
HuFu: Hash-and-Sign Signatures From Powerful Gadgets
Algorithm Specifications and Supporting Documentation

Yang Yu1,2, Huiwen Jia3, Leibo Li4, Delong Ran1, Zhiyuan Qiu4,
Shiduo Zhang1, Xiuhan Lin5, and Xiaoyun Wang1,2,5

1 Tsinghua University, China
2 Zhongguancun Laboratory, China

3 Guangzhou University, China
4 Shandong Institute of Blockchain, China

5 Shandong University, China

Table of Contents

1 Introduction . 3
1.1 Lattice-based Hash-and-Sign Signatures and the GPV Framework . 3
1.2 Practical GPV Hash-and-Sign Signatures . 3
1.3 Design Rationale . 4

1.3.1 Standard Worst-case Problems on Generic Lattices. 4
1.3.2 Gadget Trapdoor Framework. 4
1.3.3 Compact Lattice Gadget. 4

2 Preliminaries . 4
2.1 Notations . 4
2.2 Cryptographic Definitions . 5
2.3 Lattices and Gaussians . 5
2.4 SIS and LWE . 5

3 Specification . 6
3.1 Key Generation . 6
3.2 Signature Generation . 8

3.2.1 Perturbation Sampler . 9
3.2.2 Arbitrary-centered Integer Gaussian Sampler . 9
3.2.3 Quantized Integer Gaussian Sampler . 10

3.3 Signature Verification . 10
3.4 Signature Encoding . 11
3.5 Recommended Parameters . 12

4 Security . 12
4.1 Security Reduction . 12

4.1.1 Simulatable Signatures . 12
4.1.2 Strong Unforgeability . 12

4.2 Concrete Security . 13
4.2.1 Lattice Reduction and Core-SVP Hardness . 13
4.2.2 Key Recovery . 13
4.2.3 Signature Forgery . 13

5 Implementation and Performances . 13
5.1 Public Key Packing . 14
5.2 Floating-Point Arithmetic . 14
5.3 Performances . 14

6 Advantages and Limitations . 15
6.1 Advantages . 15
6.2 Limitations . 15

1 Introduction

HuFu is a digital signature scheme whose security is based on the hardness of standard worst-case prob-
lems on generic lattices. Besides not using structured lattices, HuFu has a fairly different design com-
pared to CRYSTALS-Dilithium [LDK+20] and Falcon [PFH+20]. At a high level, HuFu is a hash-and-
sign signature scheme constructed using the lattice trapdoor framework proposed by Gentry, Peikert and
Vaikuntanathan [GPV08]. It is instantiated on hard random lattices following the gadget trapdoor construc-
tion [MP12] and using the compact gadget technique [YJW23] to achieve overall good performance. In a
nutshell, the ingredients of HuFu can be described as follows:

HuFu = GPV framework + Hard random lattices + Compact gadget.

1.1 Lattice-based Hash-and-Sign Signatures and the GPV Framework

Hash-and-sign is one of two main paradigms (the other is Fiat-Shamir) for lattice-based signatures. A high-
level description of this paradigm is as follows:

– The secret key, also called the trapdoor, is a “good” representation of a lattice Λ, which allows to
efficiently find lattice points close to a random target. The public key is a “bad” representation of Λ.

– To sign a message m, the signer first hashes m to a random point c = H(m) in the ambient space, then
uses the trapdoor to compute v ∈ Λ close to c. The output signature is s = v − c.

– Given a message m along with its signature s, the verifier first computes c = H(m) and then checks if s
is short and if s+ c ∈ Λ with the public key.

Early hash-and-sign signatures used Babai’s algorithm [Bab86] to find a lattice vector close to the hashed
message, then each signature would leak partial information about the trapdoor. Such leakages were exploited
to mount devastating attacks [NR06, DN12, YD18].

