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Table 1. EHTv3 and EHTv4 Performance

EHT version -NIST category v3-1 v3-3 v3-5 v4-1 v4-5
Signature (bytes) 169 255 344 369 857

Private Key (bytes) 368 532 701 419 925
Public Key (Kbytes) 83.5 191.6 349.0 1.11 2.63

Key Generation (msec) 194 597 1530 12.1 115
Signature Generation (msec) 75.8 206 305 9.0 59.3
Signature Verification (msec) 0.82 1.78 3.16 3.85 26.2

# trials for a signature 2.6 3.22 2.01 4.97 3.46

1. Introduction

Digital signature algorithm EHTv3 has some similarity with the public key
crypto-system EHT in [5]. However, it is impossible to use this crypto-system
directly to generate signatures as the length of the cipher-text is larger than the
length of the plain-text. Nevertheless, we call the new digital signature algorithm
EHT too. The first version of the digital signature algorithm EHT, let’s call that
EHTv1, is in [18]. The second version EHTv2 appeared in the proceedings of NISK
2022, [19]. The current version EHTv3 mostly differs in the choice of the matrix
C. Also, we submit EHTv4 which is very similar to EHTv3 but the arithmetic is
in a finite group ring over Zq instead of Zq itself. That provides on the whole with
a more efficient algorithm for comparable security levels at the expense of a larger
signature size.

In Table 1 we summarised the performance of EHTv3 and EHTv4 signature
algorithms for parameters in Sections 6 and 10 which fit different security levels
according to the NIST call [14]. The average time estimates were calculated for 103

EHTv3 iterations and 104 EHTv4 iterations on a common computer with Windows
10 64-bit operating system and x64-based processor: 12thGen Intel(R) Core(TM)
i7-12800H@2.40 GHz with 16.0 GB Ram.

The submitters acknowledge a number of useful discussions with Erik Mårtensson
regarding the algorithm implementations.

1.1. q-ary Lattices. Let q, n,m, s, such that s < (q−1)/2 and n < m, be positive
integers. Suppose A is an (m×n)-matrix over integers Z and L is a lattice generated
by the columns of A modulo q. So, any y ∈ L satisfies y ≡ Ax mod q for some
x ∈ Zn. One says that L is a q-ary lattice of rank m. Let e = (e1, . . . , em) ∈ Zm,
then max(e) = max1≤i≤m |ei| is the max norm of e. Also, we say maxl(e) ≤ s if at
least l entries of e are at most s in absolute value.

Let’s consider the following problem. Given h ∈ Zm, find y ∈ L where maxl(h−
y) ≤ s if such y does exist. That generally seems a hard problem. For instance, if l =
m, then the solution to the problem implies a solution to the standard approximate
Closest Vector Problem (in the Euclidean norm) for L with an approximation factor
O( s

q1−n/m ). If the approximation factor is small, then the problem is considered

hard in general lattices according to [13].

1.2. Design Rationale. LetA ∈ Zm×n
q be a public matrix and let h = HASH(M) ∈

Zm
q be a hash value for a message M . The signature for M is x ∈ Zn

q such that
h ≡ Ax + e mod q and e ∈ Zm satisfies maxl(e) ≤ s. To forge a signature for M
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one must compute x ∈ Zn
q such that maxl(h−Ax mod q) ≤ s. That is an instance

of the problem above.
We construct A with a trapdoor in order to implement the idea. Let k be a

positive integer such that n < m < kn. There exists a positive integer c < q and
a matrix T ∈ Zkn×n

q with the following property. For every a ∈ Zkn
q , it is easy to

compute y ∈ Zn
q and z ∈ Zkn, and such that a ≡ Ty + z mod q and max(z) ≤ c,

that is every entry of z is bounded by c in absolute value. The definition of the
matrix T is below, see (2) and Theorem 1.

We hide T by multiplying on the left by a matrix C ∈ Zm×kn, every row of
which is of 1-norm λ for a relatively small parameter λ. That means that the sum
of absolute values of the entries in each row of C is λ. The choice of λ defines l
and s. Also, one multiplies on the right by B−1 mod q for an arbitrary matrix
B ∈ Zn×n

q , invertible modulo q. The matrix A ≡ CTB−1 mod q is public and the
matrices C, T,B are secret.

1.3. Inequalities. Let q, k, c be positive integers.

1.3.1. Diagonal Tuples. We call the tuple of integers [t1, t2, . . . , tk] diagonal if its
entries are non-zero residues modulo q and at least one is coprime to q. Besides,
for any integers b1, b2, . . . , bk there is an integer u such that

|(b1 − t1 u)mod q| ≤ c,

|(b2 − t2 u)mod q| ≤ c,

. . . ,(1)

|(bk − tk u)mod q| ≤ c,

where the residues modulo q are taken smallest in absolute values. For relatively
small q and k used in this work all such tuples may be found by brute force. Let, for
instance, q = 61, k = 3, c = 8. There is only one tuple [t1, t2, t3] = [1, 4, 15] modulo
q up to a permutation of entries, multiplication the tuple by a residue coprime to q
and changing the sign of the entries such that for any integers b1, b2, b3 the system
of inequalities |(b1−t1u)mod 61| ≤ 8, |(b2−t2u)mod 61| ≤ 8, |(bk−t3u)mod 61| ≤ 8
has a solution u. For q = 47, k = 2, c = 3 there is only one such tuple [t1, t2] = [1, 7].
The solution of (1) is easy in this case, see Section 1.3.2 below.

1.3.2. Solving the Inequalities. Let k = 2, q ≤ (2c + 1)2 and [t1, t2] = [1, t], where
t = 2c + 1. In that case we show how to solve (1) efficiently. The system (1)
is equivalent to b1 ≡ u + z1, b2 ≡ tu + z2, where |z1|, |z2| ≤ c and therefore to
u ≡ b1 − z1, b2 − tb1 ≡ z2 − tz1. For any b1, b2 that has a solution u such that
|z1|, |z2| ≤ c with the following algorithm.

(1) Set a ≡ b2 − tb1 mod q, where |a| ≤ q/2.
(2) Expand a to the base t and get a = y2 + ty1, where |y2|, |y1| < t and

sign(a) = sign(y2) = sign(y1).
(3) If |y2| ≤ c, then z2 = y2 and z1 = −y1. If |y2| > c, then z2 = y2 − sign(a)t

and z1 = −(y1 + sign(a)).
(4) Set u ≡ b1 − z1 mod q.

In order to prove the algorithm, first suppose |y2| ≤ c. Then z1 = −y1 = −(a−y2)/t.
So, |z1| ≤ |a|/t ≤ c+1/2 as |a| ≤ (2c+1)2/2. Since z1 is an integer, we have |z1| ≤ c.

Suppose |y2| > c. As y1 = (a − y2)/t, we have |y1| ≤ (|a| − c − 1)/t < c.
One may represent a = y2 − sign(a)t + t(y1 + sign(a)) and set z2 = y2 − sign(a)t
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and z1 = −(y1 + sign(a)). Obviously, |z2|, |z1| ≤ c. Anyway, a = z2 − z1t, where
|z2|, |z1| ≤ c.

2. EHTv3 Signature Algorithm

2.1. Parameters. Let q, k, c, λ, τ, s and n,m, l be positive integers, where the inte-
gers q, k, c, λ, τ, s are relatively small and n < m < kn, s < (q−1)/2. The integer q
defines the arithmetic of the scheme. Also, let h = HASH(M) denote a hash value
of the message M , encoded by a vector in Zm

q .
FIPS202 SHAKE256 was used to hash the message M and to obtain an output

of byte length so that we have sufficient bytes for h ∈ Zm
q . For our proposed

parameters, it is always greater than 64 bytes and ensures 256-bit security for h.

2.2. Private Key. The private key consists of three matrices C, T,B with entries
in Z and Zq.

2.2.1. Matrix T . The matrix T is a (kn× n) -matrix as

(2) T =



t11 0 . . . 0
t21 0 . . . 0
tk1 0 . . . 0
∗ t12 . . . 0
∗ t22 . . . 0
∗ tk2 . . . 0
∗ ∗ . . . t1n
∗ ∗ . . . t2n
∗ ∗ . . . tkn


,

where the tuples [t1j , t2j , . . . , tkj ] are diagonal, see Section 1.3.1. The entries of T
below and to the left of the diagonal are denoted by ∗, they are secret and may be
chosen randomly.

