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1 Introduction

We propose a code-based signature scheme in the Lee metric.
The main features of the submission are:

Alternative Metric The already standardized signature schemes are either based on structured lattices
or on hash functions. While classical code-based cryptography considers vector spaces endowed with the
Hamming metric, other metrics have attracted attention in the context of cryptography, e.g., the rank

metric. This work marks the first Lee-metric-based cryptographic primitive.

Small Signatures Fuleeca achieves small communication costs, i.e., small signature size plus public key
size. This is an important quantity for certificate chains. When comparing with the to be standarized
schemes, the combined size of signature and public key of Fuleeca is slightly larger than the one of
Falcon [32] but smaller than the ones of Dilithium [25] and SPHINCS™[5]. For NIST security level
I, we achieve a public key size of 1318 bytes and a signature size of 1100 bytes. The public key size
is basically the same is in Dilithium (for level II), but larger than the one for the hash-based scheme
SPHINCS™. However, SPHINCS™’s signature size is significantly larger than the one of FulLeeca. In
fact, the signature size of FuLeeca is only 14% of the signature size of SPHINCS™T and about 50% smaller
than for Dilithium.

1.1 Historical Background

In general, there are two main methods to construct code-based signature schemes: the first one applies
the Fiat-Shamir transform to a code-based zero-knowledge identification scheme and the second one is
called Hash-and-Sign approach. The former approach usually suffers from huge signature sizes, due to
large cheating probabilities within the identification scheme, and the latter one features small signature

sizes at the cost of larger public key sizes.

The signature scheme we propose is based on the Hash-and-Sign approach. The first code-based scheme
following this approach was introduced in 2001 by Courtois, Finiasz and Sendrier [21] (following the
idea of [12]) and is often called the CFS scheme. This classical Hash-and-Sign signature scheme is a
direct adaption of the McEliece public-key encryption scheme. In fact, the rationale is to start with
an algebraically structured secret code that comes with an efficient decoding algorithm. The public
key is a disguised version of the secret code. One then hashes the message (appended by a counter),
interprets the digest as a syndrome and repeats this as necessary with an incremented nonce until the
secret decoding algorithm produces an error-vector of sufficiently low Hamming weight. This approach
has some potential drawbacks that have been exploited for attacks in the past: on one hand, the public
code might be distinguishable from a random code and thus leak information about the secret code'.
On the other hand, the event that the hash of a message is a syndrome of a low-weight codeword is
highly unlikely and therefore this process has to be repeated many times. This causes the signing time
of CFS to be impractically high. Additionally, as the public key is a disguised version of an algebraically
structured code, the public key size of CFS might be rather large.

The CFS scheme was the starting point for several Hash-and-Sign signature schemes, such as [6, 35, 20],
which have not survived cryptanalysis [42, 45]. The code-based scheme WAVE [23] follows the same
blueprint but is based on a new problem: decoding large weight errors. This scheme managed to prevent

all aforementioned attacks and so far no successful cryptanalysis has been mounted. However, this comes

1See for example [28], where the CFS scheme using high rate Goppa codes has been attacked.
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at the cost of impractically large public key sizes.

Code-based signature schemes based on quasi-cyclic structures with low Hamming density codes, e.g.,
[6, 44], are vulnerable to statistical key attacks [48, 24]. All mentioned attacks have in common that
they make use of the small support of the secret key. An attacker can recover the sparse secret key by
observing the distribution of many signatures and comparing it to a random distribution. The use of the
Lee metric thwarts such attacks, as even though the Lee weight of the secret basis is low, the number of

non-zero entries can be very high for large enough field sizes.

Fuleeca is therefore based on quasi-cyclic Lee-metric codes. We set the Lee weight of the secret generators
on the Lee-metric Gilbert-Varshamov (GV) bound. This allows us to treat the secret code like a random

linear quasi-cyclic Lee-metric code, which attain this bound with high probability.

1.2 Overview of the Basic Idea

In a nutshell, the signature scheme works as follows: the secret key is a quasi-cyclic generator matrix,
where the generators have Lee weight according to the Lee-metric GV bound and the public key is its
systematic form. Note that recovering the original basis is as hard as the problem of finding codewords
of given Lee weight, which is proven to be NP-hard [53]. The binary hash output of the message m is
mapped onto {£1} and is considered as the target vector ¢ for the main step of the scheme: the signer
uses the secret basis to find a codeword, which will be the signature for m, with two properties: firstly,
the Lee weight should be close to a fixed target Lee weight and secondly, the signum of the codeword
should have many 1, respectively —1 in the same places as the target vector ¢, we will call this the
matching of the signs. This second property is used to bind the message to the signature, while the first

property is essential to make the scheme secure.

A multiple-use signature scheme should possess an existential unforgeability under adaptive chosen mes-
sage attacks (EUF-CMA) security proof. For code-based signatures constructed from a zero-knowledge
identification scheme this property is assured through the number of rounds and the cheating probabil-
ity. However, the EUF-CMA security proof is notoriously difficult for Hash-and-Sign approaches. To the
bests of our knowledge, WAVE [23] is the only known code-based Hash-and-Sign signature scheme that
provides such a proof. Unfortunately, the achieved public-key size of more than 2 megabytes for 128 bit
classical security is very large compared to Falcon’s 897 bytes. Even though we do not provide a full
security proof for FulLeeca, we consider attacks exploiting the leakage via published hash/signature-pairs
and design our scheme integrating countermeasures for those attacks. Heuristically, we observe that our

scheme does not leak any information via the standard attack vectors.

2 Preliminaries

2.1 Notation

Throughout this work, we denote by IF,, the finite field of order p, where p is a prime. We often choose
to represent this prime field as {—%717 ...,0,..., p%l}, which we call the symmetric representation. We
denote vectors in bold lowercase and matrices in bold uppercase letters. We refer to the ¢-th element of
the vector v by v; and similarly, to the j-th row of a matrix A by a; and we denote the element in the j-th
row and k-th column by a; ;. The identity matrix of size n is denoted by I,,. We denote by uppercase
letters sets and for a set S C {1,...,n}, we denote by |S| the cardinality and by S¢ = {1,...,n}\ S the

complement. For a set S C {1,...,n} of size s and matrix A € IF’;X”, we denote by Ag the k x s matrix
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formed by the columns of A indexed by S, similarly for a vector « € F}), we denote by s the vector of

length s formed by the entries of « indexed by S.

The sampling of an element a from the uniform distribution over a set K is denoted by a & K. While
the sampling of an element a according to a distribution x is given by a & x and by a slight abuse of
notation we denote sampling of a vector v independently and identically distributed (i.i.d.) from x by

vix.

The binary entropy function with parameter p is defined as ha(p) = —plog,y(p) — (1—p) log,(1—p).

2.2 Cryptographic Notation

We denote the security parameter by A. We use standard definitions of probabilistic polynomial time
algorithms. We denote by “Hash” a Hash function in the perfect random oracle model. For more details

we refer to Section 7.

