and that gives not signing or verifying errors.

The exponential maps FEi
: (Fq2)4 → (Fq2)4 are defined by he matrices 4× 4 Ei with coefficients in [0, q2 − 1]. It

is not necessary to consider exponents greater than q2 − 1 since xq
2

= x for all x ∈ Fq2 .

The linear+affine maps Li : F8
q → F8

q are invertible if and only if each of the 2 × 2 blocks Li1, Li2, Li3, Li4 have
non-zero determinant. In this case, the inverse of Li is

L−1
i (x1, . . . , x8) = (L−1

i1 (x1, x2)− L−1
i1 ai1, . . . , L

−1
i4 (x7, x8)− L−1

i4 ai4),

i.e. L−1
i is also a linear+affine map.

The exponential maps Ei : (Fq2)4 → (Fq2)4 are not invertible in general. However, their restrictions to the torus

Êi : (F∗q2)4 → (F∗q2)4 are invertible if and only if

gcd(det(Ei), q
2 − 1) = 1.

The inverse of Êi is also an exponential map Ê−1
i : (F∗q2)4 → (F∗q2)4, given by the inverse of the matrix Ei modulo

q2 − 1. This matrix has coefficients in [0, q2 − 2]. Using the same matrix, we extend Ê−1
i to an exponential map

E−1
i : (Fq2)4 → (Fq2)4.

The private key consists of the coefficients of the linear+affine maps L0, . . . , L4 and exponential maps E1, . . . , E4,
nevertheless the security of DME is based on the difficulty to find the linear maps L0, . . . , L4 and the exponential can
be made partially or totally public. The public key data are enough to apply all those maps in reverse, that is, to
being able to decrypt or to signing.

The public key is the polynomial representation of the composition of the maps,

F (x1, . . . , x8) = (F4,1, F4,2, F4,3, F4,4, F4,5, F4,6, F4,7, F4,8)

.

3. Computation of the public key F

If x = (x1, . . . , x8) ∈ F8
q are the initial coordinates, then the composition of all the maps allow us to compute the

components of F (x) as polynomials F4,j ∈ Fq[x1, . . . , x8]. In order to keep the number of monomials small, we choose
the matrices Ei with the following properties:

(1) The entries of Ei are powers of 2.
(2) Each row of Ei has one or two non zero entries.
(3) If det(Ei) is not a power of 2 we choose the entries of Ei such a way that di = 1

det(Ei)
mod q2 − 1 has a fixed

small binary weight.
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The computation of di = 1
det(Ei)

mod q2 − 1 is the most time consuming task of the inverse F−1(x) the condition

(3) is essential to get speed up the signing procedure. The inverse map F−1 is also composition of 4 exponentials so
if the number of monomials of F−1 is not very big, one can get the polynomial components of F−1 by interpolation,
provided enough number of pairs (x, F (x)). To avoid this attack we take such that the last inverse d4 has binary
weight to ensure that the inverse E−4

i has entries with big binary weight that will produce a big number of monomial
of the inverse F−1 above a given security level for instance q2 = 22e.

It is possible to get the monomials of the Fi without computing the composition of all the maps. It is easy to verify
that after exponential Ei plus φ̄−1 the 8 resulting polynomials

Fi,1, Fi,2, Fi,3, Fi,4, Fi,5, Fi,6, Fi,7, Fi,8

verify that Fi,2k−1, Fi,2k and Fi,2k−1 + ū.Fi,2k share the same monomials Mik unless some coefficient vanish and also
the same happens after we apply Li.

Let M = [m1, . . .ms] a list of monomials and α a power of 2, we define Mα = [mα
1 , . . . ,m

α
s ]. If M = [m1, . . . ,ms]

and N = [n1, . . . , nt] are lists of monomials, we define

Mα ⊗Nβ = [mα
i ⊗ n

β
j , 1 ≤ i ≤ s, 1 ≤ j ≤ t],

that is, Mα ⊗Nβ is the Kronecker tensor product of Mα and Nβ as row matrices.

It is easy to verify that Mα
ij ⊗M

β
ik is the list of monomials of the polynomial

(Fi,2j−1 + ū.Fi,2j)
α · (Fi,2k−1 + ū.Fi,2k)β

since the exponents α and β are powers of 2.
—bf Notation: We use the following convention for the entries of each matrix Ei, we call αi,2k−1 the first non zero

entry of the row k and αi,2k the second non zero entry. If there is only one non zero entry, we just set αi,2k = 0.
We reduce the list of monomials when some of them are repeated. Let us define an operation Rm(M) on a list of

monomials M that removes all duplicates, keeping only the first appearance of each monomial in the list and erasing
the rest. The following algorithm, called MON, shows how to compute the lists of monomials of the Frj .

Algorithm 3.1 MON, compute the monomials in the public-key polynomials.

Input: (E1, . . . , Er)
Output: (Mr1,Mr2,Mr3,Mr4)

1: M01 ← [x1, x2], M02 ← [x3, x4], M03 ← [x5, x6], M04 ← [x7, x8]
2: C01 ← A01, . . . , C04 ← A04

3: for i = 0 to r − 1 do
4: for k = 1 to 4 do
5: M(i+1)k = M

αi,2k−1

ik1
⊗Mαi,2k

ik2
, where Mik2 = [1] if αi,2k = 0

6: M(i+1)k = Rm(M(i+1)k)
7: if a(i+1)k 6= 0 then
8: append 1 to the list M(i+1)k

9: end if
10: end for
11: end for

The size of the lists Mri can be up to double exponential on the number of rounds r for instance if all the rows of
the Ei have two non zero entries then card(Mri) = 22r

. We can reduce the size of the list of monomials by imposing
some linear condition on the exponents ei,j of αi,j (αi,j = 2ei,j ), in such a way that some of the monomials become
equal and the coefficient of the repeated monomial is a sum of several terms, which will give us some defense against
the structural cryptanalysis because we need to take care of the following fact:

The final polynomials are obtained by computing

(Fr−1,2j−1 + ū.Fr−1,2j)
α · (Fr−1,2k−1 + ū.Fr−1,2k)β

after the last exponential.
Let (Fr−1,2j−1 + ū.Fr−1,2j)

α =
∑
Bimi and Fr−1,2k−1 + ū.Fr−1,2k)β =

∑
Cjnj where Bi, Ck ∈ Fq2 and mi, nj are

monomial in x. Then,

(F
αi,2k−1

(r−1)k1
· Fαi,2k

(r−1)k2
=
(∑

Bimi

)
·
(∑

Cjnj

)
=
∑

BiCjminj =
∑

Hijminj .

Thus, we have Hij = BiCj , and it is clear now that the coefficients Hij ∈ Fq2 satisfy HijHkl = HilHkj , which
will be called quadratic relations (QR) from now on. Since the coefficients of final polynomials F1, . . . F8 are obtained
applying φ̄−1 and Lr, we can use the QR to compute equations for the coefficients of the components of inverse of
L−1
r . Given that the QR are homogeneous (of degree two), one can solve those equations to find L−1

r and Lr up to a
constant.
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In order to eliminate the QR among the Hij , the strategy is to force many coincidences among the final monomials,
that is, if Hij is a sum =

∑
BkCl it will by more difficult to get the quadratic relations or any polynomial relations

among the Hij . The implicit equations on the Hij are obtained by computing the equations of the image of the
map Q = (Qij), defined by Hij = Qij(B,C) =

∑
BkCl, that is by eliminating the B1 and Cj from the system

〈Hij −
∑
BkCl〉

Q : Fq2 [Bk, Cl] −→ Fq2 [Hij ]

For instance, for the second component of example 1 there are no QR, the source has 24 variables and the target
48.

Assume that we are at the step i of the algorithm MON and we are computing the list M(i+1)k. We can force
a reduction of the monomials only if there are two non zero entries 2ei,2k−1 and 2ei,2k in the corresponding row of
the matrix Ei, so we’ll have to compute M(i+1)k = M

αi,2k−1

ik1
⊗Mαi,2k

ik2
. Now, we take a variable that is in both lists

with exponent a power of 2, which for simplicity we’ll assume it is x1. More precisely, the monomial x2l1

1 ·m1, where
l1 = l1(ej,l : 1 ≤ j ≤ i − 1) is a linear form and m1 is a monomial in the other variables would appear in Mik1 , and

x2l2

1 ·m2 in the list Mik2 . By the method that the lists are constructed (x1 and x2 play exactly the same role), we

would also have the monomials x2l1

2 ·m1 and x2l2

2 ·m2 in the lists Mik1 and Mik2 , respectively.

Now, when we compute M
αi,2k−1

ik1
, the exponent of x1 in the first monomial is 2l1+ei,2k−1 and in the other list is

2l2+ei,2k . We can force that 2l1+ei,2k−1 = 2l2+ei,2k if we substitute ei,2k by ei,2k−1 + l1 − l2 and then the monomials in
both lists became

x2
1
l1+ei,2k−1 ·m2

1
ei,2k−1

, x2
2
l1+ei,2k−1 ·m2

1
ei,2k−1

in the first list, and

x2
1
l1+ei,2k−1 ·m2

2
ei,2k−1+l1−l2

, x2
2
l1+ei,2k−1 ·m2

2
ei,2k−1+l1−l2

in the second.
When the tensor product of both lists is computed, we get that two of the four monomials are equal:

x2
1
l1+ei,j2k−1 ·m2

1
ei,j2k−1 · x2

2
ei,j2k−1+l1−l2 ·m2

2
ei,j2k−1+l1−l2

= x2
2
l1+ei,j2k−1 ·m2

1
ei,2k−1j · x2

1
l1+ei,j2k−1 ·m2

2
ei,j2k−1+l1−l2

.

If there are other variables repeated in both lists that have different exponents after the change ei,2k = ei,2k−1+l1−l2,
we can repeat the same procedure of imposing a linear condition, but in this case the linear equations involves terms
ejk with j ≤ i − 1. In general, each linear condition will produce the reduction of many monomials, but the actual
number depends of the structure of the matrices Ei and it is not possible to give a general formula for the final number
of monomials of F . we call this algorithm RED , the input is the set {Ei}. Next, we present an example of the
procedure.

Example 1: For this example, we take q = 2e, n = 6 and following matrices over Zq2−1:

E1 =

 α1,1 0 α1,2

α1,3 α1,4 0
0 0 α1,5

 , E2 =

 α2,1 α2,2 0
0 α2,3 α2,4

α2,5 0 α2,6

 , E3 =

 α3,1 0 α3,2

α3,3 α3,4 0
0 α3,5 α3,6

 .

As usual, αi,j = 2ei,j and ei,j ≤ e − 1. If the ei,j are generic, the lists of monomials after the first exponential
(M11,M12,M13) have size (22, 22, 2), after the second exponential the lists (M21,M22,M23) have size (24, 23, 23), and
after the third one the final lists (M31,M32,M33) have size (27, 27, 26). We can apply the method in this section and
find 7 independent linear conditions on the ei,j as follows: after E1, the lists (M11,M12,M13) have size (22, 22, 2), after
E2, we observe that the list M21 comes from tensoring M11 and M13, which have x1 and x6 in common, so the linear
condition e2,2 = e1,1 + e2,1 − e1,3 reduces the number of monomials to 12. For M21 there are no common variables
and for M23 we get the condition e2,4 = −e2,5 + e2,6− e1,1 + e1,3 + e2,3, that gives (12, 23, 6) monomials. Finally, after
E3, the lists have size (72, 96, 48). For the list M31 we get the condition e3,2 = e3,1 + e2,1 − e2,5 that reduces the size
of M31 to 32. For the list M32 we get the condition e3,4 = e3,3 + e1,1 + e2,1 − e1,3 + e2,3 that reduces the size of M32

to 36. There is another independent linear equation −e1,2 + e1,5 − e1,3 − e2,3 + e2,4 that reduce the size of M32 to 36.
For the list M33 we get the condition e3,6 = e3,5 − e1,1 + e1,3 − e2,5 + e2,3 that reduce the size of M33 to 24.