2.2.2. Matrix C. The matrix C is an (m× kn) -matrix over integers. The 1-norm
of each row of C is λ. The matrix is constructed as a concatenation C = (C1|C2).
Let P = P1 + . . . + Pτ be a square m ×m matrix, the sum of τ randomly chosen
orthogonal permutation matrices P1, . . . , Pτ (the permutations form a partial latin
square). One randomly changes the signs of the non-zero entries of P and gets C1.
Experimentally, with a high probability C1 is invertible over rationals. We assume
that it is invertible modulo q as well. The matrix C2 is of size m× (kn−m). The
entries of C2 are chosen randomly to provide that every row of C2 is of 1-norm
λ− τ .

2.2.3. Matrix B. The matrix B is an arbitrary integer (n × n) -matrix invertible
modulo q.

2.3. Core Theorem. For every a ∈ Zkn
q the proof of Theorem 1 below provides

with an algorithm to compute y ∈ Zn
q and z ∈ Zkn with max(z) ≤ c such that

a ≡ Ty + z mod q. Since the matrix T is triangular, the algorithm repeatedly
solves the system (1) for different b1, . . . , bk to construct y and z. So (1) should
admit an efficient solution for every diagonal tuple [t1j , t2j , . . . , tkj ] in the definition
of T .
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One can use k = 2, q ≤ (2c + 1)2 and [t1, t2] = [1, 2c + 1] since an efficient
algorithm to solve (1) is provided by Section 1.3.2 in that case. Theorem 1 is
applied to generate signatures in Section 2.4.2.

Theorem 1. For every a ∈ Zkn
q , there exist y ∈ Zn

q and z ∈ Zkn such that
max(z) ≤ c and a ≡ Ty + z mod q.

We denote a = (a1, a2, . . . , akn), y = (y1, y2, . . . , yn), and z = (z1, z2, . . . , zkn).
Let Tj be a sub-matrix of T of size k× j in the rows jk+ 1, jk+ 2, . . . , jk+ k and
columns 1, . . . , j, where 0 ≤ j ≤ n − 1. The entries of Tj are denoted by ∗ in the
definition of T . The following algorithm computes y ∈ Zn

q and z ∈ Zkn specified in
the theorem and thus proves it.

(1) For 0 ≤ j ≤ n− 1 set
b1
b2
. . .
bk

 ≡


ajk+1

ajk+2

. . .
ajk+k

− Tj

y1
. . .
yj

 mod q,

and [t1, . . . , tk] = [t1 j+1, t2 j+1, . . . , tk j+1],
(2) and compute any solution u to the system (1). Set yj+1 = u and

zjk+1

zjk+2

. . .
zjk+k

 ≡


b1
b2
. . .
bk

−


t1 j+1

t2 j+1

. . .
tk j+1

 yj+1 mod q

Therefore for every 0 ≤ j ≤ n− 1 we have
ajk+1

ajk+2

. . .
ajk+k

 ≡


t1 j+1

t2 j+1

Tj . . .
tk j+1




y1
. . .
yj

yj+1

+


zjk+1

zjk+2

. . .
zjk+k

 mod q.

So a ≡ Ty + z mod q, where |zi| ≤ c. That proves the theorem.

2.4. Algorithms. In this section basic EHTv3 routines are presented. The sig-
nature scheme consists of private and public key generating algorithms, signature
generating and signature verifying algorithms.

2.4.1. Public and Private Keys Generation.

(1) Randomly generate C = (C1|C2) ∈ Zm×kn according to Section 2.2.2 and
Section 6 specifications. If C1 is not invertible modulo q, then repeat.
Otherwise, continue.

(2) Choose diagonal tuples [t1j , t2j , . . . , tkj ] for the matrix T ∈ Zkn×n
q , see

Section 1.3.1. For k = 2 and q ≤ (2c + 1)2 one may set every diagonal
tuple to [1, 2c+1]. Randomly generate the entries of T under the diagonal
entries.

(3) Randomly generate B ∈ Zn×n
q . If B is invertible, then construct B−1 and

continue. Otherwise, repeat.
(4) Set A = CTB−1 ∈ Zm×n

q .
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The private key may be produced from a short seed. Take a random seed, generate
C, T,B by clocking a pseudo random number generator (PRNG) initialised by this
seed. If both C1 andB are invertible, then computeA and keep the seed. Otherwise,
take a new seed and repeat.

2.4.2. Signature Generation.

(1) Let M be a message. Compute h = HASH(M) ∈ Zm
q .

(2) Generate private key matrices C, T,B from the seed.
(3) Randomly generate a′′ ∈ Zkn−m

q . Compute a′ ∈ Zm
q by solving the system

of linear equations C1a
′ ≡ h− C2a

′′ mod q. Set a = (a′|a′′) ∈ Zkn
q .

(4) Compute y ∈ Zn
q and z ∈ Zkn such that a ≡ Ty + z and max(z) ≤ c by

Theorem 1, Section 2.3.
(5) Compute e = Cz. If maxl(e) ≤ s, then the signature for M is x ≡ By ∈ Zn

q ,
otherwise repeat with a new a′′.

2.4.3. Signature Verification.

(1) To verify the signature x ∈ Zn
q for M , compute h = HASH(M) ∈ Zm

q .
(2) Compute e ≡ h − Ax ∈ Zm

q and take the entries of e smallest in absolute
value residues modulo q.

(3) If maxl(e) ≤ s, then accept the signature, otherwise reject.

2.5. Verification Proof. We have

Ca ≡ h, a ≡ Ty + z mod q,

where z ∈ Zkn, and max(z) ≤ c, and x ≡ By. Then

a ≡ Ty + z ≡ TB−1x+ z mod q.

So h ≡ Ax + e mod q, where e ≡ Cz mod q. One takes the entries of e ∈ Zm
q

smallest in absolute value residues modulo q. As s < (q−1)/2, we get maxl(e) ≤ s.
The signature is accepted.

3. Signature distribution

In this section we show that the signature x is close to be uniformly distributed
on Zn

q if the hash function provides a uniform distribution on Zm
q .

Theorem 2. Let a be distributed uniformly on Zkn
q and let y ∈ Zn

q and z ∈ Zkn,
where a ≡ Ty + z mod q and max(z) ≤ c, be produced with Theorem 1. Then y is
uniformly distributed on Zn

q .

Proof. Since a is distributed uniformly on Zkn
q , each entry of y is produced by

solving (1) for diagonal tuples [t1j , t2j , . . . , tkj ] and for independent uniformly dis-
tributed b1, . . . , bk. One can there put t1 = t1j = 1, t2 = t2j . . . , tk = tkj to simplify
the notation below.

So (1) is equivalent to the following statement. For any residues b1, . . . , bk modulo
q there exist a residue u and integers z1, . . . , zk, where |z1| ≤ c, . . . , |zk| ≤ c and

(3) b1 ≡ u+ z1, b2 ≡ ut2 + z2, . . . , bk ≡ utk + zk mod q.

Let A(b1, . . . , bk) denote the set of such u. It is enough to prove that if b1, . . . , bk
are generated independently and uniformly at random on residues modulo q and
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the solution u to (1) is taken uniformly from A(b1, . . . , bk), then u is uniformly
distributed on residues modulo q. The probability of u is obviously equal to

1

qk

∑
u∈A(b1,...,bk)

1

|A(b1, . . . , bk)|
,

where the sum runs over all b1, . . . , bk such that u ∈ A(b1, . . . , bk). The following
lemma implies that this probability is 1/q.

Lemma 1.
∑

u∈A(b1,...,bk)
1

|A(b1,...,bk)| = qk−1.

The system (3) is equivalent to

b1 − u ≡ z1 , b2 − t2b1 ≡ z2 − t2z1 , . . . , bk − tkb1 ≡ zk − tkz1,

where |z1| ≤ c, . . . , |zk| ≤ c. For any a1, . . . , ak let s = s(a2, . . . , ak) denote the
number of solutions z = (z1, . . . , zk) to

(4) |z1| ≤ c, . . . , |zk| ≤ c, a2 ≡ z2 − t2z1, . . . , ak ≡ zk − tkz1.

