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Abstract. We present a novel code-based digital signature scheme, called
Enhanced pqsigRM for post-quantum cryptography (PQC). This scheme
is based on modified Reed–Muller (RM) codes, which modified RM codes
with several security problems. Enhanced pqsigRM is a strengthened ver-
sion of pqsigRM, which was submitted to NIST PQC standardization in
round 1. The proposed scheme has the advantage of short signature size,
fast verification cycles. For 128 bits of classical security, the signature
size of the proposed scheme is 1032 bytes, which corresponds to 0.42
times that of Crystals-Dilithium, and the number of median verifica-
tion cycles is 235,656, which is smaller than that of Crystals-Dilithium.
Also, we use public codes, called modified RM codes, that are more dif-
ficult to distinguish from random codes. We use (U,U + V )-codes with
high-dimensional hull to make these. Using modified RM codes, the pro-
posed signature scheme resists various known attacks on RM-code-based
cryptography. The proposed decoder samples from coset elements with
small Hamming weight for any given syndrome and efficiently finds such
elements.

Keywords: Code-based cryptography, digital signatures, error correc-
tion codes, post-quantum cryptography (PQC), Reed-Muller (RM) codes.

1 Introduction

Courtois, Finiasz, and Sendrier (CFS) proposed a signature scheme using high-
rate Goppa codes in 2001 [1]. However, this scheme, so-called CFS signature
scheme, has certain drawbacks in terms of scaling of the parameters and a lack of
existential unforgeability under adaptive chosen message attacks (EUF-CMA).
Further, its error correction capability t has to be small because the signing
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time depends on t!. The public key size of the CFS scheme is (n− k)n = tm2m

and it is known that decoding attacks require A = 2tm/2 operations. Thus the
decoding attack complexity A is only a polynomial function of the key size with
small power, that is, A ≈ keysizet/2. Therefore, because t should be kept as a
relatively small value of up to 12 to reduce successful signing time, and we need
to significantly increase the key size itself for higher security. Also, with a small
t, the rate of Goppa codes is high. The parity check matrix of high-rate Goppa
codes can be distinguished from a random matrix and thus the CFS signature
scheme is insecure under the EUF-CMA [2].

In this submission, we replace the Goppa codes with the RM codes in the
CFS signature scheme. RM codes can use complete decoding using well-known
and efficient recursive decoding, called closest coset decoding [3], [4], that is, for
a given received vector, the closest codeword can be found. The closest coset
decoding method does not guarantee the exact error correction but finds an er-
ror vector (coset leader in the standard array) corresponding to the syndrome.
However, the exact error correction is not essential for signing in code-based
signature schemes, but we need to find the error vector with the smallest Ham-
ming weight in the coset corresponding to the syndrome. In this respect, the
RM code-based signature scheme can be considered as a solution to the small t
constrained problem of the Goppa code-based signature scheme.

However, the simple replacement of Goppa codes with RM codes in the CFS
signature scheme results in vulnerability to several attacks. The RM code-based
McEliece cryptosystem is insecure under Minder–Shokrollahi’s attack [5] and
Chizhov–Borodin’s attack [6]. With these two attacks, the private keys S, G, and
Q can be revealed from the public key G′ = SGQ, where G is a generator matrix
and S and Q are a scrambling matrix and a permutation matrix, respectively.
The above-mentioned attacks can be similarly applied to the RM code-based
signature scheme. It is shown here that the proposed scheme is secure against
these attacks.

We propose a new code-based signature scheme by using modified RM codes,
called Enhanced pqsigRM. We first partially permute the original RM codes and
proceed with three more modifications, which are replacing some parts of the
code, appending random rows, and padding a dual code’s codeword. For now,
we propose one parameter set of Enhanced pqsigRM, that is, Enh-pqsigRM-613
constructed by RM(6,13) for 128 bit-security. The proposed signature scheme
is an improvement of pqsigRM [7] submitted to NIST for PQC standardization
round 1, and it resolves the weaknesses of early versions of pqsigRM by modifying
the public codes. Moreover, we ensure the indistinguishability of the public codes
of the proposed signature scheme. Further, it can compromise the security level
by adjusting the allowable maximum Hamming weight of error vectors, called
the error weight parameter w. Our proposed scheme has the advantages of a
small signature size, fast verification cycles. It is also proved that the proposed
Enhanced pqsigRM is EUF-CMA secure. For 128 bits of classical security, the
signature size of the proposed signature scheme is 1032 bytes, which corresponds
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to 0.42 times that of Crystals-Dilithium, and the number of median verification
cycles is 235,656, which is smaller than that of Crystals-Dilithium.

1.1 Design Rationale

We introduce a new signature scheme, called Enhanced pqsigRM, based on mod-
ified RM codes with partial permutation as well as row appending and replace-
ment in the generator matrix. For any given syndrome, an error vector with a
small Hamming weight can be obtained. The proposed signature scheme resists
all known attacks against cryptosystems based on the original RM codes. Using
modified RM codes, we improve the security problems and indistinguishability
of public codes. Assuming indistinguishability and the hardness of DOOM with
a high-dimensional hull, we also achieve the EUF-CMA security of the proposed
signature scheme.

1.2 Advantages and Limitations

Enhanced pqsigRM signature scheme has advantages in signature size. it has
a relatively small signature size compared with the other digital signatures of
NIST PQC finalist algorithms and code-based signatures. Also, it has a very
short verification time for 128-bit security. The limitation of this scheme is the
relatively large public key size. Since the codes in Enhanced pqsigRM do not
have a structure such as quasi-cyclic, the key size of the public key is (n−k)×k.

For 128 bits of classical security, the signature size of the proposed signature
scheme is 1032 bytes, which corresponds to 0.42 times that of Crystals-Dilithium,
and the number of median verification cycles is 235,656, which is smaller than
that of Crystals-Dilithium.

2 Preliminaries

2.1 CFS Signature Scheme

CFS signature scheme is an algorithm that applies the full domain hash (FDH)
methodology to the Niederreiter cryptosystem. It is based on Goppa codes, as
McEliece public key encryption scheme. As described in Algorithm 1, the sign-
ing process iterates until a decodable syndrome is obtained. The probability of

decoding a given random syndrome is
∑t

i=0 (
n
i)

2n−k ≃ 1
t! . Hence, the error correction

capability t = n−k
logn should be sufficiently small to reduce the number of itera-

tions. Thus, high-rate Goppa codes should be used. Regarding the key size, the
complexity of the decoding attack on the CFS signature scheme is known to be
a small power of the key size, namely, ≈ keysizet/2. Hence, the key size should
be fairly large to meet a certain security level. In summary, the original CFS
signature scheme is insecure and inefficient due to using of Goppa codes.
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Algorithm 1 CFS signature scheme [1]

Key generation:

H is the parity check matrix of an (n, k) Goppa code
The error correction capability t is n−k

logn

S and Q are an (n− k)× (n− k) scrambler matrix and n× n permutation matrix,
respectively
Secret key: H,S, and Q
Public key: H′ ← SHQ

