
FuLeeca
Submission to the NIST Post-Quantum Cryptography Standardization

Process
Algorithm Specifications and Supporting Documentation

Stefan Ritterhoff, Sebastian Bitzer, Patrick Karl,
Georg Maringer, Thomas Schamberger, Jonas Schupp,

Georg Sigl, Antonia Wachter-Zeh, Violetta Weger

Technical University of Munich, Germany

May 31, 2023

1

FuLeeca NIST Submission 2023

Submitters: The team listed above is the principal submitter. There are no auxiliary submitters.

Inventors/Developers: Same as the principal submitter.

Implementation Owners: The submitters.

Email Address (preferred): fuleeca.cod@xcit.tum.de

Postal Address and Telephone:
Stefan Ritterhoff, Georg Maringer
Technical University of Munich
Institute for Communications Engineering
Theresienstraße 90
80333 Munich
Germany
Tel: +498928929051

Backup contact telephone and address:
Jonas Schupp
Technical University of Munich
Chair of Security in Information Technology
Theresienstraße 90
80333 Munich
Germany
Tel: +498928928190

Signature: ×
(See “Statement by Each Submitter” or “Cover Sheet”)

2

FuLeeca NIST Submission 2023

Contents

1 Introduction 2
1.1 Historical Background . 2
1.2 Overview of the Basic Idea . 3

2 Preliminaries 3
2.1 Notation . 3
2.2 Cryptographic Notation . 4
2.3 Coding Theory Notation . 4
2.4 Functions . 5

3 FuLeeca Signatures 7
3.1 Key Generation . 7
3.2 Signature Generation . 7
3.3 Signature Verification . 9

4 Design Rationale 10

5 Parameters 11

6 Security Analysis 13
6.1 Hardness of Underlying Problem and Generic Solvers . 13
6.2 Analysis of the Algorithm with Respect to Known Attacks 15
6.3 Lattice-based Attacks . 18
6.4 Description of Expected Security Strength . 19

7 Implementation Details 20
7.1 Sampling of Secret Vectors during Key Generation . 20
7.2 Hashes and CSPRNGs . 21
7.3 Polynomial Inversion . 21
7.4 Number of Concentrating Iterations . 21
7.5 Scaling the Information Vector . 22
7.6 Encoding and Decoding . 22

8 Detailed Performance Analysis 22

9 Known Answer Test Values 22

10 Advantages and Limitations 23

11 Acknowledgments 23

12 Bibliography 24

1

FuLeeca NIST Submission 2023

1 Introduction

We propose a code-based signature scheme in the Lee metric.

The main features of the submission are:

Alternative Metric The already standardized signature schemes are either based on structured lattices
or on hash functions. While classical code-based cryptography considers vector spaces endowed with the
Hamming metric, other metrics have attracted attention in the context of cryptography, e.g., the rank
metric. This work marks the first Lee-metric-based cryptographic primitive.

Small Signatures FuLeeca achieves small communication costs, i.e., small signature size plus public key
size. This is an important quantity for certificate chains. When comparing with the to be standarized
schemes, the combined size of signature and public key of FuLeeca is slightly larger than the one of
Falcon [32] but smaller than the ones of Dilithium [25] and SPHINCS+[5]. For NIST security level
I, we achieve a public key size of 1318 bytes and a signature size of 1100 bytes. The public key size
is basically the same is in Dilithium (for level II), but larger than the one for the hash-based scheme
SPHINCS+. However, SPHINCS+’s signature size is significantly larger than the one of FuLeeca. In
fact, the signature size of FuLeeca is only 14% of the signature size of SPHINCS+ and about 50% smaller
than for Dilithium.

1.1 Historical Background

In general, there are two main methods to construct code-based signature schemes: the first one applies
the Fiat-Shamir transform to a code-based zero-knowledge identification scheme and the second one is
called Hash-and-Sign approach. The former approach usually suffers from huge signature sizes, due to
large cheating probabilities within the identification scheme, and the latter one features small signature
sizes at the cost of larger public key sizes.

The signature scheme we propose is based on the Hash-and-Sign approach. The first code-based scheme
following this approach was introduced in 2001 by Courtois, Finiasz and Sendrier [21] (following the
idea of [12]) and is often called the CFS scheme. This classical Hash-and-Sign signature scheme is a
direct adaption of the McEliece public-key encryption scheme. In fact, the rationale is to start with
an algebraically structured secret code that comes with an efficient decoding algorithm. The public
key is a disguised version of the secret code. One then hashes the message (appended by a counter),
interprets the digest as a syndrome and repeats this as necessary with an incremented nonce until the
secret decoding algorithm produces an error-vector of sufficiently low Hamming weight. This approach
has some potential drawbacks that have been exploited for attacks in the past: on one hand, the public
code might be distinguishable from a random code and thus leak information about the secret code1.
On the other hand, the event that the hash of a message is a syndrome of a low-weight codeword is
highly unlikely and therefore this process has to be repeated many times. This causes the signing time
of CFS to be impractically high. Additionally, as the public key is a disguised version of an algebraically
structured code, the public key size of CFS might be rather large.

The CFS scheme was the starting point for several Hash-and-Sign signature schemes, such as [6, 35, 20],
which have not survived cryptanalysis [42, 45]. The code-based scheme WAVE [23] follows the same
blueprint but is based on a new problem: decoding large weight errors. This scheme managed to prevent
all aforementioned attacks and so far no successful cryptanalysis has been mounted. However, this comes

1See for example [28], where the CFS scheme using high rate Goppa codes has been attacked.

2

FuLeeca NIST Submission 2023

at the cost of impractically large public key sizes.

Code-based signature schemes based on quasi-cyclic structures with low Hamming density codes, e.g.,
[6, 44], are vulnerable to statistical key attacks [48, 24]. All mentioned attacks have in common that
they make use of the small support of the secret key. An attacker can recover the sparse secret key by
observing the distribution of many signatures and comparing it to a random distribution. The use of the
Lee metric thwarts such attacks, as even though the Lee weight of the secret basis is low, the number of
non-zero entries can be very high for large enough field sizes.

FuLeeca is therefore based on quasi-cyclic Lee-metric codes. We set the Lee weight of the secret generators
on the Lee-metric Gilbert-Varshamov (GV) bound. This allows us to treat the secret code like a random
linear quasi-cyclic Lee-metric code, which attain this bound with high probability.

1.2 Overview of the Basic Idea

In a nutshell, the signature scheme works as follows: the secret key is a quasi-cyclic generator matrix,
where the generators have Lee weight according to the Lee-metric GV bound and the public key is its
systematic form. Note that recovering the original basis is as hard as the problem of finding codewords
of given Lee weight, which is proven to be NP-hard [53]. The binary hash output of the message m is
mapped onto {±1} and is considered as the target vector c for the main step of the scheme: the signer
uses the secret basis to find a codeword, which will be the signature for m, with two properties: firstly,
the Lee weight should be close to a fixed target Lee weight and secondly, the signum of the codeword
should have many 1, respectively −1 in the same places as the target vector c, we will call this the
matching of the signs. This second property is used to bind the message to the signature, while the first
property is essential to make the scheme secure.

A multiple-use signature scheme should possess an existential unforgeability under adaptive chosen mes-
sage attacks (EUF-CMA) security proof. For code-based signatures constructed from a zero-knowledge
identification scheme this property is assured through the number of rounds and the cheating probabil-
ity. However, the EUF-CMA security proof is notoriously difficult for Hash-and-Sign approaches. To the
bests of our knowledge, WAVE [23] is the only known code-based Hash-and-Sign signature scheme that
provides such a proof. Unfortunately, the achieved public-key size of more than 2 megabytes for 128 bit
classical security is very large compared to Falcon’s 897 bytes. Even though we do not provide a full
security proof for FuLeeca, we consider attacks exploiting the leakage via published hash/signature-pairs
and design our scheme integrating countermeasures for those attacks. Heuristically, we observe that our
scheme does not leak any information via the standard attack vectors.

2 Preliminaries

2.1 Notation

Throughout this work, we denote by Fp the finite field of order p, where p is a prime. We often choose
to represent this prime field as {−p−1

2 , . . . , 0, . . . , p−1
2 }, which we call the symmetric representation. We

denote vectors in bold lowercase and matrices in bold uppercase letters. We refer to the i-th element of
the vector v by vi and similarly, to the j-th row of a matrix A by aj and we denote the element in the j-th
row and k-th column by aj,k. The identity matrix of size n is denoted by In. We denote by uppercase
letters sets and for a set S ⊂ {1, . . . , n}, we denote by |S| the cardinality and by SC = {1, . . . , n} \S the
complement. For a set S ⊂ {1, . . . , n} of size s and matrix A ∈ Fk×n

p , we denote by AS the k× s matrix

3

FuLeeca NIST Submission 2023

formed by the columns of A indexed by S, similarly for a vector x ∈ Fn
p , we denote by xS the vector of

length s formed by the entries of x indexed by S.

