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Introduction

EagleSin : In this document we present EagleSign signature which can be seen
as a variant of Elgamal signature over structured lattices. It is more simple and
faster than Falcon and Dilithium signatures proposed by NIST for standardization.
The sizes of EagleSign are similar to those of Dilithium. In the particular case of
recommended parameters, EagleSin is really more small and it saves 1000 bytes
relatively to Dilithium when computing (bitsize of the public key) + (bitsize of
the signature algorithm).

Given the recent advancements in quantum computing and the fact that the
classical Integer Factorization Problem and the Discrete Logarithm Problem are
not secure against quantum computers [69], the scientific community want to
design cryptosystems and protocols that resist to attacks by quantum technologies.



For this reason, the National Institute of Standards and Technology (NIST),
by a call for submissions [52], propose the transition to quantum-resistant cryptog-
raphy. Many algorithms for public-key encryption, key encapsulation mechanism,
and digital signature were proposed throughout 3 rounds. Many authors have
worked on the categorization (according to the family of underlying problem) and
the performance analysis of the schemes proposed to NIST [21,30,50,53]. There
were 3 evaluation criteria for the case of digital signature schemes: (1) security
(Zero knowledge property, security proof in ROM/QROM, Side Channel Attacks
mitigation, hardness of the underlying problem), (2) cost and performance, and
(3) algorithm and implementation characteristics on software and hardware.
In July 2022, at the end of the 3rd round, regarding the post-quantum digital
signatures, there were 3 candidates proposed for NIST standardization: one
MLWE-based signature (CRYSTALS-Dilithium), one NTRU-based signature
(FALCON) and one hash-based signature (Sphincs+).

Summary of (Module) Falcon: Falcon and its generalization ModFalcon
are based on the framework for lattice-based signature schemes proposed by
Gentry, Peikert and Vaikuntanathan : hash-and-sign paradigm upon collision-
resistant preimage sampleable function [32]. The underlying hard problem in
Falcon is NTRU-SIS (Short Integer Solution problem over NTRU public key)
together with the ”Fast Fourier sampling (FFT)” as a trapdoor sampler. In the

ring Rq = Zq(X)
(Xn + 1) , the NTRU public key of Falcon is h = f−1g mod q, q =

12289, n = 512, 1024 where f, g are small and sparse polynomials in Rq. The
NTRU-SIS hardness is based on the difficulty of recovering the polynomials f
and g given the polynomial ring element h. In quantum or classical world, no
efficient attack is currently known to break the computational NTRU-SIS or the
Decisional Small Polynomial Ratio (DSPR) assumption of NTRU whenever f and
g are suitably chosen. In Falcon, after computing f and g from an appropriate
distribution, the key generation algorithm computes F and G such that fG−gF =
q mod Xn + 1. The polynomials f , g, F , and G are stored in the private key sk.
To sign a message m, Falcon uses a hash function H, a private key sk, a salt
r, |r| = 64 and a FFT sampler to compute short vectors s1, s2 that satisfy the
equation: s1 + s2h = H(r,m). Falcon is the most compact (most small size)
signature among those proposed to NIST competition but it is based directly on
cyclotomic ring and does not allow various security levels.
ModFalcon is introduced by Chuengsatiansup, Prest, Stehlé, Wallet and Xagawa
(ASIACCS ’20) and it generalizes Falcon to modules where the public key is
H = F−1G mod q where F,(resp: G) is m×m (resp: m× k) matrix with short
entries in Rq. In [25], they instantiated a particular case where k = 1, q = 12289,
and n = 256. Moreover, in the IBE scheme (IACR ePrint 2019/1468) the authors
Cheon, Kim, Kim and Son chose m = 1. ModFalcon allows an intermediate
security level that is missing in Falcon signature.

Fiat-Shamir Transformation: The Fiat-Shamir transformation was pro-
posed by Fiat and Shamir [29] as a framework that allows to derivate a signature
from an Identification Protocol (ID) by removing the interaction in ID throughout
a hash function.
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Summary of Dilithium (hight level description): Crystals Dilithium is a
Fiat-Shamir signature with aborts over lattices based on MLWE and MSIS hard
problems which is based on Vadim Lyubashesky previous works in 2009 and
2012 [46,47]. In Dilithium, the security of the public keys is based on MLWE and
the security of the signature against forgery is based on MSIS and SelfTargetMSIS
problems. The public key with MLWE over Rq = Zq(X)

(Xn + 1) , q = 223−213 +1, n =

256 is t = As1 + s2 where A ∈ Rk×lq is a public matrix generated uniformly
at random and the secrets sk = (s1, s2) ∈ Rlq× ∈ Rkq are generated uniformly
at random such that |s1|∞, |s2|∞ ≤ η (a short integer). To sign a message m,
Dilithium uses a hash function H, the private key sk to compute an ephemeral
public key d = Ay (together with an ephemeral secret key y), a sparse challenge
c = H(d,m) and sets σ = (z, c,h) as signature where z = cs1 + y ∈ Rlq and h
is a hint vector. To protect z, a ”while loop” for rejection sampling containing
few steps is included in the process before a valid signature with zero knowledge
property is obtained. For this, a counter is incremented in every loop to generate
a different ephemeral secret key y in each iteration. To reduce the size of the
signature a special technique based on rounding and hight bits is used. Dilithium
has two variants according to the way the ephemeral secret key y is generated
(deterministic or probabilistic).
Recently many other signatures based on NTRU/MNTRU and RLWE/MLWE
were proposed [17,55].

Summary of EagleSign (hight level description): EagleSign is a signa-
ture without aborts over lattices. We denote by q = 12289, n ∈ {512, 1024}, Sη =
{u ∈ Rq/|u|∞ ≤ η} the polynomials in Rq whose l∞ norm is tightly upper-
bounded by η.
The public key over Rq = Zq(X)

(Xn + 1) (where q is a prime) is E ∈ Rk×lq where

E = (AF−1+D)G−1, A ∈ Rk×lq is a public matrix generated uniformly at random
and the secrets F ∈ Sl×lηF

,G ∈ Sl×lηG
(resp: D ∈ Sk×lηD

) are invertible matrices of
small polynomials generated uniformly at random (resp: matrix of small polynomi-
als generated uniformly at random). Note that F or G can be a constant or a poly-
nomial suitably chosen. The secret key is then sk = (F,G,D) ∈ Sl×lηF

×Sl×lηG
×Sk×lηG

.
Note that, to sign a message M , EagleSign:
– uses two hash functions H,G (H is modeled as a random oracle in ROM

security proof) and a private key sk to compute an ephemeral public key P =
AF−1Y1 + Y2 ∈ Rk×mq (together with an ephemeral secret key (Y1,Y2) ∈
Sl×mηy1

×Sk×mηy2
), a challenge C ∈ Sl×mηc

derived from H(M, r) where r =: G(P)
– and sets σ = (r,Z,W) where Z = GU mod q, U = Y1+FC mod q ∈ Rl×mq

and W = Y2 −DU mod q = (Y2 −DY1)−DFC mod q ∈ Rk×mq .

In practice, ηc = ηy1 = 1, and we choose Sηc
= Bτ , Sηy1

= Bt and C ∈ Bl×mτ ,
Y1 ∈ Bl×mt where Bτ = {f ∈ Rq/f =

∑i=n−1
i=0 fiX

i, fi ∈ {−1, 0, 1} |f |1 =∑i=n−1
i=0 |fi| = τ} is the ball of sparse ternary polynomials with hamming weight

τ .

4



The two components of our longterm public key E = (AF−1 + D)G−1 ∈ Rk×lq

and ephemeral public key P = AF−1Y1 + Y2 ∈ Rk×mq are a mix of MNTRU
and MLWE. Most of the known techniques to break RLWE and NTRU can not
trivially be generalized to our public key. We hope that using together MNTRU
and MLWE in the same public key allows to make more complex the algebraic
and geometric properties of the underlying lattice and we thus think that we are
moving away a little from strong structured lattices.

In the signature, the zero-knowledge property ensures that the signing pro-
cess does not reveal any information about the secret key associated to the public
key used in the verification process. In order to obtain the zero-knowledge prop-
erty without multiple rejections sampling used in lattices based signatures, we
introduce two additional masks: an additive mask Y1 and a multiplicative mask G
to obtain the new signature Z = G(Y1 + FC) mod q,W = Y2−D(Y1 + DFC)
mod q where G,F,D are the longterm secrets, (Y1,Y2) is the ephemeral secret
for probabilistic signature.

EagleSign do not use the auxiliary functions of Crystals Dilithium such as
HighBits, MakeHint, UseHint, Power2Round, Decompose and SelfTargetMSIS
therefore the corresponding pseudo-code can be more simple and compact.
Since the ephemeral public key P = AF−1Y1 + Y2 is integrally recovered during
the verification process, then we don’t need to use the SelfTargetMSIS problem
of Dilithium in the security proof.

The security in ROM follows from the general framework using the forking
lemma. EagleSign allows more flexibility to upgrade easily the security level in
the future. We prove that our signature is secure in ROM by forking lemma and
we verify with Crystal tool of Dilithium (for MSIS) and the lattice-estimator for
security of Albrecht, et al. [2–4] (for LWE) that EagleSign reach the 3 funda-
mental NIST security levels only with F = 1,m = 1 and k, l ∈ {1, 2}. We have
the following sizes and security results according to NIST security level for each
variant for instantiation. The table 2 presents the code efficiency of EagleSign
level 3 and 5 based on our specific processor characteristics. The Level 2 and 3+
are not yet implemented because of lack of time thus the corresponding efficiency
characteristic is not available.