To prevent such attacks, it requires the signatures to follow some distribution independent of the secret
key. The standard method is due to Gentry, Peikert and Vaikuntanathan [GPV08]. In the GPV framework,
the lattice vector v is sampled from a distribution negligibly close to the lattice discrete Gaussian DΛ,r,c

for a small width r. This procedure, called trapdoor sampling, can be implemented by various Gaussian
samplers [GPV08, Pei10, Pre15, DP16] as per different achieved width.

1.2 Practical GPV Hash-and-Sign Signatures

The instantiation of the GPV framework is determined by two ingredients: the trapdoor construction and
the trapdoor sampler. Practical GPV hash-and-sign signatures can be basically classified into two families
as per their used trapdoor constructions: NTRU trapdoor based and gadget based.

The NTRU trapdoor based GPV instantiations, dating back to [SS11], use a short NTRU basis as the trap-
door. With a series of follow-up optimizations on the trapdoor generation [DLP14, PP19, EFG+22] and the
Gaussian sampling [DP16, Pre15], the representative schemes, e.g. Falcon and its variant Mitaka [EFG+22],
have been practically efficient. In particular, Falcon and Mitaka offer a smaller bandwidth compared to
other lattice-based signatures, which makes them attractive in some constrained protocol scenarios. However,
the good performance of NTRU trapdoor based signatures heavily relies on the underlying polynomial ring
structures and the unstructured adaptions would be rather complicated and inefficient. Given the primary
interest of NIST in “additional general-purpose signature schemes that are not based on structured lattices”,
the NTRU trapdoor based GPV signatures does not seem to be a promising candidate.

The gadget based GPV instantiations were originally proposed by Micciancio and Peikert [MP12]. The
trapdoor in this family is a linear relation between the public matrix and the gadget matrix, which is not a
full basis. Exploiting this linear relation, the trapdoor sampling on hard random lattices can be converted
into the sampling on the gadget lattices, and the latter is convenient and fast. The gadget based signatures
offer significant advantages from an implementation standpoint and the unstructured adaptions are straight-
forward. In addition, the gadget-based GPV framework turns out to be versatile for the constructions of

3

advanced primitives. This provides the potential of extending basic signatures to powerful cryptosystems.
The downside of gadget based schemes is their larger size. Fortunately, by using the approximate trap-
door [CGM19] and the compact gadget [YJW23] techniques, the gadget-based signatures have sizes on par
with their Fiat-Shamir counterparts.

1.3 Design Rationale

Given the desired long-term lifetime of deployed cryptosystems and the unpredictable progress of cryptanal-
ysis and quantum computing, we believe it would be worthy to reduce attack surface at some efficiency cost,
at least for the usecases where the assuring security is much more important than performance. In recent
years, many advanced cryptographic primitives have been brought to real-world applications enriching the
notion of security, thus the post-quantum standard supporting convenient extension to versatile applications
would be preferable in the future. Hence strong security assurances and versatile future uses are two major
considerations for the design of HuFu.

1.3.1 Standard Worst-case Problems on Generic Lattices. HuFu is based on the SIS and LWE
problems that are at least as hard as standard worst-case lattice problems on generic lattices [Ajt96, Reg05].
Such conservative security assumptions avoid the risk of the algebraic attacks against ideal lattice prob-
lems [CDW17, PHS19, DPW19, BR20, BLNR22] and the sublattice attacks against NTRU [ABD16, KF17,
LW20, DvW21].

1.3.2 Gadget Trapdoor Framework. HuFu is constructed within the Micciancio-Peikert gadget trap-
door framework [MP12]. As a result, HuFu has an online/offline structure and its online operations are
simple, fast and fully over integers. This feature would be very beneficial to certain usecases. Furthermore,
the gadget framework provides powerful versatility leading to a wide range of advanced cryptosystems such
as attribute-based encryption [GVW13], group signatures [dLS18], blind signatures [dK22] and even obfus-
cations [HHSS17]. This makes HuFu easier to adapt to offer enhanced functionality.