The sampling of an element a from the uniform distribution over a set K is denoted by a
$←− K. While

the sampling of an element a according to a distribution χ is given by a
$←− χ and by a slight abuse of

notation we denote sampling of a vector v independently and identically distributed (i.i.d.) from χ by
v

$←− χ.

The binary entropy function with parameter p is defined as h2(p) := −p log2(p)−(1−p) log2(1−p).

2.2 Cryptographic Notation

We denote the security parameter by λ. We use standard definitions of probabilistic polynomial time
algorithms. We denote by “Hash” a Hash function in the perfect random oracle model. For more details
we refer to Section 7.

In a digital signature scheme we have two parties, the signer and the verifier, and three efficiently
computable algorithms: the key generation, the signature generation and the signature verification. In
the key generation, the signer randomly samples a secret key sk and computes and publishes the connected
public key pk. For the signature generation, given a message m, the signer then uses the secret key sk to
compute a signature v. The signer then sends (m,v) to the verifier. The verifier checks the validity of
the signature v for the message m under the constraints imposed by the scheme using the public key in
the signature verification step. An adversary might try to construct a valid signature, either using just
the knowledge of the public key, or after having observed several signatures corresponding to different
messages. The adversary is only allowed to succeed with negligible probability, e.g., < 2−λ.

2.3 Coding Theory Notation

An [n, k] linear code C is a k-dimensional linear subspace of Fn
p and can be compactly represented either

through a generator matrix G ∈ Fk×n
p , which has the code as its image or through a parity-check matrix

H ∈ F(n−k)×n
p having the code as its kernel. The elements of a code are called codewords and for any

x ∈ Fn
p , we call s = xH> the syndrome of x. The rate of an [n, k] code is R = k

n .

For an [n, k] linear code C and a set I ⊂ {1, . . . , n}, we denote by CI the set of restrictions on codewords
restricted to the coordinates specified in I. We say that I ⊂ {1, . . . , n} of size k is an information set, if
|CI | = |C|. As a consequence, we have that for a generator matrix G, respectively a parity-check matrix
H of the code, GI and HIC are invertible. We say that a generator matrix G, respectively a parity-check
matrix H, is in systematic form (with respect to I), if GI = Ik, respectively HIc = In−k.

Classically, we endow the vector space Fn
p with the Hamming metric, where the Hamming weight of a

vector v, denoted by wtH(v), is given by the number of non-zero entries of v. However, for this scheme,
we are interested in a different metric, called the Lee metric.

The Lee weight of an element a ∈ Fp is defined as

wtL(a) := min{a, p− a}, (1)

where the representation of a is chosen to be in {0, . . . , p− 1}. In fact, one can think of the Lee weight
as the L1-norm modulo p. Clearly, the Lee weight of an element can be at most (p− 1)/2, thus we will
denote this value by M . For a vector v ∈ Fn

p its Lee weight is defined as the sum of the Lee weights of

4

FuLeeca NIST Submission 2023

its elements, i.e.,

wtL(v) :=

n∑
i=1

wtL(vi). (2)

Note that, wtH(v) ≤ wtL(v) ≤ MwtH(v) and the average Lee weight of the vectors in Fn
p is given by

(M/2)n.

The Lee weight induces the Lee distance, which we define by dL(x,y) := wtL(x− y), for all x,y ∈ Fn
p .

For a linear code C we define the minimum Lee distance as

dL(C) = min{wtL(c) | c ∈ C, c 6= 0}.

We denote by δ the relative minimum Lee distance, that is δ = dL(C)
nM . Let us denote by VL(p, n, r) the

Lee sphere of radius t

VL(p, n, t) := {x ∈ Fn
p | wtL(x) = t},

and by
FL(p, T) = lim

n→∞

1

n
logp(|VL(p, n, TnM)|)

its asymptotic size. The exact formulas for the size of VL(p, n, t) and FL(p, T) can be found in [53,
33].

Let us denote by A(n, δ) the maximal size of a code in Fn
p of minimum Lee distance δMn and by

R(δ) = lim sup
n→∞

1

n
logp(A(n, δ)).

The Gilbert-Varshamov (GV) bound in the Lee-metric [4] then states:

R(δ) ≥ 1− FL(p, δ).

In [18] it was shown that random Lee-metric codes attain with high probability the Lee-metric GV
bound, i.e., a random code has with high probability a relative minimum Lee distance δ such that
R(δ) = 1 − FL(p, δ). For the considered quasi-cyclic code of rate 1/2, the corresponding minimum Lee
distance δ of codes on the GV bound will only depend on p and is thus denoted by δGV

p .

If C ∈ Fn
p is a random code of dimension k, we can also compute the expected number of codewords of a

given Lee weight w as
|VL(p, n, w)|pk−n.

2.4 Functions

For our scheme we represent the elements of Fp as{
−p− 1

2
, . . . , 0, . . . ,

p− 1

2

}
for p > 3 prime and n ∈ N even. As usual, we write M for the maximal Lee weight in Fp, that is
M = p−1

2 . We define a function sgn(x), that gives us the sign of an element in Fp.

5

FuLeeca NIST Submission 2023

Definition 1 (Signum). For x ∈ Fp =
{
−p−1

2 , . . . , 0, . . . , p−1
2

}
let

sgn(x) =

0 if x = 0,

1 if x > 0,

−1 if x < 0.

For the symmetric representation of Fp this corresponds to the common signum function.

Furthermore, we define a matching function mt(x,y) that compares x and y and counts the number of
symbols that hold the same sign.

Definition 2 (Sign Matches). Let x,y ∈ Fn
p and consider the number of matches in their sign such that

mt(x,y) = |{i ∈ {1, . . . , n} | sgn(xi) = sgn(yi), xi 6= 0, yi 6= 0}|.

We are interested in upper bounding the probability of an attacker being able to reuse any of the
previously published signatures. For that, we introduce a function calculating the probability that a
vector and a uniformly random hash digest (in {±1}n) have µ sign matches. When talking about the
security of the signature scheme, we will usually consider the negative log2 of this probability.

Definition 3 (Logarithmic Matching Probability (LMP)). For a fixed v ∈ Fn
p and y

$←− {±1}n, the
probability of y to have µ := mt(y,v) sign matches with v is

B(µ,wtH(v), 1/2),

where B(k, n, q) is the binomial distribution defined as

B(k, n, q) =

(
n

k

)
qk(1− q)n−k .

To ease notation, we write LMP(v,y) = − log2(B(µ,wtH(v), 1/2)).

Note that this function can be efficiently approximated via additions and subtractions of precomputed
values of log2(x!), i.e. using a look-up table.

In [9], the authors computed the marginal distribution of entries where vectors are uniformly distributed
in VL(p, n, w). Let E denote a random variable corresponding to the realization of an entry of x ∈ Fn

p .
As n tends to infinity we have the following result on the distribution of the elements in x ∈ Fn

p .

Lemma 4 ([9, Lemma 1]). For any x ∈ Fp, the probability that one entry of x is equal to x is given by

pw(x) =
1

Z(β)
exp(−β wtL(x)),

where Z denotes the normalization constant and β is the unique solution to w =
∑p−1

i=0 wtL(i)pw(x).

Definition 5 (Typical Lee Set). For a fixed weight w, let pw(x) be the probability from Lemma 4 of
the element x ∈ Fp. Then, we define the typical Lee set as

T (p, n, w) =
{
x ∈ Fn

p | xi = x for f(pw(x)n) coordinates i ∈ {1, . . . , n}
}
,

for a rounding function f . That is the set of vectors, for which the element x occurs f(pw(x)n) times.

6

FuLeeca NIST Submission 2023

In principle, f could be simply chosen as the rounding function. This would, however, mean that the
elements of T (p, n, w) do in general not have Lee weight w. This effect is particularly evident when
moderate values w are picked, for which number occurrences would be rounded to zero for many field
elements.

Therefore, to obtain a closer approximation of the target weight, we design f as follows: if the expected
number of occurrences for a symbol x ∈ Fp according to pw(x)n is at least 1, we always round down. If,
however, the element x is expected to occur at most once, we round up or down according to a threshold
τ . This τ allows us fine control over the Lee weight of the vector x ∈ T (p, n, w) ⊂ Fn

p . We choose this
value such that the vector used to generate the secret key has Lee weight as close to the GV bound as
possible.

3 FuLeeca Signatures

In this section, we describe how FuLeeca works.

3.1 Key Generation

The key generation of our signature scheme is presented in Algorithm 1. The basic idea to generate the
secret key Gsec is to sample two cyclic matrices A,B ∈ Fn/2×n/2

p of Lee weight wkey = δGV
p n, where

A has to fulfill the extra property of being an invertible matrix. Note that this property is satisfied
for random matrices with large probability. The public key is obtained by computing the row reduced
Echelon form of Gsec, referred to as Gsys. The public key is then formed by the non-trivial part of Gsys,
which we denote by T .