A comparison between EagleSign, Falcon and Dilithium is done in the section
’performance’ below and we remark that EagleSign is more faster and simple
than Falcon and Dilithium. For recommended parameters, the sizes of EagleSign
are more small than those of Dilithium but the sizes of EaglaSign are similar to
those of Dilithium for level 2 and 5.

Organization of the paper: This paper is organized as follows.
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Table 1. Parameters Selection for Size and NIST Security Levels

EagleSign
NIST security level 2 3 3+ 5
F = 1,m = 1 and k, l ∈ {1, 2}

Medium Recomm I Recomm II High I
(k, l) (2, 1) (1, 1) (2, 2) (1, 2)
q = 12289, n = 512 1024 512 1024
ηc = 1, c ∈ Blτ , τ = 18 38 38 38
Strong Unforgeable signature:
β = max(2δ′, 2δ′), (δ, δ′), (948, 1012) (178, 242) (432, 248) (208, 240)
BKZ block-size b to break SIS 607 867 748 869
Best Known Classical bit-cost 177 253 218 253
Best Known Quantum bit-cost 160 229 198 230
Best Plausible bit-cost 125 179 155 180
Ephemeral secret recovery (Y1,Y2)
ηy1 = 1,Y1 ∈ Blt, (t, ηy2 ) = (140,64) (140,64) (90,32) (86,32)
BKZ block-size b to break LWE 439 713 764 870
Best Known Classical bit-cost 128 208 223 254
Best Known Quantum bit-cost 116 188 202 230
Best Plausible bit-cost 91 147 158 180
Longterm secret recovery (G,D)
(ηG, ηD) (6, 6) (1, 1) (2, 1) (1, 1)
BKZ block-size b to break LWE 444 696 741 1649
Best Known Classical bit-cost 129 203 216 481
Best Known Quantum bit-cost 117 184 196 436
Best Plausible bit-cost 92 144 153 342
Size in bytes:
signature size (r,Z,W) 2144 2336 2464 3488
public key size (ρ,E) 1824 1824 3616 3616
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Table 2. EagleSign Performances for NIST Security Levels 3 and 5

EagleSign Performance (12th Gen Intel Core
i7-1260P × 16, RAM 16GB)

NIST security level 3 5
F = 1,m = 1 and k, l ∈ {1, 2}
(k, l) (1, 1) (1, 2)
τ 38 18
(n, q) (1024, 12289) (1024, 12289)
β = max(2δ′, 2δ′), (δ, δ′), (178, 242) (208, 240)
ηy1 = 1, (t, ηy2 ) (140,64) (86,32)
(ηG, ηD) (1, 1) (1, 1)
Reference Implementation
Gen median cycles 1001330 3345416
Gen average cycles 1020723 3443617
Sign median cycles 1274146 2351304
Sign average cycles 1283454 2358603
Verif median cycles 946459 1594736
Verif average cycles 955956 1602340
Optimized Implementation
Gen median cycles 978368 3212708
Gen average cycles 1000579 3287036
Sign median cycles 1286413 2251036
Sign average cycles 1241245 2259111
Verif median cycles 917213 1503004
Verif average cycles 927108 1512331
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– In Section 1, we recall some useful nations and we define basic operations
and maps.

– In Section 2, we propose the specification of EagleSign.
– The Section 3 is devoted to security analysis and parameters selection.
– In Section 4, we study the performance (sizes and cycles) according various

security levels.
– In Section 5, we explain at high level how the reference and optimized

implementations were done.
– And finally, in Section 6, we summarize the limitations and advantages of

EagleSign.

NIST Requirements
As Falcon, here we propose a mapping of the requirements by NIST in June 2022
(Call for Additional Digital Signature Schemes for the Post-Quantum Cryptogra-
phy Standardization Process) to the appropriate sections of the current document.

– The complete specification as per [NIST Call 2022 [54], Section 2.B.1] can be
found in Section 2

– The security analysis of EagleSign as per [NIST Call 2022 [54], Section 2.B.4],
the study of known cryptographic attacks against the scheme of as per [NIST
Call 2022 [54], Section 2.B.5], and the set of parameters corresponding to
the security levels 2, 3, 3+, and 5 [NIST Call 2022 [54], Section 4.A.5] are
contained in Section 3. We use the lattice-estimator for the security of the
longterm public key and the ephemeral public key based on a mix of MLWE
and MNTRU problems. We use the tool of Dilithium to estimate the security
for unforgeability relatively to MSIS problem.

– A performance analysis and a comparison with Dilithium, as per [NIST Call
2022 [54], Section 2.B.2], is provided in Section 4.

– A summary of the reference implementation and the optimized implementation
as per [NIST Call 2022 [54], Section 2.C.1] can be founded in Section 5.

– Based on a comparison with Falcon and Dilithium, a statement of the ad-
vantages and limitations as per [NIST Call 2022 [54], Section 2.B.6] can be
found in Section 6.

The following requirements in [NIST Call 2022 [54]] are in EagleSign submission
package:

– a cover sheet as per [NIST Call 2022 [54], Section 2.A],
– a reference implementation and an optimized implementation as per [NIST

Call 2022 [54], Section 2.C.1] and Known Answer Test values as per [NIST
Call 2022 [54], Section 2.B.2],

– all signed statements of intellectual property, as required by [NIST Call
2022 [54], Section 2.D].

8



1 Preliminaries

1.1 Notations and elementary operations

In this subsection we use the same notations than Falcon, Bliss and Dilithium.

– The underlying rings of our signatures are R = Z[x]/(Xn + 1),Rq =
Zq[x]/(Xn + 1) where q is prime, q = 12289, n = 512, 1024.

– Regular font letters denote polynomials in R or Rq or elements in Z and Zq,
bold lower-case letters represent column vectors of length l in in Rl or Rlq
and bold upper-case letters are matrices in Rk×l or Rk×lq thus for v,v,V the
notation says that v is a scalar or a polynomial, v is a vector, and V is a
matrix. For a vector v (resp: matrix V), we denote by vT (resp: VT ) its
transpose.

– For an odd positive integer p , we define r = z mod ±p, the centred reduction
modulo p, to be the unique element r in the range p−1

2 ≤ r ≤ p−1
2 such that

r ∼= z mod p. We consider that Zp = {−p−1
2 , . . . ,−1, 0, 1, . . . , p−1

2 }, thus
r = z mod ±p = z mod p to simplify the notation throughout equations.

– Sη is the set of small polynomials which means that the element of Sη are
polynomials with coefficients are in the interval [−η,+η] and

Bτ = {f ∈ Rq/f =
i=n−1∑
i=0

fiX
i, fi ∈ {−1, 0, 1} |f |1 =

i=n−1∑
i=0

|fi| = τ} is the

ball of sparse ternary polynomials. The entropy of Bτ is log #Bτ where
#Bτ = 2τ

(n
τ

)
. The value of τ will be chosen such that the entropy of Bτ is

greater than the security level.
– For f =

∑i=n−1
i=0 fiX

i ∈ Rq,−p−1
2 ,≤ fi ≤ p−1

2 , we denote |f |∞ = maxi |fi|.
We have |fg|∞ ≤ |f |1|g|∞.

– For v = (v0, . . . , vk−1)T ∈∈ Rkq , we denote |v|∞ = maxi |vi|∞ .
– The coefficients of the polynomials in Rq are in [−(q − 1)/2; (q − 1)/2].

1.2 Hashing

Hashing to a Ball: We hash in the ball Bτ defined above as follows. As
Dilithium, we use two steps.
Step 1: In this step, a 2nd pre-image resistant cryptographic hash function maps
{0, 1}? onto the domain {0, 1}N where N = 512 or 1024;
Step 2: the previous step is followed by and eXtendable Output Function (XOF)
(modelled here with SHAKE) that maps the output of the first stage to an
element of Bτ with the following algorithm :

– Initialize c = c0c1 . . . cN−1 = 0 . . . 0
– for i = N − τ to N
• b $← {0, 1, . . . , i} with XOF
• ci := cj

• s $← {0, 1} with XOF

9



• cb := 1− 2s
– return c

Note that c is a random N -vector with τ ±1 ’s and N − τ 0’s using the input
seed ρ to generate the randomness needed to compute b and s with an XOF.

1.3 Signature and its security model

A Randomized (deterministic) signature scheme consists of a triplet of polynomial-
time algorithms (Genkey, Sig, Ver).

1. Key Generation (Genkey): with input a security parameter K the key
generation algorithm outputs a keypair (PK,SK) where PK, SK are related
to each other throughout a hard mathematical problem (HMP).

2. Signature algorithm (Sig):
– Sig takes the security parameter K as input and produces a random r
(skip in case of deterministic signature);

– With input (SK,m, r) the signing algorithm Sig produces a signature σ.
3. Verification (Ver): With input (m,σ, PK) the verification algorithm re-

turns 1 if the signature is valid and 0 otherwise.

Security : When designing a signature scheme, we need to have in mind
the following 4 fundamentals properties:

– (1) the signer should be able to make the verifier accept the proof if he really
knows the secret key corresponding to the public key.

– (2) if the protocol succeeds (Ver outputs 1), then the verifier is convinced
that the signer knows the secret key corresponding to the public key.

– (3) the verifier does not learn any information about the secret itself even if
he sees many signatures (Zero-knowledge property).

– (4) nobody can forge a signature (which means that nobody is able to produce
a valid signature without knowing the secret key)

Goldwasser, Micali and Rivest (in 1988) in [33], introduce the basic security
notion for signatures called "existential unforgeability with respect to adaptive
chosen- message attacks".

sEUF-CMA: Strong Unforgeability against Adaptive Chosen Message At-
tacks

For this, a reduction algorithm R and an attacker A, simulate a the following
game.