By making the above linear changes in the exponents of the Ei, new matrices E′i and lists that have (32, 36, 24)
monomials appear, where one can verify that there are no quadratic relations among the coefficients Hij . using a CAS
system one can compute binomial relations of the type

∏
(Hij)−

∏
(Hkl) up to some degree. In this example we check

with Maple that there are no binomial relations up to degree 10 .
By checking the final lists of monomials, we can observe and interesting structure:

if we make the changes of variables in S1, S2 and S3:

S1 =

x2e1,1+e1,1+e2,1

1 = y11, x
2e1,1+e1,1+e2,1

2 = y12, x
2e1,4+e1,1+e2,1−e1,3+e3,1

3 = y13,

x2e1,4+e1,1+e2,1−e1,3+e3,1

4 = y14, x
2e1,2+e2,1+e3,1

5 = y15, x
2e1,2+e2,1+e3,1

6 = y16


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S2 =

x2e1,1+e2,1+e3,3

1 = y21, x
2
ee1,1+e2,1+e3,3

2 = y22, x
2e1,4+e1,1+e2,1−e1,3+e3,3

3 = y23,

x2e1,4+e1,1+e2,1−e1,3+e3,3

4 = y24, x
2e1,2+e2,1+e3,3

5 = y24, x
2e1,2+e2,1+e3,3

6 = y26


S3 =

x2e1,3+e2,3+e3,5

1 = y31, x
2e1,3+e2,3+e3,5

2 = y32, x
2e1,4+e2,3+e3,5

3 = y33,

x2e1,4+e2,3+e3,5

4 = y34, x
2e1,2−e1,1+e1,3+e2,3+e3,5

5 = y35, x
2e1,2−e1,1+e1,3+e2,3+e3,5

6 = y36


we get polynomials Fi = Fi(y) ∈ Fq[y11, . . . y36] of low degree 6 or 7. Therefore, using S1, S2, S3 and Fi(y) instead of
Fi(x) as public key will make faster encryption for DME-KEM and faster signature verification for DME-SIGN.

4. Computing the coefficients of the public key F

Once the list of monomials of the Fr,j is obtained, one gets the coefficient of each group of polynomials by evaluating
the polynomials Fr,1, ..., Fr,8. The set of pairs (c, Fr,j(c)) should be big enough to guarantee that the corresponding

linear equations are independent. That is, if Qk = [q1...qd] and Fr,j =
∑d
i=1 frjiqi(x), we take vectors c1, . . . , cR such

that the linear equations on the coefficients frij in Fk(ce) =
∑
frjiqi(ce) are independent and can be solved to get the

coefficients of the polynomials Fr,1, . . . , Fr,8.

To compute the polynomials Fr,k faster we can use the same idea used to compute the lists of monomials of the

polynomial (Fi,2j−1 + ūFi,2j)
α(Fi,2k−1 + ūFi,2k)β , i.e. Mα

ij ⊗M
β
ik. Let sij be the size of the list Mij . Now, regard Mij

as a 1× sij matrix, which by abuse of notation, we will still write it as Mij . We denote by Cij the sij × 2 matrix of
the coefficients of the polynomials Fi,2j−1 and Fi,2j on the monomials of Mij , as shown in the following formula:

Cij =


cij11 cij12

cij21 cij22
...

...

cijsij1 cijsij2


Now we have that Fi,2j−1 + ūFi,2j = Mij · Cij · (1, ū)t.

If α = 2b, then (Fi,2j−1 + ūFi,2j)
α = Mα

ij · Cαij · (1, ūα)t.
Applying the mixed-product property of the Kronecker product we get:

(Fi,2j−1 + ūFi,2j)
α · (Fi,2k−1 + ūFi,2k)β

= (Mα
ij · Cαij · (1, ūα)t)⊗ (Mβ

ik · C
β
ik · (1, ū

β)t)

= (Mα
ij ⊗M

β
ik) · (Cαij ⊗ C

β
ik) · (1, ūβ , ūα, ūα+β)t

Let’s call Uαβ the 4× 2 matrix defined by

(1, ūβ , ūα, ūα+β)t = Uαβ · (1, ū)t.

Then, we have the following result:

Lemma 4.1. The matrix of coefficients of (Fi,2j−1 + ūFi,2j)
α · (Fi,2k−1 + ūFi,2k)β with respect of the monomials

Mα
ij ⊗M

β
ik is (Cαij ⊗ C

β
ik) · Uαβ

Now, we can compute the coefficients of the Fr,j with algorithms similar to Rm and MON. Given the matrices of
coefficients (M,C) of a component we define Rc(C) the matrix coefficient obtained by adding of the coefficient of a
the same monomial in the case that is repeated in the monomial list M .

Algorithm 4.1 COE, compute the coefficients of the public-key polynomials.

Input: (E1, . . . , Er, L0 . . . Lr)
Output: (Cr1, Cr2, Cr3, Cr4)

1: M01 ← [x1, x2], M02 ← [x3, x4], M03 ← [x5, x6], M04 ← [x7, x8]
2: C01 ← A01, . . . , C04 ← A04

3: for i = 0 to r − 1 do
4: for k = 1 to 4 do
5: if αi,2k 6= 0 then
6: C(i+1)k =

(
C
αi,2k−1

ik1
⊗ Cαi,2k

ik2

)
· Uαi,2k−1,αi,2k

7: else
8: C(i+1)k = C

αi,2k−1

ik1
· (1, ūα)

9: end if
10: C(i+1)k = Rc(C(i+1)k)
11: C(i+1)k = L(i+1)k · C(i+1)k + a(i+),k

12: end for
13: end for



6 I. LUENGO

5. Signing procedure of DME-SIGN

Let’s assume that the public key is

F = Ψ(L0, . . . , Lr, E1, . . . , Er) : F8
q → F8

q.

By construction, F is a composition of bijections of (Fq2 \ {0})4 if there is no affine translations ai,j = 0 for all i, that
is:

Remark 5.1. Let U = φ̄−1((Fq2 \ {0})4) ⊂ F8
q then F : U→ U is a bijection.

If there are non zero affine translations then vector y ∈ U may fall outside U after translation and this fact can
produce a failure for decryption or signing. In ([LA]) we see that if we have translations at only one step the failure
of encryption/decryption can be detect and corrected. If there are non zero affine translations in more than one step
then can be failure of decryption even if F (x) ∈ U. In example 1, if we take a11 6= 0, a21 6= 0, a22 6= 0 and the rest of
the aij are zero, after L1 we may have (x1

1, x
1
2) = (0, 0) and E1(y0) can not be inverted but as a21 6= 0 and a22 6= 0

then we may have x2 ∈ U and F (x) ∈ U, but clearly F is not invertible at F (x). One can check that if we take a13 6= 0
and a21 6= 0 then F has the property that if F (x) ∈ U then F−1(F (x)) = x, but the converse of this statement is not
true because the matrices E−1

i have all the entries different from zero.
In the setting of DME-SIGN that we present here the number of rounds r = 3or4 and the we use affine translations

in the last 3 linear maps. For instance if r = 4 then L2, L3, L4. The signing procedure goes as follows. Let z = P (Men)
the padding of the message Men , we compute F−1(z) starting with z1 = L−1

4 (z), if z1 /∈ U we recompute z = P (Men)

and start again. We do the same if L−1
3 (zi) or L−1

2 (zi) are not in U

It vis clear that even with the translations F is a permutation in a set V ∈ (Fq2 \ {0})4 and that the probability of
zi) /∈ V is approximately 1/q2 and we can work with F as a trapdoor one way permutation. For padding, we use the
standards OAEP for PKE and KEM and PSS00 for probabilistic signature scheme, and we will denote by DME-KEM
and DME-SIGN the corresponding schemes.

6. Setting of the DME-SIGN

The security of the DME depends on the chosen settings and parameters. We will describe first the setting of the
the scheme DME(r, n, 2e):

6.1. The configuration of matrices. We define a Configuration of Matrices ( CM) as a list of r matrices for the
exponentials where the non zero entries are substituted by 1. We denote such matrices by E∗i . Let CM = [E∗r , . . . E

∗
1 ]

be a configuration. Then, it is easy to get the number of monomials of the each component of F from CM if there
are no repeated monomials, just compute E∗ = E∗r · · ·E∗1 and let tk be the sum of the entries in the k− th row of E∗,
in which case the number of monomials of the components F2k−1, F2k is 2tk . In the example 1 we have

E∗ = E∗3 · E∗2 · E∗1 =

 3 1 3
3 2 2
2 1 3


and the corresponding number of monomials is (27, 27, 26). The algorithm RED reduce number of monomials to
(32, 36, 24). Please notice that the output of algorithm RED depend only in the configuration CM, we will denote
it by RED(CM).If we consider possible attack of the DME by Weil descent, then tk give also the degree of the
components F2k−1, F2k when we express them as polynomials over F2. In fact one of the main reason to use r = 4
instead ofr = 4 is to increase the values in the list (t1, t2, t3, t4).

6.2. The configuration of matrices of DEM-SIGN. For the parameters of DME-SIGN we propose DME(r, n, 2e)
with r = 3 and non zero translations in the last 3 linear. For the configuration of matrices CM2 defined as follows:

E∗1 =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

 , E∗2 =


1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

 , E∗3 =


1 1 0 0
0 1 0 1
0 1 0 1
0 0 1 1

 ,

E∗ = E∗3 · E∗2 · E∗1 =


2 1 1 1
1 1 1 1
1 1 1 1
1 1 1 2


By looking 2 E∗ we see that (t1, t2, t3, t4) = (5, 4, 4, 5). We have only to condition that reduce the number of

monomials namely

e1,2 = e1,1 + e2,1 + e3,1 − e1,2 − e2,3,

e3,8 = e1,4 + e2,5 + e3,7 − e1,5 − e2,6

With this reduction we pass from (25, 24, 24, 25) monomials to (24, 16, 26, 24) monomials and we will have many
quadratic relations(QR). By putting translations in the linear components of L1, L2, L3 we get by the algorithm MON
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(75, 25, 25, 75) and with the above two linear conditions the monomials are reduced to (65, 25, 25, 65) and we get even
more QR.

For the parameters of DME-SIGN we propose DME(r, n, 2e) with r = 4 and non zero translations in the last 3
linear. The configuration of matrices
CM2 is defined as follows:

E∗1 =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

 , E∗2 =


1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

 , E∗3 =


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

 , E∗4 =


1 1 0 0
1 0 1 0
1 0 1 0
0 0 1 1



E∗ = E∗4 · E∗3 · E∗2 · E∗1 =


3 2 1 1
1 1 1 1
1 1 1 1
1 1 2 3


By looking to E∗ we see that (t1, t2, t3, t4) = (7, 4, 4, 7). We have only 2 condition on E3 and 2 condition on

E3 that reduce the number of monomials from (27, 24, 24, 27) monomials to (48, 16, 16, 48) monomials and there are
not quadratic relations(QR) in the 48 monomials components. By putting translations in the linear components of
L1, L2, L3 we get by the algorithm MON (185, 25, 25, 185) and with the above 4 mentioned linear conditions the
monomials are reduced to (94, 25, 25, 94) and there are not QR in the 94 monomials components.

We will see in sec** that both set of parameters for 3 and 4 gives the same security so we implemented only the 3
round one but keep the other setting in case that there is some concerns about future attacks in which the number of
rounds matter. In order to have an approximate idea of the ratio of sizes and timing of the 3 and 4 version we can
see the tables in ([4] ) and compare the results for CM1 and CM2.

7. Implementation and timings of DME-SIGN

We have implemented the DME-SIGN cryptosystem with the same parameters, i.e. four linear maps with the
last three of them having an affine component in each variable, interleaved with three exponential maps. The main
difference between each version is the size of the finite field Fq, which can be chosen as q = 232, q = 248 or q = 264. The
signature is computed by applying a PSS padding (based of the SHA-3 hash function) prior our decryption function.
Besides the reference implementation in C99, we provide a highly optimized version which benefits from the CLMUL
instruction in modern x86 64 processors and a careful choice of the binary representation of the elements of Fq.

keygen sign open skey pkey signature
q = 232, reference 2581 usec 321 usec 42 usec 369 bytes 1449 bytes 32 bytes
q = 232, optimized 121 usec 19 usec 9 usec 369 bytes 1449 bytes 32 bytes
q = 248, reference 7846 usec 1030 usec 100 usec 545 bytes 2169 bytes 48 bytes
q = 248, optimized 262 usec 35 usec 11 usec 545 bytes 2169 bytes 48 bytes
q = 264, reference 10911 usec 1456 usec 115 usec 721 bytes 2889 bytes 64 bytes
q = 264, optimized 251 usec 41 usec 12 usec 721 bytes 2889 bytes 64 bytes

Table 1: The timings correspond to a message size of 200 bytes on an Intel(R) Core(TM) i7-8565U CPU at
1.80GHz laptop running Linux Mint 21 x86 64.

8. Security of DME-SIGN

8.1. Structural Cryptanalysis. Given CM, it is straightforward to use the algorithm RED(CM) to reduce the
number of monomials of the Fi, in fact the linear relations depends only on CM and they are easy to compute.
Remember that the algorithm produce some linear condition on the exponents of the matrices that allow us to
eliminate some parameters and find new matrices with exponents in the remainder parameters.