Signing:

m is a message to be signed
i← 1
Do

i← i+ 1
Find syndrome s← h(h(m)|i)
Compute s′ ← S−1s

Until a decodable syndrome s′ is found
Find an error vector satisfying He′T ← s′

* Compute eT ← Q−1e′T , and then the signature is (m, e, i)

Verification:

Check wt(e) ≤ t and H′eT = h(h(m)|i)
If true, then return ACCEPT; else, return REJECT
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2.2 Reed–Muller Codes and Recursive Decoding

RM codes were introduced by Reed and Muller [8, 9] and its decoding algorithm,
so-called recursive decoding, was proposed in [4]. RM(r,m) is a linear binary

(n = 2m, k =
∑r

i=0

(
m
i

)
) codes, where r and m are integers. RM(r,m) is defined

as RM(r,m) := {(u|u+v)|u ∈ RM(r,m−1),v ∈ RM(r−1,m−1)}, where RM(0,m) :=

{(0, . . . , 0), (1, . . . , 1)} with code length 2m and RM(m,m) := F2m

2 . In other words,
we can make a recursive structure by Plotkin’s construction, and its generator
matrix is given by

G(r,m) =

[
G(r,m−1) G(r,m−1)

0 G(r−1,m−1)

]
,

where G(r,m) is the generator matrix of RM(r,m).
Recursive decoding is a soft-decision decoding algorithm that depends on

the recursive structure of the RM codes; it is described in detail in Algorithm 2,
where y′ · y′′ denotes the component-wise multiplication of the vectors y′ and
y′′. In recursive decoding, a binary symbol a ∈ {0, 1} is mapped onto (−1)a, and
it is assumed that all codewords belong to {−1, 1}n.

First, y′′ (the second half of the received vector y) is a component wisely
multiplied by y′ (the first half of the received vector). Then, a codeword from
RM(r,m−1) (i.e., u) is removed from y′′ as it is both in y′ and y′′, and then only
v and the error vector remain. This is regarded as a codeword of RM(r−1,m−1)

added to an error vector and is referred to as v̂. Using v̂, we can remove the
codeword of RM(r−1,m−1) from the second half of the received vector. y′ is then
added to y′′ · v̂, and the sum is divided by 2. This is regarded as a codeword of
RM(r,m−1) added to the error vector, and then decoding is performed. Recur-
sively, the received vector is further divided into sub-vectors of length n/4, n/8,
etc. Finally, we reach RM(m,m) or RM(0,m), then the division terminates and
the minimum distance (MD) decoding of RM(m,m) or RM(0,m), which is trivial,
is performed. The decoding for the entire code is performed by reconstructing
these results into (U,U + V ) form.



6 J. Cho et al.

Algorithm 2 Recursive decoding of RM code [4]

function RecursiveDecoding(y, r,m)
if r = 0 then

Perform MD decoding on RM(0,m)
else if r = m then

Perform MD decoding on RM(r, r)
else

(y′|y′′)← y
yv = y′ · y′′

v̂← RecursiveDecoding(yv, r − 1,m− 1)
yu ← (y′ + y′′ · v̂)/2
û← RecursiveDecoding(yu, r,m− 1)
Output (û|û · v̂)

end if
end function

3 Specification

3.1 Basic Notation

A vector is denoted in boldface in the form of a column vector. (x0|x1) denotes
the concatenation of two vectors x0 and x1. For example, h(m|r) means the hash
function h with input (m|r), where (m|r) represents the concatenation of the
binary representation of vector m and a random value r. Matrices are denoted
by a boldfaced capital letter, for example,A. Matrix multiplication is denoted by
· or can be omitted when it is unnecessary. Codes and probability distributions
are denoted in calligraphic fonts, for example, C, and it can be distinguished
by context. xσ denotes that a vector x is permuted by a permutation σ, for
example, xσ = (x1, x3, x2, x0), where x = (x0, x1, x2, x3) and σ = (1, 3, 2, 0).

3.2 Parameter Space

We propose a new code-based digital signature scheme, called Enhanced pqsi-
gRM. Each operation of Enhanced pqsigRM has six parameters: (r,m) are pos-
itive integers of parameters of RM code, p is the number of columns that are
partially permuted, w is the Hamming weight of signature, krep is the number
of replacing rows, and kapp is the number of appending rows.

3.3 Constructing Modified RM Codes

1) Partial permutation of generator matrix of RM code:
For a code C, we define its hull by the intersection of the code and its dual, in

other words, hull(C) = C∩C⊥. The proposed (U,U+V )-code is designed to have
a high-dimensional hull, where dim(U⊥ ∩ V ), dimension of U⊥ ∩ V , is large. In
general, for a (U,U+V )-code C, a codeword (u|u+ v) ∈ hull(C) satisfies v = u⊥

and u+ v = v⊥, where u ∈ U and v ∈ V . Hence, when U⊥ ∩ V = {0}, hull(C)
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has only (u|u) codewords, and this may reveal the secret key. To avoid this, the
proposed code is designed so that dim(U⊥ ∩ V ) is large.

𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '()

0 𝐺(𝑟 − 1,𝑚 − 2) 0 𝐺(𝑟 − 1,𝑚 − 2)

0 0 𝐺(𝑟 − 1,𝑚 − 2) 𝐺(𝑟 − 1,𝑚 − 2)

0 0 0 𝐺 𝑟 − 2,𝑚 − 2 '(.

Fig. 1. Partially permuted RM code’s generator matrix.

First, we construct the generator matrix G(r,m) of an RM code and then
permute its submatrices. An example is shown in Figure 1, where σ1

p and σ2
p

denote two independent partial permutations that randomly permute only p
out of n/4 columns. To generate σ1

p and σ2
p, p column indices are randomly

selected from the index set {0, 1, . . . , n/4− 1}, and the selected indices are ran-
domly permuted, whereas the others are not. Then, σ1

p is used to permute the
submatrices corresponding to G(r,m−2)’s in the first dim(RM(r,m−2)) rows, and
σ2
p is used to permute the submatrix corresponding to G(r−2,m−2) in the last

dim(RM(r−2,m−2)) rows, as shown in Figure 1. The codes generated by the gen-
erator matrix in Figure 1 are called partially permuted RM codes. It should be
noted that, unlike in the case of code-based cryptographic algorithms, we per-
mute submatrices of the generator matrix rather than the entire matrix here.
We note that the entire matrix should also be permuted to design a signature
scheme.

dim(U⊥ ∩ V ) is large for the following reasons. Let GU and GV denote the
generator matrices of U and V , respectively:

GU =

[
G

σ1
p

(r,m−2) G
σ1
p

(r,m−2)

0 G(r−1,m−2)

]
,

GV =

[
G(r−1,m−2) G(r−1,m−2)

0 G
σ2
p

(r−2,m−2)

]
.

Then, the generator matrix of the dual code of U is

G⊥
U =

[
G

⊥σ1
p

(r,m−2) 0

G⊥
(r−1,m−2) G

⊥
(r−1,m−2)

]
.
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Thus, U⊥∩V has a subcode that is the intersection of the codewords generated by[
G(r−1,m−2) G(r−1,m−2)

]
and the codewords generated by

[
G⊥

(r−1,m−2) G
⊥
(r−1,m−2)

]
.