1.3.3 Compact Lattice Gadget. HuFu makes use of the compact gadget technique introduced in [YJW23].
In the compact gadget framework, the gadget is a square matrix instead of the wide one used in previous
constructions [MP12, CGM19], which significantly reduces the public key and signature sizes. The main
algorithmic component is the semi-random sampler that is highly parallelizable and efficient. With the
state-of-the-art technique, HuFu achieves good overall performance.

2 Preliminaries

2.1 Notations

Let ZQ = {−⌊Q/2⌋,−⌊Q/2⌋+ 1, · · · , Q − ⌊Q/2⌋ − 1} for a positive integer Q. For a ∈ Z, let (a mod Q) be
the unique integer a′ ∈ ZQ such that a = a′ mod Q. The notation is naturally generalized to integer vectors
and integer matrices. Let ln (resp. log) denote the natural (resp. base 2) logarithm.

We use bold lower-case letters to denote vectors, i.e. v = (v1, . . . , vn). Vectors are in column form. Let
(v1,v2) be the concatenation of v1 and v2. Given u,v ∈ Rn, their inner product is ⟨u,v⟩ =

∑n
i=1 uivi and

the ℓ2 norm of u is ∥u∥ =
√
⟨u,u⟩. Matrices are denoted with bold upper-case letters, i.e. A = [a1 | · · · | an]

where ai is the i-th column. Let In denote the n-dimensional identity matrix. When the context is clear, we
write I simply. Let At be the transpose of A and s1(A) = maxx ̸=0

∥Ax∥
∥x∥ be the largest singular value.

For a symmetric matrix Σ, we write Σ ≻ 0 when Σ is positive definite, i.e. ztΣz > 0 for all nonzero z.
We write Σ1 ≻ Σ2 when Σ1 − Σ2 ≻ 0. When Σ ≻ s · I, we write Σ ≻ s. We call B a Gram root of Σ if
Σ = BBt. A general method to find a Gram root of Σ ∈ Rn×n is the Cholesky decomposition.

4

Let f(S) =
∑

x∈S f(x) when f is a real-valued function and S is a countable set, assuming this sum
is absolutely convergent. For a finite set S, we use U(S) to represent the uniform distribution over it. We
write a← D when the sample a drawn from the distribution D. The centered binomial distribution Bη with
parameter η is the distribution of X =

∑η
i=1(ai − bi) where ai, bi ← U({0, 1}). For X ← Bη, its expectation

is 0 and its standard deviation is
√

η/2.

2.2 Cryptographic Definitions

We recall the definition of digital signature schemes and the security notion.

Definition 2.1 (Digital Signature). A digital signature scheme S is a tuple of polynomial-time (possibly
probabilistic) algorithms (KeyGen, Sign,Verify):

– KeyGen()→ (pk, sk): the key generation algorithm outputs the public key pk and the secret key sk;
– Sign(m, sk)→ s: given a message m, the signing algorithm uses sk to generate a valid signature s;
– Verify(m, s, pk)→ Accept/Reject: given a message m along with a signature s, the verification algorithm

uses pk to check if s is a valid signature for m. If yes, accept; otherwise reject.

Strong Unforgeability under Chosen Message Attacks (SUF-CMA) is regarded as a standard security
notion for digital signature schemes. In this security model, the adversary gets the public key and has access
to a signing oracle to sign messages of his choice. The adversary wins if it produces a different signature of
a message that he has already seen.

The standard security notion for digital signature schemes is UF-CMA (Unforgeability under Chosen
Message Attacks). Our signature scheme achieves a slightly stronger security, SUF-CMA (Strong UF-CMA),
defined as follows.

Definition 2.2 (SUF-CMA). Let S = (KeyGen, Sign,Verify) be a digital signature scheme. A SUF-CMA
adversary A has access to the public key and a signing oracle. It makes N queries and collects N message-
signature pairs (mi, si)’s. Then A asks to generate a new message-signature pair (m∗, s∗). The advantage of
A is AdvSUF-CMA

S (A) =

Pr
[
(m∗, s∗) /∈ {(mi, si)}i and Verify(m∗, s∗, pk) = Accept | (pk, sk)← KeyGen(), (m∗, s∗)← ASign(·,sk)

]
.