An interesting point for the security of the DME is that the final exponents of the monomials depend on fewer
parameters than the final matrices, this fact implies that given the monomials the public key F ,we can get the values
of the parameters involved in the public key and the rest of parameters are free will produce a big list of matrices with
the same exponents as F . In configuration CM1 that we present here there are initially 20 parameters that reduce to
17 after the 2 conditions for the reduction of plus one other conditions for fixing the determinant inverse d3. monomials.
If we apply the methods ([MA, sec 6.2]) and examining the lists of exponents that appear in (F, S1, S2, S3) we can
verify that given the exponents matrices Ei depends of the known of F and other “free” 7 parameters. That is given
the monomials of the public key there are 27(log2(e)+1) sets of matrices that produce the same monomials. This means
that for q = 264, there are 249 sets of matrices for a given public key. It is necessary to make further research to
determine for instance equivalents keys with exponents that depends on less parameters.

For this reason we will estimate the security of each setting against the structural cryptoanalysis be computing
the complexity of finding the linear components of the secret key starting with the last one L3. As we explained in
section 3, for each linear map Lrk we can use the the relations Hij = Qij(B,C) =

∑
BkCl, to get the quadratic

relations HijHkl = HkjHil and more homogeneous implicit equations for the Hij by eliminating Bi and Cj from those
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equations. This implicit equations will give us homogeneous equations for the unknown entries of the matrices L−1
3k

and the translations a3k by using that

Bi = Bi1 + ūBi2 = L−1
3k (Di)− (a3k1 + ūa3k2)

where Di = Di1 + ūDi2 are the known coefficients of the corresponding monomial of the public key.
As the implicit equations that we get are homogeneous, we would have a solution for the matrix of L−1

3k and the
a3k that is defined up to a multiplicative constant λk ∈ Fq, and given (λ1, . . . , λ4) ∈ Fq \ {0} we can find the inverse of
the L3k and a3k. Once we compute the inverse of L3 and F we are in the same situation and we will get the matrices
L2k up to 4 constants (µ1, . . . , µ4) ∈ Fq \ {0} thus setting the size of the field q = 2e we have to choose 8 values in Fq
that gives 28e security margin or 24e if we take in account quantum Grover algorithm

This is one of the main advantages of the simple design of the DME-SIGN, namely we can change the security
level by changing only the size of the base field q. For the NIST security level V we choose in the implementation
q = 264 and the choice of the 8 constants gives us a complexity of 2512 or 2256 with Grover. For the NIST security
level III we choose q = 248 and for the NIST level I we choose q = 232. We can see from the table in the next section
that the sizes of the PK and SK are proportional to the size of q. The timings depends of the size of q and the way
the arithmetic in Fq is implemented.

8.2. Gröbner basis. To determine the resistance of a CM to the Gröbner basis attack, we have to estimate the
complexity of computing the Gröbner basis of the ideal

I = 〈f1(x)− y1, . . . , fn(x)− yn, x2e

1 − x1, . . . , x
2e

n − xn〉

where F (x) = y. Let sd(I) be the solving degree of I, i.e. the the highest degree of polynomials involved in the
computation of the Gröbner basis. The complexity of computing the Gröbner basis using a algorithm like F4/F5 is
bounded from above by

(2) O

((
n+ sd(I)

n

)ω)
where ω is the exponent in the complexity of matrix multiplication. It is easy to see that this upper bound is well
above O(2256), since sd(I) is bounded below be degree of the initial basis I , x2e

n − xn ∈ I and a typical monomial of
F has from 4 to 8 variables we can force the degree of I to be bounded below by 2e. Now if we take a CM with 8
variables (2) is bounded below by 216e. If we use q = 264 then the complexity is bounded by O(21024).

We can safely assume that 2e ≤ sd(I), the problem is that we do not know if the bound (2) is accurate or not for
the Gröbner basis computation of this kind of ideals. In order to make an experimental testing of the above bound, we
used Magma in a cluster with several fat nodes with 512 Gb of RAM each. After an extensive series of computations,
Magma can find the Gröbner basis only for q = 23 and or q = 24. For q = 25 Magma exhausted the RAM before the
end of the computation. Here are the conclusions that we get from our experiments.

• Given a CM, the time of computing the Gröbner basis depends mainly on the exponents of F , but not of the
actual matrices that give F .
• The initial basis I can be considered sparse because it has a low number of monomials by rapport to the degree

but the intermediate computations of Magma show that the number of monomials can be very big.
• The upper bound (2) seems to be accurate, but further research is needed to confirm this fact.

Of course those conclusions can not be extrapolated for higher q. If any one can try to verify those conclusion for
e ≥ 5 we can provide them the basis for different CM.

We can use the special form of the monomials that allow to substitute F (x) by F (y11, . . . ) as described in example 1,
but this will give a greater complexity because we will have much more variables but the degree will not decrease much.
Let’s explain this in the example 1. We have now that F̄ has 18 variables {y11, . . . , y36}. If we examine the relations

among the xi and the yjk given by the lists S1, S2, S3 we find, for instance, x2e3,1+e1,1+e2,1

1 = y21, x
2e1,3+e2,3+e3,3

1 = y31,

so we would get a relation y31 = y2a

21 for some a ≤ q and we would end with a basis Ī such that sd(Ī) ≥ 2e as before.

8.3. Estimation of the number of monomials of the inverse. As we mentioned earlier we set that di =
1/det(Ai)modq has a fixed binary weight to get a number of monomials of the inverse big enough and to speed up the
computation of F−1(z). From the shape of the matrix A3(or A3 ) can see that the adjoint matrix Adj(E3)modq has
on each row one entry that is a power of 2 with a minus sign so its binary weight is 2e− 1 so if we started with the 8
coordinates of z then E−1

3 (z) will have at least 22e monomials in each components and much more after the other 2
natrix exponentiations independent of the binary weight of d3 In the implementation we fix d3 with binary weight 9.

8.4. Weil descent. Taking a base of Fq over F2, namely B = {v1, . . . , ve}, we can express the polynomial of F as

polynomials F̃ in 8e variables over F2. It is easy to verify that before the reduction of monomials, the degrees of the
components of F̃ are (t1 . . . t4). In fact the raise of the binary degree of the public key was one of the reasons to use
more than two exponentials to defend DME against attacks like ([5] )

The reduction of monomials can produce also a reduction of the degrees of F̃ and it is not possible to determine
apriori the degrees of the F̃ . One has to examine the list of monomials after the reduction and compute the degrees.
For instance, in example 1 the degrees reduced from (7, 7, 6) to (5, 6, 6) .
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The DME-3rnds-8vars-32bits-sign is a signature scheme based on the composition of
three different types of polynomial maps F8

232 → F8
232 that are bijective almost everywhere:

linear maps, affine shifts, and exponential maps. The individual maps form the secret key,
and the composition of the maps, which is given by eight polynomials in F232 [x1, . . . , x8]
is the public key. The signature is obtained by mapping the message to F8

232 using a hash
function (and a PSS padding with 64 random bits) and then applying the decryption map
to get a signature of 256 bits (32 bytes).

1 Mathematical description of DME-3rnds-8vars-32bits-sign

Let q = 232 and let Fq be a finite field with q elements. Consider an irreducible monic polinomial
p(u) = u2 + p1u+ p0 ∈ Fq[u]. The quotient ring Fq[u]/⟨p(u)⟩ defines a field of q2 elements, which we
denote Fq2 . The map ϕ : F2

q → Fq2 given by[
x
y

]
7→ x+ yu

is a bijection. This map can be extended naturally to a map ϕ : F8
q → (Fq2)

4

ϕ



x1
x2
x3
x4
x5
x6
x7
x8


=



ϕ

[
x1
x2

]
ϕ

[
x3
x4

]
ϕ

[
x5
x6

]
ϕ

[
x7
x8

]


which is also a bijection.

For any matrix M ∈ Z4×4, we define the exponential map EM : (F∗
q2)

4 → (F∗
q2)

4 given by
x1
x2
x3
x4

 7→


xm11
1 xm12

2 xm13
3 xm14

4

xm21
1 xm22

2 xm23
3 xm24

4

xm31
1 xm32

2 xm33
3 xm34

4

xm41
1 xm42

2 xm43
3 xm44

4

 .

The following result summarizes the properties of the exponential maps that are needed for the
DME-3rnds-8vars-32bits-sign cryptosystem.
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Lemma 1.1. Let M1,M2 ∈ Z4×4. Then:

1. EM1 ◦ EM2 = EM1·M2.

2. M1 ≡ M2 (mod q2 − 1) ⇒ EM1 = EM2.

3. M1 ·M2 ≡ Id (mod q2 − 1) ⇒ EM1 ◦ EM2 = Id.

4. gcd(det(M1), q
2 − 1) = 1 ⇒ EM1 is invertible.

If no entry of the matrix M is negative, then EM can be extended to a map EM : (Fq2)
4 → (Fq2)

4

with the same formula and setting 00 = 1. It should be noted that the extended maps EM fail in
general to be bijections, even if gcd(det(M), q2 − 1) = 1.

In DME-3rnds-8vars-32bits-sign, we have three exponential maps E1, E2 and E3, whose matrices
are

M1 =


2a0 0 0 0
2a1 2a2 0 0
0 0 2a3 0
0 0 2a4 2a5

 ,

M2 =


2b0 0 0 2b1

0 2b2 0 0
0 2b3 2b4 0
0 0 0 2b5

 ,

M3 =


2c0 2c1 0 0
0 2c2 0 2c3

0 2c4 0 2c5

0 0 2c6 2c7

 ,

respectively, with a0, . . . , a5, b0, . . . , b5, c0, . . . , c7 ∈ [0, 63] such that

c1 ≡ a0 + b0 + c0 − a1 − b2 (mod 64),

c7 ≡ a3 + b4 + c6 − a4 − b5 (mod 64),

c4 ≡ c2 + c5 − c3 + 57 (mod 64).

It is easy to verify that the three matrices M1, M2 and M3 satisfy condition 4 of lemma 1.1.

In DME-3rnds-8vars-32bits-sign, we also needs four invertible linear maps L1, L2, L3, L4 : F8
q → F8

q ,
each of which has a four 2× 2 block structure

Li



x1
x2
x3
x4
x5
x6
x7
x8


=



Li1

[
x1
x2

]
Li2

[
x3
x4

]
Li3

[
x5
x6

]
Li4

[
x7
x8

]


with Lij ∈ F2×2

q and det(Lij) ̸= 0.

In addition to the linear maps, we have three affine shifts A2, A3, A4 : F8
q → F8

q given by

Ai



x1
x2
x3
x4
x5
x6
x7
x8


=



x1 +Ai1

x2 +Ai2

x3 +Ai3

x4 +Ai4

x5 +Ai5

x6 +Ai6

x7 +Ai7

x8 +Ai8


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with Aij ∈ Fq.

The secret key consists of the four linear maps L1, L2, L3, L4, the three affine shifts A2, A3, A4 and the
three exponential maps E1, E2, E3. The following composition

A4 ◦ L4 ◦ ϕ
−1 ◦ E3 ◦ ϕ ◦A3 ◦ L3 ◦ ϕ

−1 ◦ E2 ◦ ϕ ◦A2 ◦ L2 ◦ ϕ
−1 ◦ E1 ◦ ϕ ◦ L1

defines a map dme-enc : F8
q → F8

q .

Let D ⊆ F8
q be the set of x ∈ F8

q such that

(ϕ
−1 ◦ L1)(x),

(ϕ
−1 ◦A2 ◦ L2 ◦ ϕ

−1 ◦ E1 ◦ ϕ ◦ L1)(x),

(ϕ
−1 ◦A3 ◦ L3 ◦ ϕ

−1 ◦ E2 ◦ ϕ ◦A2 ◦ L2 ◦ ϕ
−1 ◦ E1 ◦ ϕ ◦ L1)(x)

belong to (F∗
q2)

4, i.e. do not have a zero entry. Let E = dme-enc(D) ⊆ F8
q . By construction, the

restriction dme-enc : D → E is a bijection.

Lemma 1.2. |D| ≥ 3(q2−1)4−2q8 ≥ q8−12q6. In particular, the probability that a randomly chosen
x ∈ F8

q (with a uniform distribution) does not belong to D is at most 12q−2 < 2−60.

The main property of the map dme-enc is that it can be given by polynomials (this fact can be proven
by following the sequence of maps that define dme-enc, starting with 8 variables x1, . . . , x8). More
precisely, there exists p1, . . . , p8 ∈ Fq[x1, . . . , x8] such that

dme-enc



x1
x2
x3
x4
x5
x6
x7
x8


=



p1(x1, x2, x3, x4, x5, x6, x7, x8)
p2(x1, x2, x3, x4, x5, x6, x7, x8)
p3(x1, x2, x3, x4, x5, x6, x7, x8)
p4(x1, x2, x3, x4, x5, x6, x7, x8)
p5(x1, x2, x3, x4, x5, x6, x7, x8)
p6(x1, x2, x3, x4, x5, x6, x7, x8)
p7(x1, x2, x3, x4, x5, x6, x7, x8)
p8(x1, x2, x3, x4, x5, x6, x7, x8)


where p1, p2, p7, p8 having 65 monomials each and p3, p4, p5, p6 having 25 monomials each.