Then

|A(b1, . . . , bk)| = s(a2, . . . , ak),

where a2 ≡ b2 − t2b1, . . . , ak ≡ bk − tkb1. Moreover, u ∈ A(b1, . . . , bk) if and only if
b1 = u+ z1, b2 = a2 + t1b1, . . . , bk = ak + tkb1, where z1, . . . , zk is a solution to (4)
for any a2, . . . , ak. Since a2, . . . , ak may take any values, we get∑

u∈A(b1,...,bk)

1

|A(b1, . . . , bk)|
=

∑
a2,...,ak

∑
z1,...,zk

1

s(a2, . . . , ak)
=

∑
a2,...,ak

1 = qk−1,

where the internal sum is over all the solutions z = (z1, . . . , zk) to (4). The lemma
and the theorem are proved. □

The theorem implies that if the probability of maxl(e) ≤ s is close to 1, then the
distribution of the signature x ≡ By mod q is close to the uniform on Zn

q .
For uniformly random b1, . . . , bk modulo q we now study the distribution of

z = (z1, . . . , zk), where |z1| ≤ c, . . . , |zk| ≤ c and (3) holds. It is easy to see that
the probability of z is

1

qk−1s(a2, . . . , ak)
,

where a2 ≡ z2 − t2z1, . . . , ak ≡ zk − tkz1 mod q. So, the distribution of z may be
slightly non-uniform.

Let, for instance, q = 9, k = 3, c = 2. There is only one tuple [t1, t2, t3] = [1, 2, 4]
up to the equivalence for these parameters. We now compute the mean and the
variance of |z|2 = z21 + . . . + z2k in this case. By direct calculation, the mean of
|z|2 is 16/3 ≈ 5.33 and its variance is 236/27 ≈ 8.74. If z1, . . . , zk are distributed
independently and uniformly over −c, . . . , c, then the mean of |z|2 is 6 and the
variance is 8.4, which do not differ significantly. The distribution of z may be
uniform too as for q = 25, k = 2, c = 2.
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4. EHTv3 Efficiency

The matrices C1 and B must be invertible modulo q. This happens with a
significant probability. If not, then the matrices are discarded and generated again.
One can generate B as a product of lower and upper triangular matrices invertible
modulo q as in LU decompositions, see [9]. That also makes public key generation
more efficient because triangular matrices are easy to invert.

We summarise the efficiency of the signature algorithm. Public key size, private
key (seed) size and signature size are measured in bits in Table 2. Public key
matrix A may be encoded by ⌈mn log2 q⌉ bits. For more efficient operations the
matrix may be encoded entry-wise, that is by using mn⌈log2 q⌉ bits. For security
levels in Section 6 it is enough to take a 384-bit (48-byte) seed. The complexity of

Table 2. Storage

storage parameters bits
public key ⌈mn log2 q⌉ or mn⌈log2 q⌉

private key: seed and char. polynomial 384 + ⌈m log2 q⌉
signature ⌈n log2 q⌉

private key generation is shown, see Table 3, in the number of the pseudo-random
number generator clocks according to Section 4. The complexity of public key
generation, signature generation and signature verification is there shown in the
number of operations modulo q. In signature generation one must solve Ca ≡
h mod q for a given h. This is reduced to solving a system of linear equations
with the sparse matrix C1 of size m ×m with τ non-zero entries ±1 in each row.
One may use Cayley-Hamilton theorem to this end and therefore one needs the
characteristic polynomial for C1. The cost of computing the polynomial is at most
m3 multiplications modulo q. Though the matrix C1 is secret, its characteristic
polynomial may not be kept secret. Since each row of C1 is of 1-norm τ , the cost
of the Cayley-Hamilton theorem application is τm2 additions/subtractions modulo
q. The polynomial is a part of the private key, though not necessarily secret.
Another option is to use Berlekamp-Massey algorithm as in [21] to construct an
appropriate polynomial for solving each particular Ca ≡ h mod q. No need to
keep the characteristic polynomial in that case.

Table 3. Time Complexity

algorithm PRNG clocks/operations mod q
matrix T kn(n− 1)⌈log2 q⌉/2 clocks
matrix B n2⌈log2 q⌉ clocks
matrix C λm⌈log2 kn⌉+ λm clocks

char. polynomial for C1 m3 op. mod q
public key matrix A kn3 + λmn op. mod q
signature generation m(λ− τ) + τm2 + kn(n− 1)/2 + n2 op. mod q
signature verification mn op. mod q

Some calculations may repeat few times in order to get an invertible C1 and
a valid signature, see Section 2.4. Asymptotically, the time complexity of the



DIGITAL SIGNATURE ALGORITHMS EHTV3 AND EHTV4 SUBMISSION TO NIST PQC11

public key generation is O(n3), the time complexities of the private key generation,
signature generation and signature verification are O(n2). The public key size is
O(n2). The signature size and the private key size are O(n).

5. Cryptanalysis

There are three approaches to the cryptanalysis of EHTv3: find private key
given public key only, find private key by analysing a number of valid signatures,
and forge signatures without knowledge of the private key.

5.1. Private Key Recovery and Algebraic Attacks. One can reduce the pri-
vate key recovery problem to solving a system of equations modulo q. To simplify
the notation, we assume that k = 2. Let B1, . . . , Bn be unknown columns of B, and
let C1, . . . , C2n be unknown columns of C. Also, let Ti = (0, . . . , 0, 1, t, x2i+1, . . . , x2n)
be the i-th column of T for unknown residues xi modulo q. As CT = AB, it holds
that

(5) C2i−1 + tC2i + x2i+1C2i+1 + . . .+ x2nC2n ≡ ABi mod q.

This generally results in a system of 2n quadratic equations. For i = n the equation
(5) transforms into the system C2n−1 + tC2n = ABn of m linear equations, the
variables of which are the entries of Bn, C2n−1, C2n, overall n + 2m unknowns, so
the number of solutions is around qn+m, which is too big.

One may guess the last two columns of C, solve the linear system for Bn. Each
of the last d = 2n−m columns of C contains around m(λ− τ)/d entries ±1 on the
average and the rest entries are zeroes. So the probability of guessing is very low
for the parameters in Section 6.

Alternatively, one may guess the positions of n zero entries of V = C2n−1+tC2n,
solve a system of n homogeneous linear equations in n variables, the entries of Bn,
check the guess and finally recover V and therefore C2n−1, C2n. When constructing
the matrix C, the columns C2n−1, C2n may be chosen to have non-zero entries in
distinct positions. So the vector V contains around 2m(λ − τ)/d non-zero entries
and therefore around θm zeros, where θ = 1− 2(λ− τ)/d. The success probability
is then

PAl =

(
θm
n

)(
m
n

) .

For EHTv3 NIST category 1 the parameters are q = 47, c = 3, λ = 9, τ = 4,m =
460, l = 451, s = 13, d = 24, so n = 242. The success probability PAl = 2−275.03.
This method is not efficient even if run on a quantum computer. For similar reasons,
these methods do not seem efficient for solving (5) if i < n.

5.2. Existential Forgery by Guessing. Given h = HASH(M), one may guess
small values (≤ s in absolute value) of some n entries of e ≡ h−Ax mod q, compute
x by solving a system of n linear equations modulo q. One then checks if among
other m − n entries of e there are at least l − n entries which are at most s in
absolute value. If yes, then maxl(e) ≤ s and x passes the verification. Let p = 2s+1

q

be the probability that a random residue modulo q is at most s in absolute value.
The attack success probability is

PG =

m−n∑
i=l−n

(
m− n

i

)
pi (1− p)m−n−i.
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For each guess the cost may be optimised to around (log2 P
−1
G )(m−n)/2 additions

and subtractions modulo q.
So, on the average, the attack cost is Q = P−1

G (log2 P
−1
G )(m − n)/2 operations

modulo q. For EHTv3 NIST category 1 the parameters are q = 47, c = 3, λ =
9, τ = 4,m = 460, l = 451, s = 13, d = 24 so n = 242. One computes Q = 2140.69

operations modulo q, that provides with > 2143 classical gates. The success proba-
bility is PG = 2−126.94. That is only slightly higher than the success probability of
the key search for AES-128. Therefore the complexities of quantum Grover’s search
algorithm are approximately the same in the both cases, that is 283 quantum gates
according to [10].