In a digital signature scheme we have two parties, the signer and the wverifier, and three efficiently
computable algorithms: the key generation, the signature generation and the signature verification. In
the key generation, the signer randomly samples a secret key sk and computes and publishes the connected
public key pk. For the signature generation, given a message m, the signer then uses the secret key sk to
compute a signature v. The signer then sends (m,v) to the verifier. The verifier checks the validity of
the signature v for the message m under the constraints imposed by the scheme using the public key in
the signature verification step. An adversary might try to construct a valid signature, either using just
the knowledge of the public key, or after having observed several signatures corresponding to different

messages. The adversary is only allowed to succeed with negligible probability, e.g., < 2.

2.3 Coding Theory Notation

An [n, k] linear code C is a k-dimensional linear subspace of [F;; and can be compactly represented either
through a generator matriz G € IF’;X”, which has the code as its image or through a parity-check matriz
H < Fénik)xn having the code as its kernel. The elements of a code are called codewords and for any

x € F), wecall s = xH' the syndrome of x. The rate of an [n, k] code is R = %

For an [n, k| linear code C and a set I C {1,...,n}, we denote by C; the set of restrictions on codewords
restricted to the coordinates specified in I. We say that I C {1,...,n} of size k is an information set, if
ICr| = |C|. As a consequence, we have that for a generator matrix G, respectively a parity-check matrix
H of the code, G; and Hc are invertible. We say that a generator matrix G, respectively a parity-check

matrix H, is in systematic form (with respect to I), if Gy = Iy, respectively Hje = I,,_.

Classically, we endow the vector space ) with the Hamming metric, where the Hamming weight of a
vector v, denoted by wtg(v), is given by the number of non-zero entries of v. However, for this scheme,

we are interested in a different metric, called the Lee metric.

The Lee weight of an element a € IF, is defined as
wtr,(a) := min{a,p — a}, (1)

where the representation of a is chosen to be in {0,...,p — 1}. In fact, one can think of the Lee weight
as the Li-norm modulo p. Clearly, the Lee weight of an element can be at most (p — 1)/2, thus we will

denote this value by M. For a vector v € F} its Lee weight is defined as the sum of the Lee weights of
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its elements, i.e.,

wtr(v) :== Zth(vi). (2)

Note that, wtp(v) < wtr(v) < Mwty(v) and the average Lee weight of the vectors in ) is given by
(M/2)n.

The Lee weight induces the Lee distance, which we define by dp(z,y) := wtz(z — y), for all z,y € F}.

For a linear code C we define the minimum Lee distance as

dr(C) = min{wtr(e) | c € C,c # 0}.

We denote by § the relative minimum Lee distance, that is § = dnL—J(\g). Let us denote by Vi(p,n,r) the

Lee sphere of radius t
Vi(p,n,t) :=={x € F) | wtp(x) = t},

and by

.1
Fu(p,T) = Tim_ ~log, (Vi (p, n, TnM))
its asymptotic size. The exact formulas for the size of Vi (p,n,t) and Fr(p,T) can be found in [53,
33].
Let us denote by A(n,d) the maximal size of a code in F}) of minimum Lee distance §Mn and by

R(6) = limsup ! log,(A(n,9)).
n

n—oo

The Gilbert-Varshamov (GV) bound in the Lee-metric [4] then states:

In [18] it was shown that random Lee-metric codes attain with high probability the Lee-metric GV
bound, i.e., a random code has with high probability a relative minimum Lee distance § such that
R(6) =1— Fr(p,0). For the considered quasi-cyclic code of rate 1/2, the corresponding minimum Lee

distance & of codes on the GV bound will only depend on p and is thus denoted by &5V

If C € F} is a random code of dimension k, we can also compute the expected number of codewords of a

given Lee weight w as

|VL(p7 n, w)|pk7n.

2.4 Functions

For our scheme we represent the elements of I, as

p—1 p—1
— ., 0, —
{ 2 ) ) ) ) 2 }

for p > 3 prime and n € N even. As usual, we write M for the maximal Lee weight in F,, that is

M = 1’2;1 We define a function sgn(z), that gives us the sign of an element in F,,.
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Definition 1 (Signum). For z € F, = {—%, ...,0,..., ’”2;1} let

0 ifx =0,
sgn(z) =91 ifx>0,
-1 ifz<0.

For the symmetric representation of I, this corresponds to the common signum function.

Furthermore, we define a matching function mt(x, y) that compares « and y and counts the number of

symbols that hold the same sign.

Definition 2 (Sign Matches). Let x,y € F} and consider the number of matches in their sign such that
Hlt(w, y) = |{l € {17 e 7n} ‘ 5gn('rl) = Sgn(yi)’xi 7é 0, Yi 7é O}|

We are interested in upper bounding the probability of an attacker being able to reuse any of the
previously published signatures. For that, we introduce a function calculating the probability that a
vector and a uniformly random hash digest (in {£1}") have p sign matches. When talking about the
security of the signature scheme, we will usually consider the negative log, of this probability.

Definition 3 (Logarithmic Matching Probability (LMP)). For a fixed v € F} and y & {£1}", the
probability of y to have u := mt(y,v) sign matches with v is

B, wt (v),1/2),

where B(k,n, q) is the binomial distribution defined as

B(k,n,q) = (Z)qk(l —q)"

To ease notation, we write LMP (v, y) = —logy(B(p, wti (v),1/2)).

Note that this function can be efficiently approximated via additions and subtractions of precomputed

values of log,(x!), i.e. using a look-up table.

In [9], the authors computed the marginal distribution of entries where vectors are uniformly distributed
in Vi (p,n,w). Let E denote a random variable corresponding to the realization of an entry of x € Fy.

As n tends to infinity we have the following result on the distribution of the elements in = € F}.

Lemma 4 (]9, Lemma 1]). For any x € F,, the probability that one entry of @ is equal to z is given by

pu(z) = ﬁ exp(—B wh (z)),

where Z denotes the normalization constant and J is the unique solution to w = Zf;ol wtr, (1)pw ().

Definition 5 (Typical Lee Set). For a fixed weight w, let p,,(z) be the probability from Lemma 4 of
the element x € F),. Then, we define the typical Lee set as

T(p,n,w) = {sc €y | x; = x for f(pw(w)n) coordinates i € {1,.. ,n}} ,

for a rounding function f. That is the set of vectors, for which the element x occurs f(p, (x)n) times.
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In principle, f could be simply chosen as the rounding function. This would, however, mean that the
elements of T'(p,n,w) do in general not have Lee weight w. This effect is particularly evident when
moderate values w are picked, for which number occurrences would be rounded to zero for many field

elements.