Its dimension is min(dim(RM(r−1,m−2), dim(RM(m−r−2,m−2))), as the dual of
RM(r,m) is equal to RM(m−r−1,m) and RM(r′,m) ⊆ RM(r,m), where r′ ≤ r.

2) Modification by replacing, appending, and padding:

With the partially permuted RM codes, the received vector and the syndrome
have the same parity, causing the signature leak. Thus, the generator matrix in
Figure 1 should be further modified.

That is, some rows are replaced with repetitions of random codewords, and
random rows are appended to the generator matrix. Considering GU , it is also
a (U,U + V )-code, which can similarly be divided into (permuted) (U,U + V )-
codes. By repeating this process 2m−r times, the rows of the partially permuted
RM code consist of the 2m−r repeated generator matrices of RM(r,r), which
are 2r × 2r identity matrices. Then, RM(r,r) is replaced by a repeated random
(2r, krep) code such that its dual code has at least one non-zero codeword with
an odd hamming weight.

We now append random independent rows to the generator matrix. One
row to be appended is a random codeword of the dual code. This should be
independent of the existing rows; i.e., it should not belong to the hull of the code.
Furthermore, it should be verified that the hull has codewords with Hamming
weight that is not a multiple of four as a result of appending this row. The
others are kapp random independent vectors including at least one vector of odd
Hamming weight. These kapp vectors are independent of the partially permuted
RM codes and independent of each other.

After all these modifications, the resulting code is called a modified RM code.
An example of its generator matrix is given in Figure 2. We use krep as 2r − 2,
which means we erase two rows. Then, we append two random rows and one
dual code’s codeword. Thus, the dimension of modified RM codes is larger than
the original RM codes by 1.

𝜎𝑝
1 𝜎𝑝

1 𝜎𝑝
1 𝜎𝑝

1

𝜎𝑝
2

𝑘𝑟𝑒𝑝

A codeword from dual code

⋯

𝑘𝑎𝑝𝑝 Random independent rows

⋯⋯ ⋯⋯

: generator matrix of random 2𝑟 , 𝑘𝑟𝑒𝑝 code replacing RM(𝑟,𝑟)

⋯ ⋯ ⋯ ⋯

Fig. 2. Modified RM code’s generator matrix GM for the proposed signature scheme.
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3) Decoding of modified RM codes:

Unlike the Niederreiter cryptosystem and CFS signature scheme, it is re-
quired to find an error vector whose Hamming weight is larger than the er-
ror correction capability. Hence, there may exist several solutions e satisfying
HeT = sT and wt(e) ≤ w for a given syndrome s. Such decoding can be achieved
by the modified Prange decoder using the (U,U + V ) structure, as in the sig-
nature schemes in [10, 11]. However, a new decoder is proposed that uses the
recursive structure of the subcode of modified RM codes and it achieves better
performance than the modified Prange decoder. In other words, it finds error
vectors whose Hamming weights are less than the result in [10]. This results in
the smaller parameters, considering attacks as in [12].

In addition to the decoding performance, a major difference between the
proposed decoder and the modified Prange decoder is their input. The input
of the modified Prange decoder used in [10] and [11] is a syndrome vector. In
contrast, the input of the proposed decoder is an n dimensional vector r satisfying
HrT = s, which is called a received vector in coding theory, and the decoder
outputs codewords close to the received vector. An error vector with a small
Hamming weight is obtained by subtracting the output from the received vector.
Even if two different received vectors in the same coset are given, the proposed
decoder can return different outputs. Besides, as the input of the decoder is a
random received vector, decoding can be performed even if random rows are
appended to the generator matrix.

As stated in the previous section, random rows (one from the dual code and
the others being kapp independent random vectors) are appended to the gener-
ator matrix of the partially permuted RM codes. Let Capp be the code spanned
by the added kapp + 1 rows. The number of codewords increases by 2kapp+1

times when rows are appended by adding codewords of Capp to each (U,U +V )-
codeword. Choosing a codeword of Capp (including 0), subtracting it from the
received vector r, decoding it, and adding the subtracted codewords back is the
decoding process when rows are appended. Thus, the code is decodable even if
arbitrary random codes are appended to its generator matrix.

Hence, it suffices to explain the decoding algorithm for the (U,U + V )-
subcode of a modified RM code. This decoding follows the recursive decod-
ing of RM codes [4]. The difference is the partial permutation and the re-
placement of RM(r,r). Considering the decoding proposed in [4], we have c =
(u|u + v) for all c ∈ RM(r,m), where u ∈ RM(r,m−1) and v ∈ RM(r−1,m−1).
RM(r,m−1) and RM(r−1,m−1) are also (U,U + V )-codes, except for r = 0 or
r = m. Here, if the code corresponding to u or v is replaced with a code other
than the RM code and decoding the replaced code can be performed appropri-
ately, the entire code c can also be decoded [3].

When the subcode of the RM code is replaced with its permutation, the
entire code can also be decoded by slightly modifying the recursive decoding.
Moreover, no decoding failure occurs because the recursion eventually reaches
RM(0,m′), RM(r′,r′), or the (2r, krep) code to replace RM(r,r) and there exists
polynomial-time MD decoder for these codes. Even the (2r, krep) random code
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Algorithm 3 Decoding for modified RM code

function Decode(s;H)
r← Prange(H, s)
while True do

r← r+ random codeword
c← ModDec(r, r,M)
if wt(r+ c) ≤ w then

Output r+ c
end if

end while
end function

function ModDec(y, r,M)

y← yσ−1

if r = 0 then
Output MD decoding on RM(0,m)

else if r = m then
Output MD decoding on RM(r, r)
or replaced (2r, krep) code

else
(y′|y′′)← y
yv = y′ · y′′

v̂← ModDec(yv, r − 1,m− 1)
yu ← (y′ + y′′ · v̂)/2
û← ModDec(yu, r,m− 1)
y← (û|û · v̂)

end if
Output yσ

end function
*σ is σ1

p or σ2
p for permuted block and identity, otherwise.

is MD decodable in constant time because it is a small code. To handle partial
permutations, when the code is decodable, it uses the fact that the permutation
is always decodable if the permutation is known.

In general, the output distribution of decoding is crucial for security. Thus,
we also propose a randomized decoding method, the output of which is almost
uniformly distributed. Using the algorithm described above, a random decoder
can easily be designed. Algorithm 3 summarizes the randomized decoding. It is
easy to find a received vector (regardless of its Hamming weight) for any given
syndrome; a coset element corresponding to the syndrome is randomly selected.
This is given to the decoder as an input. Finally, the decoder finds a different
error vector with a small Hamming weight for different inputs.
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3.4 Generation of Digital Signatures

Then we use the modified RM codes in the process of the signature scheme of
Enhanced pqsigRM as in Algorithm 4. It is composed of key generation, signing,
and verification processes as below.

1) Key generation : Let GM be the modified RM code’s generator matrix
of RM(r,m) in Fig. 2. It has a code length of n and dimension k. The dual
matrix of GM becomes the parity check matrix, which is denoted by HM.