Algorithm 1: Key Generation
Input: Prime p, code length n, security level λ, Lee weight wkey

1 Choose a, b
$←− T (p, n/2, wkey).

2 Construct cyclic matrix A ∈ Fn/2×n/2
p from all shifts of a. A needs to be invertible. If this is

not the case, resample a according to Line 1.
3 Construct cyclic matrix B ∈ Fn/2×n/2

p from all shifts of b.
4 Generate the secret key Gsec =

(
A B

)
∈ Fn/2×n

p .
5 Calculate the systematic form Gsys =

(
In/2 T

)
of Gsec with T = A−1B.

Output: public key T , private key Gsec

Note that |T (p, n/2, wkey)|2 corresponds to the cardinality of our key space. In order to prevent brute
force attacks this cardinality needs to be larger than 2λ.

3.2 Signature Generation

Note that most of the Hash-and-Sign schemes require the Hash of a message to be a syndrome for a
public parity-check matrix. In this Hash-and-Sign algorithm we proceed differently. We use the generator
matrix to generate signatures which are codewords of Lee weight within a fixed range. The connection
to the Hash of the message vector is established through the number of sign matches.

The signature generation takes as its input the message m to be signed and makes use of the private key
Gsec and outputs the signature y. To do so the algorithm utilizes the secret generators matrix of the
code, namely the rows of Gsec, to find a codeword v = [y,yT] of Lee weight in [wsig−εs, wsig] with sign
matches achieving a desired LMP between the hash of the message and the signature codeword. Without

7

FuLeeca NIST Submission 2023

having access to a secret basis (the private key), it is already computationally hard to find codewords in
the desired Lee weight range (even ignoring the LMP). Therefore, this property suffices to ensure that
it is hard to generate fresh codewords that can function as signatures even for arbitrary hashes.

Loosely speaking, a high LMP value ensures that enough signs of the codeword v and challenge c match.
This establishes the connection between the signature and the message and prevents reusing codewords
contained in previously published signatures to sign freshly generated hashes. Sampling a fresh salt if a
signing attempt does not work, guarantees that any message can be signed successfully.

Algorithm 2: Signing
Input: Secret key a, b, message m, threshold ε, signature weight wsig, key weight wkey, scaling

factor s ∈ R, security level λ, number of concentrating iterations ncon.
Output: salt, signature y.

1 Gsec ← (A,B), G =

(
Gsec

−Gsec

)
with rows g′

i

2 m′ ← Hash(m)
3 repeat
4 salt $←− {0, 1}256 // Simple signing starts
5 c← CSPRNG(m′ || salt)
6 ci ← (−1)ci ∀i
7 x← (0, . . . , 0)
8 for i← 1 to n/2 do
9 xmt = mt(gi, c)− wtH(gi)

2
10 xi = bxmtsc // Simple signing ends

end
11 A ← {1, . . . , n} // Allowed row index set
12 ν ← xGsec // Concentrating starts
13 ν′ ← (0, ..., 0), i′ = 0
14 lf ← 1
15 for j ← 1 to ncon do
16 for i ∈ {1, . . . , n} do
17 ν′′ ← ν + g′

i

18 if |LMP(ν′′, c)− (λ+ 64 + ε)| ≤ |LMP(ν′, c)− (λ+ 64 + ε)| then
19 if i ∈ A || lf = 0 then
20 ν′ ← ν′′, i′ ← i

end
21 w′ ← wtL(ν

′)
22 if w′ > wsig − wkey then

lf ← 0
23 if w′ ≤ wsig then
24 ν ← ν′

25 if i′ ≤ n
2 then

26 A ← A \ {i′ + n/2}
27 else
28 A ← A \ {i′ − n/2}

end
29 if wtL(ν) ≤ wsig && wtL(ν) > wsig − 2wkey && LMP(ν, c) ≥ λ+ 64 then
30 [y,yT]← ν
31 return salt, encode(y)
32 else
33 go to Line 3 // Concentrating ends

end

In line 1, one takes the secret key Gsec from the Key Generation 1, and stacks it with its negative −Gsec.

8

FuLeeca NIST Submission 2023

In line 2, we hash the input message and get m′, which will be fed together with a salt to CSPRNG in
line 5 to get the target vector c for the number of sign matches, i.e., the LMP(v, c), where v denotes
the information vector of the signature y. Line 6 assures that c is in {±1}n making its signs comparable
with the signs of vectors in Fn

p . In line 9, we are checking how many matches the row gi has with
the target vector c. We take into account how many of the signs of c and gi are matching in line 10,
where b·c denotes truncation. We do this by setting the magnitude in the corresponding position of the
information vector according to the number of matches and the scaling factor s. Thus, if the row has
many matches with the target c, we add this row multiple times. This results in the information vector
x and in line 12 produces the preliminary codeword v.

Lines 11-33, which we refer to as the Concentrating procedure, are necessary to ensure that the signatures
vary as little as possible in Lee weight and sign matches.

A keeps track of which rows have already been added or subtracted from the codeword v and is updated
respectively in line 26, 28. In line 14, we initiate the condition lf with 1, which keeps track whether the
conditions of the signature (that is LMP and Lee weight) are satisfied, in which case lf will be set to 0.
To ensure a constant time signature generation, the lines 16-28 will only run up to ncon times.

To have signatures with much lower Lee weight than other signatures is undesirable, as this might leak
information on the secret key. Thus, the iterative approach in lines 16-20 is used to add or subtract the
generator row minimizing the absolute difference to the desired LMP. For this we first add the row g′

i to
v in line 17 and then check in line 18 if the difference of the LMP to the target is minimized by adding
this row. Line 19 checks whether the row g′

i is within the set of allowed rows, i.e., in A or if the signature
conditions are satisfied, i.e., lf = 0. This results in a codeword v′ which is close enough to the target
LMP.

Lines 21-24 aim at creating signatures of almost constant Lee weight. For this we compute in line 21 the
Lee weight w′ of v′ and check in line 22 if it is close enough to the target Lee weight wsig, i.e., at most
has a wkey difference. In this case, we update the signature condition lf with 0. If the Lee weight w′ is
larger than the target, we reset v′ with the initial v in lines 23, 24. The lines 25-28 update the set of
rows which are allowed to be added. In fact, if i′ ≤ n/2, we added a row of Gsec and exclude the same
row to be extracted again by excluding i′ + n/2 from the allowed set A. If i′ > n/2, the added row was
from −Gsec and we exclude i′ − n/2 from A to avoid subtracting the same row again.

After all iterations have been completed, lines 29-33 check whether the resulting codeword is within
the desired LMP/Lee weight range. If this is the case, we extract the information vector y from v in
line 30 and publish the signature (salt,encode(y)). The encoding procedure encode(·) is described in
Section 7.6. Otherwise another salt is sampled and the signing procedure restarts.

The scaling parameter s used in line 10 is experimentally determined with the goal of minimizing the
running time of the Signing algorithm. Its value is a trade-off between the probability of creating a
valid signature for a specific hash value and the amount of iterations within the Concentrating proce-
dure.

3.3 Signature Verification

The verification process is quite simple. In a first step, the received signature y′ is decoded as explained
in Section 7.6 to obtain the uncompressed vector y. The verifier computes in line 3 and 4 c as CSPRNG
from the hash of the message and salt. Then, the verifier checks that v is indeed a codeword of the
public code; this is ensured by computing v as [y yT] in line 5.

9

FuLeeca NIST Submission 2023

Then, the verifier checks in line 6 that the codeword v has Lee weight of at most wsig. Finally,
one checks whether a sufficient amount of the signs of the signature v match the output c of the
CSPRNG(Hash(m)||salt), i.e., LMP(v, c) ≥ λ+64. This verification process is given in Algorithm 3.

Algorithm 3: Verification
Input: signature (salt, y′) message m, public key T , Lee weight wsig.

1 y ← decode(y′)

2 m′ ← Hash(m)

3 c← CSPRNG(m′ || salt)
4 ci ← (−1)ci ∀i
5 v = [y yT].

6 Accept if the following two conditions are satisfied:
(a) wtL(v) ≤ wsig,
(b) LMP(v, c) ≥ λ+ 64.

Otherwise, Reject.
Output: Accept or Reject

4 Design Rationale

This section explains the design rationale behind FuLeeca. We address each choice we made for the
signature scheme.

Code-Based There are several principles used for quantum-secure cryptography, e.g., code-based,
lattice-based, isogeny-based, hash-based and multivariate cryptography. The signature schemes which
have so far been decided to be standardized, CRYSTALS-Dilithium[25], Falcon[32], and SPHINCS+[5],
are hash-based and lattice-based schemes. It is desirable to have at one’s disposal also signature schemes
based on other hard problems, in case that a major breakthrough in solving lattice-based problems
arises.

Quasi-Cyclic Codes The underlying Lee-metric code is chosen with a quasi-cyclic structure, as this
allows for very compact public keys. This additional structure is common in code-based cryptography,
see e.g., BIKE [2], and has been studied in [50].