Therefore, to obtain a closer approximation of the target weight, we design f as follows: if the expected
number of occurrences for a symbol z € F,, according to p,,(x)n is at least 1, we always round down. If,
however, the element x is expected to occur at most once, we round up or down according to a threshold
7. This 7 allows us fine control over the Lee weight of the vector & € T'(p,n,w) C 7. We choose this
value such that the vector used to generate the secret key has Lee weight as close to the GV bound as

possible.

3 FuLeeca Signatures

In this section, we describe how Fuleeca works.

3.1 Key Generation

The key generation of our signature scheme is presented in Algorithm 1. The basic idea to generate the
secret key Ggec is to sample two cyclic matrices A, B € IFZ/ZX"/Z of Lee weight wiey = 6pGVn, where
A has to fulfill the extra property of being an invertible matrix. Note that this property is satisfied
for random matrices with large probability. The public key is obtained by computing the row reduced
Echelon form of G, referred to as Gys. The public key is then formed by the non-trivial part of Gy,
which we denote by T.

Algorithm 1: Key Generation

Input: Prime p, code length n, security level A, Lee weight wicy

1 Choose a, b & T(p,n/2, Wkey)-
2 Construct cyclic matrix A € IFZ/ 21/2 gom all shifts of a. A needs to be invertible. If this is
not the case, resample a according to Line 1.

s Construct cyclic matrix B € Fp/2*™/? from all shifts of b.

4 Generate the secret key Gsee = (A B) € ]E‘Z/2X".
5 Calculate the systematic form Gys = (In/Q T) of Ggee with T' = A~ B.
Output: public key T, private key Ggec

Note that |T'(p,n/2, wkey)|? corresponds to the cardinality of our key space. In order to prevent brute

force attacks this cardinality needs to be larger than 2*.

3.2 Signature Generation

Note that most of the Hash-and-Sign schemes require the Hash of a message to be a syndrome for a
public parity-check matrix. In this Hash-and-Sign algorithm we proceed differently. We use the generator
matrix to generate signatures which are codewords of Lee weight within a fixed range. The connection

to the Hash of the message vector is established through the number of sign matches.

The signature generation takes as its input the message m to be signed and makes use of the private key
G.. and outputs the signature y. To do so the algorithm utilizes the secret generators matrix of the
code, namely the rows of G, to find a codeword v = [y, yT'] of Lee weight in [ws;q — €5, Wsig] with sign

matches achieving a desired LMP between the hash of the message and the signature codeword. Without
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having access to a secret basis (the private key), it is already computationally hard to find codewords in
the desired Lee weight range (even ignoring the LMP). Therefore, this property suffices to ensure that
it is hard to generate fresh codewords that can function as signatures even for arbitrary hashes.

Loosely speaking, a high LMP value ensures that enough signs of the codeword v and challenge ¢ match.
This establishes the connection between the signature and the message and prevents reusing codewords
contained in previously published signatures to sign freshly generated hashes. Sampling a fresh salt if a

signing attempt does not work, guarantees that any message can be signed successfully.

Algorithm 2: Signing

Input: Secret key a, b, message m, threshold ¢, signature weight ws;g, key weight wy.ey, scaling
factor s € R, security level A\, number of concentrating iterations ncop-
Output: salt, signature y.

\ Gyo (A, B), G = ( Gisce

with rows g/
_Gsec> gl

2 m’ «+ Hash(m)
3 repeat

4 salt < {0,1}256 // Simple signing starts
5 ¢ + CSPRNG(m/ || salt)
6 C; — (—1)(31' Vi
7 x <« (0,...,0)
8 for i + 1 ton/2 do
9 Tt = mt(giac) - Wt%(gl)
10 x; = |Tmes] // Simple signing ends
end
11 A—{1,...,n} // Allowed row index set
12 v+ xGgee // Concentrating starts
13 v« (0,..,0),i =0
14 If <1
15 for j < 1 to neo, do
16 forie{l,...,n} do
17 V' «—v+g)]
18 if LMP(v",¢) — (A+64+¢)| < |LMP(v',¢) — (A + 64 +¢)| then
19 ifie A||lf =0 then
20 ‘ Vv i i
end
21 w’  wtp (V')
22 if w > wgiy — Wkey then
| If«0
23 if w < wyyy then
24 | v
25 if i’ < % then
26 | A« A\{i +n/2}
27 else
28 | A« A\{i —n/2}
end
29 if wtr (V) < weg && Wt (V) > weig — 2wkey && LMP(v,¢) > X + 64 then
30 [y, yT| v
31 return salt, ENCODE(y)
32 else
33 ‘ go to Line 3 // Concentrating ends
end

In line 1, one takes the secret key G from the Key Generation 1, and stacks it with its negative —G g¢..-
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In line 2, we hash the input message and get m/, which will be fed together with a salt to CSPRNG in
line 5 to get the target vector ¢ for the number of sign matches, i.e., the LMP (v, ¢), where v denotes
the information vector of the signature y. Line 6 assures that ¢ is in {£1}" making its signs comparable
with the signs of vectors in F. In line 9, we are checking how many matches the row g; has with
the target vector ¢. We take into account how many of the signs of ¢ and g; are matching in line 10,
where || denotes truncation. We do this by setting the magnitude in the corresponding position of the
information vector according to the number of matches and the scaling factor s. Thus, if the row has
many matches with the target ¢, we add this row multiple times. This results in the information vector

x and in line 12 produces the preliminary codeword v.

Lines 11-33, which we refer to as the Concentrating procedure, are necessary to ensure that the signatures

vary as little as possible in Lee weight and sign matches.

A keeps track of which rows have already been added or subtracted from the codeword v and is updated
respectively in line 26, 28. In line 14, we initiate the condition [ f with 1, which keeps track whether the
conditions of the signature (that is LMP and Lee weight) are satisfied, in which case [ f will be set to 0.

To ensure a constant time signature generation, the lines 16-28 will only run up to n,, times.

To have signatures with much lower Lee weight than other signatures is undesirable, as this might leak
information on the secret key. Thus, the iterative approach in lines 16-20 is used to add or subtract the
generator row minimizing the absolute difference to the desired LMP. For this we first add the row g to
v in line 17 and then check in line 18 if the difference of the LMP to the target is minimized by adding
this row. Line 19 checks whether the row g} is within the set of allowed rows, i.e., in A or if the signature
conditions are satisfied, i.e., [f = 0. This results in a codeword v’ which is close enough to the target
LMP.

Lines 21-24 aim at creating signatures of almost constant Lee weight. For this we compute in line 21 the
Lee weight w’ of v’ and check in line 22 if it is close enough to the target Lee weight wg;g, i.c., at most
has a wgey difference. In this case, we update the signature condition [f with 0. If the Lee weight w’ is
larger than the target, we reset v’ with the initial v in lines 23, 24. The lines 25-28 update the set of
rows which are allowed to be added. In fact, if i’ < n/2, we added a row of G and exclude the same
row to be extracted again by excluding ¢’ + n/2 from the allowed set A. If i’ > n/2, the added row was

from —G.. and we exclude i’ — n/2 from A to avoid subtracting the same row again.