Let Q be an n×n permutation matrix, which is randomly chosen. Q is gener-
ated by a random shuffling algorithm (such as Knuth’s shuffling algorithm [13])
using random numbers. The random numbers are made by a random number
generator based on AES-256 (shortly, RNG-AES-256).

Then, we compute Hsys = SsysHMQ. Ssys is a unique matrix, which makes
HMQ to be a systematic form. Hsys can be expressed as (I|T ) and T becomes
the public key, which is an (n − k) × k matrix. The secret keys are Q, σ1

p, σ
2
p,

krep×2r (repeated) replacing codes, kapp×n appending codes, and 1×n padding
dual code codeword.

2) Signing : For a given message M , choose random integer i generated
by RNG-AES-256. Using the hash function h, the syndrome s = h(M |i) is
generated, which is similar to that of the CFS signature scheme. Unlike the
CFS signature scheme, we use the hash function once, instead of twice. We
use SHAKE-128 as a hash function. Then we make s′ from s by multiplying
the inverse of Ssys. Then we use the decoding algorithm of modified RM codes
(Algorithm 3) to get e′ from s′. Finally, e is generated from e′ by multiplying
the inverse of Q. The signature is composed of message M , error e, and counter
i.

3) Verification : For verification, we check whether the computation from
e and the computation from M are the same or not. That means we check two
conditions, which are wt(e) ≤ w and Hsyse

T = h(M |i). If these are satisfied, we
return ACCEPT. If not, we return REJECT.

3.5 Parameter Sets

Parameter set Enh-pqsigRM-613 : Uses RM code RM(6,13) with w = 1370
and p = 572 (128-bit security).

The sizes of the public key and signature are given in Table 1. Compared with
the NIST PQC finalist signature schemes [14–16], our scheme has the smallest
signature size except for Falcon. Also, we compare these with the other code-
based signature schemes [17, 11, 18, 19] in Table 2. Enhanced pqsigRM has the
smallest signature size among these. Also, it has a smaller public key size than
Wave. Durandal has an extremely small public key, however, its security relies on
the security rank metric decoding problem. Classic McEliece is a key encapsula-
tion mechanism (KEM), however, we brought this to compare with our scheme.
If Classic McEliece can be acceptable as a NIST PQC candidate, our scheme is
also acceptable regarding the public key size.

Furthermore, the specific parameter sets of Enhanced pqsigRM are as in
Table 3.



12 J. Cho et al.

Algorithm 4 Signature scheme of Enhanced pqsigRM

Key Generation :

GM: k × n generator matrix of modified RM codes
HM: (n− k)× n parity check matrix of modified RM codes

Q
$←− Fn×n

2

Hsys = (I|T)← SsysHMQ
Public key: T
Secret key: Q, σ1

p, σ
2
p, krep × 2r (repeated) replacing codes, kapp × n appending

codes, and 1× n padding dual code codeword

Signing :

M : Message, i← {0, 1}λ0 : Counter
s← h(M |i): Syndrome
s′T ← Ssys

−1sT

e′ ← Decode(s′;HM)
eT ← Q−1e′T

Signature: (M, e, i)

Verification :

If wt(e) ≤ w and Hsyse
T = h(M |i),

return ACCEPT

Else, return REJECT

*h: hash function SHAKE-128
*DECODE: Decoding algorithm of modified RM codes
*wt(a): Hamming weight of a vector a
*w: error correcting capability of modified RM codes

Table 1. Public key and signature sizes of Enhanced pqsigRM compared with the NIST
PQC finalist signature schemes

Security
Enhanced
pqsigRM

Crystals-
Dilithium[14]

Falcon[15] Sphincs+[16]

Public
key(MB)

Signature
(byte)

Public
key(byte)

Signature
(byte)

Public
key(byte)

Signature
(byte)

Public
key(byte)

Signature
(byte)

128 2.00 1,032 1,312 2,420 897 666 32 7,856
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Table 2. Public key and signature sizes of Enhanced pqsigRM compared with other
code-based signature schemes

Security
Enhanced
pqsigRM

Wave[11] Durandal [18]
Classic McEliece[19]

(KEM)
Public

key(MB)
Signature
(byte)

Public
key(MB)

Signature
(byte)

Public
key(MB)

Signature
(byte)

Public key
(MB)

128 2.00 1,032 3.10 1,647 0.015 4,060 0.26

Table 3. Parameter sets for Enhanced pqsigRM

λ (security) 128

(r,m) (6,13)
n 8192
k 4097
w 1370
p ≥572

krep 62
kapp 2

4 Performance Analysis

4.1 Description of Platform

The following measurements are collected using a desktop computer with a CPU
—i7-12700 CPU @ 2.10GHz—. Turbo Boost is disabled. This machine has 16GB
of RAM. Benchmarks run on one core of the CPU. Since the signing algorithm
is a probabilistic algorithm, the number of iterations at signing varies. The fol-
lowing result is the average of 100 experiments.

NIST said that the “NIST PQC Reference Platform” is “an Intel x64 run-
ning Windows or Linux and supporting the GCC compiler”. Our system is an
x64 running Linux and supporting the GCC compiler. Beware, however, that
different Intel CPUs can output different results.

4.2 Number of Cycles for Verification, Key Generation, and Signing

The following measurements are CPU cycler for running Enh-pqsigRM-613 at
—i7-12700 CPU @ 2.10GHz—. The measurements compared with the NIST
PQC finalist algorithms are given in Table 4. The data of these are from the
submission papers and these can be a little bit different because their implemen-
tation conditions are different [14–16]. However, these are almost the same as
Crystals-Dilithium.

The verification CPU cycles of Enh-pqsigRM-613 are 242,901 (average) and
235,656 (median). It is the smallest value among other NIST PQC finalists except
for Falcon.
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Table 4. Verification CPU cycles of Enhanced pqsigRM compared with the NIST PQC
finalists

Security
Verification cycles

Enhanced
pqsigRM

Crystals-
Dilithium[14]

Falcon[15] Sphincs+[16]

128 242,901 327,362 82,340 308,774

Furthermore, for key generation, these are 2,034,133,439 (average) and 2,038,358,872
(median). For signing, these are 2,232,288 (average) and 1,366,500 (median).

4.3 Memory Usage

Enh-pqsigRM-613 takes 53,334,140 bytes of memory usage. Also, there is no
memory leakage.

5 Design Rationale

5.1 Choosing Parameter Sets

The constraint here is that n is a power of two. We can numerically find the
feasible ranges of w once n and k are determined. If the security level λ is
achieved in this range, we accept the value; otherwise, we increase n. Considering
decoding one out of many (DOOM) problem, which is explained in Section 6.2,
a smaller value of w implies higher security. If w is so small that a large number
of decoding iterations are required, we could reduce the partial permutation
parameter p. p is at most n/4, and the characteristics of the codes are retained
by lowering p to a certain degree. The method for obtaining the minimum values
is described in the following subsection. The discussed state-of-the-art algorithm
for DOOM is used as a basis for the parameters.