Define the integers f0, . . . , f15 ∈ [0, 31] as

f0 = a0 + b0 + c0 mod 32

f1 = a1 + b2 + c2 mod 32

f2 = a1 + b2 + c4 mod 32

f3 = a1 + b2 + c6 mod 32

f4 = a2 + a0 + b0 − a1 + c0 mod 32

f5 = a2 + b2 + c2 mod 32

f6 = a2 + b2 + c4 mod 32

f7 = a2 + b2 + c6 mod 32

f8 = a4 + b5 + c1 mod 32

f9 = a4 + b5 + c3 mod 32

f10 = a4 + b5 + c5 mod 32

f11 = a3 + b3 + c7 mod 32

f12 = a5 + b5 + c1 mod 32

f13 = a5 + b5 + c3 mod 32

f14 = a5 + b5 + c5 mod 32

f15 = a5 + a3 + b3 − a4 + c7 mod 32
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and consider the expressions

z0 = x2
f0

1 z1 = x2
f1

1 z2 = x2
f2

1 z3 = x2
f3

1

z4 = x2
f0

2 z5 = x2
f1

2 z6 = x2
f2

2 z7 = x2
f3

1

z8 = x2
f4

3 z9 = x2
f5

3 z10 = x2
f6

3 z11 = x2
f7

3

z12 = x2
f4

4 z13 = x2
f5

4 z14 = x2
f6

4 z15 = x2
f7

4

z16 = x2
f8

5 z17 = x2
f9

5 z18 = x2
f10

5 z19 = x2
f11

5

z20 = x2
f8

6 z21 = x2
f9

6 z22 = x2
f10

6 z23 = x2
f11

6

z24 = x2
f12

7 z25 = x2
f13

7 z26 = x2
f14

7 z27 = x2
f15

7

z28 = x2
f12

8 z29 = x2
f13

8 z30 = x2
f14

8 z31 = x2
f15

8

A careful study of p1 and p2 show that the 65 monomials are exactly

m1,1 = z24z16z8z
2
0 m1,2 = z28z16z8z

2
0 m1,3 = z24z20z8z

2
0

m1,4 = z28z20z8z
2
0 m1,5 = z8z

2
0 m1,6 = z24z16z12z

2
0

m1,7 = z28z16z12z
2
0 m1,8 = z24z20z12z

2
0 m1,9 = z28z20z12z

2
0

m1,10 = z12z
2
0 m1,11 = z24z16z8z4z0 m1,12 = z28z16z8z4z0

m1,13 = z24z20z8z4z0 m1,14 = z28z20z8z4z0 m1,15 = z8z4z0
m1,16 = z24z16z12z4z0 m1,17 = z28z16z12z4z0 m1,18 = z24z20z12z4z0
m1,19 = z28z20z12z4z0 m1,20 = z12z4z0 m1,21 = z24z16z0
m1,22 = z28z16z0 m1,23 = z24z20z0 m1,24 = z28z20z0
m1,25 = z0 m1,26 = z24z16z8z

2
4 m1,27 = z28z16z8z

2
4

m1,28 = z24z20z8z
2
4 m1,29 = z28z20z8z

2
4 m1,30 = z8z

2
4

m1,31 = z24z16z12z
2
4 m1,32 = z28z16z12z

2
4 m1,33 = z24z20z12z

2
4

m1,34 = z28z20z12z
2
4 m1,35 = z12z

2
4 m1,36 = z24z16z4

m1,37 = z28z16z4 m1,38 = z24z20z4 m1,39 = z28z20z4
m1,40 = z4 m1,41 = z24z16z8z0 m1,42 = z28z16z8z0
m1,43 = z24z20z8z0 m1,44 = z28z20z8z0 m1,45 = z8z0
m1,46 = z24z16z12z0 m1,47 = z28z16z12z0 m1,48 = z24z20z12z0
m1,49 = z28z20z12z0 m1,50 = z12z0 m1,51 = z24z16z8z4
m1,52 = z28z16z8z4 m1,53 = z24z20z8z4 m1,54 = z28z20z8z4
m1,55 = z8z4 m1,56 = z24z16z12z4 m1,57 = z28z16z12z4
m1,58 = z24z20z12z4 m1,59 = z28z20z12z4 m1,60 = z12z4
m1,61 = z24z16 m1,62 = z28z16 m1,63 = z24z20
m1,64 = z28z20 m1,65 = 1

Similarly, the 25 monomials that appear in p3 and p4 are

m2,1 = z25z17z9z1 m2,2 = z29z17z9z1 m2,3 = z25z21z9z1
m2,4 = z29z21z9z1 m2,5 = z9z1 m2,6 = z25z17z13z1
m2,7 = z29z17z13z1 m2,8 = z25z21z13z1 m2,9 = z29z21z13z1
m2,10 = z13z1 m2,11 = z25z17z9z5 m2,12 = z29z17z9z5
m2,13 = z25z21z9z5 m2,14 = z29z21z9z5 m2,15 = z9z5
m2,16 = z25z17z13z5 m2,17 = z29z17z13z5 m2,18 = z25z21z13z5
m2,19 = z29z21z13z5 m2,20 = z13z5 m2,21 = z25z17
m2,22 = z29z17 m2,23 = z25z21 m2,24 = z29z21
m2,25 = 1
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the 25 monomials that appear in p5 and p6 are

m3,1 = z26z18z10z2 m3,2 = z30z18z10z2 m3,3 = z26z22z10z2
m3,4 = z30z22z10z2 m3,5 = z10z2 m3,6 = z26z18z14z2
m3,7 = z30z18z14z2 m3,8 = z26z22z14z2 m3,9 = z30z22z14z2
m3,10 = z14z2 m3,11 = z26z18z10z6 m3,12 = z30z18z10z6
m3,13 = z26z22z10z6 m3,14 = z30z22z10z6 m3,15 = z10z6
m3,16 = z26z18z14z6 m3,17 = z30z18z14z6 m3,18 = z26z22z14z6
m3,19 = z30z22z14z6 m3,20 = z14z6 m3,21 = z26z18
m3,22 = z30z18 m3,23 = z26z22 m3,24 = z30z22
m3,25 = 1

and the 65 monomials that appear in p7 and p8 are

m4,1 = z27z192z11z3 m4,2 = z31z192z11z3 m4,3 = z27z23z19z11z3
m4,4 = z31z23z19z11z3 m4,5 = z19z11z3 m4,6 = z27z232z11z3
m4,7 = z31z232z11z3 m4,8 = z23z11z3 m4,9 = z27z19z11z3
m4,10 = z31z19z11z3 m4,11 = z27z23z11z3 m4,12 = z31z23z11z3
m4,13 = z11z3 m4,14 = z27z192z15z3 m4,15 = z31z192z15z3
m4,16 = z27z23z19z15z3 m4,17 = z31z23z19z15z3 m4,18 = z19z15z3
m4,19 = z27z232z15z3 m4,20 = z31z232z15z3 m4,21 = z23z15z3
m4,22 = z27z19z15z3 m4,23 = z31z19z15z3 m4,24 = z27z23z15z3
m4,25 = z31z23z15z3 m4,26 = z15z3 m4,27 = z27z192z11z7
m4,28 = z31z192z11z7 m4,29 = z27z23z19z11z7 m4,30 = z31z23z19z11z7
m4,31 = z19z11z7 m4,32 = z27z232z11z7 m4,33 = z31z232z11z7
m4,34 = z23z11z7 m4,35 = z27z19z11z7 m4,36 = z31z19z11z7
m4,37 = z27z23z11z7 m4,38 = z31z23z11z7 m4,39 = z11z7
m4,40 = z27z192z15z7 m4,41 = z31z192z15z7 m4,42 = z27z23z19z15z7
m4,43 = z31z23z19z15z7 m4,44 = z19z15z7 m4,45 = z27z232z15z7
m4,46 = z31z232z15z7 m4,47 = z23z15z7 m4,48 = z27z19z15z7
m4,49 = z31z19z15z7 m4,50 = z27z23z15z7 m4,51 = z31z23z15z7
m4,52 = z15z7 m4,53 = z27z192 m4,54 = z31z192
m4,55 = z27z23z19 m4,56 = z31z23z19 m4,57 = z19
m4,58 = z27z232 m4,59 = z31z232 m4,60 = z23
m4,61 = z27z19 m4,62 = z31z19 m4,63 = z27z23
m4,64 = z31z23 m4,65 = 1

Using the notation above, the polynomials p1, . . . , p8 can be written as

p1 =
∑65

i=1 p1,im1,i p2 =
∑65

i=1 p2,im1,i

p3 =
∑25

i=1 p3,im2,i p4 =
∑25

i=1 p4,im2,i

p5 =
∑25

i=1 p5,im3,i p6 =
∑25

i=1 p6,im3,i

p7 =
∑65

i=1 p7,im4,i p8 =
∑65

i=1 p8,im4,i

and the public key is just these eight polynomials (which are encoded by the list of 360 coefficients
and the values f0, . . . , f15).

Let M−1
1 , M−1

2 , and M−1
3 be the inverses of M1, M2, and M3 modulo q2 − 1, respectively, with their

entries reduced to the interval [0, q2 − 1). Let E−1
1 , E−1

2 , E−1
3 : (F∗

q2)
4 → (F∗

q2)
4 the corresponding

exponential maps and E−1
1 , E−1

2 , E−1
3 : (Fq2)

4 → (Fq2)
4 their extensions. The following composition

L−1
1 ◦ ϕ−1 ◦ E−1

1 ◦ ϕ ◦ L−1
2 ◦A−1

2 ◦ ϕ−1 ◦ E−1
2 ◦ ϕ ◦ L−1

3 ◦A−1
3 ◦ ϕ−1 ◦ E−1

3 ◦ ϕ ◦ L−1
4 ◦A−1

4

defines a map dme-dec : F8
q → F8

q . By construction, we have that dme-dec maps E to D and, restricted
to those sets, is the inverse of dme-enc. It is easy to verify that E is exactly the set of y ∈ F8

q such
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that
(ϕ ◦ L−1

4 ◦A−1
4 )(y),

(ϕ ◦ L−1
3 ◦A−1

3 ◦ ϕ−1 ◦ E−1
3 ◦ ϕ ◦ L−1

4 ◦A−1
4 )(y),

(ϕ ◦ L−1
2 ◦A−1

2 ◦ ϕ−1 ◦ E−1
2 ◦ ϕ ◦ L−1

3 ◦A−1
3 ◦ ϕ−1 ◦ E−1

3 ◦ ϕ ◦ L−1
4 ◦A−1

4 )(y)

belong to (F∗
q2)

4, i.e. do not have a zero entry.

The cryptographic assumption in DME-3rnds-8vars-32bits-sign is that, for any y ∈ E, the system
of eight polynomial equations in eight unknowns

p1(x1, x2, x3, x4, x5, x6, x7, x8) = y1

p2(x1, x2, x3, x4, x5, x6, x7, x8) = y2

p3(x1, x2, x3, x4, x5, x6, x7, x8) = y3

p4(x1, x2, x3, x4, x5, x6, x7, x8) = y4

p5(x1, x2, x3, x4, x5, x6, x7, x8) = y5

p6(x1, x2, x3, x4, x5, x6, x7, x8) = y6

p7(x1, x2, x3, x4, x5, x6, x7, x8) = y7

p8(x1, x2, x3, x4, x5, x6, x7, x8) = y8

is hard to solve. In particular, this implies that it is not feasible to compute a secret key corresponding
to a given public key.

The dme-sign : {0, 1}∗ → {0, 1}∗ × {0, 1}256 map of the DME-3rnds-8vars-32bits-sign scheme, as
required by the API, returns (m, s) where m is the original message and the signature s is obtained
by first applying a PSS-SHA3 padding (with 64 random bits), then reading the 256 bit sequence as a
vector in F8

q , applying dme-dec, and lastly, interpreting the resulting vector as a 256 bit sequence. The
dme-open : {0, 1}∗ × {0, 1}256 → {0, 1}∗ ∪ {error} reverses the procedure above using dme-enc and
checks that the signature is legitimate. The details of these algorithms are given in the next section.

2 Implementation details of DME-3rnds-8vars-32bits-sign

The field of q = 232 is implemented as the quotient ring

Fq = F2[t]/⟨t32 + t11 + t4 + t+ 1⟩,

and the monic irreducible polynomial p(u) ∈ Fq[u] that defines Fq2 is p(u) = u2 + tu+ 1, so we have

Fq2 = Fq[u]/⟨u2 + tu+ 1⟩.