5.3. Existential Forgery by Solving CVP. Let h = HASH(M) and let AI be a
sub-matrix of A whose rows are the rows of A with indices I = {i1, . . . , il}. Denote
by hI a sub-vector of h whose entries are the entries of h with indices I.

To forge a signature for M one may try to find a vector eI ∈ Zl with entries
bounded by s and x ∈ Zn

q such that hI ≡ AIx+ eI . Then x verifies.
Let L be a lattice of rank l generated by the columns of AI modulo q. We can

assume that the volume of L is ql−n. In order to forge a signature for M it is
enough to solve an approximate CVP for L in the max norm. The solution of this
problem implies a solution of CVP for Euclidean norm with a small approximation
factor O(s/q1−n/l).

One may also apply an exact CVP algorithm for the Euclidean norm as in [3]
or [12]. According to [12], that CVP may be solved in heuristic time 20.292 l+o(l)

by sieving with the same amount of memory. However, this attack seems inferior
compared with sieving to solve a relevant instance of SVP in the next section.

5.4. Existential Forgery by Lattice reduction and Sieving.

5.4.1. Rank m Lattice Reduction. Let
(
h|A

)
be a matrix of size m × (1 + n), a

concatenation of h and the matrix A. The equation h ≡ Ax + e mod q may be
written as (

h|A
)( 1

−x

)
≡ e mod q.

The vector e = (e1, e2, . . . , em) = Cz belongs to a lattice L of rank m and of
volume qm−n−1 generated by the columns of

(
h|A

)
. Since the Euclidean norm

|e| is relatively small, one may apply a lattice reduction algorithm to construct x
thus forging a signature for h. The best general purpose algorithm is BKZ (Block-
Korkin-Zolotarev) introduced in [17]. It is based on solving a Core-SVP problem of
finding shortest non-zero vectors in projected sub-lattices of a smaller rank b. The
latter depends on the norm of the target vector e besides the parameters of the
lattice. According to [1], a smaller |e| results in a smaller b and BKZ works faster.
The Core-SVP may be solved with a sieving algorithm in time 20.292 b+o(b), see [4].

By the signature algorithm, the lattice L contains qd vectors e = Cz. We will
study the probability that at least one of them is extremely short, in particular, its
norm is around the expected norm of the shortest non-zero vector in a lattice of
rank m and volume qm−n−1.

Since e = Cz, one may assume that ei = z1 + . . . + zλ, where zi are taken
independently and uniformly at random from [−c, . . . , c] and ei are distributed
independently. There is some slight dependency introduced by the structure of the
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matrix C which is neglected in the analysis below. The probability that for at least
one e it holds that |e|2 = e21 + e22 + . . .+ e2m ≤ δ is

1−
[
1−Pr(|e|2 ≤ δ)

]qd ≈ qd Pr(|e|2 ≤ δ)

for a small enough δ. The probability Pr(|e|2 ≤ δ) drops abruptly when δ decreases.
For EHTv3 NIST category 1 the parameters are q = 47, c = 3, λ = 9, τ = 3,m =
460, l = 451, s = 13, d = 24, so n = 242. The expectation of |e|2 is 16560 and its
variance is 1.109·106. It holds that the shortest non-zero vector v ∈ L satisfies |v|2 ≤
1780 according to the asymptotical bound for Hermite’s constant, see Chapter 2 in
[16].

On the other hand, it is easy to estimate Pr(|e|2 ≤ 1780) < 3.129 · 10−136. The
number of e = Cz ∈ L is qd = 1.35 · 1040. The data suggests that the waiting time
to get h or/and A with some e = Cz being a shortest non-zero vector in L is in
general significantly larger than the advantage of solving the Core-SVP with BKZ.

5.4.2. Rank l Lattice Sieving. Let I = {i1, i2, . . . , il} be a subset of {1, 2, . . . ,m}
and let AI be a sub-matrix of A constructed with the rows of A indexed by I. The
equation h ≡ Ax + e implies hI ≡ AIx + eI , where hI , eI are relevant subvectors
of h and e respectively. The vector eI belongs to a lattice LI generated by the
columns of the matrix

(
hI |AI

)
modulo q as(

hI |AI

)( 1
−x

)
≡ eI mod q.

Therefore, a short enough vector e ≡
(
hI |AI

)
y in LI may have all entries bounded

by s in absolute values. If, in addition, y =

(
1
−u

)
, then x = u verifies. The latter

happens with probability 2/q.
One may try to construct a shortest non-zero vector in LI . By Gaussian Heuris-

tic, its expected Euclidean norm is
√
l/2πe q(l−n−1)/l. For EHTv3 NIST category

1 parameters (q = 47, n = 242, l = 451, s = 13) that equals 30.34. To construct
a shortest non-zero vector in LI , one applies the sieving algorithm in a projected
sub-lattice of rank l′ = l − ⌊l ln(4/3)/ ln(l/2πe)⌉ according to [6]. By an argument

similar to that in [7], the cost of the sieving is at least 223+0.292 l′ gates. For l = 451
the number of gates is at least 2143, the cost of breaking AES-128 on a classical
computer.

Let r = 30.34α for integers α. We want to evaluate for which α the probability
that a random vector of integers of length l and of the Euclidean norm ≤ r has
all its entries bounded by s. In Table 4, for 1 ≤ α ≤ 5, we estimate the number
Sr and Ur of the solutions to x2

1 + x2
2 + . . . + x2

l = ⌊r2⌋, where the integers xi

are bounded by s, that is the max norm of (x1, . . . , xl) is bounded by s, and not
bounded (bounded by ⌊r⌋) respectively, that is the Euclidean norm of (x1, . . . , xl)
is bounded by r. We use Cauchy’s inequality [20] for the coefficients of the power

series (1 + 2
∑t

i=1 x
i2)l for t = s and t = ⌊r⌋ to get upper bounds for Sr and Ur.

The table data suggests that a vector in LI with the Euclidean norm ≤ 91.02 may
have all entries bounded by s, that is its max norm is at most s, with probability
close to 1. Hence, to forge a signature for EHTv3 NIST category 1 parameters it
may be enough to solve an approximate SVP in the Euclidean norm for the lattice
LI with an approximation factor α ≤ 3. Since the approximation factor is small,
that might be as hard as finding a shortest non-zero vector in LI . However, that
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Table 4. Estimates of Sr and Ur

r Sr ≤ Ur ≤
30.34 5.49 10347 5.49 10347

60.68 3.61 10483 3.61 10483

91.02 4.38 10562 9.34 10562

121.36 5.14 10614 2.14 10619

151.70 2.02 10642 1.15 10663

needs further study as the conclusions are based on the upper bounds for Sr and
Ur and not their exact values. A similar analysis holds for EHTv3 NIST category
3 and EHTv3 NIST category 5 parameters.

According to [11], the quantum cost of a sieving based attack is 20.262·l bit
operations. So for EHTv3 NIST category 1 the quantum cost is at least 2118 gates.
That is larger than breaking AES-128 with Grover’s algorithm. Similar is true for
other parameters.

5.5. Adaptive Forgery under Known (Chosen) Message Attack. Amessage
M may have several valid signatures x1, x2, . . .. So, we may suppose that the
equations

h ≡ Ax1 + e1, h ≡ Ax2 + e2, . . .

are available, where h = HASH(M). Let a signature x0 for maybe another message
M0 be available too. Hence, h0 ≡ Ax0 + e0, where h0 = HASH(M0). One may try
to modify x0 to yet another valid signature x0 + x1 − x2 for M0 and get

h0 ≡ A(x0 + x1 − x2) + e0 + e1 − e2.

The probability to accept x0+x1−x2 equals the probability that maxl(e0+e1−e2) ≤
s. Let p denote the probability that one entry of e0 + e1 − e2 is bounded by s. We
may assume that the entries of e0+e1−e2 are independently distributed. Therefore
the probability that maxl(e0 + e1 − e2) ≤ s is

PA =

m∑
i=l

(
m

i

)
pi (1− p)m−i.

For EHTv3 NIST category 1 the parameter are q = 47, k = 2, c = 3, λ = 9, s = 13.
So p = 0.805. Since m = 460, l = 451, we have PA = 2−101.14. To make the
probability of the attack close to 1, one needs a bit more than 2101.14 independently
generated triplets e0, e1, e2. If the triplets are taken from a smaller set, then they
are generally dependent and the probability of the success may drop significantly.
According to the NIST call, only up to 264 valid signatures are available for the
analysis. The attack does not seem work. However, that needs further study, in
particular, to learn the attack success probability if the triplets are taken from a set
of size 264. In a variation of this attack e0 = e1; the probability of maxl(2e1−e2) ≤ s
is even smaller.