1. Key generation: R runs the algorithm Genkey with a security parameter
K as input, to obtain the public key PK and the secret key SK, and gives
PK to the attacker A.
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2. The Queries of the adversary: A may request a signature on any message
m ∈M (multiple adaptive requests of the message are allowed) and R will
respond with (m,σ), without using the secret key but where V er(PK,m, σ) =
1 . The signatures already outputted by the oracle signature to the queries of
the A are stored in a list List(S).

3. Strong forgery: Eventually, A will output a pair (m,σ) and is said to win
the game if V er(PK,m, σ) = 1 and if (m,σ) /∈ List(S) (this last condition
force the attacker A to output his own forgery ( note that in this case of
strong unforgeable it is allowed to the adversary to output (m′′, σ′′) /∈ List(S)
assuming that List(S) contains already signatures of the form (m′′, σ′′′) with
σ′′′ 6= σ′′ .

The probability that A wins in the above game is denoted AdvA.

A signature scheme (Genkey; Sig;Ver) is strongly existentially unforgeable
with respect to adaptive chosen message attacks if for all probabilistic polynomial
time attacker A, AdvA is negligible in the security parameter K.

1.4 Hard problems over lattices

Definition 1 (LWE). The learning with errors problem
Consider the following equations bi = aist + ei mod q for 1 ≤ i ≤ k where the
ai, s ∈ Znq are chosen uniformly at random and the ei (called the errors) are
drawn from error distribution χ.

– Computational LWE: Given samples (ai, bi)i compute s
– Decisional LWE: Given samples (ai, bi)i, distinguish them from random

samples in Znq × Zq

Definition 2 (l∞-SIS). The short integer solution (Homogenus/Inhomogenus)
problem
Consider the following equation t = sB mod q where B ∈ Zn×mq , m ≥ n+ 1 is
chosen uniformly at random and s ∈ Znq (called short vector) verify the upper
bound |s|∞ ≤ β ≤ q − 1 for some β ∈ R.

Computational l∞-SISq,n,m,β: Given (t,B), compute an appropriate s.

2 Description of EagleSign

In this section, we give the description of the two variants of our signature.
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2.1 EagleSign 1 (General case)

The general case of our signature can be summarized at high level as follows.

1. Ring : Rq = Zq(X)
(Xn + 1) , Sη = {u ∈ Rq/|u|∞ ≤ η} the polynomials in Rq

whose l∞ norm is tightly upper-bounded by η

2. Public and private keys:
Keygen : it takes the security level and a system of parameters as inputs
– A ∈ Rk×lq is a public matrix generated uniformly at random
– F,G ∈ Sl×lηg

are secret invertible matrices of small polynomials (generated
uniformly at random).

– D ∈ Sk×lηd
is a secret matrix of small polynomials (generated uniformly

at random).
– E := (AF−1 + D)G−1 ∈ Rk×lq

– pk := (A,E) is the (longterm) public key.
– sk := (F,G,D) is the (longterm) private key.
– Output (pk, sk)

3. Signature
Sig(M, sk = (F,G,D) )
– (Y1,Y2) ∈ Sl×mηy1

× Sk×mηy2
) is the ephemeral secret key;

– P := AF−1Y1 + Y2 ∈ Rk×mq is ephemeral public key;
– r := G(P);
– C ∈ Sl×mηc

:= H(M, r);
– Z := GU mod q, U := Y1 + FC mod q ∈ Rl×mq ;
– W := Y2 −DU mod q := (Y2 −DY1)−DFC mod q ∈ Rk×mq ;
– Output the signature σ = (r,Z,W)

4. Verification
Ver(σ = (r,Z,W), pk = (A,E))
– C ∈ Sl×mηc

=: H(M, r)
– V = EZ−AC + W mod q
– Reject if some appropriate upper-bounds of the norms of Z,W are not

verified
– Reject if C 6= H(M,G(V))
– Otherwise accept

2.2 EagleSign 2 (particular case that is implemented)

In this subsection, we propose the three following detailed algorithms for our
signature in case F = 1,m = 1, k, l ∈ {1, 2, . . .}. We use the following function
and notations:

1. The function GenMatrixUnifSmallPolyn, with input a (seed, k,l), generates
uniformly at random an element in the set Sk×lη for k, l = 1, 2, . . .;

2. The transformation GenMatrixUnifPolyn maps a uniform seed ρ ∈ {0, 1}256

to a matrix A ∈ Rk×lq ( for k, l = 1, 2, . . .) in NTT domain representation;
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3. The function GenVectorUnifSmallPolyn, with input a seed, generates uni-
formly at random an element in the set Slη for l = 1, 2, . . .;

4. The function GenVectorUnifSparsePolyn, with input a seed, generates uni-
formly at random an element y1 in the set (of ternary sparse polynomials
with hamming weight t) Blt for l = 1, 2, . . ..

5. The function CRH (resp. CRH1) is a collision resistant hash used in our
signature scheme and mapping to {0, 1}384 (resp. {0, 1}256 ).

6. The function G is a multi-collision resistant hash used in our signature scheme
and mapping to {0, 1}256.

7. H : {0, 1}? → Blτ is a cryptographic hash function used to generate c ∈ Blτ .

8. The function GenRandoms is interpreted as SHAKE-256 in our implementa-
tion.

9. We consider the following bounds to make sure that each output of the
signature is short enough :
δ = l×ηG×(t+τ), δ′ = ηy2 +l×ηD×(t+τ) and β = max (2δ′, 2δ) ≤ (q−1)/16.

Note that the description of these previous functions is given is the section 5.5.

Algorithm 1 : EagleSign Key generation algorithm
Require: the security parameter 1n
1: β ← {0, 1}256;
2: (β1, β2, ρ, key) := GenRandoms(β) . (β1, β2, ρ, key) ∈ ({0, 1}n)3+1

3: β1 = Hash(β1), . we use SHAKE-256 for Hash to renew β1
4: G := GenMatrixUnifSmallPolyn(β1, l, l) . G ∈ Sl×lηG

5: if G is not invertible in Rq then
6: Go to step (3);
7: end if
8: D := GenMatrixUnifSmallPolyn(β2, k, l); . D ∈ Sk×lηD

,
9: A := GenMatrixUnifPolyn(ρ); . A ∈ Rk×lq

10: E := (A + D)G−1 mod q;
11: tr := CRH1(ρ,E); . tr ∈ {0, 1}256

12: sk := (ρ, tr,G,D, key); . the longterm private key
13: pk := (ρ,E); . the longterm public key
14: return (pk, sk)

Remark: The parameter ′key′ is only used in case of deterministic signature.
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Algorithm 2 : EagleSign Signature algorithm
Require: a message M , a secret key sk = (ρ, tr,G,D, key)
1: µ ∈ {0, 1}384 := CRH(tr,M);
2: λ← {0, 1}384; . See Remark bellow
3: y1 ← Slηy1

:= GenVectorSparsePoly(λ, 0); . See Remark bellow
4: y2 ← Skηy2

:= GenVectorUnifSmallPoly(λ, l);
5: A← Rk×lq := GenMatrixUnifPolyn(ρ);
6: p := Ay1 + y2 mod q ∈ Rkq ;
7: r := G(p);
8: c ∈ Blτ := H(µ, r); . H is instantiated as SHAKE
9: u := y1 + c mod q; . Note that y1 and c are generated in the same way
10: z := Gu mod q; . z = G(y1 + c) mod q ∈ Rq
11: w := y2 −Du mod q; . w = y2 −D(y1 + c) mod q ∈ Rkq

. Note that |z|∞ ≤ δ and |w|∞ ≤ δ′
12: . Validity of the signature (optional) to defeat fault signature attacks for steps 13,

14, 15 and 16
13: v := Ez−Ac + w mod q;
14: if p 6= v then
15: Aborts
16: end if
17: return σ := (r, z,w) as signature

Remark:
– In case of probabilistic signature λ is a random and in case of deterministic
signature λ = (µ,′ key′).
– When ηy1 = 1, we choose y1 ∈ Blt where Bt is defined in preliminary section.

Algorithm 3 : EagleSign Verification algorithm
Require: signature σ = (r, z,w), public key (ρ,E) and bounds δ, δ′
1: tr ∈ {0, 1}256 := CRH1(ρ,E);
2: µ ∈ {0, 1}384 := CRH(tr,M);
3: c ∈ Blτ := H(µ, r),
4: A← Rk×lq := GenMatrixUnifPoly(ρ);
5: v := Ez−Ac + w mod q;
6: r′ = G(v);
7: if ||z||∞ > δ or ||w||∞ > δ′ or c 6= H(µ, r′)) then
8: return 0
9: else
10: return 1
11:end if

Correctness of the signature: Easy to verify.

14



3 Security analysis

3.1 Security proof in the Random Oracle Model (ROM)
In this subsection, we adapt to lattices, the tools, techniques and frameworks for
security proof developed by Pointcheval et al. [60] for Elgamal-like signatures
(DSA, KCDSA, Schnorr,. . . ) where the underlying hard problem was the discrete
logarithm problem. To design a security proof in ROM for Eagle Sign, we use
the following steps.
1. Protection against secret key recovery: we need to prove that recovering the

private key from the public key is equivalent to solving hard instance in a
specified lattice problem namely the MLWE problem in our case.

2. Simulation of the random oracle H: the cryptographic hash function H of the
signature is considered to be an ideal random function that the attacker can
query as an oracle. For each new query of the attacker, the simulator chooses
uniformly at random a value in the output set of the real hash function and
sends it as response. This answer needs to be independent from previous
query/response pairs stored in a data base LH by the simulator. If a query is
replayed by the attacker, the simulator finds the correct answer in LH .