Lee Metric The Lee metric has only recently been introduced to code-based cryptography and can be
seen as an intermediate metric between the Hamming metric and the Euclidean metric used in lattice-
based cryptography. The problem of finding a codeword of given Lee weight has been proven to be
NP-complete [53]. The use of the Lee metric thwarts all the known statistical attacks, as the secret basis
has a large Hamming weight. For more details see Section 6.2.

Secret Generators on GV By setting the Lee weight of the secret generators on the GV bound, we
assume that the code behaves like a random code.

Sign Matches The signature has to have many sign matches with the target vector, which is the hash
of the message. This is necessary to bind the message to the signature. The threshold on the logarithmic
matching probability is chosen such that this condition is only met with negligible probability if the hash
and the codeword are unrelated, i.e., either one is (pseudo)-random. The seemingly “ad hoc” introduced
measure of dependence between codewords and hashes by comparing signs of elements is chosen for two
reasons: first, conceptual simplicity since we need to be able to upper bound the probability of an attacker
being able to reuse a previously published signature by finding a suitable hash. In the random oracle

10

FuLeeca NIST Submission 2023

model we are therefore interested in the distribution of “dependence values” conditioned on a (uniformly)
random hash. Note that for the chosen measure of dependence this is just the binomial distribution since
the probability that any of the non-zero symbols in the codeword matches to a uniformly (pseudo-)random
sign in the hash is independent of all other symbols and always 1

2 . To be precise, we aimed at finding a
measure of dependence using only elementary arithmetic operations. The second reason is the fact that
it is “orthogonal” in some sense to the absolute values / the Lee metric (at least for non-zero elements).
This makes the analysis of the signature distribution in the “log probability” / Lee weight space useful
since it illustrates how leakage of secret information may occur and how this may be counteracted. More
specifically, this perspective leads to the addition of the Concentrating procedure.

Concentrating In order to thwart statistical attacks, we want all signatures to be concentrated around
the target Lee weight and LMP values. Without this step, we might obtain signatures of much lower
Lee weight than other signatures and thus might leak information on the secret key.

Hash-and-Sign Following the second request by NIST for compact signatures, we adopt the Hash-and-
Sign strategy. Unlike most other schemes which effectively mask an existing algorithm with additional
noise, we carefully refine the signature distribution iteratively to avoid leakage. Because this approach
is not nearly as comprehensively studied as the other two, we try to keep the rest of the design as simple
as possible.

5 Parameters

Due to the quasi-cyclic structure of the private matrix Gsec it is sufficient to store only one of its
rows. Therefore, the size of the private key is in the order Op(n), where the constant depends on the
parameter p.

We take a conservative choice for the NIST security levels [38], as shown in Table 1.

Table 1: Conservative NIST Categories

NIST Security Level Classical Cost Quantum Cost
I 160 80

III 224 112
V 288 144

Table 2: Parameters for the proposed signature scheme FuLeeca. All sizes are given in Bytes.

p n ωsig ωkey NIST cat. secret key size public key size sign. size
65 521 1318 0.03 0.001 437 I 2636 1318 1100
65 521 1982 0.03 0.001 437 III 3964 1982 1620
65 521 2638 0.03 0.001 437 V 5276 2638 2130

The chosen parameters and associated data sizes for the NIST categories I, III and V are given in Table 2.
We also give the relative Lee weights ωsig = wsig/(nM) and ωkey = wkey/(nM), where we recall that
M = bp−1

2 c is the maximal Lee weight in Fp.

The signature sizes are averaged over 1k generated compressed signatures and include the size of the salt.
For compression, we have adapted the mechanisms as used in the Falcon signature scheme. Although
the signature size is not constant, it can be padded to obtain a fix size. As proposed in [27], it is possible
to compress the signatures resulting from Algorithm 2 even further.

11

FuLeeca NIST Submission 2023

Table 3: Comparison of post-quantum signature schemes for NIST level I (except for Dilithium which
achieves NIST level II). All sizes are given in kB.

scheme public key size signature size total size variant
Falcon [32] 0.9 0.6 1.5 -

FuLeeca [This work] 1.3 1.1 2.4 -
Dilitihium [25] 1.3 2.4 3.7 -

R-BG [7] 0.1 7.7 7.8 Fast
0.1 7.2 7.3 Short

Rank SDP Fen[29] 0.9 7.4 8.3 Fast
0.9 5.9 6.8 Short

Ideal Rank BG[16] 0.5 8.4 8.9 Fast
0.5 6.1 6.6 Short

PKP BG [16] 0.1 9.8 9.9 Fast
0.1 8.8 8.9 Short

SDItH [31] 0.1 11.5 11.6 Fast
0.1 8.3 8.4 Short

Ret. of SDitH [1] 0.1 12.1 12.1 Fast, V3
0.1 5.7 5.8 Shortest, V3

SPHINCS+ [5] <0.1 16.7 16.7 Fast
<0.1 7.7 7.7 Short

Beu [15] 0.1 18.4 18.5 Fast
0.1 12.1 12.2 Short

Durandal [3] 15.2 4.1 19.3 -

FJR [30] 0.1 22.6 22.7 Fast
0.1 16.0 16.1 Short

GPS [36] 0.1 24.0 24.1 Fast
0.1 19.8 19.9 Short

MinRank Fen [29] 18.2 9.3 27.5 Fast
18.2 7.1 25.3 Short

LESS-FM [8] 10.4 11.6 23.0 Balanced
205.7 5.3 211.0 Short sign

WAVE [23] 3200 2.1 3202 -

In Table 3, we show a comparison with SPHINCS+ [5], Dilithium [25], Falcon [32] and many other post-
quantum signature schemes for NIST level I (except for Dilithium which starts with level II). The total
size (public key + signature size) of FuLeeca is 2.4kB, and shows that our scheme provides parameters
that outperform the NIST selected schemes Dilithium [25] and SPHINCS+ [5] in terms of total bandwidth
and the state-of-the-art for code-based signature schemes.

In Table 4, we compare FuLeeca with the 3 standardized signature schemes, Dilithium, Falcon and
SPHINCS+ for all provided security levels. Dilithium [25] has similar the public key sizes as FuLeeca,
but larger signature sizes. In fact, we can observe that the signature sizes of FuLeeca are roughly 50%

smaller. The total size of FuLeeca is less than 75 % of the total size of Dilithium.

We note that Falcon achieves both smaller public keys and signature sizes, which in the total size gives
roughly a reduction of 35% compared to FuLeeca.

12

FuLeeca NIST Submission 2023

Finally, we clearly outperform SPHINCS+ in terms of signature size and total size, with a reduction of
roughly 70% in total size.

Table 4: Comparison between FuLeeca and Dilithium, Falcon, SPHINCS+ for provided security levels.
All sizes are given in bytes.

level scheme public key size signature size total size

I
SPHINCS+ 32 7856 7888

Falcon 897 666 1563
FuLeeca 1318 1100 2418

II Dilithium 1312 2420 3732

III
SPHINCS+ 48 16224 16256
Dilithium 1952 3293 5245
FuLeeca 1982 1620 3602

V

SPHINCS+ 72 29792 29864
Dilithium 2592 4595 7187

Falcon 1793 1280 3073
FuLeeca 2638 2130 4768

6 Security Analysis

In this section, we assess the security of FuLeeca. The analysis consists of three parts. We begin by
considering the generic solvers for finding codewords of given Lee weight. The second part describes
known attacks and our countermeasures. The third part discusses the applicability of lattice reduction
algorithms to solve the hard computational problems underlying this system. Taking all mentioned
attacks into account we determine the presented parameters to achieve the security levels required by
NIST.

6.1 Hardness of Underlying Problem and Generic Solvers

The adversary can attempt to recover the secret key from the public key, which is known as a key recovery
attack. For FuLeeca, this is equivalent to finding any of the the rows of the secret generator matrix, which
are of weight wkey. Alternatively, the attacker can try to forge a signature directly, without knowledge
of the secret key. Forging a signature of FuLeeca is, therefore, equivalent to finding a low Lee weight
codeword that satisfies both the number of required matches and the weight restriction.

Hence, both attacks require solving instances of the finding a codeword of given Lee weight problem,
which is formally defined as follows.

Problem 6 (Finding Codeword of Given Lee Weight). Given H ∈ F(n−k)×n
p and w ∈ N find a c ∈ Fn

p

such that cH> = 0 and wtL(c) = w.

This problem has first been studied in [37]. Problem 6, i.e., finding codewords of given weight is equivalent
to the decoding problem. The decisional version of this problem has been proven to be NP-complete
in [53].

Several algorithms have been proposed to solve this problem, they all belong to the family of Information
Set Decoding (ISD) algorithms.