5.6. Known Message Attack and HPP. Suppose a number of valid signatures
Mi, xi were generated on the same public key A and they are available. One can
compute hi − Axi ≡ ei mod q, where hi = HASH(Mi) and ei = Czi for zi ∈ Zkn,
and the entries of zi are taken from [−c, . . . , c]. The matrix C is rectangular and of
size m× kn. The cryptanalyst observes ei = Czi and may learn the Gram matrix
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Table 5. Complexity of the attacks for EHTv3 NIST category 1

attack
guessing, Section 5.2 2140.69

sieving (l′ = 411), Section 5.4 2120.2

appr. SVR factor α (l = 451), Section 5.4 ≤ 3
algebraic, Section 5.1 2275.03

forgery probability PA, Section 5.5 2−101.14

CCT ∈ Zm×m. However, reconstructing the matrix C itself seems a hard problem.
The method of learning C by solving Hidden Parallelepiped Problem (HPP) [8] is
not generally applicable for rectangular matrices. In this approach one minimises
the 4-th moment of aCz for a variable vector a since the values of the random
variable e = Cz are known. If the matrix C is a row vector (which is a rectangular
matrix), then the solution to the minimisation problem is a = 0 regardless of C.

6. EHTv3 Proposed Parameters

In this section we propose parameter sets for three security levels. For them we
take q = 47, k = 2, c = 3. There is only one tuple [1, 7], up to the equivalence,
which satisfy the condition in Section 2.2 for these values. Section 1.3.2 provides
with an efficient algorithm to solve (1) in that case.

6.1. NIST security category 1. That requires around 2128 operations and at
least 2143 gates to break the system, which is the complexity of breaking AES-128
on a classical computer. We set m = 460, l = 451, n = 242 and λ = 9, τ = 4, s =
13, d = kn − m = 24. The signature size is 169 bytes, and the public key size is
77.3 Kbytes, and the private key size is 368 bytes (48 bytes of a secret seed and
the rest is the non-secret characteristic polynomial of C1). The probability that
maxl(e) ≤ s, where e = Cz, is around 0.417. This value was computed under an
assumption on the matrix C. Experimentally, the average number of trials (the
cost of one trial is less than the cost of generating the signature) before generating
a valid signature is around 2.6.

The parameters are optimised to balance the complexity of so far best attacks
as the guessing algorithm in Section 5.2, the lattice sieving algorithm in Section
5.3 and algebraic attacks in Section 5.1, see Table 5. Also, the parameters are
chosen to minimise the size of the signature and the size of the public key. The
cost of guessing is presented in the number of additions modulo q = 47, the cost of
sieving is to be multiplied by at least 223 according to Section 5.4.2, the cost of the
algebraic attack is in the number of systems on n linear equations in n variables to
solve modulo q, see Table 5. As specified in Section 5.4.2, to forge a signature it
may be enough to solve an approximate SVP for the Euclidean norm in a lattice of
rank l = 451 with the approximation factor 3.

According to Section 5, the number of quantum gates to break EHTv3 NIST
category 1 is at least comparable to the complexity of breaking AES-128 with
Grover’s algorithm.

6.2. NIST security category 3. This category requires around 2192 operations
and at least 2207 gates to break the system, which is the complexity of breaking
AES-192 on a classical computer (NIST[14] security category 3). We set m =
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Table 6. Complexity of the attacks for EHTv3 NIST category 3

attack
guessing, Section 5.2 2211.99

sieving (l′ = 630), Section 5.4 2184.20

appr. SVR factor α (l = 684), Section 5.4 ≤ 3
algebraic, Section 5.1 2252.39

forgery probability PA, Section 5.5 2−157.79

696, l = 684, n = 367 and λ = 9, τ = 4, s = 13, d = kn − m = 38. The signature
size is 255 bytes, and the public key size is 177.36 Kbytes, and the private key size
is 532 bytes (48 bytes of a secret seed and the rest is the non-secret characteristic
polynomial of C1). The probability that maxl(e) ≤ s, where e = Cz, is around
0.217. Experimentally, the average number of trials (the cost of one trial is less
than the cost of generating the signature) before generating a valid signature is
around 3.22.

The parameters are optimised to balance the complexity of so far best attacks
as the guessing algorithm in Section 5.2, the lattice sieving algorithm in Section
5.3 and algebraic attacks in Section 5.1, see Table 5. Also, the parameters are
chosen to minimise the size of the signature and the size of the public key. The
cost of guessing is presented in the number of additions modulo q = 47, the cost of
sieving is to be multiplied by at least 223 according to Section 5.4.2. The cost of
the algebraic attack is in the number of systems on n linear equations in n variables
to solve modulo q, see Table 6. As specified in Section 5.4.2, to forge a signature
it may be enough to solve an approximate SVP for the Euclidean norm in a lattice
of rank l = 684 with the approximation factor 3.

The success probability of guessing is 2−197.00 and the success probability of
guessing in the algebraic attack is 2−252.39. The quantum cost of sieving is 20.262 l =
2179.20. So by an argument similar to one in Section 5, the number of quantum
gates to break EHTv3 NIST category 3 is larger than the complexity of breaking
AES-192 with Grover’s algorithm.

6.3. NIST security category 5. That requires around 2256 operations and at
least 2272 gates to break the system, which is the complexity of breaking AES-256
on a classical computer. We set m = 940, l = 921, n = 495 and λ = 9, τ = 4, s =
13, d = kn − m = 50. The signature size is 344 bytes, and the public key size is
323.07 Kbytes, and the private key size is 701 bytes (48 bytes of a secret seed and
the rest is the non-secret characteristic polynomial of C1). The probability that
maxl(e) ≤ s, where e = Cz, is around 0.262. Experimentally, the average number
of trials (the cost of one trial is less than the cost of generating the signature) before
generating a valid signature is around 2.01.

The parameters are optimised to balance the complexity of the guessing algo-
rithm in Section 5.2, the lattice sieving algorithm in Section 5.3 and algebraic
attacks in Section 5.1. Also, the parameters are chosen to minimise the size of the
signature and the size of the public key. The cost of guessing is presented in the
number of additions modulo q = 47, the cost of sieving is to be multiplied by at
least 223 according to Section 5.4.2, the cost of the algebraic attack is in the number
of systems of n = 495 linear equations in n variables to solve modulo q, see Table



DIGITAL SIGNATURE ALGORITHMS EHTV3 AND EHTV4 SUBMISSION TO NIST PQC17

Table 7. Complexity of the attacks for EHTv3 NIST category 5

attack
guessing, Section 5.2 2269.95

sieving (l′ = 854), Section 5.4 2249.70

appr. SVR factor α (l = 921), Section 5.4 ≤ 3
algebraic, Section 5.1 2241.12

forgery probability PA, Section 5.5 2−202.12

7. As specified in Section 5.4.2, to forge a signature it may be enough to solve
an approximate SVP for the Euclidean norm in a lattice of rank l = 921 with the
approximation factor 3.

By an argument similar to Section 5, the number of quantum gates to break
EHTv3 NIST category 5 is at least comparable to the complexity of breaking AES-
256 with Grover’s algorithm.

7. Reduced public key with EHTv4

Using finite group ring arithmetic, instead of the arithmetic of residues modulo
q, significantly reduces the size of the public key and the time complexity of its
generation with keeping security levels. Any finite group ring over Zq may be used
for the scheme arithmetic. Such rings have natural representation by matrices with
entries in Zq. The multiplication in group rings may be represented by matrix
multiplication which we generally want to be non-commutative, as with ordinary
matrices, to complicate the analysis.

7.1. Group Rings and Matrices. Basic theory of finite groups may be found in
[2]. Let G = {α0 = 1, α1, . . . , αr−1} be a finite group of order r and let Gq denote
a free module over Zq, whose basis is the elements of G. The set Gq consists of all
formal sums α = a0α0 + a1α1 + . . . + ar−1αr−1, where ai ∈ Zq. That is a group
ring with unity 1, which is the unity of G. One may represents the composition
law in G by a table. The ring Gq is commutative if and only if the group G is
commutative. Since the group size r may be relatively large, we prefer groups where
the composition law is easy to implement without keeping composition tables, as
in Sections 7.2 below.