An element α = α31t
31 + · · · + α1t + α0 ∈ Fq can be interpreted as the 32 bits unsigned integer

int(α) = α312
31 + · · ·+α12+α0 ∈ [0, 264 − 1]. In C99, these fit perfectly in the uint32 t type of the

standard library. When serialized into bytes, the little-endian convention is used for all integer types.
In particular, the element α above, correspond with the sequence of 4 bytes(⌊

int(α)

28i

⌋
mod 28

)
for i = 0, 1, . . . , 3 in exactly this order. An element β = β0 + β1u ∈ Fq2 is serialized as the 8 byte
sequence obtained by serializing first β0 and then β1. Similarly, a matrix γ ∈ F2×2

q is serialized as the
16 bytes sequence obtained by serializing γ11, γ12, γ21, γ22 in that order.

The private key is 369 = 16 · 16 + 24 · 4 + 6 + 6 + 5 bytes long, which correspond to the se-
rialization of the the 16 matrices L−1

11 , L
−1
12 , . . . , L

−1
44 , then the serialization of the 24 affine shifts

A21, A22, A31, A32, A41, A42, A23, A24, . . . , A47, A48 ∈ Fq, followed by a single byte for each a0, . . . , a5,
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b0, . . . , b5, c0, c2, c3, c5, c6. The coefficients c1, c4 and c7 are not serialized since they can be recovered
from the other values.

The public key is 1449 = 360 · 8 + 9 bytes long, which correspond to the serialization of the coeffi-
cients of p1, p2, . . . , p8 followed by a single byte for each f0, f1, f3, f5, f8, f9, f10, f11, f12. The values of
f2, f4, f6, f7, f13, f14, f15 are not serialized since they can be computed from the other values by

f2 = (f1 + f10 − f9 + 57) mod 32

f4 = (f0 + f5 − f1) mod 32

f6 = (f5 + f2 − f1) mod 32

f7 = (f5 + f3 − f1) mod 32

f13 = (f12 + f9 − f8) mod 32

f14 = (f12 + f10 − f8) mod 32

f15 = (f11 + f12 − f8) mod 32

The dme-sign : {0, 1}∗ → {0, 1}∗ × {0, 1}256 map (the secret key is implicit here) is computed by the
following procedure:

1. let msg ∈ {0, 1}∗ be the input message,

2. choose r ∈ {0, 1}64 at random,

3. compute w = SHA3(msg||r) ∈ {0, 1}128,

4. compute g = SHA3(w)⊕ (r||0) ∈ {0, 1}128,

5. compute s = dme-dec(w||g) ∈ F8
q ≃ {0, 1}256,

6. return (msg, s).

This function is implemented in C99 as crypto sign, with the only difference that the return value
is msg||s instead of (msg, s).

The dme-open : {0, 1}∗×{0, 1}256 → {0, 1}∗∪{error}map (the public key is implicit here) is computed
as follows:

1. let (msg, s) ∈ {0, 1}∗ × {0, 1}256 be the input message and its corresponding signature,

2. compute w ∈ {0, 1}128 and g ∈ {0, 1}128 as w||g = dme-enc(s),

3. compute r ∈ {0, 1}64 as the first 64 bits of SHA3(w)⊕ g,

4. if w ̸= SHA3(msg||r), return error,

5. otherwise, return the original message msg.

This function is implemented in C99 as crypto sign open, but the two separate arguments for the
message msg and the signature s, the function takes only one with the concatenation of both msg||s.

The function dme-keypair, which corresponds in the C99 implementation with crypto sign keypair

creates 16 random matrices in F2×2
q , 4 random shifts in F8

q and random values for a0, . . . , c7 ∈ [0, 127]
satisfying the restrictions explained in the previous section (for instance, the matrices have to be
invertible). With the secret key already chosen, the public key is computed by operating with 8
(symbolic) polynomials until p1, . . . , p8 ∈ Fq[x1, . . . , x8] is obtained. Then both keys are serialized and
returned.

7



3 Timings

On a laptop with a Intel(R) Core(TM) i7-8565U CPU at 1.80GHz, with 8 Gb of RAM, running a
Linux Mint 21 x86 64 operating system, the performance of the API primitives (for message of 200
bytes) is given in the following table:

dme-keypair 121 usec

dme-sign 19 usec

dme-open 9 usec

The length of the private key is 369 bytes and the length of the public key is 1449 bytes.
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Implementation of DME-3rnds-8vars-48bits-sign
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The DME-3rnds-8vars-48bits-sign is a signature scheme based on the composition of
three different types of polynomial maps F8

248 → F8
248 that are bijective almost everywhere:

linear maps, affine shifts, and exponential maps. The individual maps form the secret key,
and the composition of the maps, which is given by eight polynomials in F248 [x1, . . . , x8]
is the public key. The signature is obtained by mapping the message to F8

248 using a hash
function (and a PSS padding with 96 random bits) and then applying the decryption map
to get a signature of 384 bits (48 bytes).

1 Mathematical description of DME-3rnds-8vars-48bits-sign

Let q = 248 and let Fq be a finite field with q elements. Consider an irreducible monic polinomial
p(u) = u2 + p1u+ p0 ∈ Fq[u]. The quotient ring Fq[u]/⟨p(u)⟩ defines a field of q2 elements, which we
denote Fq2 . The map ϕ : F2

q → Fq2 given by[
x
y

]
7→ x+ yu

is a bijection. This map can be extended naturally to a map ϕ : F8
q → (Fq2)

4

ϕ



x1
x2
x3
x4
x5
x6
x7
x8


=



ϕ

[
x1
x2

]
ϕ

[
x3
x4

]
ϕ

[
x5
x6

]
ϕ

[
x7
x8

]


which is also a bijection.

For any matrix M ∈ Z4×4, we define the exponential map EM : (F∗
q2)

4 → (F∗
q2)

4 given by
x1
x2
x3
x4

 7→


xm11
1 xm12

2 xm13
3 xm14

4

xm21
1 xm22

2 xm23
3 xm24

4

xm31
1 xm32

2 xm33
3 xm34

4

xm41
1 xm42

2 xm43
3 xm44

4

 .

The following result summarizes the properties of the exponential maps that are needed for the
DME-3rnds-8vars-48bits-sign cryptosystem.

∗iluengo@ucm.es
†mavend01@ucm.es
‡picoscoj@ucm.es
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Lemma 1.1. Let M1,M2 ∈ Z4×4. Then:

1. EM1 ◦ EM2 = EM1·M2.

2. M1 ≡ M2 (mod q2 − 1) ⇒ EM1 = EM2.

3. M1 ·M2 ≡ Id (mod q2 − 1) ⇒ EM1 ◦ EM2 = Id.

4. gcd(det(M1), q
2 − 1) = 1 ⇒ EM1 is invertible.

If no entry of the matrix M is negative, then EM can be extended to a map EM : (Fq2)
4 → (Fq2)

4

with the same formula and setting 00 = 1. It should be noted that the extended maps EM fail in
general to be bijections, even if gcd(det(M), q2 − 1) = 1.

In DME-3rnds-8vars-48bits-sign, we have three exponential maps E1, E2 and E3, whose matrices
are

M1 =


2a0 0 0 0
2a1 2a2 0 0
0 0 2a3 0
0 0 2a4 2a5

 ,

M2 =


2b0 0 0 2b1

0 2b2 0 0
0 2b3 2b4 0
0 0 0 2b5

 ,

M3 =


2c0 2c1 0 0
0 2c2 0 2c3

0 2c4 0 2c5

0 0 2c6 2c7

 ,

respectively, with a0, . . . , a5, b0, . . . , b5, c0, . . . , c7 ∈ [0, 95] such that

c1 ≡ a0 + b0 + c0 − a1 − b2 (mod 96),

c7 ≡ a3 + b4 + c6 − a4 − b5 (mod 96),

c4 ≡ c2 + c5 − c3 + 17 (mod 96).

It is easy to verify that the three matrices M1, M2 and M3 satisfy condition 4 of lemma 1.1.

In DME-3rnds-8vars-48bits-sign, we also needs four invertible linear maps L1, L2, L3, L4 : F8
q → F8

q ,
each of which has a four 2× 2 block structure

Li



x1
x2
x3
x4
x5
x6
x7
x8


=



Li1

[
x1
x2

]
Li2

[
x3
x4

]
Li3

[
x5
x6

]
Li4

[
x7
x8

]


with Lij ∈ F2×2

q and det(Lij) ̸= 0.

In addition to the linear maps, we have three affine shifts A2, A3, A4 : F8
q → F8

q given by

Ai



x1
x2
x3
x4
x5
x6
x7
x8


=



x1 +Ai1

x2 +Ai2

x3 +Ai3

x4 +Ai4

x5 +Ai5

x6 +Ai6

x7 +Ai7

x8 +Ai8


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with Aij ∈ Fq.

The secret key consists of the four linear maps L1, L2, L3, L4, the three affine shifts A2, A3, A4 and the
three exponential maps E1, E2, E3. The following composition

A4 ◦ L4 ◦ ϕ
−1 ◦ E3 ◦ ϕ ◦A3 ◦ L3 ◦ ϕ

−1 ◦ E2 ◦ ϕ ◦A2 ◦ L2 ◦ ϕ
−1 ◦ E1 ◦ ϕ ◦ L1

defines a map dme-enc : F8
q → F8

q .

Let D ⊆ F8
q be the set of x ∈ F8

q such that

(ϕ
−1 ◦ L1)(x),

(ϕ
−1 ◦A2 ◦ L2 ◦ ϕ

−1 ◦ E1 ◦ ϕ ◦ L1)(x),

(ϕ
−1 ◦A3 ◦ L3 ◦ ϕ

−1 ◦ E2 ◦ ϕ ◦A2 ◦ L2 ◦ ϕ
−1 ◦ E1 ◦ ϕ ◦ L1)(x)

belong to (F∗
q2)

4, i.e. do not have a zero entry. Let E = dme-enc(D) ⊆ F8
q . By construction, the

restriction dme-enc : D → E is a bijection.

Lemma 1.2. |D| ≥ 3(q2−1)4−2q8 ≥ q8−12q6. In particular, the probability that a randomly chosen
x ∈ F8

q (with a uniform distribution) does not belong to D is at most 12q−2 < 2−92.

The main property of the map dme-enc is that it can be given by polynomials (this fact can be proven
by following the sequence of maps that define dme-enc, starting with 8 variables x1, . . . , x8). More
precisely, there exists p1, . . . , p8 ∈ Fq[x1, . . . , x8] such that

dme-enc



x1
x2
x3
x4
x5
x6
x7
x8


=



p1(x1, x2, x3, x4, x5, x6, x7, x8)
p2(x1, x2, x3, x4, x5, x6, x7, x8)
p3(x1, x2, x3, x4, x5, x6, x7, x8)
p4(x1, x2, x3, x4, x5, x6, x7, x8)
p5(x1, x2, x3, x4, x5, x6, x7, x8)
p6(x1, x2, x3, x4, x5, x6, x7, x8)
p7(x1, x2, x3, x4, x5, x6, x7, x8)
p8(x1, x2, x3, x4, x5, x6, x7, x8)


where p1, p2, p7, p8 having 65 monomials each and p3, p4, p5, p6 having 25 monomials each.

Define the integers f0, . . . , f15 ∈ [0, 47] as

f0 = a0 + b0 + c0 mod 48

f1 = a1 + b2 + c2 mod 48

f2 = a1 + b2 + c4 mod 48

f3 = a1 + b2 + c6 mod 48

f4 = a2 + a0 + b0 − a1 + c0 mod 48

f5 = a2 + b2 + c2 mod 48

f6 = a2 + b2 + c4 mod 48

f7 = a2 + b2 + c6 mod 48

f8 = a4 + b5 + c1 mod 48

f9 = a4 + b5 + c3 mod 48

f10 = a4 + b5 + c5 mod 48

f11 = a3 + b3 + c7 mod 48

f12 = a5 + b5 + c1 mod 48

f13 = a5 + b5 + c3 mod 48

f14 = a5 + b5 + c5 mod 48

f15 = a5 + a3 + b3 − a4 + c7 mod 48
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and consider the expressions

z0 = x2
f0

1 z1 = x2
f1

1 z2 = x2
f2

1 z3 = x2
f3

1

z4 = x2
f0

2 z5 = x2
f1

2 z6 = x2
f2

2 z7 = x2
f3

1

z8 = x2
f4

3 z9 = x2
f5

3 z10 = x2
f6

3 z11 = x2
f7

3

z12 = x2
f4

4 z13 = x2
f5

4 z14 = x2
f6

4 z15 = x2
f7

4

z16 = x2
f8

5 z17 = x2
f9

5 z18 = x2
f10

5 z19 = x2
f11

5

z20 = x2
f8

6 z21 = x2
f9

6 z22 = x2
f10

6 z23 = x2
f11

6

z24 = x2
f12

7 z25 = x2
f13

7 z26 = x2
f14

7 z27 = x2
f15

7

z28 = x2
f12

8 z29 = x2
f13

8 z30 = x2
f14

8 z31 = x2
f15

8

A careful study of p1 and p2 show that the 65 monomials are exactly

m1,1 = z24z16z8z
2
0 m1,2 = z28z16z8z

2
0 m1,3 = z24z20z8z

2
0

m1,4 = z28z20z8z
2
0 m1,5 = z8z

2
0 m1,6 = z24z16z12z

2
0

m1,7 = z28z16z12z
2
0 m1,8 = z24z20z12z

2
0 m1,9 = z28z20z12z

2
0

m1,10 = z12z
2
0 m1,11 = z24z16z8z4z0 m1,12 = z28z16z8z4z0

m1,13 = z24z20z8z4z0 m1,14 = z28z20z8z4z0 m1,15 = z8z4z0
m1,16 = z24z16z12z4z0 m1,17 = z28z16z12z4z0 m1,18 = z24z20z12z4z0
m1,19 = z28z20z12z4z0 m1,20 = z12z4z0 m1,21 = z24z16z0
m1,22 = z28z16z0 m1,23 = z24z20z0 m1,24 = z28z20z0
m1,25 = z0 m1,26 = z24z16z8z