After all iterations have been completed, lines 29-33 check whether the resulting codeword is within
the desired LMP/Lee weight range. If this is the case, we extract the information vector y from v in
line 30 and publish the signature (salt, ENCODE(y)). The encoding procedure ENCODE(+) is described in

Section 7.6. Otherwise another salt is sampled and the signing procedure restarts.

The scaling parameter s used in line 10 is experimentally determined with the goal of minimizing the
running time of the Signing algorithm. Its value is a trade-off between the probability of creating a
valid signature for a specific hash value and the amount of iterations within the Concentrating proce-

dure.

3.3 Signature Verification

The verification process is quite simple. In a first step, the received signature y’ is decoded as explained
in Section 7.6 to obtain the uncompressed vector y. The verifier computes in line 3 and 4 ¢ as CSPRNG
from the hash of the message and salt. Then, the verifier checks that v is indeed a codeword of the

public code; this is ensured by computing v as [y yT] in line 5.



FuLeeca NIST Submission 2023

Then, the verifier checks in line 6 that the codeword v has Lee weight of at most wsy. Finally,
one checks whether a sufficient amount of the signs of the signature v match the output ¢ of the
CSPRNG (Hash(m)||salt), i.e., LMP(v, ¢) > A+64. This verification process is given in Algorithm 3.

Algorithm 3: Verification
Input: signature (salt, y’) message m, public key T, Lee weight wy;g.

1 y « DECODE(Y)
2 m’ + Hash(m)
3 ¢ + CSPRNG(m/ || salt)
4 ¢+ (VD% Wi
5 v=[yyT].
6 Accept if the following two conditions are satisfied:
(a) wtr(v) < wsig,
(b) LMP(v,¢) > )\ + 64.
Otherwise, Reject.
Output: Accept or Reject

4 Design Rationale

This section explains the design rationale behind Fuleeca. We address each choice we made for the

signature scheme.

Code-Based There are several principles used for quantum-secure cryptography, e.g., code-based,
lattice-based, isogeny-based, hash-based and multivariate cryptography. The signature schemes which
have so far been decided to be standardized, CRYSTALS-Dilithium[25], Falcon[32], and SPHINCS+5],
are hash-based and lattice-based schemes. It is desirable to have at one’s disposal also signature schemes
based on other hard problems, in case that a major breakthrough in solving lattice-based problems

arises.

Quasi-Cyclic Codes The underlying Lee-metric code is chosen with a quasi-cyclic structure, as this
allows for very compact public keys. This additional structure is common in code-based cryptography,
see e.g., BIKE [2], and has been studied in [50].

Lee Metric The Lee metric has only recently been introduced to code-based cryptography and can be
seen as an intermediate metric between the Hamming metric and the Euclidean metric used in lattice-
based cryptography. The problem of finding a codeword of given Lee weight has been proven to be
NP-complete [53]. The use of the Lee metric thwarts all the known statistical attacks, as the secret basis

has a large Hamming weight. For more details see Section 6.2.

Secret Generators on GV By setting the Lee weight of the secret generators on the GV bound, we

assume that the code behaves like a random code.

Sign Matches The signature has to have many sign matches with the target vector, which is the hash
of the message. This is necessary to bind the message to the signature. The threshold on the logarithmic
matching probability is chosen such that this condition is only met with negligible probability if the hash
and the codeword are unrelated, i.e., either one is (pseudo)-random. The seemingly “ad hoc” introduced
measure of dependence between codewords and hashes by comparing signs of elements is chosen for two
reasons: first, conceptual simplicity since we need to be able to upper bound the probability of an attacker

being able to reuse a previously published signature by finding a suitable hash. In the random oracle

10
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model we are therefore interested in the distribution of “dependence values” conditioned on a (uniformly)
random hash. Note that for the chosen measure of dependence this is just the binomial distribution since
the probability that any of the non-zero symbols in the codeword matches to a uniformly (pseudo-)random
sign in the hash is independent of all other symbols and always % To be precise, we aimed at finding a
measure of dependence using only elementary arithmetic operations. The second reason is the fact that
it is “orthogonal” in some sense to the absolute values / the Lee metric (at least for non-zero elements).
This makes the analysis of the signature distribution in the “log probability” / Lee weight space useful
since it illustrates how leakage of secret information may occur and how this may be counteracted. More

specifically, this perspective leads to the addition of the Concentrating procedure.

Concentrating In order to thwart statistical attacks, we want all signatures to be concentrated around
the target Lee weight and LMP values. Without this step, we might obtain signatures of much lower

Lee weight than other signatures and thus might leak information on the secret key.

Hash-and-Sign Following the second request by NIST for compact signatures, we adopt the Hash-and-
Sign strategy. Unlike most other schemes which effectively mask an existing algorithm with additional
noise, we carefully refine the signature distribution iteratively to avoid leakage. Because this approach
is not nearly as comprehensively studied as the other two, we try to keep the rest of the design as simple

as possible.

5 Parameters

Due to the quasi-cyclic structure of the private matrix G, it is sufficient to store only one of its
rows. Therefore, the size of the private key is in the order O,(n), where the constant depends on the

parameter p.

We take a conservative choice for the NIST security levels [38], as shown in Table 1.

Table 1: Conservative NIST Categories

NIST Security Level Classical Cost Quantum Cost
I 160 80
111 224 112
A% 288 144

Table 2: Parameters for the proposed signature scheme Fuleeca. All sizes are given in Bytes.

P n Wsig wrey  NIST cat. secret key size  public key size sign. size
65521 1318  0.03 0.001437 I 2636 1318 1100
65521 1982  0.03 0.001437 III 3964 1982 1620
65521 2638  0.03 0.001437 V 5276 2638 2130

The chosen parameters and associated data sizes for the NIST categories I, Il and V are given in Table 2.
We also give the relative Lee weights wsg = weig/(nM) and wiey = Wiey/ (M), where we recall that

M = | 251 | is the maximal Lee weight in F,,.