7.2. Some Finite Groups.

7.2.1. Cyclic Groups. For every r ≥ 1 there exists a cyclic group G = {α0 =
1, α1 = α, α2 = α2, . . . , αr−1 = αr−1} of order r, where α is the group generator.
The group law is defined by αiαj = αi+j , where the indices are reduced modulo r.
This group is commutative. Every finite commutative group is a direct sum of its
cyclic subgroups.

7.2.2. Dihedral Groups. For every enen r ≥ 6 there exists a non commutative dihe-
dral group Dr of order r. Let Dr = {α0 = 1, α1, . . . , αn−1, β0, β1, . . . , βn−1}, where
r = 2n. The group law in Dr is given by

(6) αiαj = αi+j , βiβj = αi−j , αiβj = βi+j , βiαj = βi−j ,

where the indices are reduced modulo n.
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Table 8. Projective linear groups size

p 4 5 7 8
|PGL(2, p)| 60 120 336 504
|PSL(2, p)| 60 60 168 504

7.2.3. Projective Linear Groups. Let Fp be a finite field of p elements. Projective
General Linear group PGL(2, p) is the quotient of the group of invertible (2 × 2)-
matrices over Fp by the normal subgroup of all scalar matrices. The elements may

be represented by rational functions ax+b
cx+d , where a, b, c, d ∈ Fp and ad − bc ̸= 0,

that is linear fractional transforms on the projective line Fp ∪∞. The group law in
PGL(2, p) is the composition of such functions. The size of the group is p(p2 − 1),
see Table 8. Projective Special Linear group PSL(2, p) is a group of transforms
ax+b
cx+d , where a, b, c, d ∈ Fp and ad− bc = 1. The size of PSL(2, p) is p(p2 − 1)/2 for
odd p. That is a simple non commutative group for p ≥ 4.

Let p be an odd prime. We show how to implement the operation in PSL(2, p).
Group elements may be written as tuples (a, b, c, d) over Fp. Every element of the
group belongs to one of p(p2 − 1)/2 equivalence classes split into 3 groups below.

(1) (a, b, c, d), where a is in [1, 2, . . . , (p − 1)/2], and b, c, d are any such that
ad− bc = 1,

(2) (0, b, c, d), where b, c are any, d is in [1, 2, . . . , (p−1)/2] such that 0·d−bc = 1,
(3) (0, b, c, 0), where b is in [1, 2, . . . , (p− 1)/2] and c is such that 0 · d− bc = 1.

To compute the composition of a1x+b1
c1x+d1

and a2x+b2
c2x+d2

in PSL(2, p) one may compute
the product of 2× 2 matrices(

a1 b1
c1 d1

)(
a2 b2
c2 d2

)
≡

(
a b
c d

)
mod p,

and then reduce (a, b, c, d) to one of the classes with the equivalence relation induced
by the transform (a, b, c, d) → (−a,−b,−c,−d)

7.2.4. Permutation Groups. Let Sn, n ≥ 1 denote the group of all permutations
on n letters and let G be a subgroup of Sn of order r. Since the composition of
permutations is easy to implement one only needs to keep the group elements of G
to implement the group law in G. Alternating group An ⊆ Sn is of order n!/2 and
of special interest as for n ≥ 5 this group is simple and not commutative. However,
the size of An grows fast with n. For instance, |A5| = 60, |A6| = 360, etc.

PSL(2, p) has a natural representation by permutations on the projective line
Fp ∪∞, that is on p + 1 letters. Since PSL(2, 7) is isomorphic to the group of all
non-singular 3 × 3 matrices over F2, it has a representation by permutations on
non-zero vectors of length 3 over F2, that is on 7 letters.

7.3. Matrices and Norms. The addition and the multiplication of matrices over
Gq follow ordinary definitions. Unity matrix I is a square matrix whose entries are
zeros except 1 on the main diagonal. A square matrix B is invertible over Gq if
there is another square matrix B1 of the same size such that BB1 = B1B = I.

Every element α ∈ Gq may be written as α = a0α0 + a1α1 + . . . + ar−1αr−1,
where the coefficients a0, . . . , ar−1 are smallest in absolute value residues modulo q.

We then define the norm of α as |α| =
∑r−1

i=0 |ai|. Let b = (β1, . . . , βn) be a vector
over Gq, then |b| =

∑n
i=1 |βi| is the norm of b, and max(b) denotes the maximum
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in absolute value of all the coefficients of β1, . . . , βn written with the basis G. Let s
be a positive integer. We say maxl(b) ≤ s if at least l such coefficients are at most
s in absolute value.

7.4. Inequalities. In order to simplify the formulae below, we set k = 2 in (1).
Let c be a positive integer and let [1, t] be a diagonal tuple, see Section 1.3.1. So (1)
is equivalent to the following statement. For every b1, b2 ∈ Zq there exists u ∈ Zq

such that b1 = u+z1, b2 = tu+z2 in Zq and |z1|, |z2| ≤ c. Equivalently, the equation
b2 − tb1 = z2 − tz1 has a solution z1, z2 such that |z1|, |z2| ≤ c, then u = b1 − z1.
For q ≤ (2c+ 1)2 one may take t = 2c+ 1, see Section 1.3.2.

Similar holds true in the ring Gq. For every β1, β2 ∈ Gq there exists ν ∈ Gq such
that

(7) β1 = ν + ζ1, β2 = tν + ζ2

and every coefficient of ζ1, ζ2 ∈ Gq written with the basis G is bounded by c in
absolute value. Indeed, (7) is equivalent to β2− tβ1 = ζ2− tζ1 and ν = β1− ζ1. Let

β2 − tβ1 = a0α0 + a1α1 + . . .+ ar−1αr−1,

ζ1 = z10α0 + z11α1 + . . .+ z1r−1αr−1,

ζ2 = z20α0 + z21α1 + . . .+ z2r−1αr−1.

Then (7) is equivalent to

ai = z2i − tz1i, i = 0, . . . , r − 1

in Zq. Therefore z2i, z1i ∈ Zq such that |z2i|, |z1i| ≤ c do exist and (7) holds for
ν = β1 − ζ1.

Since the multiplication of α = a0α0+a1α1+. . .+ar−1αr−1, by αi ∈ G results in
permuting the coefficients of α, the following version holds. For every β1, β2 ∈ Gq

there exists ν ∈ G such that

β1 = ν + ζ1, β2 = (tαi)ν + ζ2

and every coefficient of ζ1, ζ2 ∈ Gq written with the basis G is bounded by c in
absolute value.

Let k ≥ 2 and let [t1, . . . , tk] be a diagonal tuple, see Section 1.3.1, So (1) is true.
Then for every βi ∈ Gq, i = 1, . . . , k there exists ν ∈ Gq such that

β1 = t1ν + ζ1, β2 = t2ν + ζ2, . . . , βk = tkν + ζk

and every coefficient of ζi ∈ Gq written with the basis G is bounded by c in absolute
value.

8. EHTv4 Signature Algorithm

EHTv4 Signature Algorithm, introduced in this section, may be represented as
an instance of EHTv3 Signature Algorithm with parameters comparable to those in
Section 6 for the same security levels. However, since the computations are in the
group ring Gq instead of Zq, EHTv4 is significantly more efficient. In particular, at
the expense of a larger signature size, the public key size is several times smaller.
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8.1. Parameters. Let n,m, r and q, k, c, λ, s, l be positive integers, where s <
(q− 1)/2. Suppose G is a finite group of order r. Its group ring Gq over Zq defines
the arithmetic of the scheme. Also, let h = HASH(M) denote a hash value of the
message M , encoded by a vector in Gm

q . As in EHTv3, FIPS202 SHAKE256 was
used to hash the message M and to obtain an output of byte length so that we
have sufficient bytes for h ∈ Gm

q . With our proposed parameter sets, it is always
greater than 64 bytes and ensures 256-bit security for h.