3. Simulation of the signature: without the private key and by controlling the
ideal hash function H, the simulator design a signature algorithm able to
produce valid signatures in polynomial time with a hight probability.

In our simulation, as proved by Pointcheval et al [60] for classical DSA, it
is not necessary to consider the second hash function G as a random oracle
thus the use of random oracles is minimizing. G will be just considered as a
multi-collision-resistance function: G is said j-collision-resistant, if it is hard
to find (u1, . . . , uj) pairwise distinct elements such that G(u1) = . . . = G(uj).

4. Signature forgery: Using an adaptively chosen-message attack against the
legitimated signer, the attacker produces a valid signature forgery with QH
queries to the ideal hash functionH andQS queries to the oracle signature. For
each new query to H, LH is updated with the corresponding query/response
pair. To be a real attack, it is assumed the valid signature of the attacker
has not been sent as a call to the signature oracle.

5. Solving a MSIS problem using signature forgery (with he following steps):
– Since the attacker don’t control the ideal random function H, from a

signature forgery of the attacker, the ”forking lemma” is used to show
that, she can construct two signatures with the same fixed values (M/µ, r)
but H produce different responses c and c′ (which really means that
different ideal random functions are used; this scenario is possible since
the attacker don’t control H in ROM).

– The previous scenario produces collusions throughout G from the positive
answer of the verification process.

– Two valid forged signatures (with collusion) are used to show how to
compute a short non-zero vector as a solution of a MSIS problem with
l∞ norm.
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Theorem 1. Assume that an attacker A produce an existential forgery of the
Eagle Sign after QH calls to H and QS calls to the simulator for signature,
under an adaptively chosen message attack with probability ε, then by forking
lemma, the MSIS-l∞ problem (E|A|Ik)xT = 0 can be solved in polynomial
time for ||x||∞ ≤ β ≤ q−1

16 where E is the public key of EagleSign. Note that
the probabilities are taken over random tapes, random oracles, messages and
public/private keys (long-term and ephemeral).

Proof. A) Protection against secret key forgery:
By the construction of the longterm public key E = (A + D)G−1 mod q ⇔ A =
EG−D and the ephemeral public key p = Ay1 + y2 mod q, it is clear that the
secret key forgery is equivalent to MLWE.

B) Simulation of the signature:
We need to simulate the signature without the private key with the ideal hash
function under control.

– input a message M ;
– generate randomly z,w such that ||z||l∞ ≤ δ and ||w||l∞ ≤ δ′;
– tr = CRH1(ρ,E);
– µ = CRH(tr,M) ;
– generate randomly c ∈ Blτ ;
– with the above choice compute v = Ez−Ac + w mod q:
– compute r = G(v);
– define c = H(µ, r) ∈ Blτ and update the data base LH of the oracle hash

function with the query/response (M/µ, r)/c;
– Output the signature (M, r, z,w).

The simulation of the signature is indistinguishable.

D) Forking for solving the MSIS problem:
If the attacker A output a valid signature ((M/µ, r, c), z,w) where c can be

found in LH with the prefix (M/µ, r) with probability ε for a new messageM with
less than QH calls to the hash functionH, then by forking technique we obtain two
valid signatures of the same message M and fixed values namely (M/µ, r, c), z,w
and (M/µ, r′, c′), z′,w′ with r = r′ and c 6= c′. From r = r′, we deduce v = v′

with a high probability, thus Ez−Ac+w mod q = Ez′−Ac′+w′ mod q. Hence,
we have (E|A|Ik))(z−z′, c′−c,w−w′)T = 0. Now, put x = (z−z′, c′−c,w−w′),
since c′ − c 6= 0 and ||x||∞ ≤ β then we see that x is a nonzero short solution of
the MSIS problem.

NB: Since the ephemeral public key p = Ay1 + y2 is integrally recovered during
the verification process, then we don’t need to use the SelfTargetMSIS problem
of Dilithium in our security proof.

16



3.2 Security proof in the Quantum Random Oracle Model (QROM)

Our signature is secure in ROM and is a signature scheme without aborts, and
for the shake of completeness, a complete proof in QROM will be designed later.
Note that the authors of Dilithium say the following: ”In our opinion, evidence
is certainly mounting that the distinction between signatures secure in the ROM
and QROM will soon become treated in the same way as the distinction between
schemes secure in the standard model and ROM – there will be some theoretical
differences, but security in practice will be the same”.

3.3 Selection of the parameters according different security levels

For a complete study of the estimation of the security level of LWE and NTRU
-like schemes proposed at NIST, one can see the recent work of Albrecht, Curtis,
Deo, Davidson, Player, Postlethwaite, Virdia, Wunderer in [2] : Estimate all the
LWE and NTRU schemes (PQC-Forum January 2018). In their paper [2], the
authors point out the sources of divergence (instantiation of the SVP oracle in
BKZ by sieving method or enumeration method, treatment of polynomial factor)
in estimated security level of the ideal lattice-based schemes proposed to NIST.
Many techniques for improving lattice-based cryptanalysis where proposed re-
cently [1, 6, 8, 24,26, 39, 40,49, 56,65–67,73,75]. Moreover, vulnerabilities in ideal
lattice-based schemes where pointed out by many authors [8,14,21,26]. Based on
these results, some authors claim that the security of lattice-based cryptography
over the rings is not well understood (see Bernstein et al. in NTRU LPRime [52]).
Nevertheless, currently, as far as we know, these algebraic structure does not
figure into the cost of the best known attacks on NTRU-RLWE-like schemes
and in general, no algorithm is known that can exploit enough the ring struc-
ture and that is thus working more efficiently on ideal-lattices than classical
lattices [1, 7, 14,52]. Therefore, we can analyse the hardness of our signature over
standard lattices.
For recent advances and background for solving uSVP and similar problems, we
refer to [1–3, 5, 6, 10]. Recall that BKZ lattice reduction algorithm (which is a
blockwise variant of the LLL algorithm) proceeds by sublattice reduction using a
SVP oracle in a smaller dimension b. With BKZ, the best known classical algo-
rithm (respectively: quantum sieving algorithm) [1,10,24,39] for the primal/dual
attack [1, 6, 16] with block size b of MLWE or MNTRU-like schemes, have costs
of 20.292b (respectively: 20.265b with Grover speedups [34]). Therefore, currently
(June in 2023, as far as we know), we must at least use 20.265b (or the "paranoid"
lower bound 20.2075b given in [1, 2]) to compute the security level.
To estimate the security level, we use the lattice estimator of Albrecht et al. [2–4]
(lattice-estimator-main with Sagemath and python) to estimate the security of
the longterm public key and the ephemeral public key. We use the tool of Crystal
Dilithium to estimate the security of MSIS for unforgeability.
The following algorithms 3 are covered by the estimator that we have used in Ea-
gleSign security: meet-in-the-middle exhaustive search, coded-BKW, dual-lattice
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Table 3. Parameters Selection for NIST Security Levels

EagleSign
NIST security level 2 3 3+ 5
F = 1,m = 1 and k, l ∈ {1, 2}

Medium Recomm I Recomm II High I
(k, l) (2, 1) (1, 1) (2, 2) (1, 2)
q = 12289, n = 512 1024 512 1024
ηc = 1, c ∈ Blτ , τ = 18 38 18 18
Strong Unforgeable signature:
β = max(2δ′, 2δ′), (δ, δ′), (948, 1012) (178, 242) (432, 248) (208, 240)
BKZ block-size b to break SIS 607 867 748 869
Best Known Classical bit-cost 177 253 218 253
Best Known Quantum bit-cost 160 229 198 230
Best Plausible bit-cost 125 179 155 180
Ephemeral secret recovery (Y1,Y2)
ηy1 = 1,Y1 ∈ Blt, (t, ηy2 ) = (140,64) (140,64) (90,32) (86,32)
BKZ block-size b to break LWE 439 713 764 870
Best Known Classical bit-cost 128 208 223 254
Best Known Quantum bit-cost 116 188 202 230
Best Plausible bit-cost 91 147 158 180
Longterm secret recovery (G,D)
(ηG, ηD) (6, 6) (1, 1) (2, 1) (1, 1)
BKZ block-size b to break LWE 444 696 741 1649
Best Known Classical bit-cost 129 203 216 481
Best Known Quantum bit-cost 117 184 196 436
Best Plausible bit-cost 92 144 153 342
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attack and small/sparse secret variant, lattice-reduction and enumeration, primal
attack via uSVP [16], Arora-Ge algorithm [14] using Gröbner bases.

We provide the following examples for security level 3 (with p = N = 1024, q =
12289) on how to find the values in the previous table.