The signature sizes are averaged over 1k generated compressed signatures and include the size of the salt.
For compression, we have adapted the mechanisms as used in the Falcon signature scheme. Although
the signature size is not constant, it can be padded to obtain a fix size. As proposed in [27], it is possible

to compress the signatures resulting from Algorithm 2 even further.
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Table 3: Comparison of post-quantum signature schemes for NIST level I (except for Dilithium which
achieves NIST level IT). All sizes are given in kB.

scheme public key size signature size total size variant
Falcon [32] 0.9 0.6 1.5 -
FulLeeca [This work] 1.3 1.1 2.4 -
Dilitihium [25] 1.3 2.4 3.7 -
0.1 7.7 7.8 Fast
R-BG [7] 0.1 7.2 7.3 Short
0.9 7.4 8.3 Fast
Rank SDP Fen[29] 0.9 5.9 6.8 Short
0.5 8.4 8.9 Fast
Ideal Rank BG[16] 0.5 6.1 6.6 Short
. 0.1 9.8 9.9 Fast
PKP BG [16] 0.1 8.8 8.9 Short
0.1 11.5 11.6 Fast
SDItH [31] 0.1 8.3 8.4 Short
. 0.1 12.1 12.1 Fast, V3
Ret. of SDitH [1] 0.1 5.7 5.8 Shortest, V3
T <0.1 16.7 16.7 Fast
SPHINCS™ [5] <0.1 7.7 7.7 Short
0.1 18.4 18.5 Fast
Beu [15] 0.1 12.1 12.2 Short
Durandal [3] 15.2 4.1 19.3 -
) 0.1 22.6 22.7 Fast
FIR [30] 0.1 16.0 16.1 Short
, 0.1 24.0 24.1 Fast
GPS [36] 0.1 19.8 19.9 Short
18.2 9.3 27.5 Fast
1 Q
MinRank Fen [29] 18.2 7.1 25.3 Short
10.4 11.6 23.0 Balanced
LESS-FM [8] 205.7 5.3 211.0 Short sign
WAVE [23] 3200 2.1 3202 -

In Table 3, we show a comparison with SPHINCS™ [5], Dilithium [25], Falcon [32] and many other post-
quantum signature schemes for NIST level T (except for Dilithium which starts with level IT). The total
size (public key + signature size) of FulLeeca is 2.4kB, and shows that our scheme provides parameters
that outperform the NIST selected schemes Dilithium [25] and SPHINCS™ [5] in terms of total bandwidth

and the state-of-the-art for code-based signature schemes.

In Table 4, we compare Fuleeca with the 3 standardized signature schemes, Dilithium, Falcon and
SPHINCS™ for all provided security levels. Dilithium [25] has similar the public key sizes as FulLeeca,
but larger signature sizes. In fact, we can observe that the signature sizes of FulLeeca are roughly 50%

smaller. The total size of Fuleeca is less than 75 % of the total size of Dilithium.

We note that Falcon achieves both smaller public keys and signature sizes, which in the total size gives

roughly a reduction of 35% compared to Fuleeca.
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Finally, we clearly outperform SPHINCS™ in terms of signature size and total size, with a reduction of

roughly 70% in total size.

Table 4: Comparison between Fuleeca and Dilithium, Falcon, SPHINCS™ for provided security levels.
All sizes are given in bytes.

level scheme public key size signature size total size
SPHINCS™ 32 7856 7888
I Falcon 897 666 1563
Fuleeca 1318 1100 2418
T Dilithium 1312 2420 3732
SPHINCS™ 48 16224 16256
III Dilithium 1952 3293 5245
Fuleeca 1982 1620 3602
SPHINCS* 72 29792 29864
v Dilithium 2592 4595 7187
Falcon 1793 1280 3073
Fuleeca 2638 2130 4768

6 Security Analysis

In this section, we assess the security of Fuleeca. The analysis consists of three parts. We begin by
considering the generic solvers for finding codewords of given Lee weight. The second part describes
known attacks and our countermeasures. The third part discusses the applicability of lattice reduction
algorithms to solve the hard computational problems underlying this system. Taking all mentioned

attacks into account we determine the presented parameters to achieve the security levels required by
NIST.

6.1 Hardness of Underlying Problem and Generic Solvers

The adversary can attempt to recover the secret key from the public key, which is known as a key recovery
attack. For Fuleeca, this is equivalent to finding any of the the rows of the secret generator matrix, which
are of weight wy.,. Alternatively, the attacker can try to forge a signature directly, without knowledge
of the secret key. Forging a signature of Fuleeca is, therefore, equivalent to finding a low Lee weight

codeword that satisfies both the number of required matches and the weight restriction.

Hence, both attacks require solving instances of the finding a codeword of given Lee weight problem,

which is formally defined as follows.

Problem 6 (Finding Codeword of Given Lee Weight). Given H € ]Fé"ik)xn and w € N find a ¢ € F)
such that cHT = 0 and wtz(c) = w.

This problem has first been studied in [37]. Problem 6, i.e., finding codewords of given weight is equivalent
to the decoding problem. The decisional version of this problem has been proven to be NP-complete
in [53].

Several algorithms have been proposed to solve this problem, they all belong to the family of Information

Set Decoding (ISD) algorithms.

Remark 7. Note that ISD algorithms can be formulated such that they solve the syndrome decoding

Fénfk) xXn

problem, that is: given a parity-check matric H € , a syndrome 8 € Fg_k and a target weight
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v, such that He" =s" and wt(e) = t. Thus, by setting s = 0, we can

use such solvers to find codewords of weight t. However, note that Prange’s algorithm [}6] searches for

t, they find an error vector e € F

a transformed syndrome s’ = sU, for some invertible U and wants the transformed syndrome to have
weight t. As this is never satisfied for s = 0, Prange cannot be used to find codewords of given weight.
However, all improvements upon Prange, such as Stern/Dumer [52, 26], MMT [41], BIMM [11] try to
first enumerate the error vector in the information set and then check whether the remaining vector has

the remaining weight. This can also be applied to s = 0.

ISD algorithms make use of an information set of the code, where one assumes a small weight and thus

constructs lists of these partial solutions.

n—k)xn . .
Iﬁ}(j ) , choose an information

Let us quickly recall the main steps of an ISD algorithm. Given H €
set I and bring H into a partial systematic form. For this, let J be a set of size k + ¢, which contains

the information set I and transform H as

- I, . H
UHP - H - ( n—k—~4 1>,

0 H,

where U € ]Fz(,"_k)x(n_k) is an invertible matrix and P € F}*" is a permutation matrix. Thus, we also
split the unknown solution ¢ into the indices J and J€, i.e., cPT = (c1,cy). Assuming that ¢, has Lee

weight v, we get the following two equations:

Cl%-CQEIF =0
coH,) =0.

Thus, we can first solve the second equation, coHy = 0 with wtz(cy) = v as we then can easily check if

the missing part ¢; has the remaining Lee weight, by wtz (coH ) = w — v.

In [53], several algorithms have been presented to solve the smaller instance, namely using Wagner’s
approach of a set partitioning and using representation technique. In [19], the authors presented the

amortized Wagner’s approach.

Finally, in [10] the authors presented an adaption of these algorithms, taking into account that a random
low Lee weight codeword has the exponential weight distribution observed in [9]. In these papers, it has
been observed, that the amortized BJMM approach attains the lowest computational cost, and thus we

consider this algorithm to compute the security level of the proposed parameters.

For the details of the algorithm, we refer to [10]. Mathematica programs to compute the computational

costs of BJMM are publicly available? or for Wagner’s cost here®.

We adapted the program which computes the classical asymptotic cost ¢ in the form 2™, by considering

the cost ¢/2 on a capable quantum computer (see [13, 19]).