8.2. Private Key. The private key consists of three matrices C, T,B over Gq.

8.2.1. Matrix T. The matrix T is a kn× n matrix as

(8) T =



t11 0 . . . 0
t21 0 . . . 0
tk1 0 . . . 0
∗ t12 . . . 0
∗ t22 . . . 0
∗ tk2 . . . 0
∗ ∗ . . . t1n
∗ ∗ . . . t2n
∗ ∗ . . . tkn


,

where the entries t1j , t2j , . . . , tkj are called diagonal. The entries of T below and
to the left of the diagonal are denoted by ∗, they are secret and may be chosen
randomly. Each tuple [t1, t2, . . . , tk] of diagonal entries must have the following
properties. At least one ti is invertible in Gq, and for every βi ∈ Gq, i = 1, . . . , k
there exists ν ∈ Gq such that

(9) β1 = t1ν + ζ1, β2 = t2ν + ζ2, . . . , βk = tkν + ζk,

and every coefficient of ζi ∈ Gq written with the basis G is bounded by c in absolute
value. In order to simplify calculations one may take the diagonal entries from Zq,
they must satisfy (1), or those multiplied by the elements of G, see Section 7.4. For
such constructed T , a theorem similar to Theorem 1 holds.

Theorem 3. For every a ∈ Gkn
q , there exist y ∈ Gn

q and z ∈ Gkn
q such that

max(z) ≤ c and a = Ty + z.

The proof of this theorem closely follows the proof of Theorem 1. The latter also
gives an algorithm to compute such y and z given a.

8.2.2. Matrix C. The matrix C is a (m × kn) -matrix over Gq. The norm of each
row of C is λ. The matrix is constructed as a concatenation C = (C1|C2), where
C1 is a (m×m) -matrix invertible over Gq. The matrix C2 is of size m× (kn−m).

8.2.3. Matrix B. The matrix B is an arbitrary invertible (n× n) -matrix over Gq.

8.3. Algorithms.
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8.3.1. Public and Private Keys Generation.

(1) Randomly generate C = (C1|C2) ∈ Gm×nk
q according to Section 8.2.2 and

Section 10 specifications. Reduce the matrix C1 of size m × m to a row
echelon form. If C1 is not invertible, then repeat.

(2) Choose diagonal tuples [t1j , t2j , . . . , tkj ], j = 1, . . . , n for the matrix T ∈
Gkn×n

q to satisfy (9). For k = 2 and q ≤ (2c + 1)2 one may set every
diagonal tuple to [t1j , t2j ] = [1, 2c + 1]. Randomly generate the entries of
T under the diagonal entries. Set all other entries of T to 0.

(3) Randomly generate B ∈ Gn×n
q . Reduce B to a row echelon form. If B is

invertible, then construct B−1. Otherwise, repeat. The matrix B may be
constructed as a product of upper and lower triangular and permutation
matrices, see Section 10.

(4) Set the public key matrix A = CTB−1 ∈ Gm×n
q . The matrices C, T,B is

the system private key.

The private key may be produced from a short seed. Take a random seed, generate
C, T,B. Keep the seed if both C1 and B are invertible, otherwise take a new seed
and repeat.

8.3.2. Signature Generation.

(1) Let M be a message. Compute h = HASH(M) ∈ Gm
q .

(2) Generate private key matrices C, T,B from the seed.
(3) Randomly generate a′′ ∈ Gkn−m

q . Compute a′ ∈ Gm
q by solving the system

of linear equations C1a
′ = h− C2a

′′. Set a = (a′|a′′) ∈ Gkn
q .

(4) Compute y ∈ Gn
q and z ∈ Gkn

q such that a = Ty + z and max(z) ≤ c by
Section 7.4 and Theorem 3.

(5) Compute e = Cz. If maxl(e) ≤ s, then the signature forM is x = By ∈ Gn
q .

Otherwise repeat with a new a′′.

8.3.3. Signature Verification.

(1) To verify the signature x for M , compute h = HASH(M).
(2) Compute e = h−Ax ∈ Gm

q .
(3) Accept the signature if maxl(e) ≤ s. Otherwise reject.

Every correctly generated signature verifies. The formal proof repeats that in Sec-
tion 2.4.3.

9. EHTv4 Efficiency

In this section we summarise the efficiency of the signature algorithm EHTv4.
Public key size, private key (seed) size and signature size are measured in bits in
Table 9. For NIST security levels it is enough to take a 384-bit (48-byte) seed.

Table 9. Storage

storage parameters bits
public key ⌈mnr log2 q⌉

private key: seed and inversions 384 + ⌈mr log2 q⌉
signature ⌈nr log2 q⌉
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The complexity of public key generation, signature generation and signature
verification is measured in the number of the pseudo-random number generator
clocks according to Section 4 and in the number of operations modulo q, see Table
10. Some parts of the algorithm as generating C and y, z may repeat few times and
that is neglected in Table 10. For m = 3, n = 2 a more precise efficiency analysis is
in Section 10.3.

Since B must be invertible, it may be constructed as a product of upper and
lower triangular and permutation matrices, see Section 10 below, for instance. The
inversion of B is then easy to construct. In signature generation one must solve
Ca = h for a given h. This is reduced to solving the system of linear equations

(10) C1a
′ = h− C2a

′′

over Gq with the sparse square matrix C1 of size m×m. There exist several ways
to handle the problem. The first two methods only work for commutative group
rings Gq. The last one works both for commutative and non commutative cases.

(1) One may use Cayley-Hamilton theorem to solve (10) and therefore one
needs the characteristic polynomial for C1 over Gq. The cost of computing
the polynomial is around m3r2 +mr3 multiplications modulo q, since one
needsm inversions in Gq. Let ω be the norm of C1, that is the sum of norms
of the rows of C1. The cost of the Cayley-Hamilton theorem application is
mω additions/subtractions in Gq. The polynomial is a part of the private
key, though not necessarily secret.

(2) Another option is to use Berlekamp-Massey algorithm as in [21] to construct
a minimal polynomial (or its multiple) of h − C2a

′′ with respect to C1 for
solving each particular (10).

(3) Alternatively, one may solve (10) for a′ by reducing C1 to a row echelon form
each time one constructs the signature for h. One applies row operations
to C1|C2|h to get I|C ′

2|h′, where I is an (m × m) unity matrix. Then
a′ = h′ − C ′

2a
′′. One may accelerate the computation by keeping up to m

inversions in Gq of intermediate entries of C1 when reducing that to a row
echelon form for generating private and public keys. That takes at most
⌈mr log2 q⌉ bits as in Table 9. For each h the computation of I|C ′

2|h′ is to
be done only once. However, to generate a valid signature for h one may
have to compute a′ = h′ − C ′

2a
′′ for several randomly taken a′′.

Table 10. Time Complexity

algorithm PRNG clocks/operations mod q
matrix T rkn(n− 1)⌈log2 q⌉/2 clocks
matrix B rn2⌈log2 q⌉ clocks
matrix C λm⌈log2 r⌉+ λm clocks

row echelon form for C1 r2m3/3 + r3m operations mod q
public key matrix A λmnr +mn2r2 operations mod q

solving the system Ca = h knm2r2 operations mod q
constructing the signature (kn(n− 1)/2 + n2) r2 operations mod q

signature verification mnr2 operations mod q
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One may choose the parameters m,n, r such that the size of the signature is
comparable with that in EHTv3. The public key size is then around r times smaller
and constructing public keys is around m2 times faster for a small enough m.

10. EHTv4 Proposed Parameters

In this section we propose parameter sets for NIST security categories 1 and 5.

10.1. NIST security category 1. The scheme arithmetic is in the group ring Gq,
where G = PSL(2, 7) is a simple group of order r = 168 represented as GL(3, 2),
see Section 7.2.3. We set (m,n, r) = (3, 2, 168) and q = 439, k = 2, c = 10. The
tuple [1, 21] satisfies the condition in Section 8.2 for these values. We set λ = 54,
s = 100, and l = 492. The matrix C is of size 3 × 4 over Gq, whose entries cij
and c′ij satisfy |cij | = 1 and |c′ij | = 26, see (11). Every row of C has norm λ = 54.
Public key matrix is

(11) A =

c11 c12 c′13 c′14
c21 c′22 c23 c′24
c′31 c32 c33 c′34




1 0
21 0
∗ 1
∗ 21

(
∗ ∗
∗ ∗

)
,

where the entries of B−1 and the entries of T below and to the left of the diagonal
tuples are denoted by ∗.