Python Code for security level relatively to various attacks with
lattice-estimator

Nist security level 3: Longterm secret key recovery (G,D) from
E = (A+D)G−1 based on a mix of MNTRU and MLEW with uniform
secret G and error D

1 from es t imator import ∗
2 from es t imator . lwe_parameters import ∗
3 from es t imator . nd import ∗
4 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
5 pr in t ( " EagleSign Secur i ty es t imate " )
6 pr in t ( " Nist s e c u r i t y l e v e l 3 : " )
7 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
8 pr in t ( " Ring dimension p=1024 , under ly ing f i e l d modulus q=12289

" )
9 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )

10 pr in t ( " Longterm s e c r e t key recovery (G,D) from E=(A+D)G^{−1} " )
11 pr in t ( "To es t imate the s e c u r i t y l e v e l , E=(A+D)G^{−1} i s viewed

( as usua l ) as a LWE ins tance where G i s the s e c r e t and D
i s the e r r o r " )

12 pr in t ( " Uniform Di s t r i bu t i on f o r G and D" )
13 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
14 p=1024
15 q=12289
16 k=1
17 l=1
18 etag=1
19 etad=1
20 EagleSign3LPk = LWEParameters (n=p∗ l ,
21 q=q ,
22 Xs=No i s eD i s t r i bu t i on . Uniform(−etag , etag ) ,
23 Xe=No i s eD i s t r i bu t i on . Uniform(−etad , etad ) ,
24 m=k∗p ,
25 tag=" EagleSign3LPk " )
26 pr in t ( "p : " ,p , " , q : " , q , " , k : " , k , " , l : " , l , " , etag : " ,

etag , " , etad : " , etad )
27 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
28

29 r=LWE. es t imate ( EagleSign3LPk )

The previous code produces the following output

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EagleSign Secur i ty es t imate
Nist s e c u r i t y l e v e l 3 :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Ring dimension p=1024 , under ly ing f i e l d modulus q=12289
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Longterm s e c r e t key recovery (G,D) from E=(A+D)G^{−1}
To est imate the s e c u r i t y l e v e l , E=(A+D)G^{−1} i s viewed
( as usua l ) as a LWE ins tance where G i s the s e c r e t and D
i s the e r r o r Uniform Di s t r i bu t i on f o r G and D

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p : 1024 , q : 12289 , k : 1 , l : 1 , etag : 1 , etad : 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

bkw : : rop : ≈2^274 .8 , m: ≈2^261 .5 , mem: ≈2^262 .5 , b : 19 ,
t1 : 0 , t2 : 21 , ` : 18 , #cod : 900 , #top : 0 , #t e s t : 128 ,
tag : coded−bkw

usvp : : rop : ≈2^230 .1 , red : ≈2^230 .1 , δ : 1 .002634 , β : 712 ,
d : 1896 , tag : usvp

bdd : : rop : ≈2^226 .5 , red : ≈2^225 .6 , svp : ≈2^225 .5 , β : 696 ,
η : 732 , d : 1874 , tag : bdd

bdd_hybrid : : rop : ≈2^226 .6 , red : ≈2^225 .6 , svp : ≈2^225 .5 ,
β : 696 , η : 732 , ζ : 0 , | S | : 1 , d : 1900 , prob : 1 , � : 1 ,
tag : hybrid

bdd_mitm_hybrid : : rop : ≈2^340 .8 , red : ≈2^340 .0 , svp : ≈2^339 .5 ,
β : 711 , η : 2 , ζ : 262 , | S | : ≈2^415 .3 , d : 1653 ,
prob : ≈2^−108.3 , � : ≈2^110 .5 , tag : hybrid

dual : : rop : ≈2^239 .5 , mem: ≈2^151 .0 , m: 920 , β : 742 , d : 1944 ,
� : 1 , tag : dual

dual_hybrid : : rop : ≈2^228 .1 , mem: ≈2^223 .7 , m: 883 , β : 701 ,
d : 1856 , � : 1 , ζ : 51 , tag : dual_hybrid

Nist security level 3: Ephemeral secret key recovery (y1, y2) from
P = A.y1 + y2 based on MLEW with a sparse secret y1 and uniform
error y2

1 from es t imator import ∗
2 from es t imator . lwe_parameters import ∗
3 from es t imator . nd import ∗
4 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
5 pr in t ( " EagleSign Secur i ty es t imate " )
6 pr in t ( " Nist s e c u r i t y l e v e l 3 " )
7 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
8 pr in t ( " Ring dimension p=1024 , under ly ing f i e l d modulus q=12289

" )
9 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
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10 pr in t ( " Ephemeral s e c r e t key recovery (y_1 , y_2) from P=A. y_1+
y_2" )

11 pr in t ( "To es t imate the s e c u r i t y l e v e l , P=A. y_1+y_2 i s viewed
as a LWE ins tance where y1 i s the s e c r e t and y2 i s the
e r r o r " )

12 pr in t ( " Uniform Di s t r i bu t i on f o r y_2 and spar s e d i s t r i b u t i o n
f o r y_1" )

13 pr in t ( "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" )
14 p=1024
15 q=12289
16 k=1
17 l=1
18 t=140
19 etay2=64
20 etay1=1
21 EagleSign3EPk = LWEParameters (n=p∗ l ,
22 q=q ,
23 Xs=No i s eD i s t r i bu t i on . SparseTernary (p , t /2 , t /2) ,
24 Xe=No i s eD i s t r i bu t i on . Uniform(−etay2 , etay2 ) ,
25 m=k∗p ,
26 tag=" EagleSign3EPk " )
27 pr in t ( "p : " ,p , " , q : " , q , " , k : " , k , " , l : " , l , " , t : " , t , " ,

etay1 : " , etay1 , " , etay2 : " , etay2 )
28

29 r=LWE. es t imate ( EagleSign3EPk )

The previous code produces the following output

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EagleSign Secur i ty es t imate
Nist s e c u r i t y l e v e l 3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ring dimension p=1024 , under ly ing f i e l d modulus q=12289
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ephemeral s e c r e t key recovery (y_1 , y_2) from P=A. y_1+y_2
To est imate the s e c u r i t y l e v e l , P=A. y_1+y_2 i s viewed as
a LWE ins tance where y1 i s the s e c r e t and y2 i s the e r r o r

Uniform Di s t r i bu t i on f o r y_2 and spar s e d i s t r i b u t i o n f o r
y_1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p : 1024 , q : 12289 , k : 1 , l : 1 , t : 140 , etay1 : 1 ,
etay2 : 64
Algorithm func t o o l s . p a r t i a l (< func t i on dual_hybrid at
0 x7f98644e4700 >, red_cost_model=<est imator . r educt i on .
MATZOV ob j e c t at 0 x7f98645f0730 >, mitm_optimization=True )
on LWEParameters (n=1024 , q=12289 , Xs=D(σ=0.37) , Xe=D(σ=37.24) ,
m=1024 , tag=’EagleSign3EPk ’ ) f a i l e d with β = 79 > d = 65

bkw : : rop : ≈2^245 .5 , m: ≈2^233 .1 , mem: ≈2^234 .1 , b : 17 ,
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t1 : 0 , t2 : 9 , ` : 16 , #cod : 757 , #top : 0 , #t e s t : 268 ,
tag : coded−bkw

usvp : : rop : ≈2^301 .7 , red : ≈2^301 .7 , δ : 1 .002088 , β : 972 ,
d : 1503 , tag : usvp

bdd : : rop : ≈2^315 .6 , red : ≈2^315 .5 , svp : ≈2^310 .3 , β : 1026 ,
η : 1035 , d : 1241 , tag : bdd

bdd_hybrid : : rop : ≈2^313 .9 , red : ≈2^311 .9 , svp : ≈2^313 .5 ,
β : 739 , η : 780 , ζ : 287 , | S | : 1 , d : 1655 , prob : ≈2^−72.4 ,
� : ≈2^74 .6 , tag : hybrid

bdd_mitm_hybrid : : rop : ≈2^427 .2 , red : ≈2^427 .2 , svp : ≈2^420 .2 ,
β : 1007 , η : 2 , ζ : 512 , | S | : ≈2^566 .6 , d : 1537 ,
prob : ≈2^−113.5 , � : ≈2^115 .7 , tag : hybrid

dual : : rop : ≈2^320 .9 , mem: ≈2^208 .0 , m: 551 , β : 1037 , d : 1575 ,
� : 1 , tag : dual

dual_hybrid : : rop : ≈2^261 .7 , mem: ≈2^228 .4 , m: 459 , β : 713 ,
d : 1095 , � : ≈2^31 .0 , ζ : 388 , h1 : 23 , tag : dual_hybrid

NIST security level 3: Unforgeability Security Analysis based on
MSIS problem upper bounded by β with l∞ norm

1 from MSIS_security import MSIS_summarize_attacks ,
MSISParameterSet

2 c l a s s UniformEagleSignParameterSet ( ob j e c t ) :
3 de f __init__( s e l f , n , k , l , etay2 , etay1 , t , etag , etad , tau

, q ) :
4 s e l f . n = n
5 s e l f . k = k
6 s e l f . l = l
7 s e l f . etay1 = etay1
8 s e l f . etay2 = etay2
9 s e l f . etag = etag

10 s e l f . etad = etad
11 s e l f . tau = tau
12 s e l f . t = t
13 s e l f . q = q
14

15 de l t a = l ∗( t+tau ) ∗ etag
16 de l tapr ime = l ∗( t+tau ) ∗ etad + etay2
17 s e l f . beta = max(2∗ deltapr ime , 2∗ de l t a )
18

19

20 de f EagleSign_to_MSIS ( dps ) :
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21 re turn MSISParameterSet ( dps . n , dps . k + dps . l + dps . l , dps . k ,
dps . beta , dps . q , norm=" l i n f " )

22

23 i f __name__ == "__main__" :
24 sheme = "Uniform EagleSign Recommended I "
25 param = UniformEagleSignParameterSet (
26 1024 , 1 , 1 , 64 , 1 , 140 , 1 , 1 , 38 , 12289)
27 pr in t ( " \n "+scheme )
28 pr in t (param .__dict__)
29 pr in t ( " " )
30 pr in t ( "=== STRONG UF" )
31 v = MSIS_summarize_attacks ( EagleSign_to_MSIS (param) )

Here is the output of the previous code:

1 Uniform EagleSign Recommended I
2 { ’n ’ : 1024 , ’ k ’ : 1 , ’ l ’ : 1 , ’ etay1 ’ : 1 , ’ etay2 ’ : 64 , ’ etag ’ :

1 , ’ etad ’ : 1 , ’ tau ’ : 38 , ’ t ’ : 140 , ’ q ’ : 12289 , ’ beta ’ :
484}

3

4 === STRONG UF
5 Attack uses block−s i z e 867 and 3072 dimensions , with 0 q−

vec t o r s
6 l og2 ( ep s i l o n ) = −179.58 , l og2 nvector per run 179 .92
7 s h o r t e s t vec to r used has l ength l =11617.36 , q=12289 , ‘ l<q ’= 1
8 SIS & 3072 & 867 & 253 & 229 & 179

3.4 Constant time implementation

As Dilithium we do not use branch depending on secret data and also we do not
use access memory locations that depend on secret data. Moreover, for modular
reductions mod q, we do not use the ’%’ operator of the C programming
language, instead we use Montgomery reductions. We do not use also rejection
sampling in the signature and verification algorithm.