2.3 Lattices and Gaussians

A lattice Λ is the set {Bz | z ∈ Zn} for some full-rank B ∈ Rn×n. We call n the dimension and B a basis of Λ.
Given Σ ≻ 0, let ρΣ(x) = exp

(
− 1

2x
tΣ−1x

)
for any x ∈ span(Σ). For an n-dimensional lattice Λ, a positive

definite Σ ∈ Rn×n and c ∈ span(Λ), the discrete Gaussian distribution DΛ+c,Σ is defined as: for any x ∈ Λ+c,
DΛ+c,Σ(x) =

ρΣ(x)
ρΣ(Λ+c) . When Σ = s2I, we simply write ρs2 and DΛ+c,s2 . Let η′ϵ(Zn) = 1

π

√
ln(2n(1+1/ϵ))

2 be
an upper bound of the smoothing parameter (scaled by

√
2π) of Zn.

Let D+
Z,r2 be the half integer Gaussian defined by ρr2(x)/ρr2(N) for any x ∈ N. We denote Nk(c,Σ)

as the k-dimensional normal distribution with center c and covariance Σ. If c = 0 and Σ = I, we write
Nk(c,Σ) as Nk.

2.4 SIS and LWE

The SIS (Short Integer Solution) problem and the LWE (Learning With Errors) problem are two widely-used
hardness assumptions in lattice-based cryptography. As shown in [Ajt96, Reg05], the average-case SIS and
LWE problems are at least as hard as the worst-case hard problems on lattices, which sets a firm theoretical
grounding for lattice-based schemes.

Definition 2.3 (SIS and inhomogeneous SIS). Let n,m,Q > 0 be integers and B > 0.

5

– SISn,m,Q,B: Given a uniformly random A ∈ Zn×m
Q , find non-zero x ∈ Zm such that Ax = 0 mod Q and

∥x∥ ≤ B.
– ISISn,m,Q,B: Given a uniformly random A ∈ Zn×m

Q and y ∈ Zn
Q, find x ∈ Zm such that Ax = y mod Q

and ∥x∥ ≤ B.

The matrix A in SIS and ISIS problems can be in the Hermite Normal Form (HNF), i.e. A = [In | A′]. This
gives the HNF version of SIS problems, HNF.SIS and HNF.ISIS that are as hard as the standard version.

Definition 2.4 (LWE). Let n,m,Q > 0 be integers and χ be a distribution over Z. Given s ∈ Zn
Q, let As,χ

be the distribution of (a, b) where a← U(Zn
Q) and b = ⟨a, s⟩+e mod Q with e← χ. The LWEn,m,Q,χ problem

is defined as follows: given m independent samples from either As,χ with s← χ (fixed for all m samples) or
U(Zn

Q × ZQ), distinguish which is the case.

3 Specification

This section gives a complete specification of the HuFu signature scheme. We first summarize the parameters
and notations associated with HuFu in Table 3.

Description
(m,n) matrix dimensions
(p, q) gadget parameters
Q global modulus Q = pq

χ secret distribution χ = B1

r̄ base Gaussian parameter r̄ = η′
ϵ(Z) with ϵ = 2−49

r gadget Gaussian parameter r = qr̄

σ standard deviation of the preimage σ = 1.05 · r
√

1+q2

2q2
(
√
m+

√
n+m)

B acceptance bound B =

⌊
1.04

√
(n+ 2m)σ2 + m(p2−1)

12

⌋
L maximal bitlength of encoded signatures

(S,E) secret matrices S← χn×m,E← χm×m

(Â,B) public matrices Â← U(Zm×n
Q), B = p · I− (ÂS+E) mod Q

A parity check matrix A = [I Â B] such that A
[
E
S
I

]
= p · I

Σp perturbation covariance Σp = σ2In+2m − r2 ·
[

E
S
Im

]
· [Et St Im] ≻ r̄2

C =

L33 L32 L31

L22 L21

L11

 Gram root of Σp − r̄2I, L22 ∈ Rn×n,L32 ∈ Rm×n,L33 ∈ Rm×m

seedÂ seed for generating Â

XOF ideal extendable-output function
H hash function {0, 1}∗ → Zm

Q

salt salt salt← U({0, 1}320)

Table 1. Description of parameters and notations.