The size of the signature is 369 bytes and the public key size is 1107 bytes. The
private key size is 419 bytes (48 bytes of a secret seed and the rest is essentially the
inversions of 2 group ring elements). Experimentally, the average number of trials
before getting a valid signature rs = 4.97.

The probability to guess each c′ij is around 2−129.88. Any instance of the signature
algorithm EHTv4 may obviously be transformed into an instance of EHTv3 with the
public key matrix of size mr×nr and the signature of size nr over Zq. That makes
the cryptanalysis specified in Section 5 applicable for EHTv4. Table 11 summarises
the time complexity of the attacks. As in Section 5, the complexity of sieving in a
lattice of rank l′ = 449 is to be multiplied by 223 to get an estimate of the number
of classical gates. The complexity of the algebraic attack is to be multiplied by the
complexity of solving systems of nr linear equations in nr variables in operations
modulo q, that is at least by 224.8. Since the adaptive forgery probability is 2−101.36,
the number of available signatures 264 generated on the same key does not seem
enough, see Section 5.5. The approximation factor α for solving an approximate
SVP in a lattice of rank l = 492 was estimated with Cauchy’s inequality as in
Section 5.3. However, for these parameters such estimates are not very reliable
as the norm of the target vector is too large compared with the dimension of the
lattice. We conjecture it to be around 20.

10.2. NIST security category 5. The scheme arithmetic is in the group ring Gq,
where G = A6 is the alternating group on 6 letters, this group is simple, of order
r = 360, see Section 7.2.3. We set (m,n, r) = (3, 2, 360) and q = 839, k = 2, c = 14.
The tuple [1, 29] satisfies the condition in Section 8.2 for these values. We set
λ = 100, s = 244, and l = 1076. The matrix C is of size 3 × 4 over Gq, whose
entries cij and c′ij satisfy |cij | = 1 and |c′ij | = 49, see (12). Every row of C has
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Table 11. Complexity of the attacks for EHTv4 NIST category 1

attack Sect. (m,n, r) = (3, 2, 168)
private key recovery, algebraic 5.1 > 2145.59

forgery by guessing 5.2 2139.59

SVP by sieving (l′ = 449) 5.4 2131.32

appr. SVR factor α (l = 492) 5.4 20
forgery probability PA 5.5 2−101.36

Table 12. Complexity of the attacks for EHTv4 NIST category 5

attack Sect. (m,n, r) = (3, 2, 360)
private key recovery, algebraic 5.1 > 2379.60

forgery by guessing 5.2 2268.40

SVP by sieving (l′ = 1001) 5.4 2292.77

appr. SVR factor α (l = 1076) 5.4 30
forgery probability PA 5.5 2−127.11

norm λ = 100. Public key matrix is

(12) A =

c11 c12 c′13 c′14
c21 c′22 c23 c′24
c′31 c32 c33 c′34




1 0
29 0
∗ 1
∗ 29

(
∗ ∗
∗ ∗

)
,

where the entries of B−1 and the entries of T below and to the left of the diagonal
tuples are denoted by ∗. The size of the signature is 875 bytes and the public key
size is 2623 bytes. The private key size is 925 bytes (48 bytes of a secret seed and
the rest is essentially the inversions of 2 group ring elements). Experimentally, the
average number of trials before getting a valid signature rs = 3.46.

The probability to guess each c′ij is around 2−256.63. Table 12 summarises the
time complexity of the attacks. As in Section 5, the complexity of sieving in a
lattice of rank l′ = 1001 is to be multiplied by 223 to get an estimate of the number
of classical gates. The complexity of the algebraic attack is to be multiplied by the
complexity of solving systems of nr linear equations in nr variables modulo q, that
is at least by 228.4. Since the adaptive forgery probability is 2−127.11, the number
of available signatures 264 generated on the same key does not seem enough, see
Section 5.5. We were not able to estimate the approximation factor α for solving an
approximate SVP in a lattice of rank l = 1076 as in Section 5.3 since the Cauchy’s
inequality does not provide sensible results. We conjecture it to be around 30.

10.3. EHTv4 Efficiency for m = 3, n = 2. An invertible matrix B may be
generated as

B =

(
u 1
1 0

)(
1 x
0 1

)(
1 0
y 1

)(
z 1
1 0

)
for any u, x, y, z ∈ Gq. So computing B takes 5 multiplications in Gq. The inversion
of B may be computed as

B−1 =

(
0 1
1 −z

)(
1 0
−y 1

)(
1 −x
0 1

)(
0 1
1 −u

)
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Table 13. EHTv4 efficiency for m = 3, n = 2

multiplications in Gq inversions in Gq

Key Generation 3rk + 16 2rk
Signature Generation 11rs + 19 2 or 0
Signature Verification 6 0

with 5 multiplications as well. However, it is not necessary to compute these ma-
trices as it is more efficient to multiply subsequently by the diagonal matrices from
the definition of B,B−1. For instance, in signature generation it takes only 4 mul-
tiplications in Gq to compute x = By without computing B. Table 13 provides
with the number of multiplications/inversions in Gq for EHTv4 with m = 3, n = 2.
We neglect some small costs as the cost of multiplication by the elements of Gq of
norm 1 and 2, the cost of inversion of the elements of norm 1. Also, we neglect the
cost of the algorithm in Section 1.3.2 for solving (9).

By rk we denote the number of trials before an invertible matrix C1 is generated,
for the parameter sets above we have rk ≈ 1. By rs we denote the number of trials
before a valid signature is constructed. In signature generation it is not necessary
to compute inversions in the group ring provided that 2 inversions were produced
during key generations and kept as a part of the private key. Below, we provide
with the explanation for Table 13 data. In the key generation, the reduction of C1

to a row echelon form costs 3 multiplications and 2 inversions in Gq. One does that
rk times to get an invertible C1. The cost of computing the public matrix A is then
16 multiplications. Overall, 3rk + 16 multiplications and 2rk inversions.

In the signature generation, the cost of reducing C1|C2|h to I|C ′
2|h′, see Section

9, is 15 multiplications and 2 inversions in Gq. If these 2 inversions are kept from
the key generation phase, then this cost is only 15 multiplications. The cost of
computing a = (a′|a′′) for a random a′′ is 3 multiplications and the cost of solving
a = Ty + z for max(z) ≤ c is 2 multiplications. Computing e = Cz costs 6
multiplications. The latter three should repeat rs times to get maxl(e) ≤ s. That
results in 11rs multiplications. The cost of computing the signature x = By is then
4 multiplications. Overall, 11rs + 19 multiplications.

In the signature verification, the cost of computing Ax is 6 multiplications.

11. Advantages and Limitations of EHTv3 and EHTv4

11.0.1. Advantages.

(1) The distinct advantage of EHTv3 and EHTv4 is short signatures generated
by the schemes.

(2) The EHTv4 public key is only few times larger than the signature itself.
That is a clear advantage of EHTv4.

(3) The private key may be generated from a 48-byte seed to satisfy NIST se-
curity levels, one can even take a shorter seed. In EHTv3, for efficiency
reasons, one also needs to keep the characteristic polynomial (not necessar-
ily secret) of the sub-matrix C1 of C. In EHTv4 one may keep the inversion
of few group ring elements instead.

(4) The schemes are transparent and easy to understand and implement. Pub-
lic key is generated with essentially one matrix inversion and two matrix-
matrix multiplications. The signature is generated with essentially three
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matrix-vector multiplications. The verification is done with one matrix-
vector multiplication.

(5) Since matrix multiplication is easy to parallelise, the implementation is
parallelisable.

(6) Both the schemes allow flexible choice of the parameters to increase security
levels if needed.

(7) In EHTv3 the signature is uniformly distributed given h = HASH(M) is
uniform, and that holds if the check maxl(e) ≤ s is omitted. If not, then
the signature distribution may slightly deviate from the uniform.

(8) EHTv3 might perform well on 8-bit platforms as its arithmetic is modulo
a relatively small positive integer q. Since EHTv3 private key may be
produced from a seed, it seems that modern smart cards have computational
resources to implement EHTv3 signature generation algorithm. Similar is
true for EHTv4 signatures. This direction is to be further explored.

11.0.2. Limitations.

(1) EHTv3 public key is rather large and it is a noticeable limitation if com-
pared with EHTv4 and some other lattice based signature schemes.
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