2
4 m1,27 = z28z16z8z

2
4

m1,28 = z24z20z8z
2
4 m1,29 = z28z20z8z

2
4 m1,30 = z8z

2
4

m1,31 = z24z16z12z
2
4 m1,32 = z28z16z12z

2
4 m1,33 = z24z20z12z

2
4

m1,34 = z28z20z12z
2
4 m1,35 = z12z

2
4 m1,36 = z24z16z4

m1,37 = z28z16z4 m1,38 = z24z20z4 m1,39 = z28z20z4
m1,40 = z4 m1,41 = z24z16z8z0 m1,42 = z28z16z8z0
m1,43 = z24z20z8z0 m1,44 = z28z20z8z0 m1,45 = z8z0
m1,46 = z24z16z12z0 m1,47 = z28z16z12z0 m1,48 = z24z20z12z0
m1,49 = z28z20z12z0 m1,50 = z12z0 m1,51 = z24z16z8z4
m1,52 = z28z16z8z4 m1,53 = z24z20z8z4 m1,54 = z28z20z8z4
m1,55 = z8z4 m1,56 = z24z16z12z4 m1,57 = z28z16z12z4
m1,58 = z24z20z12z4 m1,59 = z28z20z12z4 m1,60 = z12z4
m1,61 = z24z16 m1,62 = z28z16 m1,63 = z24z20
m1,64 = z28z20 m1,65 = 1

Similarly, the 25 monomials that appear in p3 and p4 are

m2,1 = z25z17z9z1 m2,2 = z29z17z9z1 m2,3 = z25z21z9z1
m2,4 = z29z21z9z1 m2,5 = z9z1 m2,6 = z25z17z13z1
m2,7 = z29z17z13z1 m2,8 = z25z21z13z1 m2,9 = z29z21z13z1
m2,10 = z13z1 m2,11 = z25z17z9z5 m2,12 = z29z17z9z5
m2,13 = z25z21z9z5 m2,14 = z29z21z9z5 m2,15 = z9z5
m2,16 = z25z17z13z5 m2,17 = z29z17z13z5 m2,18 = z25z21z13z5
m2,19 = z29z21z13z5 m2,20 = z13z5 m2,21 = z25z17
m2,22 = z29z17 m2,23 = z25z21 m2,24 = z29z21
m2,25 = 1
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the 25 monomials that appear in p5 and p6 are

m3,1 = z26z18z10z2 m3,2 = z30z18z10z2 m3,3 = z26z22z10z2
m3,4 = z30z22z10z2 m3,5 = z10z2 m3,6 = z26z18z14z2
m3,7 = z30z18z14z2 m3,8 = z26z22z14z2 m3,9 = z30z22z14z2
m3,10 = z14z2 m3,11 = z26z18z10z6 m3,12 = z30z18z10z6
m3,13 = z26z22z10z6 m3,14 = z30z22z10z6 m3,15 = z10z6
m3,16 = z26z18z14z6 m3,17 = z30z18z14z6 m3,18 = z26z22z14z6
m3,19 = z30z22z14z6 m3,20 = z14z6 m3,21 = z26z18
m3,22 = z30z18 m3,23 = z26z22 m3,24 = z30z22
m3,25 = 1

and the 65 monomials that appear in p7 and p8 are

m4,1 = z27z192z11z3 m4,2 = z31z192z11z3 m4,3 = z27z23z19z11z3
m4,4 = z31z23z19z11z3 m4,5 = z19z11z3 m4,6 = z27z232z11z3
m4,7 = z31z232z11z3 m4,8 = z23z11z3 m4,9 = z27z19z11z3
m4,10 = z31z19z11z3 m4,11 = z27z23z11z3 m4,12 = z31z23z11z3
m4,13 = z11z3 m4,14 = z27z192z15z3 m4,15 = z31z192z15z3
m4,16 = z27z23z19z15z3 m4,17 = z31z23z19z15z3 m4,18 = z19z15z3
m4,19 = z27z232z15z3 m4,20 = z31z232z15z3 m4,21 = z23z15z3
m4,22 = z27z19z15z3 m4,23 = z31z19z15z3 m4,24 = z27z23z15z3
m4,25 = z31z23z15z3 m4,26 = z15z3 m4,27 = z27z192z11z7
m4,28 = z31z192z11z7 m4,29 = z27z23z19z11z7 m4,30 = z31z23z19z11z7
m4,31 = z19z11z7 m4,32 = z27z232z11z7 m4,33 = z31z232z11z7
m4,34 = z23z11z7 m4,35 = z27z19z11z7 m4,36 = z31z19z11z7
m4,37 = z27z23z11z7 m4,38 = z31z23z11z7 m4,39 = z11z7
m4,40 = z27z192z15z7 m4,41 = z31z192z15z7 m4,42 = z27z23z19z15z7
m4,43 = z31z23z19z15z7 m4,44 = z19z15z7 m4,45 = z27z232z15z7
m4,46 = z31z232z15z7 m4,47 = z23z15z7 m4,48 = z27z19z15z7
m4,49 = z31z19z15z7 m4,50 = z27z23z15z7 m4,51 = z31z23z15z7
m4,52 = z15z7 m4,53 = z27z192 m4,54 = z31z192
m4,55 = z27z23z19 m4,56 = z31z23z19 m4,57 = z19
m4,58 = z27z232 m4,59 = z31z232 m4,60 = z23
m4,61 = z27z19 m4,62 = z31z19 m4,63 = z27z23
m4,64 = z31z23 m4,65 = 1

Using the notation above, the polynomials p1, . . . , p8 can be written as

p1 =
∑65

i=1 p1,im1,i p2 =
∑65

i=1 p2,im1,i

p3 =
∑25

i=1 p3,im2,i p4 =
∑25

i=1 p4,im2,i

p5 =
∑25

i=1 p5,im3,i p6 =
∑25

i=1 p6,im3,i

p7 =
∑65

i=1 p7,im4,i p8 =
∑65

i=1 p8,im4,i

and the public key is just these eight polynomials (which are encoded by the list of 360 coefficients
and the values f0, . . . , f15).

Let M−1
1 , M−1

2 , and M−1
3 be the inverses of M1, M2, and M3 modulo q2 − 1, respectively, with their

entries reduced to the interval [0, q2 − 1). Let E−1
1 , E−1

2 , E−1
3 : (F∗

q2)
4 → (F∗

q2)
4 the corresponding

exponential maps and E−1
1 , E−1

2 , E−1
3 : (Fq2)

4 → (Fq2)
4 their extensions. The following composition

L−1
1 ◦ ϕ−1 ◦ E−1

1 ◦ ϕ ◦ L−1
2 ◦A−1

2 ◦ ϕ−1 ◦ E−1
2 ◦ ϕ ◦ L−1

3 ◦A−1
3 ◦ ϕ−1 ◦ E−1

3 ◦ ϕ ◦ L−1
4 ◦A−1

4

defines a map dme-dec : F8
q → F8

q . By construction, we have that dme-dec maps E to D and, restricted
to those sets, is the inverse of dme-enc. It is easy to verify that E is exactly the set of y ∈ F8

q such
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that
(ϕ ◦ L−1

4 ◦A−1
4 )(y),

(ϕ ◦ L−1
3 ◦A−1

3 ◦ ϕ−1 ◦ E−1
3 ◦ ϕ ◦ L−1

4 ◦A−1
4 )(y),

(ϕ ◦ L−1
2 ◦A−1

2 ◦ ϕ−1 ◦ E−1
2 ◦ ϕ ◦ L−1

3 ◦A−1
3 ◦ ϕ−1 ◦ E−1

3 ◦ ϕ ◦ L−1
4 ◦A−1

4 )(y)

belong to (F∗
q2)

4, i.e. do not have a zero entry.

The cryptographic assumption in DME-3rnds-8vars-48bits-sign is that, for any y ∈ E, the system
of eight polynomial equations in eight unknowns

p1(x1, x2, x3, x4, x5, x6, x7, x8) = y1

p2(x1, x2, x3, x4, x5, x6, x7, x8) = y2

p3(x1, x2, x3, x4, x5, x6, x7, x8) = y3

p4(x1, x2, x3, x4, x5, x6, x7, x8) = y4

p5(x1, x2, x3, x4, x5, x6, x7, x8) = y5

p6(x1, x2, x3, x4, x5, x6, x7, x8) = y6

p7(x1, x2, x3, x4, x5, x6, x7, x8) = y7

p8(x1, x2, x3, x4, x5, x6, x7, x8) = y8

is hard to solve. In particular, this implies that it is not feasible to compute a secret key corresponding
to a given public key.

The dme-sign : {0, 1}∗ → {0, 1}∗ × {0, 1}384 map of the DME-3rnds-8vars-48bits-sign scheme, as
required by the API, returns (m, s) where m is the original message and the signature s is obtained
by first applying a PSS-SHA3 padding (with 96 random bits), then reading the 384 bit sequence as a
vector in F8

q , applying dme-dec, and lastly, interpreting the resulting vector as a 384 bit sequence. The
dme-open : {0, 1}∗ × {0, 1}384 → {0, 1}∗ ∪ {error} reverses the procedure above using dme-enc and
checks that the signature is legitimate. The details of these algorithms are given in the next section.

2 Implementation details of DME-3rnds-8vars-48bits-sign

The field of q = 248 is implemented as the quotient ring

Fq = F2[t]/⟨t48 + t17 + t2 + t+ 1⟩,

and the monic irreducible polynomial p(u) ∈ Fq[u] that defines Fq2 is p(u) = u2 + tu+ 1, so we have

Fq2 = Fq[u]/⟨u2 + tu+ 1⟩.

An element α = α47t
47 + · · · + α1t + α0 ∈ Fq can be interpreted as the 48 bits unsigned integer

int(α) = α472
47 + · · · + α12 + α0 ∈ [0, 248 − 1]. In C99, these fit comfortably in the uint64 t type

of the standard library. When serialized into bytes, the little-endian convention is used for all integer
types. In particular, the element α above, correspond with the sequence of 6 bytes(⌊

int(α)

28i

⌋
mod 28

)
for i = 0, 1, . . . , 5 in exactly this order. An element β = β0 + β1u ∈ Fq2 is serialized as the 12 byte
sequence obtained by serializing first β0 and then β1. Similarly, a matrix γ ∈ F2×2

q is serialized as the
24 bytes sequence obtained by serializing γ11, γ12, γ21, γ22 in that order.

The private key is 545 = 16 · 24 + 24 · 6 + 6 + 6 + 5 bytes long, which correspond to the se-
rialization of the the 16 matrices L−1

11 , L
−1
12 , . . . , L

−1
44 , then the serialization of the 24 affine shifts

A21, A22, A31, A32, A41, A42, A23, A24, . . . , A47, A48 ∈ Fq, followed by a single byte for each a0, . . . , a5,
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b0, . . . , b5, c0, c2, c3, c5, c6. The coefficients c1, c4 and c7 are not serialized since they can be recovered
from the other values.

The public key is 2169 = 360 · 6 + 9 bytes long, which correspond to the serialization of the coeffi-
cients of p1, p2, . . . , p8 followed by a single byte for each f0, f1, f3, f5, f8, f9, f10, f11, f12. The values of
f2, f4, f6, f7, f13, f14, f15 are not serialized since they can be computed from the other values by

f2 = (f1 + f10 − f9 + 17) mod 48

f4 = (f0 + f5 − f1) mod 48

f6 = (f5 + f2 − f1) mod 48

f7 = (f5 + f3 − f1) mod 48

f13 = (f12 + f9 − f8) mod 48

f14 = (f12 + f10 − f8) mod 48

f15 = (f11 + f12 − f8) mod 48

The dme-sign : {0, 1}∗ → {0, 1}∗ × {0, 1}384 map (the secret key is implicit here) is computed by the
following procedure:

1. let msg ∈ {0, 1}∗ be the input message,

2. choose r ∈ {0, 1}96 at random,

3. compute w = SHA3(msg||r) ∈ {0, 1}192,

4. compute g = SHA3(w)⊕ (r||0) ∈ {0, 1}192,

5. compute s = dme-dec(w||g) ∈ F8
q ≃ {0, 1}384,

6. return (msg, s).