Since we sample the secret basis for the generator matrix using the typical Lee sets, i.e., any x € [F,, occurs
in the sought-after error vector e in f(puw,., (z)-n) number of times, it makes sense to use this information
in an ISD algorithm. However, as shown in [10], the amortized BJMM algorithm outperforms even the

attempts to use restricted balls in case, where we are beyond the unique decoding radius. Thus, we build

?https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.
nb
Shttps://github.com/setinski/Information-Set-Decoding-Analysis
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our security analysis on this fastest known algorithm, taking into account also polynomial speedups due

to the quasi-cyclic structure [50].

6.2 Analysis of the Algorithm with Respect to Known Attacks

264 signatures for chosen messages.

As required by NIST, we assume that an attacker has access to up to
Such multi-use scenarios require an existential unforgeability under chosen message attack (EUF-CMA)
security proof. For Hash-and-Sign approaches, EUF-CMA security proofs are notoriously difficult. Un-

fortunately, we cannot provide one at the moment.

We prevented possible leakages and vulnerabilities via the Concentrating procedure. These considerations
are described in more detail below. Note that the Concentrating procedure at the moment does not
involve a threshold on how close the valid signatures have to be to the target LMP. This flexibility
might be of use in a future EUF-CMA security proof. Additionally, the scheme does not involve rejection

sampling, which might be helpful to strengthen security, as soon as new attack vectors are known.

Exploiting additional knowledge given to the attacker in form of signatures is perhaps the most common
way to attack Hash-and-Sign based signature schemes. In fact information leaked by the signatures
has repeatedly been used to retrieve the private key. To give an example, successful attacks on the
schemes [6, 44] have been presented in [48, 24]. Specifically, these attacks exploit the fact that for the
proposed schemes in the Hamming metric a basis vector as well as the signatures have low weight, i.e., a
small support. The main problem in the design of these attacked schemes was that the supports of the

published signatures correlate with the private key.
We consider attacks exploiting leakage via published hash/signature pairs.

Support-based attacks such as those mentioned cannot be applied to FulLeeca as in the Lee metric vectors
of low Lee weight do not necessarily have a small Hamming support. In fact, by putting the weight of

the secret generators on the GV bound, we may even treat the resulting code as a random code.

This thwarts Hamming-metric attacks as the secret generators and the signatures have close to full

Hamming weight.

Setting a sufficiently high threshold for the number of required sign matches prevents that a previously
published signature can be directly used to sign another message. An obvious generalization of this reuse
attack is creating linear combinations of existing signatures to forge new signatures. Note, however, that
with overwhelming probability the Lee weight of the resulting vector will be too large to be accepted
by the verifier. Hence, such an attack, which is similar to performing a sieving algorithm known from

lattice-based cryptography, requires complexity which is exponential in the code parameters.

Notably the works [34, 40] show that finding a codeword of lower Lee weight in a quasi-cyclic code is
significantly easier in case the code dimension n/2 is a composite number. In fact the security reduces
to the codeword finding problem in a quasi-cyclic code with dimension equal to the smallest factor of

n/2. Therefore, for all considered parameter sets in this work, we choose n/2 to be prime.

To avoid leakage via published hash/signature pairs we integrated a specific procedure into the signing
algorithm, which we refer to as the Concentrating procedure. In the following, we first examine the
signing algorithm without applying the specified Concentrating procedure. We randomly draw k& = 500
salts and messages and observe the corresponding outputs of the hash-function hq,..., hg, ie., hy =
Hash(salt||mg). For two different private keys we compare the Lee weights and sign matches of the

corresponding signatures after just applying “Simple Signing”.
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Figure 1: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two different keys (left
and right) after application of “Simple Signing”.
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Figure 2: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) for two different keys after
application of both “Simple Signing” and “Concentrating”.

Figure 1 shows the relation between the relative Lee weights and the LMP between the codeword and
the target vector, which is the hash of the message. Since the signature algorithm effectively correlates
the secret key and the hashes it appears to be possible to learn at least some information about the

secret key based on the distribution of resulting codewords in this Lee weight / LMP space.

The distribution of signatures for both private keys of Figure 1 show that the LMP between hash and
codeword as well as the resulting Lee weights vary significantly and depend on the secret key. Since
we are using two different private keys, we obtain two different signatures for each of the hashes. To
exemplify this, we marked the resulting signatures before the Concentrating procedure for the same hash
(the red dots) but using different private keys in Figure 1. Even though we do not provide a specific
attack exploiting this behavior, the results suggest that some information about the private key is leaked

and can potentially be exploited to help in the process of recovering the secret key.

Figure 2 shows the distribution of LMP values and relative Lee weights for the same hashes as in Figure 1
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Figure 3: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two different keys both
after application of the “Simple Signing” part of Algorithm 2 and as well as applying the “Concentrating”
procedure (dense clusters in the upper right).
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Figure 4: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) before applying the Concen-
trating procedure. Unlike the previous figures, all of the displayed signatures were created using a single
key. The vectors are divided into two (nearly equally large) groups, where the ratio between the log
probability (LMP) and the Lee weight is above average (left), respectively below average (right).

after the Concentrating part of Algorithm 2 has been completed. The difference between the distributions

for the different secret keys shall be as small as possible to minimize leakage about the secret key.

As in Figure 1, we marked the signatures for the same hashes and different secret keys, this time after the
Concentrating procedure in Figure 2. The results show that the Concentrating procedure significantly
reduces the leakage observable via the relative Lee weight / LMP map.

Figure 3 provides the information observable from Figure 1 and Figure 2 within a single plot to further

illustrate the effect of the Concentrating procedure.

Similarly, we also observe that the shape of the distribution of signatures in the Lee weight / LMP

space does not appear to meaningfully depend on the distribution of the same signatures after “Simple
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Figure 5: The same two sets of hashes for the same key (as in figure 4) after applying the “Concentrating”
algorithm.

Signing”. This is demonstrated in Figure 4 and 5 where for a single key we apply “Simple Signing” to

the same set of hashes as before but split the signatures into two groups of almost equal size.

For group one (left hand side of Fig. 4) obtaining a codeword with the required LMP after application
of the Concentrating procedure is expected to be easier than for group two (right hand side of Fig. 4)
since in terms of the ratio between the log probability (LMP) and the Lee weight all of these are above
average, while group two is below average. In fact, the percentage of hashes in group two that lead to a
valid signature (right hand side of Fig. 5) in the end is slightly lower than for group one (left hand side
of Fig. 5). However, this behaviour is to be expected for effectively every private key and, thus, this does

not reveal any useful information about any chosen key in particular.