Remark 7. Note that ISD algorithms can be formulated such that they solve the syndrome decoding
problem, that is: given a parity-check matrix H ∈ F(n−k)×n

p , a syndrome s ∈ Fn−k
p and a target weight

13

FuLeeca NIST Submission 2023

t, they find an error vector e ∈ Fn
p , such that He> = s> and wt(e) = t. Thus, by setting s = 0, we can

use such solvers to find codewords of weight t. However, note that Prange’s algorithm [46] searches for
a transformed syndrome s′ = sU , for some invertible U and wants the transformed syndrome to have
weight t. As this is never satisfied for s = 0, Prange cannot be used to find codewords of given weight.
However, all improvements upon Prange, such as Stern/Dumer [52, 26], MMT [41], BJMM [11] try to
first enumerate the error vector in the information set and then check whether the remaining vector has
the remaining weight. This can also be applied to s = 0.

ISD algorithms make use of an information set of the code, where one assumes a small weight and thus
constructs lists of these partial solutions.

Let us quickly recall the main steps of an ISD algorithm. Given H ∈ F(n−k)×n
p , choose an information

set I and bring H into a partial systematic form. For this, let J be a set of size k + `, which contains
the information set I and transform H as

UHP = H̃ =

(
In−k−` H1

0 H2

)
,

where U ∈ F(n−k)×(n−k)
p is an invertible matrix and P ∈ Fn×n

p is a permutation matrix. Thus, we also
split the unknown solution c into the indices J and JC , i.e., cP> = (c1, c2). Assuming that c2 has Lee
weight v, we get the following two equations:

c1 + c2H
>
1 = 0

c2H
>
2 = 0.

Thus, we can first solve the second equation, c2H>
2 = 0 with wtL(c2) = v as we then can easily check if

the missing part c1 has the remaining Lee weight, by wtL(c2H
>
1) = w − v.

In [53], several algorithms have been presented to solve the smaller instance, namely using Wagner’s
approach of a set partitioning and using representation technique. In [19], the authors presented the
amortized Wagner’s approach.

Finally, in [10] the authors presented an adaption of these algorithms, taking into account that a random
low Lee weight codeword has the exponential weight distribution observed in [9]. In these papers, it has
been observed, that the amortized BJMM approach attains the lowest computational cost, and thus we
consider this algorithm to compute the security level of the proposed parameters.

For the details of the algorithm, we refer to [10]. Mathematica programs to compute the computational
costs of BJMM are publicly available2 or for Wagner’s cost here3.

We adapted the program which computes the classical asymptotic cost c in the form 2c·n, by considering
the cost c/2 on a capable quantum computer (see [13, 19]).

Since we sample the secret basis for the generator matrix using the typical Lee sets, i.e., any x ∈ Fp occurs
in the sought-after error vector e in f(pwkey

(x)·n) number of times, it makes sense to use this information
in an ISD algorithm. However, as shown in [10], the amortized BJMM algorithm outperforms even the
attempts to use restricted balls in case, where we are beyond the unique decoding radius. Thus, we build

2https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.
nb

3https://github.com/setinski/Information-Set-Decoding-Analysis

14

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://github.com/setinski/Information-Set-Decoding-Analysis

FuLeeca NIST Submission 2023

our security analysis on this fastest known algorithm, taking into account also polynomial speedups due
to the quasi-cyclic structure [50].

6.2 Analysis of the Algorithm with Respect to Known Attacks

As required by NIST, we assume that an attacker has access to up to 264 signatures for chosen messages.
Such multi-use scenarios require an existential unforgeability under chosen message attack (EUF-CMA)
security proof. For Hash-and-Sign approaches, EUF-CMA security proofs are notoriously difficult. Un-
fortunately, we cannot provide one at the moment.

We prevented possible leakages and vulnerabilities via the Concentrating procedure. These considerations
are described in more detail below. Note that the Concentrating procedure at the moment does not
involve a threshold on how close the valid signatures have to be to the target LMP. This flexibility
might be of use in a future EUF-CMA security proof. Additionally, the scheme does not involve rejection
sampling, which might be helpful to strengthen security, as soon as new attack vectors are known.

Exploiting additional knowledge given to the attacker in form of signatures is perhaps the most common
way to attack Hash-and-Sign based signature schemes. In fact information leaked by the signatures
has repeatedly been used to retrieve the private key. To give an example, successful attacks on the
schemes [6, 44] have been presented in [48, 24]. Specifically, these attacks exploit the fact that for the
proposed schemes in the Hamming metric a basis vector as well as the signatures have low weight, i.e., a
small support. The main problem in the design of these attacked schemes was that the supports of the
published signatures correlate with the private key.

We consider attacks exploiting leakage via published hash/signature pairs.

Support-based attacks such as those mentioned cannot be applied to FuLeeca as in the Lee metric vectors
of low Lee weight do not necessarily have a small Hamming support. In fact, by putting the weight of
the secret generators on the GV bound, we may even treat the resulting code as a random code.

This thwarts Hamming-metric attacks as the secret generators and the signatures have close to full
Hamming weight.

Setting a sufficiently high threshold for the number of required sign matches prevents that a previously
published signature can be directly used to sign another message. An obvious generalization of this reuse
attack is creating linear combinations of existing signatures to forge new signatures. Note, however, that
with overwhelming probability the Lee weight of the resulting vector will be too large to be accepted
by the verifier. Hence, such an attack, which is similar to performing a sieving algorithm known from
lattice-based cryptography, requires complexity which is exponential in the code parameters.

Notably the works [34, 40] show that finding a codeword of lower Lee weight in a quasi-cyclic code is
significantly easier in case the code dimension n/2 is a composite number. In fact the security reduces
to the codeword finding problem in a quasi-cyclic code with dimension equal to the smallest factor of
n/2. Therefore, for all considered parameter sets in this work, we choose n/2 to be prime.

To avoid leakage via published hash/signature pairs we integrated a specific procedure into the signing
algorithm, which we refer to as the Concentrating procedure. In the following, we first examine the
signing algorithm without applying the specified Concentrating procedure. We randomly draw k = 500

salts and messages and observe the corresponding outputs of the hash-function h1, . . . , hk, i.e., h` =

Hash(salt||m`). For two different private keys we compare the Lee weights and sign matches of the
corresponding signatures after just applying “Simple Signing”.

15

FuLeeca NIST Submission 2023

2 2.2 2.4 2.6 2.8 3 3.2

·10−2relative Lee weight
2 2.2 2.4 2.6 2.8 3 3.2

·10−2

60

80

100

120

140

160

180

relative Lee weight

L
M
P
(v
,c
)

Figure 1: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two different keys (left
and right) after application of “Simple Signing”.

2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2relative Lee weight
2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2

224

225

226

relative Lee weight
L
M
P
(v
,c
)

Figure 2: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) for two different keys after
application of both “Simple Signing” and “Concentrating”.

Figure 1 shows the relation between the relative Lee weights and the LMP between the codeword and
the target vector, which is the hash of the message. Since the signature algorithm effectively correlates
the secret key and the hashes it appears to be possible to learn at least some information about the
secret key based on the distribution of resulting codewords in this Lee weight / LMP space.

The distribution of signatures for both private keys of Figure 1 show that the LMP between hash and
codeword as well as the resulting Lee weights vary significantly and depend on the secret key. Since
we are using two different private keys, we obtain two different signatures for each of the hashes. To
exemplify this, we marked the resulting signatures before the Concentrating procedure for the same hash
(the red dots) but using different private keys in Figure 1. Even though we do not provide a specific
attack exploiting this behavior, the results suggest that some information about the private key is leaked
and can potentially be exploited to help in the process of recovering the secret key.

Figure 2 shows the distribution of LMP values and relative Lee weights for the same hashes as in Figure 1

16

FuLeeca NIST Submission 2023

2.2 2.4 2.6 2.8 3

·10−2relative Lee weight
2.2 2.4 2.6 2.8 3

·10−2

50

100

150

200

relative Lee weight

L
M
P
(v
,c
)

Figure 3: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two different keys both
after application of the “Simple Signing” part of Algorithm 2 and as well as applying the “Concentrating”
procedure (dense clusters in the upper right).

2 2.2 2.4 2.6 2.8 3 3.2

·10−2relative Lee weight
2 2.2 2.4 2.6 2.8 3 3.2

·10−2

60

80

100

120

140

160

180

relative Lee weight
L
M
P
(v
,c
)

Figure 4: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) before applying the Concen-
trating procedure. Unlike the previous figures, all of the displayed signatures were created using a single
key. The vectors are divided into two (nearly equally large) groups, where the ratio between the log
probability (LMP) and the Lee weight is above average (left), respectively below average (right).

after the Concentrating part of Algorithm 2 has been completed. The difference between the distributions
for the different secret keys shall be as small as possible to minimize leakage about the secret key.

As in Figure 1, we marked the signatures for the same hashes and different secret keys, this time after the
Concentrating procedure in Figure 2. The results show that the Concentrating procedure significantly
reduces the leakage observable via the relative Lee weight / LMP map.