4 Performance: sizes and cycles

In the table 4, we give the sizes and the cycles for the 3 algorithms of our
signature.

The table 5 presents, in the case of reference implementation, a comparison
between code efficiency of EagleSign and Dilithium level 3 and 5 based on our
specific processor characteristics.

With this comparison, for security level 3, we see that our signature algorithm
is twice faster than those of Dilithium. The verification algorithm of EagleSign
and Dilithium have similar performance but the key generation algorithm of
Dilithium is 1.5 times faster than those of EagleSign.

Sizes of the Public key and the Signature
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Table 4. Performances of Implementation of EagleSign for NIST Security Levels 3 and
5

EagleSign
NIST security level 2 3 3+ 5
F = 1,m = 1 and k, l ∈ {1, 2}

Medium Recomm I Recomm II High I
(k, l) (2, 1) (1, 1) (2, 2) (1, 2)
q = 12289, N = 512 1024 512 1024
τ 18 38 18 18
β = max(2δ′, 2δ′), (δ, δ′), (948, 1012) (178, 242) (432, 248) (208, 240)
ηy1 = 1, (t, ηy2 ) (140,64) (140,64) (90,32) (86,32)
(ηG, ηD) (6, 6) (1, 1) (2, 1) (1, 1)
Size in bytes:
signature size (r,Z,W) 2144 2336 2464 3488
public key size (ρ,E) 1824 1824 3616 3616
EagleSign Performance (12th Gen Intel Core
i7-1260P × 16, RAM 16GB)
Reference Implementation
Gen median cycles 1001330 3345416
Gen average cycles 1020723 3443617
Sign median cycles 1274146 2351304
Sign average cycles 1283454 2358603
Verif median cycles 946459 1594736
Verif average cycles 955956 1602340
Optimized Implementation
Gen median cycles 978368 3212708
Gen average cycles 1000579 3287036
Sign median cycles 1286413 2251036
Sign average cycles 1241245 2259111
Verif median cycles 917213 1503004
Verif average cycles 927108 1512331
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Table 5. Comparison of Implementation Performances of EagleSign and Dilithium for
NIST Security Levels 3 and 5 (Processor: 12th Gen Intel Core i7-1260P × 16, RAM
16GB)

NIST security level 3 5
EagleSign Performance (12th Gen Intel Core

i7-1260P × 16, RAM 16GB)
Gen median cycles 1001330 3345416
Gen average cycles 1020723 3443617
Sign median cycles 1274146 2351304
Sign average cycles 1283454 2358603
Verif median cycles 946459 1594736
Verif average cycles 955956 1602340
Dilithium Performance (12th Gen Intel Core

i7-1260P × 16, RAM 16GB)
Gen median cycles 617942 933226
Gen average cycles 618503 934927
Sign median cycles 2061071 2622695
Sign average cycles 2519785 3142267
Verif median cycles 617642 1023610
Verif average cycles 621859 1030807

The signature, the public key of EagleSign are respectively σ = (r, z,w), pk =
(ρ,E) where z := Gu mod q, w := y2 −Du mod q, u := y1 + c mod q, y1 ∈
Blt, c ∈ Blτ ,y2 ∈ Skηy2

,D ∈ Sk×lηD
,D ∈ Sl×lηG

and E = (A + D)G−1 mod q ∈ Rq,
then |σ| = 32 + N × (l × log2(1 + 2 × δ) + k × log2(1 + 2 × δ′))/8 bytes and
|pk| = 32 + N × (k × l × log2(q))/8 bytes, where δ = l × ηG × (t + τ), δ′ =
ηy2 + l × ηD × (t+ τ).

Table 6. Comparison of The Sizes of EagleSign and Dilithium

NIST security level 2 3 5
EagleSign Size in bytes

signature size (r,Z,W) 2144 2336 3488
public key size (ρ,E) 1824 1824 3616

Dilithium Size in bytes
signature size (c, z,h) 2420 3293 4595
public key size (ρ, t) 1312 1952 2592

From table 6, we see that the sizes of EagleSign are more small than those of
Dilithium and in the particular case of recommended parameters, we save 1000
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bytes relatively to Dilithium. We use the following python code to compute the
sizes of the signature

1 i f __name__ == "__main__" :
2

3 # Parameters d e f i n i t i o n in the format
4 # (n , q , k , l , eta_y1 , eta_y2 , eta_g , eta_d , t , tau )
5 # per Nist Secur i ty Leve l s
6 params = {
7 2 : (512 , 12289 , 2 , 1 , 1 , 64 , 6 , 6 , 140 , 18) ,
8 3 : (1024 , 12289 , 1 , 1 , 1 , 64 , 1 , 1 , 140 , 38) ,
9 "3+" : (512 , 12289 , 2 , 2 , 1 , 32 , 2 , 1 , 90 , 18) ,

10 5 : (1024 , 12289 , 1 , 2 , 1 , 32 , 1 , 1 , 86 , 18) ,
11 }
12

13 # Computing the s i z e s f o r each l e v e l
14 pr in t ( " Eagle \ t | \ t d e l t a \ t | \ t l og_de l ta | \ tdelta_p\ t | \

tlog_delta_p | \ t | S ig | \ t | \ t | Pk | " )
15 pr in t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
17 −−−−−−−−−−−−−−" )
18 f o r idx in params . keys ( ) :
19 param = params [ idx ]
20

21 de l t a = param [ 3 ] ∗ param [ 6 ] ∗ ( param [8]+param [ 9 ] )
22 delta_p = param [ 3 ] ∗ param [ 7 ] ∗ ( param [8]+param [ 9 ] ) + param [ 5 ]
23

24 # Computing l o gd e l t a = bitLength (1+2∗ de l t a ) and
25 # logdelta_prime = bitLength (1+2∗delta_p )
26 l o gd e l t a = in t (2∗ de l t a+1) . b i t_length ( )
27 logde lta_p = in t (2∗ delta_p+1) . b i t_length ( )
28

29 # Computing | S ig | and |Pk |
30 sigma = 32 + (param [ 3 ] ∗ l o gd e l t a + param [ 2 ] ∗ logde lta_p ) ∗

param [ 0 ] / 8
31 pk = 32 + (param [ 2 ] ∗ param [ 3 ] ∗ i n t (param [ 1 ] ) . b i t_length ( ) ) ∗

param [ 0 ] / 8
32 pr in t ( " {}\ t | \ t {}\ t | \ t {}\ t | \ t {}\ t | \ t {}\ t | \ t {}\ t | \ t {} " .

format ( idx , de l ta , l ogde l t a , delta_p , logdelta_p , i n t (
sigma ) , i n t ( pk ) ) )

33 pr in t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
34 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\
35 −−−−−−−−−−−−−−" )

5 Reference and optimized implementations

5.1 Bit/Byte Packing
In this section, we will explain the process of converting vectors and matrices into
byte strings and vis-versa. The procedure used in our implementation is similar
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to the one used in Dilithium round 3. For completeness purpose, we will describe
it in this section. The general rule that we will follow is that if the range of an
element x consists exclusively of non-negative integers, then we simply pack the
integer x. If x is from a range [−a, b] that may contain some negative integers,
then we pack the positive integer b− x.

Let’s start with a single polynomial of N coefficients N ∈ {512, 1024} where
each coefficient is an integer which can be encoded on b bits. Then each set of 8
coefficients can be encoded on 8 ∗ b/8 = b bytes.

In the case of EagleSign signature (r, Z,W ), r is a byte array and does not
need any conversion. Z is a vector of l elements l ∈ {1, 2} where each polynomial’s
coefficient can be encoded on 9 bits for NIST Level 3 and 5. This means that
each set of 8 coefficients of Z polynomials can be encoded on 9 bytes string as
shown in figure 1. Similarly, each set of 8 coefficients of W polynomials can be
encoded on 9 bytes string for both NIST levels 3 and 5.

Fig. 1. Bit-Packing Z’s polynomials’ coefficient Z11 Z12, Z13, . . . for Nist Levels 3 and
5

The previous described procedure has also been used to pack and unpack
different other parameters including the matrix E in the public key as well as D
and G in the private key.

In the following subsection, , we have provided a python code that we wrote
in order to generate the set of instructions in C language to convert a list of 8
different b-bits coefficients into a bytes string for any odd integer b. When b is
even and b/2 is odd, the same code can be customized to generate the set of
instructions in C language to convert a list of 4 different b-bits coefficients into a
bytes string.