6.3 Lattice-based Attacks

Since the Lee metric is close to the Euclidean metric used in lattice-based cryptography, one has to study
the known combinatorial attacks therein. In fact, the Lee metric corresponds to the Li-norm, whereas
the Euclidean metric corresponds to the Lo-norm. It is well known [47] that problems with respect to
the Lo-norm can be reduced to problems with respect to any other L,-norm. This result translates to:
any algorithm solving a problem in the L,-norm can also be used to solve the problem in the Ly-norm.
Or as stated in [47]: “our main result shows that for lattice problems, the Lo-norm is the easiest.” Thus,
one can use the Lee-metric ISD algorithms to solve lattice-based problems in the Euclidean metric. It
is unknown, whether the reverse direction is also possible, i.e., whether there exists a reduction from
problems with respect to the Li-norm to problems with respect to the La-norm. This is, however, exactly

the direction required in order to use lattice-based algorithms to solve problems in the Lee metric.

To the best of our knowledge the only sieving algorithm in the Li-norm is provided in [17], where the
authors provide an (1 + €) approximation algorithm for the closest vector problem for all L,-norms
that runs in (2 + 1/ 5)0(”). The asymptotic cost of this algorithm does not outperform the considered
Lee-metric ISD algorithms.

Another lattice-based approach is to search for the codeword of lowest Euclidean weight, e.g., using the
BKZ algorithm [49]. Since we set the weight of the secret generators on the GV bound and thus assume

that our code behaves like a random code, it is not known whether the codeword of lowest Euclidean
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weight is also the codeword of lowest Lee weight, i.e., the secret key. Under the conservative assumption
that this is indeed the case, we estimate the cost of BKZ for the full rank lattice to be in O (20'292").
We observe that the parameter sets we choose attain the target security levels also according to this
attack.

Assumption 1: Let us use BJMM to find a vector v of Lee weight wy;y. We assume that finding
another vector v’ of equal Euclidean length, i.e., [|[v||a = ||v’||2, by using BKZ has a lower complexity
than finding v using BJMM. If this assumption did not hold, then using BJMM we would be able to
achieve a speedup in solving SVP compared to using BKZ, which would in turn affect all lattice-based

cryptosystems.

Assumption 2: We assume that the complexity of using BKZ to find a vector having Lee weight less

than or equal to wy;4 is higher compared to using BJMM for this task.

For a Lee weight of wy;4 the consequence of Assumption 2 not holding is that BKZ would outperform

all known ISD algorithms for solving the given weight codeword finding problem at that weight.

BKZ requires orthogonal projections within the LLL step. However, the L; norm is not induced by a
scalar product and, therefore, we assume that the best way to use BKZ for finding short vectors in the
L, norm is to use it for finding short vectors in Lo norm and to hope that those are also short enough in
the L; norm. We assume that using BJMM to find short vectors in the L; norm is more efficient than
this.

6.4 Description of Expected Security Strength
We assume that the used Hash functions are cryptographically secure.

The best known attack to find a codeword of given Lee weight given our public key Gy, is Information

Set Decoding using the quantum, amortized BJMM algorithm in the Lee metric.

Recall that the choice to set wye, on the Lee-metric GV bound is necessary, to treat the public code as

a random code and thus estimate the BKZ algorithms cost at 20-2927

We choose p = 65521, in order to set the Lee weight wye, of the secret generators on the Lee-metric
GV bound and still have a large enough distance to the Lee weight of the signatures wyy. In fact, for
smaller choices of p and setting wge, on the Lee-metric GV bound we cannot find enough sign matches to
signatures of Lee weight w;q with wg;q < 0.2. The bound wy;4 < 0.2 is mandatory to avoid a polynomial

time cost of ISD algorithms.

For the choice of p = 65521, one cannot explicitly compute the cost of the BJMM algorithm using the
program? due to numerical instabilities. A conservative extrapolation from results for smaller choices of
p suggests that the cost for BJMM at wg;, = 0.03 lies at 2°-°%". We want to note here that Wagner’s

algorithm implies a cost of 20-57,

We choose the length n according to the BKZ algorithm on full-rank lattices, which runs with a cost of
20-292n - We aim at the conservative classical security levels A\; = 160, A3 = 224, A\5 = 288 and set n at
least such that

2); + 64 = 0.292n.

This choice is conservative in two ways. Not only the security levels A\; have been chosen conservatively

4https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.
nb
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but also assuming a loss in the security level of \; for each of the provided 24 signature vectors is a very
conservative approach within the estimation of the resulting security level. In fact, the parameters are
chosen in such a way that even for the aforementioned loss of \; + 64 bits a security level of of at least
A; bits is maintained for the respective parameter sets. It is possible to speed up solving the SVP using
BKZ by providing the algorithm with short Euclidean lattice vectors [22]. The obtainable speedup is
upper bounded by the cost of finding the provided lattice vectors since otherwise we would have found an
improved lattice reduction algorithm. The exact speedup obtained from integrating the short (codeword)
vectors depends on their Euclidean length, but we assume that a vector of comparable Euclidean length
can be obtained at a lower cost using BKZ compared to using BJMM. We conservatively add 64 to

account for the maximum possible speedup once 254 signatures have been published.

In fact, we choose n even slightly larger to ensure that we reach the necessary LMP with good probability.
This leads to the following lengths: n; = 1318, which ensures that n;/2 = 659 is prime, ny = 1982,
which ensures that ng/2 = 991 and finally n5 = 2638, which ensures that n;/2 = 1319 is prime.

Parameter Choice I The parameter choice p = 65521, n = 1318, wsig = Weig/ (M) = 0.03, Wkey =

Wiey/(NM) = 0.001437 leads at least to the desired quantum cost of 2%¢, since BJMM’s algorithm

indicates a quantum complexity of 280 = 20-08n

— 20.9277,

operations and the BKZ algorithm requires at least a

classical complexity of 238+

Parameter Choice III The parameter choice p = 65521, n = 1982, wsiy = wsig/(nM) = 0.03,

Whey = wkey/(nM) = 0.001437 leads to the desired quantum cost of 2''2, since BJMM’s algorithm

indicates a quantum complexity of 2112 = 20.08n

— 20.292n

operations and the BKZ algorithm requires at least a

classical complexity of 2578

Parameter Choice V. The parameter choice p = 65521, n = 2638, wsy = Wsig/(nM) = 0.03,
Whey = Wkey/(nM) = 0.001437 leads to the desired quantum cost of 2144 since BJMM’s algorithm

2144 — 20.08n

indicates a quantum complexity of operations and the BKZ algorithm requires at least a

classical complexity of 2770 = 20-292n,

7 Implementation Details

The reference implementation contains comments, which in combination with the pseudo-code in this
document, should help in understanding the reference implementation. In the following sections we

describe the design rationale of particular functions in the reference implementation in more detail.