This function is implemented in C99 as crypto sign, with the only difference that the return value
is msg||s instead of (msg, s).

The dme-open : {0, 1}∗×{0, 1}384 → {0, 1}∗∪{error}map (the public key is implicit here) is computed
as follows:

1. let (msg, s) ∈ {0, 1}∗ × {0, 1}384 be the input message and its corresponding signature,

2. compute w ∈ {0, 1}192 and g ∈ {0, 1}192 as w||g = dme-enc(s),

3. compute r ∈ {0, 1}96 as the first 96 bits of SHA3(w)⊕ g,

4. if w ̸= SHA3(msg||r), return error,

5. otherwise, return the original message msg.

This function is implemented in C99 as crypto sign open, but the two separate arguments for the
message msg and the signature s, the function takes only one with the concatenation of both msg||s.

The function dme-keypair, which corresponds in the C99 implementation with crypto sign keypair

creates 16 random matrices in F2×2
q , 4 random shifts in F8

q and random values for a0, . . . , c7 ∈ [0, 95]
satisfying the restrictions explained in the previous section (for instance, the matrices have to be
invertible). With the secret key already chosen, the public key is computed by operating with 8
(symbolic) polynomials until p1, . . . , p8 ∈ Fq[x1, . . . , x8] is obtained. Then both keys are serialized and
returned.

7



3 Timings

On a laptop with a Intel(R) Core(TM) i7-8565U CPU at 1.80GHz, with 8 Gb of RAM, running a
Linux Mint 21 x86 64 operating system, the performance of the API primitives (for message of 200
bytes) is given in the following table:

dme-keypair 262 usec

dme-sign 35 usec

dme-open 11 usec

The length of the private key is 545 bytes and the length of the public key is 2169 bytes.
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The DME-3rnds-8vars-64bits-sign is a signature scheme based on the composition of
three different types of polynomial maps F8

264 → F8
264 that are bijective almost everywhere:

linear maps, affine shifts, and exponential maps. The individual maps form the secret key,
and the composition of the maps, which is given by eight polynomials in F264 [x1, . . . , x8]
is the public key. The signature is obtained by mapping the message to F8

264 using a hash
function (and a PSS padding with 256 random bits) and then applying the decryption map
to get a signature of 512 bits (64 bytes).

1 Mathematical description of DME-3rnds-8vars-64bits-sign

Let q = 264 and let Fq be a finite field with q elements. Consider an irreducible monic polinomial
p(u) = u2 + p1u+ p0 ∈ Fq[u]. The quotient ring Fq[u]/⟨p(u)⟩ defines a field of q2 elements, which we
denote Fq2 . The map ϕ : F2

q → Fq2 given by[
x
y

]
7→ x+ yu

is a bijection. This map can be extended naturally to a map ϕ : F8
q → (Fq2)

4

ϕ



x1
x2
x3
x4
x5
x6
x7
x8


=



ϕ

[
x1
x2

]
ϕ

[
x3
x4

]
ϕ

[
x5
x6

]
ϕ

[
x7
x8

]


which is also a bijection.

For any matrix M ∈ Z4×4, we define the exponential map EM : (F∗
q2)

4 → (F∗
q2)

4 given by
x1
x2
x3
x4

 7→


xm11
1 xm12

2 xm13
3 xm14

4

xm21
1 xm22

2 xm23
3 xm24

4

xm31
1 xm32

2 xm33
3 xm34

4

xm41
1 xm42

2 xm43
3 xm44

4

 .

The following result summarizes the properties of the exponential maps that are needed for the
DME-3rnds-8vars-64bits-sign cryptosystem.

∗iluengo@ucm.es
†mavend01@ucm.es
‡picoscoj@ucm.es
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Lemma 1.1. Let M1,M2 ∈ Z4×4. Then:

1. EM1 ◦ EM2 = EM1·M2.

2. M1 ≡ M2 (mod q2 − 1) ⇒ EM1 = EM2.

3. M1 ·M2 ≡ Id (mod q2 − 1) ⇒ EM1 ◦ EM2 = Id.

4. gcd(det(M1), q
2 − 1) = 1 ⇒ EM1 is invertible.

If no entry of the matrix M is negative, then EM can be extended to a map EM : (Fq2)
4 → (Fq2)

4

with the same formula and setting 00 = 1. It should be noted that the extended maps EM fail in
general to be bijections, even if gcd(det(M), q2 − 1) = 1.

In DME-3rnds-8vars-64bits-sign, we have three exponential maps E1, E2 and E3, whose matrices
are

M1 =


2a0 0 0 0
2a1 2a2 0 0
0 0 2a3 0
0 0 2a4 2a5

 ,

M2 =


2b0 0 0 2b1

0 2b2 0 0
0 2b3 2b4 0
0 0 0 2b5

 ,

M3 =


2c0 2c1 0 0
0 2c2 0 2c3

0 2c4 0 2c5

0 0 2c6 2c7

 ,

respectively, with a0, . . . , a5, b0, . . . , b5, c0, . . . , c7 ∈ [0, 127] such that

c1 ≡ a0 + b0 + c0 − a1 − b2 (mod 128),

c7 ≡ a3 + b4 + c6 − a4 − b5 (mod 128),

c4 ≡ c2 + c5 − c3 + 57 (mod 128).

It is easy to verify that the three matrices M1, M2 and M3 satisfy condition 4 of lemma 1.1.

In DME-3rnds-8vars-64bits-sign, we also needs four invertible linear maps L1, L2, L3, L4 : F8
q → F8

q ,
each of which has a four 2× 2 block structure

Li



x1
x2
x3
x4
x5
x6
x7
x8


=



Li1

[
x1
x2

]
Li2

[
x3
x4

]
Li3

[
x5
x6

]
Li4

[
x7
x8

]


with Lij ∈ F2×2

q and det(Lij) ̸= 0.

In addition to the linear maps, we have three affine shifts A2, A3, A4 : F8
q → F8

q given by

Ai



x1
x2
x3
x4
x5
x6
x7
x8


=



x1 +Ai1

x2 +Ai2

x3 +Ai3

x4 +Ai4

x5 +Ai5

x6 +Ai6

x7 +Ai7

x8 +Ai8


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with Aij ∈ Fq.

The secret key consists of the four linear maps L1, L2, L3, L4, the three affine shifts A2, A3, A4 and the
three exponential maps E1, E2, E3. The following composition

A4 ◦ L4 ◦ ϕ
−1 ◦ E3 ◦ ϕ ◦A3 ◦ L3 ◦ ϕ

−1 ◦ E2 ◦ ϕ ◦A2 ◦ L2 ◦ ϕ
−1 ◦ E1 ◦ ϕ ◦ L1

defines a map dme-enc : F8
q → F8

q .

Let D ⊆ F8
q be the set of x ∈ F8

q such that

(ϕ
−1 ◦ L1)(x),

(ϕ
−1 ◦A2 ◦ L2 ◦ ϕ

−1 ◦ E1 ◦ ϕ ◦ L1)(x),

(ϕ
−1 ◦A3 ◦ L3 ◦ ϕ

−1 ◦ E2 ◦ ϕ ◦A2 ◦ L2 ◦ ϕ
−1 ◦ E1 ◦ ϕ ◦ L1)(x)

belong to (F∗
q2)

4, i.e. do not have a zero entry. Let E = dme-enc(D) ⊆ F8
q . By construction, the

restriction dme-enc : D → E is a bijection.

Lemma 1.2. |D| ≥ 3(q2−1)4−2q8 ≥ q8−12q6. In particular, the probability that a randomly chosen
x ∈ F8

q (with a uniform distribution) does not belong to D is at most 12q−2 < 2−124.

The main property of the map dme-enc is that it can be given by polynomials (this fact can be proven
by following the sequence of maps that define dme-enc, starting with 8 variables x1, . . . , x8). More
precisely, there exists p1, . . . , p8 ∈ Fq[x1, . . . , x8] such that

dme-enc



x1
x2
x3
x4
x5
x6
x7
x8


=



p1(x1, x2, x3, x4, x5, x6, x7, x8)
p2(x1, x2, x3, x4, x5, x6, x7, x8)
p3(x1, x2, x3, x4, x5, x6, x7, x8)
p4(x1, x2, x3, x4, x5, x6, x7, x8)
p5(x1, x2, x3, x4, x5, x6, x7, x8)
p6(x1, x2, x3, x4, x5, x6, x7, x8)
p7(x1, x2, x3, x4, x5, x6, x7, x8)
p8(x1, x2, x3, x4, x5, x6, x7, x8)


where p1, p2, p7, p8 having 65 monomials each and p3, p4, p5, p6 having 25 monomials each.

Define the integers f0, . . . , f15 ∈ [0, 63] as

f0 = a0 + b0 + c0 mod 64

f1 = a1 + b2 + c2 mod 64

f2 = a1 + b2 + c4 mod 64

f3 = a1 + b2 + c6 mod 64

f4 = a2 + a0 + b0 − a1 + c0 mod 64

f5 = a2 + b2 + c2 mod 64

f6 = a2 + b2 + c4 mod 64

f7 = a2 + b2 + c6 mod 64

f8 = a4 + b5 + c1 mod 64

f9 = a4 + b5 + c3 mod 64

f10 = a4 + b5 + c5 mod 64

f11 = a3 + b3 + c7 mod 64

f12 = a5 + b5 + c1 mod 64

f13 = a5 + b5 + c3 mod 64

f14 = a5 + b5 + c5 mod 64

f15 = a5 + a3 + b3 − a4 + c7 mod 64
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and consider the expressions

z0 = x2
f0

1 z1 = x2
f1

1 z2 = x2
f2

1 z3 = x2
f3

1

z4 = x2
f0

2 z5 = x2
f1

2 z6 = x2
f2

2 z7 = x2
f3

1

z8 = x2
f4

3 z9 = x2
f5

3 z10 = x2
f6

3 z11 = x2
f7

3

z12 = x2
f4

4 z13 = x2
f5

4 z14 = x2
f6

4 z15 = x2
f7

4

z16 = x2
f8

5 z17 = x2
f9

5 z18 = x2
f10

5 z19 = x2
f11

5

z20 = x2
f8

6 z21 = x2
f9

6 z22 = x2
f10

6 z23 = x2
f11

6

z24 = x2
f12

7 z25 = x2
f13

7 z26 = x2
f14

7 z27 = x2
f15

7

z28 = x2
f12

8 z29 = x2
f13

8 z30 = x2
f14

8 z31 = x2
f15

8

A careful study of p1 and p2 show that the 65 monomials are exactly

m1,1 = z24z16z8z
2
0 m1,2 = z28z16z8z

2
0 m1,3 = z24z20z8z

2
0

m1,4 = z28z20z8z
2
0 m1,5 = z8z

2
0 m1,6 = z24z16z12z

2
0

m1,7 = z28z16z12z
2
0 m1,8 = z24z20z12z

2
0 m1,9 = z28z20z12z

2
0

m1,10 = z12z
2
0 m1,11 = z24z16z8z4z0 m1,12 = z28z16z8z4z0

m1,13 = z24z20z8z4z0 m1,14 = z28z20z8z4z0 m1,15 = z8z4z0
m1,16 = z24z16z12z4z0 m1,17 = z28z16z12z4z0 m1,18 = z24z20z12z4z0
m1,19 = z28z20z12z4z0 m1,20 = z12z4z0 m1,21 = z24z16z0
m1,22 = z28z16z0 m1,23 = z24z20z0 m1,24 = z28z20z0
m1,25 = z0 m1,26 = z24z16z8z

2
4 m1,27 = z28z16z8z

2
4

m1,28 = z24z20z8z
2
4 m1,29 = z28z20z8z

2
4 m1,30 = z8z

2
4

m1,31 = z24z16z12z
2
4 m1,32 = z28z16z12z

2
4 m1,33 = z24z20z12z

2
4

m1,34 = z28z20z12z
2
4 m1,35 = z12z

2
4 m1,36 = z24z16z4

m1,37 = z28z16z4 m1,38 = z24z20z4 m1,39 = z28z20z4
m1,40 = z4 m1,41 = z24z16z8z0 m1,42 = z28z16z8z0
m1,43 = z24z20z8z0 m1,44 = z28z20z8z0 m1,45 = z8z0
m1,46 = z24z16z12z0 m1,47 = z28z16z12z0 m1,48 = z24z20z12z0
m1,49 = z28z20z12z0 m1,50 = z12z0 m1,51 = z24z16z8z4
m1,52 = z28z16z8z4 m1,53 = z24z20z8z4 m1,54 = z28z20z8z4
m1,55 = z8z4 m1,56 = z24z16z12z4 m1,57 = z28z16z12z4
m1,58 = z24z20z12z4 m1,59 = z28z20z12z4 m1,60 = z12z4
m1,61 = z24z16 m1,62 = z28z16 m1,63 = z24z20
m1,64 = z28z20 m1,65 = 1