Figure 3 provides the information observable from Figure 1 and Figure 2 within a single plot to further
illustrate the effect of the Concentrating procedure.

Similarly, we also observe that the shape of the distribution of signatures in the Lee weight / LMP

space does not appear to meaningfully depend on the distribution of the same signatures after “Simple

17

FuLeeca NIST Submission 2023

2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2relative Lee weight
2.95 2.96 2.97 2.98 2.99 3 3.01

·10−2

224

225

226

relative Lee weight

L
M
P
(v
,c
)

Figure 5: The same two sets of hashes for the same key (as in figure 4) after applying the “Concentrating”
algorithm.

Signing”. This is demonstrated in Figure 4 and 5 where for a single key we apply “Simple Signing” to
the same set of hashes as before but split the signatures into two groups of almost equal size.

For group one (left hand side of Fig. 4) obtaining a codeword with the required LMP after application
of the Concentrating procedure is expected to be easier than for group two (right hand side of Fig. 4)
since in terms of the ratio between the log probability (LMP) and the Lee weight all of these are above
average, while group two is below average. In fact, the percentage of hashes in group two that lead to a
valid signature (right hand side of Fig. 5) in the end is slightly lower than for group one (left hand side
of Fig. 5). However, this behaviour is to be expected for effectively every private key and, thus, this does
not reveal any useful information about any chosen key in particular.

6.3 Lattice-based Attacks

Since the Lee metric is close to the Euclidean metric used in lattice-based cryptography, one has to study
the known combinatorial attacks therein. In fact, the Lee metric corresponds to the L1-norm, whereas
the Euclidean metric corresponds to the L2-norm. It is well known [47] that problems with respect to
the L2-norm can be reduced to problems with respect to any other Lp-norm. This result translates to:
any algorithm solving a problem in the Lp-norm can also be used to solve the problem in the L2-norm.
Or as stated in [47]: “our main result shows that for lattice problems, the L2-norm is the easiest.” Thus,
one can use the Lee-metric ISD algorithms to solve lattice-based problems in the Euclidean metric. It
is unknown, whether the reverse direction is also possible, i.e., whether there exists a reduction from
problems with respect to the L1-norm to problems with respect to the L2-norm. This is, however, exactly
the direction required in order to use lattice-based algorithms to solve problems in the Lee metric.

To the best of our knowledge the only sieving algorithm in the L1-norm is provided in [17], where the
authors provide an (1 + ε) approximation algorithm for the closest vector problem for all Lp-norms
that runs in (2 + 1/ε)O(n). The asymptotic cost of this algorithm does not outperform the considered
Lee-metric ISD algorithms.

Another lattice-based approach is to search for the codeword of lowest Euclidean weight, e.g., using the
BKZ algorithm [49]. Since we set the weight of the secret generators on the GV bound and thus assume
that our code behaves like a random code, it is not known whether the codeword of lowest Euclidean

18

FuLeeca NIST Submission 2023

weight is also the codeword of lowest Lee weight, i.e., the secret key. Under the conservative assumption
that this is indeed the case, we estimate the cost of BKZ for the full rank lattice to be in O

(
20.292n

)
.

We observe that the parameter sets we choose attain the target security levels also according to this
attack.

Assumption 1: Let us use BJMM to find a vector v of Lee weight wsig. We assume that finding
another vector v′ of equal Euclidean length, i.e., ||v||2 = ||v′||2, by using BKZ has a lower complexity
than finding v using BJMM. If this assumption did not hold, then using BJMM we would be able to
achieve a speedup in solving SVP compared to using BKZ, which would in turn affect all lattice-based
cryptosystems.

Assumption 2: We assume that the complexity of using BKZ to find a vector having Lee weight less
than or equal to wsig is higher compared to using BJMM for this task.

For a Lee weight of wsig the consequence of Assumption 2 not holding is that BKZ would outperform
all known ISD algorithms for solving the given weight codeword finding problem at that weight.

BKZ requires orthogonal projections within the LLL step. However, the L1 norm is not induced by a
scalar product and, therefore, we assume that the best way to use BKZ for finding short vectors in the
L1 norm is to use it for finding short vectors in L2 norm and to hope that those are also short enough in
the L1 norm. We assume that using BJMM to find short vectors in the L1 norm is more efficient than
this.

6.4 Description of Expected Security Strength

We assume that the used Hash functions are cryptographically secure.

The best known attack to find a codeword of given Lee weight given our public key Gpub is Information
Set Decoding using the quantum, amortized BJMM algorithm in the Lee metric.

Recall that the choice to set wkey on the Lee-metric GV bound is necessary, to treat the public code as
a random code and thus estimate the BKZ algorithms cost at 20.292n.

We choose p = 65 521, in order to set the Lee weight wkey of the secret generators on the Lee-metric
GV bound and still have a large enough distance to the Lee weight of the signatures wsig. In fact, for
smaller choices of p and setting wkey on the Lee-metric GV bound we cannot find enough sign matches to
signatures of Lee weight wsig with wsig < 0.2. The bound wsig < 0.2 is mandatory to avoid a polynomial
time cost of ISD algorithms.

For the choice of p = 65 521, one cannot explicitly compute the cost of the BJMM algorithm using the
program4 due to numerical instabilities. A conservative extrapolation from results for smaller choices of
p suggests that the cost for BJMM at wsig = 0.03 lies at 20.08n. We want to note here that Wagner’s
algorithm implies a cost of 20.5n.

We choose the length n according to the BKZ algorithm on full-rank lattices, which runs with a cost of
20.292n. We aim at the conservative classical security levels λ1 = 160, λ3 = 224, λ5 = 288 and set n at
least such that

2λi + 64 = 0.292n.

This choice is conservative in two ways. Not only the security levels λi have been chosen conservatively

4https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.
nb

19

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb

FuLeeca NIST Submission 2023

but also assuming a loss in the security level of λi for each of the provided 264 signature vectors is a very
conservative approach within the estimation of the resulting security level. In fact, the parameters are
chosen in such a way that even for the aforementioned loss of λi + 64 bits a security level of of at least
λi bits is maintained for the respective parameter sets. It is possible to speed up solving the SVP using
BKZ by providing the algorithm with short Euclidean lattice vectors [22]. The obtainable speedup is
upper bounded by the cost of finding the provided lattice vectors since otherwise we would have found an
improved lattice reduction algorithm. The exact speedup obtained from integrating the short (codeword)
vectors depends on their Euclidean length, but we assume that a vector of comparable Euclidean length
can be obtained at a lower cost using BKZ compared to using BJMM. We conservatively add 64 to
account for the maximum possible speedup once 264 signatures have been published.

In fact, we choose n even slightly larger to ensure that we reach the necessary LMP with good probability.
This leads to the following lengths: n1 = 1318, which ensures that n1/2 = 659 is prime, n3 = 1982,

which ensures that n3/2 = 991 and finally n5 = 2638, which ensures that n5/2 = 1319 is prime.

Parameter Choice I The parameter choice p = 65 521, n = 1318, ωsig = wsig/(nM) = 0.03, ωkey =

wkey/(nM) = 0.001437 leads at least to the desired quantum cost of 280, since BJMM’s algorithm
indicates a quantum complexity of 280 = 20.08n operations and the BKZ algorithm requires at least a
classical complexity of 2384 = 20.92n.

Parameter Choice III The parameter choice p = 65 521, n = 1982, ωsig = wsig/(nM) = 0.03,
ωkey = wkey/(nM) = 0.001437 leads to the desired quantum cost of 2112, since BJMM’s algorithm
indicates a quantum complexity of 2112 = 20.08n operations and the BKZ algorithm requires at least a
classical complexity of 2578 = 20.292n.

Parameter Choice V The parameter choice p = 65 521, n = 2638, ωsig = wsig/(nM) = 0.03,
ωkey = wkey/(nM) = 0.001437 leads to the desired quantum cost of 2144, since BJMM’s algorithm
indicates a quantum complexity of 2144 = 20.08n operations and the BKZ algorithm requires at least a
classical complexity of 2770 = 20.292n.

7 Implementation Details

The reference implementation contains comments, which in combination with the pseudo-code in this
document, should help in understanding the reference implementation. In the following sections we
describe the design rationale of particular functions in the reference implementation in more detail.

7.1 Sampling of Secret Vectors during Key Generation

In order to sample the vectors a and b during Key Generation (corresponding to line 1 of Algorithm 1),
we generate a uniformly random permutation of the typical Lee set (Definition 5). We implement this
by storing the typical set as an array and uniformly permuting its entries using the Fisher-Yates shuffle
[39]. Since a naive implementation of the algorithm leaks the permutation through its secret-dependent
memory accesses, we implement a constant-time variant that has been published in [51]. The result of
this algorithm, shown in Algorithm 4, is an array of indices that correspond to the permutation. In a
second step these indices are applied onto the typical set in a constant time manner by always iterating
over all elements of the typical set and performing a conditional assignment.