Regarding the key size, the public key is a parity check matrix given in the
systematic form and requires (n − k)k bits. The secret key includes matrix Q,
partial permutation σ1

p, σ
2
p, krep×2r repeated replacing codes, kapp×n appending

codes, and 1×n padding dual code codeword. Q is an n×n permutation matrix,
which can be expressed with just a number. We use nm bits for Q because we
need log2 n bits to express a number and the number is from 0 to n. In the same
way, σ1

p and σ2
p need n(m − 2)/2 bits. The replacing codes, appending codes,

and padding codes need (2r − 2) × 2r, kapp × n, and 1 × n bits, respectively.
Thus, the size of the secret key is 3nm/2+ kappn+(2r − 2)2r. It is 22,512 bytes
for Enh-pqsigRM-613. On the other hand, I need n + 64 bits for the signature
length. n is for the length of e, and 64 is for the size of a 64-bit integer i. The
signature length is 1032 for Enh-pqsigRM-613. Moreover, H can be represented
by σ1

p, σ
2
p, krep = 2r−2 (the maximum value), and kapp = 2(the minimum value).
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5.2 Statistical Analysis for Determining Number of Partial
Permutations

The number p of columns permuted in the partial permutation varies from 0 to
n/4. From numerical analysis, it is demonstrated that small values of p result in
a low Hamming weight of the decoding output. However, it should be noted that
when p = 0, the (U,U + V ) part of the modified RM codes becomes identical
to the RM code except that RM(r,r) is replaced. Hence, we propose the lower
bound of p that does not affect the randomness of the hull.

Regarding the modified RM code, its hull overlaps with (but is not a subset
of) the original RM code. If the hull is a subset of the original RM code, and
its dimension is large, the codeword of the minimum Hamming weight of the
original RM code may be included in the hull. Then, attacks such as the Minder–
Shokrollahi attack may be applied using codewords with minimum Hamming
weight. Therefore, to prevent attacks, the hull of the public code should not be
a subset of the original RM code, and hull(Cpub) ∖ (RM(r,m) permuted by Q)
should occupy a large portion of the hull, where Cpub denotes the public code,
and ∖ denotes the relative complement.

As the permutation Q is not important for determining the parameter p,
we ignore it in this subsection, and the term permutation refers to the par-
tial permutations σ1

p and σ2
p. When p = n/4, which implies that σ1

p and σ2
p

are full permutations, the average dimension of the hull and the dimension of
hull(Cpub) ∖ RM(r,m) are given in Table 5. The values may slightly change ac-
cording to the permutation.

If p is small, the Hamming weight of the errors decreases. Hence, the signing
time can be reduced by using a partial permutation with p rather than a full
permutation. The aim is to find a smaller value for p maintaining the dimension
of hull(Cpub)∖RM(r,m) as large as that by the full permutation. It can be seen
that the average of the dimension of hull(Cpub) ∖ RM(r,m) tends to increase as
p increases, and it is saturated when p is above a certain value, as in Figure 3.
Specifically, the dimension of hull(Cpub) ∖ RM(r,m) is saturated when p is ap-
proximately equal to the average dimension of hull(Cpub) ∖ RM(r,m) with full
permutation. Hence, we determine p as 572.

Table 5. Average dimension of hull(Cpub) and hull(Cpub)∖ RM(r,m) with p = n/4

(r,m) (6,13)

n 8192
k 4097

dim(hull(Cpub)) 2974
dim(hull(Cpub)∖ RM(r,m)) 572
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Fig. 3. Dimension of hull(Cpub)∖ RM(6,13) for 128-bit security parameters.

6 Security Analysis and Indistinguishability

6.1 RM Code Structure Attack

Minder-Shokrollahi’s attack [5] and Chizhov-Borodin’s attack [6] are well-known
attacks for RM code-based cryptosystem, which decomposes the public key H ′ =
SHQ into the private keys S,H, and Q. In addition, square code attack [20]
can also be applied to RM code-based cryptosystem with insertion. However,
in the proposed scheme, because of the partial permutation, replacement, and
appending codewords in the generator matrix, these attacks are not available.

6.2 Security Analysis

Decoding one out of many (DOOM) : The information set decoding is
a brute-force attack method that finds an error vector e such that HeT = s
and wt(e) ≤ w, where Stern improved the attack complexity in [21]. It has been
extensively studied, and Dumer’s algorithm [22] as well as more involved variants
in [23, 24] have been proposed.

In the variants of the CFS signature scheme, there are several hash queries.
Therefore, to launch a forgery attack, it suffices to find an error vector with a
small Hamming weight for any of the syndromes. Hence, the decoding problem
DOOM given below is adequate for a tight security proof. The usual FDH proof
for existential forgery using syndrome decoding would require a work factor
≥ qH · 2λ, where qH ≤ 2λ is the number of hash queries. However, with DOOM,
the work factor is required to be ≥ 2λ. Although the work factor of DOOM is
greater than that of syndrome decoding, it provides tighter bounds for security.

Problem 1. (DOOM problem)
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Instance: A parity check matrix H ∈ F(n−k)×n
2 of an (n, k) linear code, syn-

dromes s1, s2, · · · , sq ∈ Fn−k
2 , and an integer w.

Output: (e, i) ∈ Fn
2 × [1, q] such that wt(e) ≤ w and HeT = sTi .

We consider the case in which the adversary has q instances and M =
max (1,

(
n
w

)
/2n−k) solutions for each instance. Of course, in our case, w is not

small, and thus M is
(
n
w

)
/2n−k. In [12], the work factor of solving DOOM is

given as

WFM
q = min

p,l

(
Cq(p, l)

PqM (p, l)

)
,

where

Cq(p, l) = max

(√
q

(
k + l

p

)
,
q
(
k+l
p

)
2l

)
, q ≤

(
k + l

p

)
is the complexity of solving the DOOM problem using Dumer’s algorithm and

PqM (p, l) = 1−

(
1−

(
n−k−l
w−p

)(
k+l
p

)(
n
w

) )qM

is the success probability. This work factor is the reference for choosing the
parameters of the signature scheme [25].

Although advanced algorithms for information set decoding can be adapted
to DOOM to reduce complexity, this has not yet been conducted. The proposed
signature scheme is designed to use codes with a high-dimensional hull. Hence,
the attacker can exploit this. However, to our knowledge, there is no algorithm
for information set decoding or DOOM that considers this.

With our computation, the DOOM work factor value of Enh-pqsigRM-613
is 2259.

Security against key substitution attacks : In a key substitution attack,
the adversary attempts to find a valid key that is different from the correct key
and can be used for signature verification. If the adversary knows the secret key
and the public key corresponding to a message–signature pair, we have a weak-
key substitution attack, whereas if the adversary knows only the public key, we
have a strong-key substitution attack. Both polynomial-time weak- and strong-
key substitution attacks on the CFS signature scheme were proposed in [26]. A
modification of the CFS scheme that resists such attacks was also proposed in
[26]. In this modification, the syndrome s is generated by hashing the message,
counter, and public key, rather than hashing only the message and counter. It has
been demonstrated that this modified CFS signature scheme is secure against
key substitution attacks [27]. In the Enhanced pqsigRM, the syndrome is given
as s = h(M |i), and thus it is also secure against key substitution attacks [25].
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EUF-CMA security : Here, we prove the EUF-CMA security of the modified
pqsigRM. The methods presented below are adapted from the EUF-CMA secu-
rity proof of SURF and Wave [10, 11]. It should be noted that although a key
attack for SURF is presented in [10], its proof technique is valid and generally
applicable. The proof is essentially the same except for the code used for the key
and the decoding algorithm for signing.