Similarly, the 25 monomials that appear in p3 and p4 are

m2,1 = z25z17z9z1 m2,2 = z29z17z9z1 m2,3 = z25z21z9z1
m2,4 = z29z21z9z1 m2,5 = z9z1 m2,6 = z25z17z13z1
m2,7 = z29z17z13z1 m2,8 = z25z21z13z1 m2,9 = z29z21z13z1
m2,10 = z13z1 m2,11 = z25z17z9z5 m2,12 = z29z17z9z5
m2,13 = z25z21z9z5 m2,14 = z29z21z9z5 m2,15 = z9z5
m2,16 = z25z17z13z5 m2,17 = z29z17z13z5 m2,18 = z25z21z13z5
m2,19 = z29z21z13z5 m2,20 = z13z5 m2,21 = z25z17
m2,22 = z29z17 m2,23 = z25z21 m2,24 = z29z21
m2,25 = 1
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the 25 monomials that appear in p5 and p6 are

m3,1 = z26z18z10z2 m3,2 = z30z18z10z2 m3,3 = z26z22z10z2
m3,4 = z30z22z10z2 m3,5 = z10z2 m3,6 = z26z18z14z2
m3,7 = z30z18z14z2 m3,8 = z26z22z14z2 m3,9 = z30z22z14z2
m3,10 = z14z2 m3,11 = z26z18z10z6 m3,12 = z30z18z10z6
m3,13 = z26z22z10z6 m3,14 = z30z22z10z6 m3,15 = z10z6
m3,16 = z26z18z14z6 m3,17 = z30z18z14z6 m3,18 = z26z22z14z6
m3,19 = z30z22z14z6 m3,20 = z14z6 m3,21 = z26z18
m3,22 = z30z18 m3,23 = z26z22 m3,24 = z30z22
m3,25 = 1

and the 65 monomials that appear in p7 and p8 are

m4,1 = z27z192z11z3 m4,2 = z31z192z11z3 m4,3 = z27z23z19z11z3
m4,4 = z31z23z19z11z3 m4,5 = z19z11z3 m4,6 = z27z232z11z3
m4,7 = z31z232z11z3 m4,8 = z23z11z3 m4,9 = z27z19z11z3
m4,10 = z31z19z11z3 m4,11 = z27z23z11z3 m4,12 = z31z23z11z3
m4,13 = z11z3 m4,14 = z27z192z15z3 m4,15 = z31z192z15z3
m4,16 = z27z23z19z15z3 m4,17 = z31z23z19z15z3 m4,18 = z19z15z3
m4,19 = z27z232z15z3 m4,20 = z31z232z15z3 m4,21 = z23z15z3
m4,22 = z27z19z15z3 m4,23 = z31z19z15z3 m4,24 = z27z23z15z3
m4,25 = z31z23z15z3 m4,26 = z15z3 m4,27 = z27z192z11z7
m4,28 = z31z192z11z7 m4,29 = z27z23z19z11z7 m4,30 = z31z23z19z11z7
m4,31 = z19z11z7 m4,32 = z27z232z11z7 m4,33 = z31z232z11z7
m4,34 = z23z11z7 m4,35 = z27z19z11z7 m4,36 = z31z19z11z7
m4,37 = z27z23z11z7 m4,38 = z31z23z11z7 m4,39 = z11z7
m4,40 = z27z192z15z7 m4,41 = z31z192z15z7 m4,42 = z27z23z19z15z7
m4,43 = z31z23z19z15z7 m4,44 = z19z15z7 m4,45 = z27z232z15z7
m4,46 = z31z232z15z7 m4,47 = z23z15z7 m4,48 = z27z19z15z7
m4,49 = z31z19z15z7 m4,50 = z27z23z15z7 m4,51 = z31z23z15z7
m4,52 = z15z7 m4,53 = z27z192 m4,54 = z31z192
m4,55 = z27z23z19 m4,56 = z31z23z19 m4,57 = z19
m4,58 = z27z232 m4,59 = z31z232 m4,60 = z23
m4,61 = z27z19 m4,62 = z31z19 m4,63 = z27z23
m4,64 = z31z23 m4,65 = 1

Using the notation above, the polynomials p1, . . . , p8 can be written as

p1 =
∑65

i=1 p1,im1,i p2 =
∑65

i=1 p2,im1,i

p3 =
∑25

i=1 p3,im2,i p4 =
∑25

i=1 p4,im2,i

p5 =
∑25

i=1 p5,im3,i p6 =
∑25

i=1 p6,im3,i

p7 =
∑65

i=1 p7,im4,i p8 =
∑65

i=1 p8,im4,i

and the public key is just these eight polynomials (which are encoded by the list of 360 coefficients
and the values f0, . . . , f15).

Let M−1
1 , M−1

2 , and M−1
3 be the inverses of M1, M2, and M3 modulo q2 − 1, respectively, with their

entries reduced to the interval [0, q2 − 1). Let E−1
1 , E−1

2 , E−1
3 : (F∗

q2)
4 → (F∗

q2)
4 the corresponding

exponential maps and E−1
1 , E−1

2 , E−1
3 : (Fq2)

4 → (Fq2)
4 their extensions. The following composition

L−1
1 ◦ ϕ−1 ◦ E−1

1 ◦ ϕ ◦ L−1
2 ◦A−1

2 ◦ ϕ−1 ◦ E−1
2 ◦ ϕ ◦ L−1

3 ◦A−1
3 ◦ ϕ−1 ◦ E−1

3 ◦ ϕ ◦ L−1
4 ◦A−1

4

defines a map dme-dec : F8
q → F8

q . By construction, we have that dme-dec maps E to D and, restricted
to those sets, is the inverse of dme-enc. It is easy to verify that E is exactly the set of y ∈ F8

q such
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that
(ϕ ◦ L−1

4 ◦A−1
4 )(y),

(ϕ ◦ L−1
3 ◦A−1

3 ◦ ϕ−1 ◦ E−1
3 ◦ ϕ ◦ L−1

4 ◦A−1
4 )(y),

(ϕ ◦ L−1
2 ◦A−1

2 ◦ ϕ−1 ◦ E−1
2 ◦ ϕ ◦ L−1

3 ◦A−1
3 ◦ ϕ−1 ◦ E−1

3 ◦ ϕ ◦ L−1
4 ◦A−1

4 )(y)

belong to (F∗
q2)

4, i.e. do not have a zero entry.

The cryptographic assumption in DME-3rnds-8vars-64bits-sign is that, for any y ∈ E, the system
of eight polynomial equations in eight unknowns

p1(x1, x2, x3, x4, x5, x6, x7, x8) = y1

p2(x1, x2, x3, x4, x5, x6, x7, x8) = y2

p3(x1, x2, x3, x4, x5, x6, x7, x8) = y3

p4(x1, x2, x3, x4, x5, x6, x7, x8) = y4

p5(x1, x2, x3, x4, x5, x6, x7, x8) = y5

p6(x1, x2, x3, x4, x5, x6, x7, x8) = y6

p7(x1, x2, x3, x4, x5, x6, x7, x8) = y7

p8(x1, x2, x3, x4, x5, x6, x7, x8) = y8

is hard to solve. In particular, this implies that it is not feasible to compute a secret key corresponding
to a given public key.

The dme-sign : {0, 1}∗ → {0, 1}∗ × {0, 1}512 map of the DME-3rnds-8vars-64bits-sign scheme, as
required by the API, returns (m, s) where m is the original message and the signature s is obtained
by first applying a PSS-SHA3 padding (with 256 random bits), then reading the 512 bit sequence as a
vector in F8

q , applying dme-dec, and lastly, interpreting the resulting vector as a 512 bit sequence. The
dme-open : {0, 1}∗ × {0, 1}512 → {0, 1}∗ ∪ {error} reverses the procedure above using dme-enc and
checks that the signature is legitimate. The details of these algorithms are given in the next section.

2 Implementation details of DME-3rnds-8vars-64bits-sign

The field of q = 264 is implemented as the quotient ring

Fq = F2[t]/⟨t64 + t11 + t2 + t+ 1⟩,

and the monic irreducible polynomial p(u) ∈ Fq[u] that defines Fq2 is p(u) = u2 + tu+ 1, so we have

Fq2 = Fq[u]/⟨u2 + tu+ 1⟩.

An element α = α63t
63 + · · · + α1t + α0 ∈ Fq can be interpreted as the 64 bits unsigned integer

int(α) = α632
63 + · · ·+α12+α0 ∈ [0, 264 − 1]. In C99, these fit perfectly in the uint64 t type of the

standard library. When serialized into bytes, the little-endian convention is used for all integer types.
In particular, the element α above, correspond with the sequence of 8 bytes(⌊

int(α)

28i

⌋
mod 28

)
for i = 0, 1, . . . , 7 in exactly this order. An element β = β0 + β1u ∈ Fq2 is serialized as the 16 byte
sequence obtained by serializing first β0 and then β1. Similarly, a matrix γ ∈ F2×2

q is serialized as the
32 bytes sequence obtained by serializing γ11, γ12, γ21, γ22 in that order.

The private key is 721 = 16 · 32 + 24 · 8 + 6 + 6 + 5 bytes long, which correspond to the se-
rialization of the the 16 matrices L−1

11 , L
−1
12 , . . . , L

−1
44 , then the serialization of the 24 affine shifts

A21, A22, A31, A32, A41, A42, A23, A24, . . . , A47, A48 ∈ Fq, followed by a single byte for each a0, . . . , a5,
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b0, . . . , b5, c0, c2, c3, c5, c6. The coefficients c1, c4 and c7 are not serialized since they can be recovered
from the other values.

The public key is 2889 = 360 · 8 + 9 bytes long, which correspond to the serialization of the coeffi-
cients of p1, p2, . . . , p8 followed by a single byte for each f0, f1, f3, f5, f8, f9, f10, f11, f12. The values of
f2, f4, f6, f7, f13, f14, f15 are not serialized since they can be computed from the other values by

f2 = (f1 + f10 − f9 + 57) mod 64

f4 = (f0 + f5 − f1) mod 64

f6 = (f5 + f2 − f1) mod 64

f7 = (f5 + f3 − f1) mod 64

f13 = (f12 + f9 − f8) mod 64

f14 = (f12 + f10 − f8) mod 64

f15 = (f11 + f12 − f8) mod 64

The dme-sign : {0, 1}∗ → {0, 1}∗ × {0, 1}512 map (the secret key is implicit here) is computed by the
following procedure:

1. let msg ∈ {0, 1}∗ be the input message,

2. choose r ∈ {0, 1}128 at random,

3. compute w = SHA3(msg||r) ∈ {0, 1}256,

4. compute g = SHA3(w)⊕ (r||0) ∈ {0, 1}256,

5. compute s = dme-dec(w||g) ∈ F8
q ≃ {0, 1}512,

6. return (msg, s).

This function is implemented in C99 as crypto sign, with the only difference that the return value
is msg||s instead of (msg, s).

The dme-open : {0, 1}∗×{0, 1}512 → {0, 1}∗∪{error}map (the public key is implicit here) is computed
as follows:

1. let (msg, s) ∈ {0, 1}∗ × {0, 1}512 be the input message and its corresponding signature,

2. compute w ∈ {0, 1}256 and g ∈ {0, 1}256 as w||g = dme-enc(s),

3. compute r ∈ {0, 1}128 as the first 128 bits of SHA3(w)⊕ g,

4. if w ̸= SHA3(msg||r), return error,

5. otherwise, return the original message msg.

This function is implemented in C99 as crypto sign open, but the two separate arguments for the
message msg and the signature s, the function takes only one with the concatenation of both msg||s.

The function dme-keypair, which corresponds in the C99 implementation with crypto sign keypair

creates 16 random matrices in F2×2
q , 4 random shifts in F8

q and random values for a0, . . . , c7 ∈ [0, 127]
satisfying the restrictions explained in the previous section (for instance, the matrices have to be
invertible). With the secret key already chosen, the public key is computed by operating with 8
(symbolic) polynomials until p1, . . . , p8 ∈ Fq[x1, . . . , x8] is obtained. Then both keys are serialized and
returned.
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3 Timings

On a laptop with a Intel(R) Core(TM) i7-8565U CPU at 1.80GHz, with 8 Gb of RAM, running a
Linux Mint 21 x86 64 operating system, the performance of the API primitives (for message of 200
bytes) is given in the following table:

dme-keypair 251 usec

dme-sign 41 usec

dme-open 12 usec

The length of the private key is 721 bytes and the length of the public key is 2889 bytes.
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