3.1 Key Generation

HuFu uses the LWE-style key pair. Its secret key is (S,E)← χn×m×χm×m and the public key is essentially
(Â,B = p ·I− (ÂS+E) mod Q) where Â is uniformly random over Zm×n

Q and p ·I is the gadget matrix. The

6

matrix Â is generated by an ideal extendable-output function XOF (Algorithms 2, 3) with a 32-byte seed
seedÂ. For compactness, it is stored as seedÂ. The key generation also uses BlockCholesky (Algorithm 4), a
block variant of Cholesky decomposition, to compute a Gram root C of Σp− r̄2I and C is included as a part
of the secret key. Exploiting the structure of Σp − r̄2I, the BlockCholesky algorithm converts the (2m+ n)-
dimensional decomposition into one m-dimensional and one n-dimensional Cholesky decomposition along
with one n-dimensional matrix inversion. A formal description of the key generation is given in Algorithm 1.

Algorithm 1: KeyGen
Input: None
Output: public key pk, secret key sk
1: seedÂ ← U({0, 1}256), Â← XOF(seedÂ)
2: repeat
3: (S,E)← χn×m × χm×m

4: Σp = σ2In+2m − r2 ·
[

E
S
Im

]
· [Et St Im]

5: until Σp ≻ r̄2

6: B = p · I− (ÂS+E) mod Q

7: C =

L33 L32 L31

L22 L21

L11

← BlockCholesky(Σp − r̄2I) with L22 ∈ Rn×n,L32 ∈ Rm×n,L33 ∈ Rm×m

8: return pk = (seedÂ,B), sk = (E,S,L22,L32,L33)

Algorithm 2: XOF based on AES256
Input: a 32-byte seed seed
Output: a matrix Â ∈ Zm×n

Q

1: b← (Q≫ 16)
2: for i = 0, 1, . . . , (nmb≫ 3)− 1 do
3: (ci,0, ci,1, . . . , ci,8/b−1)← AES256seed(i) with ci,j ∈ {0, 1}16·b
4: for j = 0, 1, . . . , 8/b− 1 do
5: k ← (8/b) · i+ j, i′ ← ⌊k/n⌋, j′ = k − i′n

6: Âi′,j′ ← ⟨ci,j ,g⟩ with g = (Q/2, Q/4, . . . , 1, 0, . . . , 0)
7: end for
8: end for
9: return Â

Algorithm 3: XOF based on SHAKE256
Input: a 32-byte seed seed
Output: a matrix Â ∈ Zm×n

Q

1: b← (Q≫ 16), d← 2mnb
2: for i = 0, 1, . . . , 3 do
3: (ci,0, ci,1, . . . , ci,(mn≫2)−1) ← SHAKE256(seed||i, (d≫ 2)) with ci,j ∈ {0, 1}16·b
4: for j = 0, 1, . . . , (mn≫ 2)− 1 do
5: k ← (mn≫ 2) · i+ j, i′ ← ⌊k/n⌋, j′ = k − i′n

6: Âi′,j′ ← ⟨ci,j ,g⟩ with g = (Q/2, Q/4, . . . , 1, 0, . . . , 0)
7: end for
8: end for
9: return Â

7

Algorithm 4: BlockCholesky

Input: a real matrix Σp = σ2In+2m − r2 ·
[

E
S
Im

]
· [Et St Im] ≻ r̄2

Output: some Gram root C of Σp − r̄2I
1: x←

√
σ2 − r2 − r̄2, y ←

√
σ2 − r̄2

2: L11 ← x · Im, L21 = − r2

x S, L31 = − r2

x E

3: L22 ← Cholesky(y2I− r2y2

x2 SSt) {Cholesky denotes the standard Cholesky decomposition}
4: L32 ← − r2y2

x2 ·ESt(Lt
22)