5.2 Bit-Packing: Python Code for generating Bit-Packing
instructions in C

1 import numpy as np
2 import pandas as pd
3

4 i f __name__ == "__main__" :
5 D = 9 # Change t h i s va lue accord ing to your need
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6 dterm = "COEFF_BIT_SIZE"
7

8 X = [ [ i ]∗D fo r i in range (8 ) ]
9 Y = [ [ −1 ]∗8 f o r i in range (D) ]

10

11 Z = [−1]∗(8∗D)
12

13 l = 0
14 f o r i in range (8 ) :
15 f o r j in range (D) :
16 Z [ l ] = X[ i ] [ j ]
17 l += 1
18

19 l = 0
20 f o r i in range (D) :
21 f o r j in range (8 ) :
22 Y[ i ] [ j ] = Z [ l ]
23 l += 1
24

25 ta = [ ]
26 tb = [ ]
27 f o r y in Y:
28 y = pd . S e r i e s ( y )
29 c = d i c t ( y . value_counts ( ) )
30 ta . append ( c )
31 f o r key in c . keys ( ) :
32 tb . append ({ key : c [ key ] } )
33

34 pr in t ( " \ nunsigned i n t i ; \ nint16_t t [ 8 ] ; \ n fo r ( i = 0 ; i < N /
8 ; ++i ) \n{\n" )

35

36 f o r i in range (8 ) :
37 pr in t (
38 " t [ { 0 } ] = (1 << ({1} − 1) ) − a−>c o e f f s [ 8 ∗ i + { 0 } ] ; " .

format ( i , dterm ) )
39

40 pr in t ( )
41

42 cp = 0
43 cp_key = 0
44 i t = 0
45

46 f o r y in Y:
47 y = pd . S e r i e s ( y )
48 c = d i c t ( y . value_counts ( ) )
49 i n i t = 0
50 sorted_ = l i s t ( c . keys ( ) )
51 sorted_ . s o r t ( )
52 f o r key in sorted_ :
53 cp = cp % D
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54 i f i n i t == 0 :
55 pr in t ( " r [ {} ∗ i + {} ] = t [ { } ] { } ; " . format (D,
56 i t , key , " >> {} " . format ( cp ) i f cp e l s e " " ) )
57

58 i n i t += c [ key ]
59 e l s e :
60 pr in t ( " r [ {} ∗ i + {} ] {}= t [ { } ] { } ; " . format (D, i t ,
61 " | " i f i n i t e l s e " " , key ,
62 " << {} " . format ( i n i t ) i f i n i t e l s e " " ) )
63

64 i n i t += c [ key ]
65

66 i f ( cp_key == key ) :
67 cp += c [ key ]
68 e l s e :
69 cp = c [ key ]
70

71 cp_key = key
72

73 i t += 1
74

75 pr in t ( " \n} " )

The out of the previous code is presented in the next code. Note that the output
generated depends on three (04) parameters : N , r, a and COEFF_BIT_SIZE.
r is the output byte array, a is the input polynomial, N is the number of
components in polynomial a, N ∈ {512, 1024} and COEFF_BIT_SIZE is the
coefficients’ bits size.

1 unsigned i n t i ;
2 int16_t t [ 8 ] ;
3 f o r ( i = 0 ; i < N / 8 ; ++i )
4 {
5 t [ 0 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 0 ] ;
6 t [ 1 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 1 ] ;
7 t [ 2 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 2 ] ;
8 t [ 3 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 3 ] ;
9 t [ 4 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 4 ] ;

10 t [ 5 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 5 ] ;
11 t [ 6 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 6 ] ;
12 t [ 7 ] = (1 << (COEFF_BIT_SIZE − 1) ) − a−>c o e f f s [ 8 ∗ i + 7 ] ;
13

14 r [ 9 ∗ i + 0 ] = t [ 0 ] ;
15 r [ 9 ∗ i + 1 ] = t [ 0 ] >> 8 ;
16 r [ 9 ∗ i + 1 ] |= t [ 1 ] << 1 ;
17 r [ 9 ∗ i + 2 ] = t [ 1 ] >> 7 ;
18 r [ 9 ∗ i + 2 ] |= t [ 2 ] << 2 ;
19 r [ 9 ∗ i + 3 ] = t [ 2 ] >> 6 ;
20 r [ 9 ∗ i + 3 ] |= t [ 3 ] << 3 ;
21 r [ 9 ∗ i + 4 ] = t [ 3 ] >> 5 ;
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22 r [ 9 ∗ i + 4 ] |= t [ 4 ] << 4 ;
23 r [ 9 ∗ i + 5 ] = t [ 4 ] >> 4 ;
24 r [ 9 ∗ i + 5 ] |= t [ 5 ] << 5 ;
25 r [ 9 ∗ i + 6 ] = t [ 5 ] >> 3 ;
26 r [ 9 ∗ i + 6 ] |= t [ 6 ] << 6 ;
27 r [ 9 ∗ i + 7 ] = t [ 6 ] >> 2 ;
28 r [ 9 ∗ i + 7 ] |= t [ 7 ] << 7 ;
29 r [ 9 ∗ i + 8 ] = t [ 7 ] >> 1 ;
30 }

5.3 Bit-Unpacking: Python Code for generating Bit-Unpacking
instructions in C

1 import numpy as np
2 import pandas as pd
3

4 i f __name__=="__main__" :
5 D = 9 # Change t h i s va lue accord ing to your need
6 Ty = " int16_t "
7 dterm = "COEFF_BIT_SIZE"
8

9 X = [ [ i ] ∗ D fo r i in range (8 ) ]
10 Y = [ [ −1 ] ∗ 8 f o r i in range (D) ]
11

12 Z = [−1] ∗ (8 ∗ D)
13

14 l = 0
15 f o r i in range (8 ) :
16 f o r j in range (D) :
17 Z [ l ] = X[ i ] [ j ]
18 l += 1
19

20 l = 0
21 f o r i in range (D) :
22 f o r j in range (8 ) :
23 Y[ i ] [ j ] = Z [ l ]
24 l += 1
25

26 ta = [ ]
27 tb = [ ]
28 f o r y in Y:
29 y = pd . S e r i e s ( y )
30 c = d i c t ( y . value_counts ( ) )
31 ta . append ( c )
32 f o r key in c . keys ( ) :
33 tb . append ({ key : c [ key ] } )
34

35 cp = 0
36 cp_key = 0
37 i t = 0
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38

39 pr in t ( " \ nunsigned i n t i ; \ n fo r ( i = 0 ; i < N / 8 ; ++i ) \n{\n" )
40 f o r y in Y:
41 y = pd . S e r i e s ( y )
42 c = d i c t ( y . value_counts ( ) )
43 i n i t = 0
44 sorted_ = l i s t ( c . keys ( ) )
45 sorted_ . s o r t ( )
46 f o r key in sorted_ :
47 cp = cp % D
48 i f i n i t == 0 :
49 pr in t ( " r−>c o e f f s [ 8 ∗ i + {} ] {}= {}a [{} ∗ i +

{} ] { } ; " . format ( key , " | " i f cp e l s e " " ,
50 "(%s ) " % (Ty) i f cp e l s e " " , D, i t ,
51 " << {} " . format ( cp ) i f cp e l s e " " ) )
52

53 i n i t += c [ key ]
54 e l s e :
55 pr in t ( " r−>c o e f f s [ 8 ∗ i + {} ] &= {} ;\n " . format (

cp_key , hex ( (2 << (D − 1) ) − 1) ) )
56 pr in t ( " r−>c o e f f s [ 8 ∗ i + {} ] = a [{} ∗ i + {} ] { } ; " .

format ( key , D, i t ,
57 " >> {} " . format ( i n i t ) i f i n i t e l s e " " ) )
58 i n i t += c [ key ]
59

60 i f ( cp_key == key ) :
61 cp += c [ key ]
62 e l s e :
63 cp = c [ key ]
64

65 cp_key = key
66

67 i t += 1
68 pr in t ( " r−>c o e f f s [ 8 ∗ i + {} ] &= {} ;\n " . format ( cp_key ,

hex ( (2 << (D − 1) ) − 1) ) )
69

70 f o r i in range (8 ) :
71 pr in t ( " r−>c o e f f s [ 8 ∗ i + {0} ] = (1 << ({1} − 1) ) − r−>

c o e f f s [ 8 ∗ i + { 0 } ] ; " . format ( i , dterm ) )
72

73 pr in t ( " \n} " )

The out of the previous code is presented in the next code. Note that the output
generated depends on three (04) parameters : N , r, a and COEFF_BIT_SIZE.
a is the input byte array, r is the output polynomial, N is the number of
components in polynomial r, N ∈ {512, 1024} and COEFF_BIT_SIZE is the
coefficients’ bits size.

1 unsigned i n t i ;
2 f o r ( i = 0 ; i < N / 8 ; ++i )
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3 {
4 r−>c o e f f s [ 8 ∗ i + 0 ] = a [ 9 ∗ i + 0 ] ;
5 r−>c o e f f s [ 8 ∗ i + 0 ] |= ( int16_t ) a [ 9 ∗ i + 1 ] << 8 ;
6 r−>c o e f f s [ 8 ∗ i + 0 ] &= 0 x1 f f ;
7

8 r−>c o e f f s [ 8 ∗ i + 1 ] = a [ 9 ∗ i + 1 ] >> 1 ;
9 r−>c o e f f s [ 8 ∗ i + 1 ] |= ( int16_t ) a [ 9 ∗ i + 2 ] << 7 ;

10 r−>c o e f f s [ 8 ∗ i + 1 ] &= 0 x1 f f ;
11

12 r−>c o e f f s [ 8 ∗ i + 2 ] = a [ 9 ∗ i + 2 ] >> 2 ;
13 r−>c o e f f s [ 8 ∗ i + 2 ] |= ( int16_t ) a [ 9 ∗ i + 3 ] << 6 ;
14 r−>c o e f f s [ 8 ∗ i + 2 ] &= 0 x1 f f ;
15

16 r−>c o e f f s [ 8 ∗ i + 3 ] = a [ 9 ∗ i + 3 ] >> 3 ;
17 r−>c o e f f s [ 8 ∗ i + 3 ] |= ( int16_t ) a [ 9 ∗ i + 4 ] << 5 ;
18 r−>c o e f f s [ 8 ∗ i + 3 ] &= 0 x1 f f ;
19