20

FuLeeca NIST Submission 2023

Algorithm 4: Shuffle Indices (Fisher-Yates Variant)[51, Algorithm 3]
1 Initialize pos = [0, . . . , n/2− 1]

2 for i← n/2− 1 downto 0 do
3 pos[i] $←− {i, . . . , n/2− 1}
4 for j ← i+ 1 to n/2− 1 do
5 if pos[j] = pos[i] then

pos[j]← i

6 else
pos[j]← pos[j]

end
end
Output: pos

7.2 Hashes and CSPRNGs

As FuLeeca follows the Hash-and-Sign approach, the signature is generated and verified using a digest of
the message m, which is then extended to a vector c before being actually used. For practical reasons, we
pre-hash the message m using a corresponding SHA-3 hash function, as specified in FIPS 202 [43], with
digest size of 2λ. Afterwards, we expand this message digest together with a salt using the eXtendable-
Output Function (XOF) SHAKE256 from the FIPS 202 specification [43] as CSPRNG. The rationale
for pre-hashing the message m to m′ is that the signing procedure described in Algorithm 2 iterates
multiple times until a valid signature is found. In each iteration, a new vector c must be generated that
requires input from the message m and a salt.

Having to process the message multiple times is inefficient for large messages. The pre-hashing allows
to reduce this effort to one digest computation with a potentially large input message and reduces
the computational effort within the iteration loop. Another advantage of this approach is that the
computation of the message digest can be externalized to a dedicated co-processor, which is especially
relevant if large messages need to be signed on a resource constrained device.

We furthermore decided to restrict our choice to the Keccak-based SHA-3 primitives, as this allows to
share resources for both the hash computation of the message and the CSPRNG, reducing the overhead
of code size and HW resources in a HW/SW co-design.

7.3 Polynomial Inversion

The polynomial inversion is one of the key components of the key generation. The public key T is defined
as the multiplication of the inverse of A−1 and B. Due to the quasi-cyclic nature of A and B, the inverse
can be calculated as the inverse of the polynomial a. As the polynomial to be reversed is part of the
secret key, it is crucial that the runtime of the algorithm is independent of the input polynomial. To
achieve this, we mainly follow the ideas outlined by Bernstein and Yang in [14].

7.4 Number of Concentrating Iterations

To refine the signature candidate, a number of additional additions/subtractions of key lines needs to
be executed. One possibility here is to allow an undefined number of iterations and to stop as soon as
the candidate reaches the targeted Lee weight. One would then check the LMP of this candidate and
publish it in case the candidate reaches the desired level. The major downside of this approach is the
timing side-channel it opens which might, as the number of iterations depend on the secret key and the

21

FuLeeca NIST Submission 2023

challenge, leak information about the key. The approach we choose is to fix the number of iterations
with the downside that the Lee weight as well as the LMP might not be in the specified range after this
number of iterations. To increase the probability for generating a codeword in the specified range we
allow additions/subtractions of rows to be undone after the codeword has reached a Lee weight greater
than wsig − wkey (see lines 19 and 22 within Algorithm 2).

7.5 Scaling the Information Vector

The vector x obtained in line 9 of the signing algorithm needs to scaled to be useable as an information
vector to generate a signature candidate in line 12. As this scaling factor s needs to be smaller than one
and a division by an arbitrary integer is known to be challenging to implement in constant time, the
factor s is approximated by a multiplication with an integer followed by right shift, emulating a division
by a power of two.

7.6 Encoding and Decoding

The coefficients that constitute a signature before encoding follow a Gaussian-like distribution centered
at zero. This fact allows to reduce the signature size by compressing the signature and encode it in a
bitstring. For that, we use the same approach as proposed in the Falcon signature scheme [32]. That is,
each coefficient is converted into its signed representation and split into a tail and head. The coefficient’s
sign bit is concatenated with the uncoded tail, as this tail is approximately uniformly distributed and
thus cannot be compressed efficiently. The remaining bits in the coefficient’s head are then encoded in
a 0k1 fashion, that is a sequence of k zeroes and a one, where k is the value of the head.

For a tail size of 9-bits, this yields signatures of 1100B, 1620B and 2130B for NIST security level I,
III and V, respectively, including the salt. Note, that these sizes are already zero-padded to have a
fixed signature size. The final sizes of the signatures are obtained by the worst-case size observed after
generating 1000 signatures and adding a sufficient margin on top of it.

8 Detailed Performance Analysis

Table 5 shows the required clock cycles and run time in milliseconds for the reference implementation
of the algorithm averaged over 100 runs. These values were obtained on an Ubuntu 22.04 machine
with an Intel Comet Lake (Intel Core i7-10700) CPU at its base frequency of 2900MHz and 64GB

of RAM using GCC version 11.3.0 and an O3 optimization. In order to generate reliable results, all
dynamic performance enhancement and power management features like hyper threading, turbo boost,
and dynamic undervolting of the CPU were disabled. Clock cycles are measured using the internal
performance registers of the CPU using the library libcpucycles5.

9 Known Answer Test Values

Known Answer Tests (KAT) have been generated and are available in the KAT folder in the submission
package.

5The implementation is publicly available at https://cpucycles.cr.yp.to/.

22

https://cpucycles.cr.yp.to/

FuLeeca NIST Submission 2023

Table 5: Runtime of the reference implementation in kilocycles and milliseconds on an Intel Comet Lake
with a base frequency of 2900MHz averaged over 100 runs.

NIST cat. Unit Keygen Sign Verify
I kCycles 49 354 1 846 779 1260

ms 17 636 0.43
III kCycles 110 918 2 111 156 2447

ms 38 727 0.84
V kCycles 192 388 12 327 726 3789

ms 66 4250 1.31

10 Advantages and Limitations

The major advantages of FuLeeca compared to other post-quantum secure schemes are its signature and
key sizes. In terms of the sum of public-key size and signature size, we achieve better parameters than
the schemes Dilithium [25], SPHINCS+ [5], and the state-of-the-art of code-based signature schemes.
Furthermore, our submission is neither lattice- nor hash-based and, therefore, presents an alternative in
case a major breakthrough in the cryptanalysis of lattice-based schemes occurs in the future. Another
major advantage of FuLeeca is that all of its elementary steps are very easy to implement in software
and hardware. As we only rely on basic integer arithmetic, i.e., additions and multiplications, we do not
require support for floating point operations. However, relying solely on these basic operations poses a
performance drawback when compared to other alternatives, e.g. lattice-based signature schemes using
NTT.

A limitation of FuLeeca is that we are not able to provide a full EUF-CMA security proof. However,
we show why our scheme is secure against known attacks and furthermore heuristically observe that the
scheme does not leak information about the key via the standard attack vectors. Another limitation of
our scheme is that the Lee metric has not enjoyed the same attention by the cryptographic community as
the Euclidean metric of lattice-based schemes. However, NIST explicitly encouraged the use of alternative
metrics.

11 Acknowledgments

We would like to thank Sabine Pircher, Thomas Debris-Alazard and Wessel van Woerden for meaningful
discussions.

Violetta Weger is supported by the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement no. 899987. Sebastian Bitzer, Georg Maringer, Ste-
fan Ritterhoff and Antonia Wachter-Zeh were supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) under Grant No. WA3907/4-1, the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement no.
801434), and acknowledge the financial support by the Federal Ministry of Education and Research of
Germany in the programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-life, project identifica-
tion number: 16KISK002. Patrick Karl acknowledges the financial support by the Federal Ministry of
Education and Research of Germany in the programme of “Souverän. Digital. Vernetzt.”. Joint project
6G-life, project identification number: 16KISK002.

23

FuLeeca NIST Submission 2023

12 Bibliography

[1] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze
Yue. The return of the SDitH. Cryptology ePrint Archive, 2022.

[2] Nicolas Aragon, Paulo SLM Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, et al. Bike: bit
flipping key encapsulation. 2017.

[3] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. Durandal: a
rank metric based signature scheme. In Advances in Cryptology–EUROCRYPT 2019: 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19–23, 2019, Proceedings, Part III 38, pages 728–758. Springer, 2019.

[4] Jaakko Astola. On the asymptotic behaviour of Lee-codes. Discrete applied mathematics, 8(1):13–23,
1984.

[5] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,
Joost Rijneveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+, submission to the NIST post-
quantum project, v.3. 2020.

[6] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and Davide Schipani. Using
LDGM codes and sparse syndromes to achieve digital signatures. In Post-Quantum Cryptography:
5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings 5, pages
1–15. Springer, 2013.

[7] Marco Baldi, Sebastian Bitzer, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, and Violetta
Weger. Zero knowledge protocols and signatures from the restricted syndrome decoding problem.
Cryptology ePrint Archive, 2023.

[8] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. LESS-FM:
fine-tuning signatures from the code equivalence problem. In Post-Quantum Cryptography: 12th
International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20–22, 2021, Proceedings 12,
pages 23–43. Springer, 2021.