7.1 Sampling of Secret Vectors during Key Generation

In order to sample the vectors a and b during Key Generation (corresponding to line 1 of Algorithm 1),
we generate a uniformly random permutation of the typical Lee set (Definition 5). We implement this
by storing the typical set as an array and uniformly permuting its entries using the Fisher-Yates shuffle
[39]. Since a naive implementation of the algorithm leaks the permutation through its secret-dependent
memory accesses, we implement a constant-time variant that has been published in [51]. The result of
this algorithm, shown in Algorithm 4, is an array of indices that correspond to the permutation. In a
second step these indices are applied onto the typical set in a constant time manner by always iterating

over all elements of the typical set and performing a conditional assignment.
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Algorithm 4: Shuffle Indices (Fisher-Yates Variant)[51, Algorithm 3]

-

Initialize pos = [0,...,n/2 — 1]
for i <~ n/2 —1 downto 0 do
posli] & {t,...,n/2 =1}
for j«—i+1ton/2—1do
if pos[j] = posl[i] then

[N

| pos[j] «i
6 else
| pos[j] < pos[j]
end
end

Output: pos

7.2 Hashes and CSPRNGs

As Fuleeca follows the Hash-and-Sign approach, the signature is generated and verified using a digest of
the message m, which is then extended to a vector ¢ before being actually used. For practical reasons, we
pre-hash the message m using a corresponding SHA-3 hash function, as specified in FIPS 202 [43], with
digest size of 2\. Afterwards, we expand this message digest together with a salt using the eXtendable-
Output Function (XOF) SHAKE256 from the FIPS 202 specification [43] as CSPRNG. The rationale
for pre-hashing the message m to m’ is that the signing procedure described in Algorithm 2 iterates
multiple times until a valid signature is found. In each iteration, a new vector ¢ must be generated that

requires input from the message m and a salt.

Having to process the message multiple times is inefficient for large messages. The pre-hashing allows
to reduce this effort to one digest computation with a potentially large input message and reduces
the computational effort within the iteration loop. Another advantage of this approach is that the
computation of the message digest can be externalized to a dedicated co-processor, which is especially

relevant if large messages need to be signed on a resource constrained device.

We furthermore decided to restrict our choice to the Keccak-based SHA-3 primitives, as this allows to
share resources for both the hash computation of the message and the CSPRNG, reducing the overhead

of code size and HW resources in a HW/SW co-design.

7.3 Polynomial Inversion

The polynomial inversion is one of the key components of the key generation. The public key T is defined
as the multiplication of the inverse of A~! and B. Due to the quasi-cyclic nature of A and B, the inverse
can be calculated as the inverse of the polynomial a. As the polynomial to be reversed is part of the
secret key, it is crucial that the runtime of the algorithm is independent of the input polynomial. To

achieve this, we mainly follow the ideas outlined by Bernstein and Yang in [14].

7.4 Number of Concentrating Iterations

To refine the signature candidate, a number of additional additions/subtractions of key lines needs to
be executed. One possibility here is to allow an undefined number of iterations and to stop as soon as
the candidate reaches the targeted Lee weight. One would then check the LMP of this candidate and
publish it in case the candidate reaches the desired level. The major downside of this approach is the

timing side-channel it opens which might, as the number of iterations depend on the secret key and the
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challenge, leak information about the key. The approach we choose is to fix the number of iterations
with the downside that the Lee weight as well as the LMP might not be in the specified range after this
number of iterations. To increase the probability for generating a codeword in the specified range we
allow additions/subtractions of rows to be undone after the codeword has reached a Lee weight greater

than wgjg — Wiey (see lines 19 and 22 within Algorithm 2).

7.5 Scaling the Information Vector

The vector « obtained in line 9 of the signing algorithm needs to scaled to be useable as an information
vector to generate a signature candidate in line 12. As this scaling factor s needs to be smaller than one
and a division by an arbitrary integer is known to be challenging to implement in constant time, the
factor s is approximated by a multiplication with an integer followed by right shift, emulating a division

by a power of two.

7.6 Encoding and Decoding

The coefficients that constitute a signature before encoding follow a Gaussian-like distribution centered
at zero. This fact allows to reduce the signature size by compressing the signature and encode it in a
bitstring. For that, we use the same approach as proposed in the Falcon signature scheme [32]. That is,
each coefficient is converted into its signed representation and split into a tail and head. The coefficient’s
sign bit is concatenated with the uncoded tail, as this tail is approximately uniformly distributed and
thus cannot be compressed efficiently. The remaining bits in the coefficient’s head are then encoded in

a 01 fashion, that is a sequence of k zeroes and a one, where k is the value of the head.

For a tail size of 9-bits, this yields signatures of 1100B, 1620B and 2130B for NIST security level I,
IIT and V, respectively, including the salt. Note, that these sizes are already zero-padded to have a
fixed signature size. The final sizes of the signatures are obtained by the worst-case size observed after

generating 1000 signatures and adding a sufficient margin on top of it.

8 Detailed Performance Analysis

Table 5 shows the required clock cycles and run time in milliseconds for the reference implementation
of the algorithm averaged over 100 runs. These values were obtained on an Ubuntu 22.04 machine
with an Intel Comet Lake (Intel Core i7-10700) CPU at its base frequency of 2900 MHz and 64 GB
of RAM using GCC version 11.3.0 and an O3 optimization. In order to generate reliable results, all
dynamic performance enhancement and power management features like hyper threading, turbo boost,
and dynamic undervolting of the CPU were disabled. Clock cycles are measured using the internal

performance registers of the CPU using the library libcpucycles®.

9 Known Answer Test Values

Known Answer Tests (KAT) have been generated and are available in the KAT folder in the submission

package.

5The implementation is publicly available at https://cpucycles.cr.yp.to/.
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Table 5: Runtime of the reference implementation in kilocycles and milliseconds on an Intel Comet Lake
with a base frequency of 2900 MHz averaged over 100 runs.

NIST cat. Unit Keygen Sign Verify
I kCycles 49354 1846779 1260
ms 17 636 0.43
111 kCycles 110918 2111156 2447
ms 38 727 0.84
\Y kCycles 192388 12327726 3789
ms 66 4250 1.31

10 Advantages and Limitations

The major advantages of FuLeeca compared to other post-quantum secure schemes are its signature and
key sizes. In terms of the sum of public-key size and signature size, we achieve better parameters than
the schemes Dilithium [25], SPHINCS™ [5], and the state-of-the-art of code-based signature schemes.
Furthermore, our submission is neither lattice- nor hash-based and, therefore, presents an alternative in
case a major breakthrough in the cryptanalysis of lattice-based schemes occurs in the future. Another
major advantage of FulLeeca is that all of its elementary steps are very easy to implement in software
and hardware. As we only rely on basic integer arithmetic, i.e., additions and multiplications, we do not
require support for floating point operations. However, relying solely on these basic operations poses a
performance drawback when compared to other alternatives, e.g. lattice-based signature schemes using
NTT.

A limitation of Fuleeca is that we are not able to provide a full EUF-CMA security proof. However,
we show why our scheme is secure against known attacks and furthermore heuristically observe that the
scheme does not leak information about the key via the standard attack vectors. Another limitation of
our scheme is that the Lee metric has not enjoyed the same attention by the cryptographic community as
the Euclidean metric of lattice-based schemes. However, NIST explicitly encouraged the use of alternative

metrics.
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