20 r−>c o e f f s [ 8 ∗ i + 4 ] = a [ 9 ∗ i + 4 ] >> 4 ;
21 r−>c o e f f s [ 8 ∗ i + 4 ] |= ( int16_t ) a [ 9 ∗ i + 5 ] << 4 ;
22 r−>c o e f f s [ 8 ∗ i + 4 ] &= 0 x1 f f ;
23

24 r−>c o e f f s [ 8 ∗ i + 5 ] = a [ 9 ∗ i + 5 ] >> 5 ;
25 r−>c o e f f s [ 8 ∗ i + 5 ] |= ( int16_t ) a [ 9 ∗ i + 6 ] << 3 ;
26 r−>c o e f f s [ 8 ∗ i + 5 ] &= 0 x1 f f ;
27

28 r−>c o e f f s [ 8 ∗ i + 6 ] = a [ 9 ∗ i + 6 ] >> 6 ;
29 r−>c o e f f s [ 8 ∗ i + 6 ] |= ( int16_t ) a [ 9 ∗ i + 7 ] << 2 ;
30 r−>c o e f f s [ 8 ∗ i + 6 ] &= 0 x1 f f ;
31

32 r−>c o e f f s [ 8 ∗ i + 7 ] = a [ 9 ∗ i + 7 ] >> 7 ;
33 r−>c o e f f s [ 8 ∗ i + 7 ] |= ( int16_t ) a [ 9 ∗ i + 8 ] << 1 ;
34 r−>c o e f f s [ 8 ∗ i + 7 ] &= 0 x1 f f ;
35

36 r−>c o e f f s [ 8 ∗ i + 0 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 0 ] ;

37 r−>c o e f f s [ 8 ∗ i + 1 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 1 ] ;

38 r−>c o e f f s [ 8 ∗ i + 2 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 2 ] ;

39 r−>c o e f f s [ 8 ∗ i + 3 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 3 ] ;

40 r−>c o e f f s [ 8 ∗ i + 4 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 4 ] ;

41 r−>c o e f f s [ 8 ∗ i + 5 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 5 ] ;

42 r−>c o e f f s [ 8 ∗ i + 6 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 6 ] ;

43 r−>c o e f f s [ 8 ∗ i + 7 ] = (1 << (COEFF_BIT_SIZE − 1) ) − r−>
c o e f f s [ 8 ∗ i + 7 ] ;

44
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45 }

5.4 NTT transformation

The NTT transformation is particularly advantageous when dealing with large
polynomials or performing polynomial multiplications and convolutions. Unlike
the traditional polynomial multiplication algorithms, such as the schoolbook
method or Karatsuba algorithm, the NTT algorithm reduces the complexity
from O(n2) to O(n logn). This speedup becomes especially pronounced as the
polynomial size grows, making it an appealing choice for high-performance
computing applications.

In EagleSign Nist Level 3 and 5, the NTT transformation allows for faster
implementations of public key, signature and verification operations over over
the ring Rq = Zq(X)

(Xn + 1) , q = 12289, N = 1024 by speeding the polynomials

multiplications and divisions operations. Our NTT implementations over the
aforementioned ring follows the implementation proposed by Falcon since we use
the same field than Falcon. The implementation of our signature in case N = 512
is not finished yet.

5.5 Hashing and Sampling techniques, special functions

Sampling y2 : The function GenVectorUnifSmallPoly(λ2 = (λ, l)) maps (λ2)
to y2 ∈ Skηy2

. We compute independently the k components of y2. Note that
these components are polynomials in Sηy2

. For the i-th polynomial, 0 ≤ i < k, it
absorbs the 48 bytes of λ2 concatenated with the 2 bytes representing l + i in
little endian byte order into SHAKE-256.

Sampling invertible G : The function GenMatrixUnifSmallPolyn(β1, l, l) maps
(β1, l, l) to G ∈ Sl×lηG

. We compute independently the l × l components of G.
For each polynomial G(i,j) , 0 ≤ i, j < l, it absorbs the 48 bytes of β1 con-
catenated with the 2 bytes representing i × l + j in little endian byte order
into SHAKE-256. If G is not invertible, we renew the seed β1 by computing
β1 = SHAKE-256(β1) until G is invertible. Remark that this algorithm termi-
nates quickly since the ring Rq, q = 12289 contains enough invertible polynomials.

Sampling D : The function GenMatrixUnifSmallPolyn(β2, k, l) maps (β2, k, l)
to D ∈ Sk×lηD

. We compute independently the k × l components of D. For each
polynomial D(i,j) , 0 ≤ i < k, 0 ≤ j < l, it absorbs the 48 bytes of β2 concate-
nated with the 2 bytes representing i × l + j in little endian byte order into
SHAKE-256.

Sampling y1 ∈ Blt : The function GenVectorSparsePoly(ρ) maps ρ to y1 ∈ Blt.
The seed ρ is defined by ρ = (λ, 0) where λ is generated randomly. We compute
independently the l components of y1. For each polynomial y1,i , 0 ≤ i < l,
it absorbs the 48 bytes of λ concatenated with the 2 bytes representing i in
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little endian byte order into XOF interpreted as SHAKE/STREAM-128 of the
FIPS202 standard. The output of the XOF is used to generate y1,i = e in a Ball
as follows:

– Initialize e = e0e1 . . . eN−1 = 0 . . . 0
– for i = N − t to N
• b $← {0, 1, . . . , i} with XOF
• ei := eb

• s $← {0, 1} with XOF
• eb := 1− 2s

– return e

Note that in the expression y1,i = e, e is used to simplify the notation in the
previous algorithm.

Computing c = H(µ, r) ∈ Blτ : The cryptographic Hash function H maps (µ, r)
to c ∈ Blτ . For this purpose we first extract 384 bits of the output of SHAKE-256
onto the input µ, r in this order as a seed seedc. We then compute independently
the l components of c. For each polynomial ci , 0 ≤ i < l, we absorbs the 48
bytes of seedc concatenated with the 2 bytes representing i in little endian byte
order into XOF interpreted as SHAKE/STREAM-128 of the FIPS202 standard.
The output of the XOF is used to generate ci = d in a Ball as follows:

– Initialize d = d0d1 . . . dN−1 = 0 . . . 0
– for i = N − τ to N
• b $← {0, 1, . . . , i} with XOF
• di := db

• s $← {0, 1} with XOF
• db := 1− 2s

– return d

Note that in the expression ci = d, d is used to simplify the notation in the
previous algorithm.

Sampling the Matrix A : The function GenMatrixUnifPolyn maps a uniform
seed ρ ∈ {0, 1}256 to a matrix A ∈ Rk×lq , q = 11289, N ∈ {512, 1024} in NTT
domain representation. A is generated and stored in NTT Representation as Â.
We computes independently the components âi,j ∈ Rq of Â. We use SHAKE-128
to compute the coefficient âi,j by absorbing the 32 bytes of ρ followed by 2 bytes
representing 0 ≤ 28 × i+ j < 216 in little-endian byte order. The output stream
of SHAKE-128 is interpreted as a sequence of integers between 0 and 214 − 1,
where 14 is the bit-size of prime q = 12289 which is used. To obtain such result,
we set the highest bit of every second byte to zero and interpreting blocks of 2
consecutive bytes in little endian byte order. In practice, the two consecutive
bytes b0 , b1 are used to get the integer 0 ≤ t = b′1× 28 + b0 ≤ 214− 1 where b′1 is
the logical AND of b1 and 26 − 1. Another method is to compute t as the logical
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AND of t′ = b1 × 28 + b0 and 214 − 1. Finally, GenMatrixUnifPolyn performs
rejection sampling on these 14-bit integers t to sample the N coefficients between
0 and q − 1.

Collision resistant hash (CRH1, CRH) The function CRH1 and CRH are
collision resistant hash functions. For this purpose 256 and 384 bits of the output
of SHAKE-256 are used respectively for CRH1 and CRH. Note that we can easily
choose and integrate other hash functions.
CRH1 is called on the public Key (ρ,E) to compute tr. For this reason, it takes
as input the byte string obtained from packing ρ and E in this order and the
result is absorbed into SHAKE-256 and the first 32 output bytes are used as the
resulting hash.

CRH on the other hand is called on the input tr||M to compute µ. Here the
concatenation of the hash tr and the message stringM are absorbed into SHAKE-
256 and the first 48 output bytes are used as the resulting hash.

Collision resistant hash (G) The function G is a collision resistant hash func-
tion. For this purpose 256 bits of the output of SHAKE-256 is used. G is called the
input P to compute r in the signature and on V to compute r′ in the verification
algorithm. Note that we can easily choose and integrate other hash function.

NB: EagleSign is more simple than Dilithium because it does not use the auxil-
iary functions of Dilithium such as HighBits, MakeHint, UseHint, Power2Round,
Decompose and SelfTargetMSIS.

5.6 Optimized Implementation

In our optimized implementation, the main function that we have optimized
include : Adding, subtracting and multiplying polynomials since they are the key
basic operations that we have used over the ring Rq = Zq(X)

(XN + 1) , q = 12289, N =

1024 which concerns EagleSign Nist Level 3 and 5. Our optimized implementation
follows the one in Dilithium and we have used ChatGPT sometimes.

6 Advantages and Limitations

Advantages: EagleSign is more simple and faster than Falcon and Dilithium.
The sizes are similar to those of Dilithium, but for recommended parameters, the
sizes of EagleSign are more small than those of Dilithium.
Limitations: It has the same limitations as any lattices based digital signature
regarding the long term security.
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