1) Basic techniques for EUF-CMA security proof : EUF-CMA is a
widely used attack model against signature schemes. In the security reduction
task, EUF-CMA is viewed as a game played between an adversary and a chal-
lenger. The public key PK, hash oracle H, and signing oracle Σ are given to
a (t, qH, qΣ , ϵ)-adversary A, where A can query at most qH hash values and qΣ
signatures for inputs of its own choice. Within a maximum computation time t,
A attempts to find a valid message–signature pair (m∗, σ∗). A wins the game if
Verifying(m∗, σ∗, PK) = 1 and σ∗ has not been provided by Σ; otherwise, the
challenger wins the game. The winning probability of the (t, qH, qΣ , ϵ)-adversary
is at least ϵ.

Definition 1. (EUF-CMA security)
Let S be a signature scheme. We define the EUF-CMA success probability against
S as

SuccEUF−CMA
S (t, qH, qΣ) := max(ϵ|∃(t, qH, qΣ , ϵ)-adversary).

The signature scheme S is called (t, qH, qΣ)-secure in EUF-CMA if the above
success probability is a negligible function of the security parameter λ.

We use the statistical and computational distance as basic metrics.

Definition 2. (Statistical distance)
The statistical distance between two discrete probability distributions D0 and D1

over the same space E is defined as

ρ(D0,D1) :=
1

2

∑
x∈E

|D0(x)−D1(x)|.

Proposition 1. [10] Let (D0
1, . . . ,D0

n) and (D1
1, . . . ,D1

n) be two n-tuples of dis-
crete probability distributions over the same space. For all n ≥ 0, we have

ρ(D0
1 ⊗ · · · ⊗ D0

n,D1
1 ⊗ · · · ⊗ D1

n) ≤
n∑

i=1

ρ(D0
i ,D1

i ).

Definition 3. (Computational distance and indistinguishability)
The computational distance between two distributions D0 and D1 in time t is

ρc(D0,D1) :=
1

2
max
|A|≤t

(
AdvD

0,D1

(A)
)
,
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where |A| denotes the running time of A, and AdvD
0,D1

is the advantage of
distinguisher A, which returns b ∈ {0, 1} against D0 and D1:

AdvD
0,D1

:= Pξ∼D0(A(ξ) outputs 1) − Pξ∼D1(A(ξ) outputs 1).

The EUF-CMA security of the Enhanced pqsigRM is reduced to the modified
RM code distinguishing problem and DOOM with a high-dimensional hull.

Problem 2. (Modified RM code distinguishing problem)

Instance: A code C with a high-dimensional hull.
Output: A bit b ∈ {0, 1}, where b = 1 if C is a permutation of the modified RM

code; otherwise, b = 0.

Problem 3. (DOOM with a high-dimensional hull)

Instance: A parity check matrix H′ ∈ F(n−k)×n
2 of an (n, k) code with a high-

dimensional hull, syndromes s1, s2, · · · , sq ∈ F(n−k)
n , and an integer w.

Output: (e, i) ∈ Fn
2 × [1, q] such that wt(e) ≤ w and HeT = sTi .

Definition 4. (One-wayness of DOOM with a high-dimensional hull)
We define the success of an algorithm A against DOOM with a high-dimensional
hull and parameters n, k, q, w as

Succn,k,q,w(A) = P(A(H, s1, . . . , sq) is a solution of Problem 3),

where H is chosen uniformly from the parity check matrix of (n, k) codes with
a high-dimensional hull, si is chosen uniformly in Fn−k

2 , and the probability is
taken over these choices and the internal coin of algorithm A. The computational
success of breaking DOOM with a high-dimensional hull in time t is defined by

Succn,k,q,wDOOMHull(t) = max
|A|≤t

(
Succn,k,q,w(A)

)
.

We assume here that the probability is negligible (as a function of λ) for the
parameters given in Table 3.

It is worth noting that there are sufficiently many codes with high-dimensional
hulls for the parameters given in Tables 5 and 3 [28].

Proof of EUF-CMA security Let SpqsigRM denote the proposed modified
pqsigRM. The following definitions as well as the theorem and its proof are
adopted from those in [10, 11].

Definition 5. (Challenger procedures in the EUF-CMA game)
The challenger procedures in the EUF-CMA game corresponding to SpqsigRM

are defined as follows:
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proc Init(λ) proc Hash(m, i)

(PK,SK)← Gen(1λ)
H′ ← PK
(H,S,Q)← SK
return H′

return h(m, i)

proc Sign(m) proc Finalize(m, e, i)

i←↩ {0, 1}λ0

s← Hash(m, i)
e← Decode(S−1sT ;H)
return (eQ, i)

s← Hash(m, i)
return

H′eT = ST ∧ wt(e) = w

We note that the procedures in Definition 5 simplify Algorithm 4. We can
now modify the security reduction in [10, 11] and prove the EUF-CMA security
of the modified pqsigRM as follows.

Theorem 1. (Security reduction)
Let SuccEUF−CMA

SpqsigRM
(t, qH, qΣ) be the success probability of the EUF-CMA game

corresponding to SpqsigRM for time t when the number of queries to the hash
oracle (resp. signing oracle) is qH (resp. qΣ). Then, in the random oracle model,
we have for all t

SuccEUF−CMA
SpqsigRM

(t, qH, qΣ) ≤ 2Succn,k,q,wDOOMHull(tc) + qHEH′

(
ρ(DH′

w ,Us)
)

+ qΣρ(Dw,Uw) + ρc(Dpub,Drand)(tc) +
1

2λ
,

where tc = t+O(qH · n2), DH′

w is the distribution of the syndromes H′eT when
e is drawn uniformly from the binary vectors of weight w, Us is the uniform
distribution over Fn−k

2 , Dw is the distribution of the decoding result of Algorithm
3, Uw is the uniform distribution over the binary vectors of weight w, Drand is
the uniform distribution over the random codes with high-dimensional hulls, and
Dpub is the uniform distribution over the public keys of modified pqsigRM.

Proof. Let A be a (t, qH, qΣ , ϵ)-adversary against SpqsigRM , and let (H0, s1, . . . , sqH)
be a random instance of DOOM with a high-dimensional hull for the parameters
n, k, qH, and w. We stress that s1, . . . , sqH are random independent vectors of
Fn−k
2 . Let P(Si) denote the probability that A wins Game i.

Game 0 is the EUF-CMA game for SpqsigRM .

Game 1 is the same as Game 0 except for the following failure event F :
There is a collision in a signature query. From the difference lemma in [29], we
have

P(S1) ≤ P(S0) + P(F ). (1)

The following lemma is from [11].