[9] Jessica Bariffi, Hannes Bartz, Gianluigi Liva, and Joachim Rosenthal. On the properties of error
patterns in the constant Lee weight channel. In International Zurich Seminar on Information and
Communication (IZS 2022). Proceedings, pages 44–48. ETH Zurich, 2022.

[10] Jessica Bariffi, Karan Khathuria, and Violetta Weger. Information set decoding for Lee-metric codes
using restricted balls. In Code-based Cryptography 10th International Workshop, CBCrypto 2022.
Springer.

[11] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary
linear codes in 2n/20: How 1+1 = 0 improves information set decoding. In Advances in Cryptology–
EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31, pages 520–536. Springer,
2012.

24

FuLeeca NIST Submission 2023

[12] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures-how to sign with RSA
and Rabin. In Eurocrypt, volume 96, pages 399–416. Springer, 1996.

[13] Daniel J Bernstein. Grover vs. McEliece. In Post-Quantum Cryptography: Third International
Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings 3, pages 73–80.
Springer, 2010.

[14] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular inversion.
Cryptology ePrint Archive, Paper 2019/266, 2019. https://eprint.iacr.org/2019/266.

[15] Ward Beullens. Sigma protocols for mq, pkp and sis, and fishy signature schemes. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages 183–211.
Springer, 2020.

[16] Loïc Bidoux and Philippe Gaborit. Shorter signatures from proofs of knowledge for the SD, MQ,
PKP and RSD problems. arXiv preprint arXiv:2204.02915, 2022.

[17] Johannes Blömer and Stefanie Naewe. Sampling methods for shortest vectors, closest vectors and
successive minima. Theoretical Computer Science, 410(18):1648–1665, 2009.

[18] Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria, and Violetta Weger. Density of free
modules over finite chain rings. Linear Algebra and its Applications, 651:1–25, 2022.

[19] André Chailloux, Thomas Debris-Alazard, and Simona Etinski. Classical and Quantum algorithms
for generic Syndrome Decoding problems and applications to the Lee metric, 2021. Report Number:
552.

[20] Jinkyu Cho, Jong-Seon No, Yongwoo Lee, Zahyun Koo, and Young-Sik Kim. Enhanced pqsigRM:
Code-based digital signature scheme with short signature and fast verification for post-quantum
cryptography. Cryptology ePrint Archive, 2022.

[21] Nicolas T Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a McEliece-based digital
signature scheme. In Advances in Cryptology—ASIACRYPT 2001: 7th International Conference on
the Theory and Application of Cryptology and Information Security Gold Coast, Australia, December
9–13, 2001 Proceedings 7, pages 157–174. Springer, 2001.

[22] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe with side information:
attacks and concrete security estimation. In Advances in Cryptology–CRYPTO 2020: 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21,
2020, Proceedings, Part II, pages 329–358. Springer, 2020.

[23] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new family of trapdoor
one-way preimage sampleable functions based on codes. In Advances in Cryptology–ASIACRYPT
2019: 25th International Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part I, pages 21–51. Springer, 2019.

[24] Jean-Christophe Deneuville and Philippe Gaborit. Cryptanalysis of a code-based one-time signature.
Designs, Codes and Cryptography, 88:1857–1866, 2020.

[25] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. Crystals-dilithium – algorithm specifications and supporting documentation (version
3.1). 2021.

25

https://eprint.iacr.org/2019/266

FuLeeca NIST Submission 2023

[26] Il’ya Isaakovich Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Informatsii,
25(1):24–32, 1989.

[27] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter hash-and-sign lattice-
based signatures. In Advances in Cryptology–CRYPTO 2022: 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part II,
pages 245–275. Springer, 2022.

[28] Jean-Charles Faugere, Valérie Gauthier-Umana, Ayoub Otmani, Ludovic Perret, and Jean-Pierre
Tillich. A distinguisher for high-rate McEliece cryptosystems. IEEE Transactions on Information
Theory, 59(10):6830–6844, 2013.

[29] Thibauld Feneuil. Building MPCitH-based signatures from MQ, MinRank, Rank SD and PKP.
Cryptology ePrint Archive, 2022.

[30] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for syndrome decoding:
New zero-knowledge protocol and code-based signature. Designs, Codes and Cryptography, pages
1–46, 2022.

[31] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. Cryptology ePrint Archive, 2022.

[32] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON:
fast-fourier lattice-basd compact signatures over NTRU, specification v1.2. 2020.

[33] Danièle Gardy and Patrick Solé. Saddle point techniques in asymptotic coding theory. In Algebraic
Coding: First French-Soviet Workshop Paris, July 22–24, 1991 Proceedings, pages 75–81. Springer,
2005.

[34] Craig Gentry. Key recovery and message attacks on ntru-composite. In Advances in Cryptol-
ogy—EUROCRYPT 2001: International Conference on the Theory and Application of Cryptographic
Techniques Innsbruck, Austria, May 6–10, 2001 Proceedings 20, pages 182–194. Springer, 2001.

[35] Danilo Gligoroski, Simona Samardjiska, Håkon Jacobsen, and Sergey Bezzateev. McEliece in the
world of Escher. Cryptology ePrint Archive, 2014.

[36] Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practical code-based signature
scheme from zero-knowledge proofs with trusted setup. Cryptography, 6(1):5, 2022.

[37] Anna-Lena Horlemann-Trautmann and Violetta Weger. Information set decoding in the Lee metric
with applications to cryptography. Advances in Mathematics of Communications, 15(4), 2021.

[38] Kyungbae Jang, Anubhab Baksi, Hyunji Kim, Gyeongju Song, Hwajeong Seo, and Anupam Chat-
topadhyay. Quantum analysis of AES. Cryptology ePrint Archive, 2022.

[39] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

[40] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud Ahmadian-Attari,
and Mohammad Reza Aref. Squaring attacks on McEliece public-key cryptosystems using quasi-
cyclic codes of even dimension. Designs, Codes and Cryptography, 80:359–377, 2016.

26

FuLeeca NIST Submission 2023

[41] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in
O(20.054n). In Advances in Cryptology–ASIACRYPT 2011: 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings 17, pages 107–124. Springer, 2011.

[42] Dustin Moody and Ray Perlner. Vulnerabilities of “McEliece in the World of Escher”. In Post-
Quantum Cryptography: 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February
24-26, 2016, Proceedings 7, pages 104–117. Springer, 2016.

[43] National Institute of Standards and Technology. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Technical report, jul 2015.

[44] Edoardo Persichetti. Efficient one-time signatures from quasi-cyclic codes: A full treatment. Cryp-
tography, 2(4):30, 2018.

[45] Aurélie Phesso and Jean-Pierre Tillich. An efficient attack on a code-based signature scheme.
In Post-Quantum Cryptography: 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings 7, pages 86–103. Springer, 2016.

[46] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Infor-
mation Theory, 8(5):5–9, 1962.

[47] Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In Proceedings of the
thirty-eighth annual ACM symposium on Theory of Computing, pages 447–456, 2006.

[48] Paolo Santini, Marco Baldi, and Franco Chiaraluce. Cryptanalysis of a one-time code-based digital
signature scheme. In 2019 IEEE International Symposium on Information Theory (ISIT), pages
2594–2598. IEEE, 2019.

[49] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming, 66:181–199, 1994.

[50] Nicolas Sendrier. Decoding One Out of Many. In Post-Quantum Cryptography, Lecture Notes in
Computer Science, pages 51–67, Berlin, Heidelberg, 2011. Springer.

[51] Nicolas Sendrier. Secure sampling of constant-weight words – application to bike. Cryptology ePrint
Archive, Paper 2021/1631, 2021. https://eprint.iacr.org/2021/1631.

[52] Jacques Stern. A method for finding codewords of small weight. Coding theory and applications,
388:106–113, 1989.

[53] Violetta Weger, Karan Khathuria, Anna-Lena Horlemann, Massimo Battaglioni, Paolo Santini, and
Edoardo Persichetti. On the hardness of the Lee syndrome decoding problem. Advances in Mathe-
matics of Communications, April 2022. Publisher: Advances in Mathematics of Communications.

27

https://eprint.iacr.org/2021/1631

	Introduction
	Historical Background
	Overview of the Basic Idea

	Preliminaries
	Notation
	Cryptographic Notation
	Coding Theory Notation
	Functions

	FuLeeca Signatures
	Key Generation
	Signature Generation
	Signature Verification

	Design Rationale
	Parameters
	Security Analysis
	Hardness of Underlying Problem and Generic Solvers
	Analysis of the Algorithm with Respect to Known Attacks
	Lattice-based Attacks
	Description of Expected Security Strength

	Implementation Details
	Sampling of Secret Vectors during Key Generation
	Hashes and CSPRNGs
	Polynomial Inversion
	Number of Concentrating Iterations
	Scaling the Information Vector
	Encoding and Decoding

	Detailed Performance Analysis
	Known Answer Test Values
	Advantages and Limitations
	Acknowledgments
	Bibliography