Lemma 1. For λ0 = λ+ 2 log2(qH), we have P(F ) ≤ 1
λ .
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proc Hash(m, i) proc Sign(m)

if i ∈ Lm

em,i ←↩ Sw

return H′eT
m,i

else

j ← j + 1
return sj

i← Lm.next()
s← Hash(m, i)
e← Decode(S−1sT ;H)
return (eQ, i)

Game 2 is obtained from Game 1 by changing Hash and Sign as follows,
where Sw denotes the set of vectors with Hamming weight w in Fn

2 :
Index j is initialized to 0 in the Init procedure. We introduce the list Lm,

which contains qH random elements of Fλ0
2 for each message m. The list is

sufficiently large so that all queries are satisfied. The Hash procedure returns
H′eTm,r if and only if i ∈ Lm; otherwise, it returns sj. The Sign process is
unchanged unless i ∈ Lm.

The statistical distance between the syndromes generated by matrix H′ and
the uniform distribution over Fn−k

2 is ρ(DH′

w ,Us). This is the difference between
Hash in Game 1 and Game 2 when i ∈ Lm. There are at most qH such instances.
Thus, by Proposition 1, it follows that

P(S2) ≤ P(S1) + qHEH′

(
ρ(DH′

w ,Us)
)
. (2)

Game 3 is obtained from Game 2 by replacing Decode with em,i in Sign

procedure as follows: e is drawn according to the proposed decoding algorithm

Game 3 Game 5

proc Sign(m)

i← Lm.next()
s← Hash(m, i)
e← em,i

return (e, i)

proc Finalize(m, e, i)

s← Hash(m, i)
b← H′eT = ST ∧ wt(e) = w
return b ∧ (i /∈ Lm)

Decode in Game 2, whereas it is now drawn according to the uniform distribu-
tion Uw. By Proposition 1, we have

P(S3) ≤ P(S2) + qΣρ(Dw,Uw). (3)

Game 4 is the game in which H′ is replaced with H0. This implies that the
adversary is forced to construct a solution for DOOM with a high-dimensional
hull. Here, if a difference between Game 3 and Game 4 is detected, then this
yields a distinguisher between Dpub and Drand. According to [10], the cost to
call Hash does not exceed O(n2), and thus the running time of the challenger is
tc = t+O(qH · n2). Therefore, we have

P(S4) ≤ P(S3) + ρc(Dpub,Drand)(tc). (4)
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Game 5 is modified in Finalize. The success of Game 5 implies i /∈ Lm

and the success of Game 4. A valid forgery m∗ has never been queried by Sign,
and the adversary has never accessed Lm∗ . As there are qΣ signing queries, we
have

P(S5) = (1− 2λ0)qΣP(S4).

Moreover, (1− 2λ0)qΣ ≥ 1
2 because we assumed λ0 = λ+ 2 log2(qΣ). Thus, this

can be simplified to

P(S5) ≥
1

2
P(S4). (5)

P(S5) is the probability that A returns a solution for DOOM with a high-dimensional
hull, which yields

P(S4) ≤ 2Succn,k,q,wDOOMHull(tc). (6)

Combining (1)–(6) concludes the proof.

Complexity of finding minimum weight codewords : Using information
set decoding, the probability of successful decoding of a weight-w-error vector is
as follows.

Prob(Dec) =

(
n−k
w

)(
n
w

) =
(n− k)(n− k − 1) · · · (n− k − w + 1)

n(n− 1) · · · (n− w + 1)
≈ (

n− k

n
)
w

(7)

This probability works the same as finding the minimum weight codewords
problem when syndrome equals 0. Thus, we can get the same equation with
(1). In other words, the complexity of finding minimum weight codewords is the
inverse of (1) substituting w to dmin as

Complexity = (
n

n− k
)
dmin

. (8)

We compute this with Enh-pqsigRM-613 and the result of complexity is 2128.
That means, it still satisfies 128-bit security.

6.3 Indistinguishability of Codes and Signature in the Proposed
Scheme

Modifications of public codes : Cryptanalysis using hulls is widely used in
code-based cryptography. However, this is valid if the hull has a specific structure
that allows information leakage about the secret key. Therefore, using only the
fact that the dimension of the hull is large, it is difficult to distinguish whether
the code is public or random code with a high-dimensional hull. The EUF-CMA
security proof requires the indistinguishability between public and random codes.
We will discuss the design methodology and how these modifications can ensure
indistinguishability. Considering the key recovery attack in [10], a (U,U + V )-
code used in code-based crypto-algorithms should have a high-dimensional hull
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for security. Even though the public code of the proposed signature scheme is not
a (U,U +V )-code, it should contain a (U,U +V ) subcode for efficient decoding.
The attack on SURF in [10] uses the fact that for any (U,U + V )-code, the
hull of the public code is highly probable to have a (u|u) structure when U⊥ ∩
V = {0}, dim(U) ≥ dim(V ). This (u|u) reveals information about the secret
permutation Q and enables the attacker to locate the U and U + V codes. To
avoid this, we should maintain the high dimension of U⊥ ∩V , implying that the
public code should have a high-dimensional hull. Hence, we define DOOM with
a high-dimensional hull and assume that the public code of Enhanced pqsigRM
is indistinguishable from a random code with a hull of the same dimension as
that of the public code, rather than any random linear code.

Moreover, kapp random rows are appended to the generator matrix, and 2r

rows of the generator matrix, that is the repeated RM(r,r), are replaced by
krep random rows; furthermore, a codeword from the dual code is appended
to the generator matrix. These modifications are equivalent to increasing the
dimension of the code itself, the hull, and the dual of the code, respectively, by
appending random codewords. Moreover, by adding random codewords, the code
is no longer a (U,U +V )-code, and thus distinguishing attacks are more difficult
to perform. We now explain the rationale for the aforementioned modifications,
which are applied in addition to partial permutation.

1) kapp random rows are appended to the generator matrix : The
Hamming weights of a random code are distributed. However, the partially per-
muted RM code has only codewords with even Hamming weight. This is because
the Hamming weights of codewords of RM(r,m) are even numbers, and partial
permutations do not affect parity.

By appending a random row with an odd hamming weight to the generator
matrix, the Hamming weights of the public code become distributed binomially.
The problem is that if only one row with an odd Hamming weight is appended,
it can easily be extracted. This can be resolved by appending more than one
codeword. Hence, we append kapp random rows such that at least one has an
odd Hamming weight. By the nature of the decoding process, it is still possible
to decode the resulting code.

2) Appending a random codeword of the dual code to the generator
matrix : The Hamming weights of the codewords in the hull of the partially
permuted RM code are only multiples of four. However, the Hamming weight of
the codewords in the hull of a random code may be an arbitrary even number,
not only a multiple of four. As in the previous modification, a random codeword
is appended to the hull. Thereby, we force the codewords of the hull of the public
code to have arbitrary even Hamming weights. As a randomly appended row to
the generator matrix is unlikely to be appended to its hull, appending a codeword
to the hull is more complicated. The following is the process for appending a
random codeword to the hull.
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Let hull(C) be the hull of a code C. We define C′ and C′′ by C = hull(C) + C′

and C⊥ = hull(C) + C′′, where hull(C), C′, and C′′ are linearly independent. We
can then generate a code with a hull with dimension dim(hull(C)) + 1 by the
following procedure:

i) Find a codeword cdual ∈ C′′ such that cdual · cdual = 0. This is easy because
a codeword with even Hamming weight satisfies it.

ii) Let Cinc = C + {cdual} = (hull(C) + {cdual}) + C′.
iii) As cdual ·(hull(C)+{cdual}) = {0} and cdual ·C′ = {0}, we have cdual ∈ C⊥

inc,
where for a vector x and a set of vectors A, x·A is the set of all inner products
of x and elements of A.

iv) It can be seen that Cinc ∩ C⊥
inc = (hull(C) + {cdual}). Hence, Cinc is a code

that has a hull of which dimension is dim(hull(C)) + 1.

If the Hamming weights of the codewords of the hull are only multiples of 4,
then another cdual is selected, and the above process is repeated.

3) Repeated RM(r,r) is replaced with random (2r, krep) codes : We note
that by replacing repeated RM(r,r) by random (2r, krep) codes, the dimension
of the code is reduced by 2r − krep; this is equivalent to appending 2r − krep
rows to the parity check matrix. The codewords of the dual code of the partially
permuted RM code have only codewords of even Hamming weight owing to a
subcode of the partially permuted RM code. This can be resolved by replacing
this subcode with another random code such that its MD decoder exists. The
partially permuted RM code includes (RM(r,r)| . . . |RM(r,r)), and the dual code
of this has only codewords of even Hamming weight by the proposition below.
It is easy to verify that the dual code of the partially permuted RM code is a
subset of the dual code of (RM(r,r)| . . . |RM(r,r)). That is, (RM(r,r)| . . . |RM(r,r))
causes the dual code of the partially permuted RM code to have only codewords
of even Hamming weight. By replacing the repeated RM(r,r) with a random code
such that its dual code has codewords of odd Hamming weight, we can force the
dual of the public code to have codewords with an odd hamming weight.

Clearly, the dual code of RM(r,r) is {0}. We replace RM(r,r) with a random
(2r, krep) code. We note that the dual code of this (2r, krep) code must have
codewords with an odd hamming weight. The generator matrix is modified in
this manner, rather than by appending rows to the parity check matrix, to ensure
that the entire code is decodable.

Public codes indistinguishability : In the EUF-CMA security proof, the
modified RM code distinguishing problem should be hard. As it is challenging to
find the computational distance between public and random codes, in this sec-
tion, we study the randomness of the public code and consider possible attacks.

1) Public code is not a (U,U + V )-code : After random rows have been
appended to the generator matrix of a (U,U + V )-code, the resulting code is
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unlikely to be a (U,U + V )-code. Considering the following proposition, it can
be seen that with probability O(2kU−n/2), a (U,U+V )-code remains a (U,U+V )-
code after a row has been appended to its generator matrix.

Proposition 2. Let C be a (U,U + V )-code. Then, for all codewords (c′|c′′) ∈
C, (0|c′ − c′′) ∈ C.
It is expected that attacking the modified RM code is difficult because the ap-
pended codewords change the algebraic structure of the code (i.e., the (U,U+V )
structure), there is considerable randomness, and there is currently no recovery
algorithm.

2) Distinguishing using hull : When a random row is appended to the
generator matrix, it is unlikely to be included in the hull. To achieve this, the
appended row should be a codeword of the dual code, and its square should be
zero. Hence, we append a codeword from the dual code to the generator matrix.

The appended row can be omitted when the attacker collects several indepen-
dent codewords with Hamming weight 4 from the hull. However, for any random
code with a high-dimensional hull, the same process can be applied, and finally,
there only remain codewords of which the Hamming weight is a multiple of 4.
Hence, this is not a valid distinguishing attack.

The hull of a random (U,U + V )-code is {0} when kU < kV and is highly
probable to have codewords of (u|u) form when kU ≥ kV . However, the hull of an
RM code is also an RM code, and in our case, the partial permutation randomizes
its hull and retains its large dimension. The hull is neither a subcode of the RM
code nor a (U,U + V )-code. Moreover, most of the hull depends on the secret
partial permutations σ1

p and σ2
p.

Signature leaks : In the EUF-CMA security proof, the indistinguishability
between public and random codes should be guaranteed. If this is true, then
the signature does not leak information. In several signature schemes, such as
Durandal, SURF, and Wave, this is achieved and proved. In SURF and Wave,
the rejection sampling method is applied to render the public code’s indistin-
guishability.

To apply rejection sampling, the distribution of the decoding output should
be known. In SURF and Wave, a simple and efficient decoding algorithm is used,
and thus it is easy to find the distribution of the decoding output. However,
in our case, the decoding output exhibits a high degree of randomness, and
the structure of the decoder is complex. Therefore, it is difficult to analyze
the distribution of the decoding output. Instead, we conduct a proof-of-concept
implementation of the Enhanced pqsigRM using SageMath. Then, we perform
statistical randomness tests under NIST SP 800-22 [30] on the decoding output,
and we compare the results with random errors in Fn

2 with Hamming weight
w. No significant difference is observed. However, it should be noted that the
success of a statistical randomness test does not imply indistinguishability. Thus,
the indistinguishability of the signature should be rigorously studied in future
work.
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7 Conclusion

We introduced a new signature scheme, called Enhanced pqsigRM, based on
modified RM codes with partial permutation as well as row appending and re-
placement in the generator matrix. For any given syndrome, an error vector
with a small Hamming weight can be obtained. Moreover, the decoding method
achieves indistinguishability to some degree because it is collision-resistant. The
proposed signature scheme resists all known attacks against cryptosystems based
on the original RM codes. The partially permuted RM code improves the sig-
nature success condition in previous signature schemes such as CFS and can
improve signing time and key size.

We further modified the RM code using row appending/replacement. The
resulting code is expected to be indistinguishable from random codes with the
same hull dimension; moreover, the decoding of the partially permuted RM code
is maintained. Assuming indistinguishability and the hardness of DOOM with a
high-dimensional hull, we could achieve the EUF-CMA security of the proposed
signature scheme.

Moreover, the Enhanced pqsigRM signature scheme has advantages in signa-
ture size. It has a relatively small signature size compared with the other digital
signature NIST PQC finalist algorithms and code-based signatures. Also, it has
a very short verification time for 128-bit security. The limitation of this scheme is
the relatively large public key size. Since the code in Enhanced pqsigRM does not
have a structure such as quasi-cyclic, the key size of the public key is (n−k)×k.

For 128 bits of classical security, the signature size of the proposed signature
scheme is 1032 bytes, which corresponds to 0.42 times that of Crystals-Dilithium,
and the number of median verification cycles is 235,656, which corresponds to
about 0.72 times that of Crystals-Dilithium. We expect the verification cycles
to be shortened because the signing process is not complicated. We are working
on it to reduce more.
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