−1

5: L33 ← Cholesky(y2I− r2y2

x2 EEt − L32L
t
32)

6: return C =

L33 L32 L31

L22 L21

L11

3.2 Signature Generation

Given a message m, the signing procedure (shown in Algorithm 5) outputs a short preimage x = (x0,x1,x2)
such that Ax = H(m, salt) − e mod Q for random salt and small e. The signing procedure consists of two
phases: offline and online, following the idea of [Pei10, MP12]. In the offline (message independent) phase, it
samples an integer perturbation vector p from DZn+2m,Σp

. Then in the online (message dependent) phase,
it produces an approximate preimage using the semi-random sampling technique [YJW23]. The output
signature is essentially (salt, (x1,x2)), as the short term (x0 + e) = H(m, salt) − Âx1 −Bx2 mod Q can be
recovered during verification. For compactness, we use some encoding technique to compress (x1,x2).

Algorithm 5: Sign
Input: a message m, the secret key sk and the acceptance bound B
Output: a signature s = (salt, str)

Offline phase:
1: Â← XOF(seedÂ), A← [I Â B]
2: p = (p0,p1,p2)← SampleP(sk) with p0 ∈ Zm,p1 ∈ Zn,p2 ∈ Zm {p← DZn+2m,Σp

}
3: c← Ap mod Q

Online phase:
4: salt← U({0, 1}320), u← H(m, salt)
5: v← u− c mod Q
6: e← (v mod p), v′ ← (v − e)/p
7: for i = 1, . . . ,m do
8: zi ← q · SampleZd(v

′
i/q) {z← Dq·Im+v′,r2}

9: end for
10: x0 ← Ez+ p0, x1 ← Sz+ p1, x2 ← z+ p2

11: if ∥(x0 + e,x1,x2)∥ > B then
12: restart
13: end if
14: str← Compress((x1,x2))
15: if str =⊥ then
16: restart
17: end if
18: return s = (salt, str)

8

3.2.1 Perturbation Sampler This perturbation sampling is implemented with Peikert’s Gaussian con-
volution technique [Pei10]. It proceeds in two steps as follows. First, it samples a continuous Gaussian vector
of covariance Σp − r̄2I, which can be done by applying the linear transformation defined by the Gram root
of (Σp − r̄2I) on a vector from the normal distribution. Then it rounds the real coefficients of the contin-
uous Gaussian vector to some near integer by the (arbitrary-centered) integer Gaussian sampler SampleZc

(Algorithm 7). The detailed algorithm is shown in Algorithm 6.
Algorithm 6: SampleP

Input: the secret key sk
Output: a perturbation vector p← DZn+2m,Σp

1: x←
√
σ2 − r2 − r̄2

2: L11 ← x · Im, L21 = − r2

x S, L31 = − r2

x E

3: C←

L33 L32 L31

L22 L21

L11

4: y← Nn+2m

5: c = C · y {c← Nk(0,Σp − r̄2I)}
6: for i = 1, . . . , n+ 2m do
7: pi ← SampleZc(ci)
8: end for
9: return p

3.2.2 Arbitrary-centered Integer Gaussian Sampler Algorithm 7 shows the sampler for c+DZ−c,r̄2

with arbitrary center c. It is adapted from the integer sampler of Falcon [PFH+20, HPRR20]. It first samples
some fixed Gaussian using table-based approach (Algorithm 8) and then uses rejection sampling to make
the output following the target distribution. The rejection probability is computed by the Exp algorithm
(Algorithm 9) and its subroutine ApproxExp (Algorithm 10).

Algorithm 7: SampleZc

Input: a center c
Output: z ← c+DZ−c,r̄2

1: d← c− ⌊c⌋
2: z+ ← BaseSample()
3: b← U({0, 1})
4: z ← b+ (2b− 1)z+

5: x← (z−d)2−(z+)2

2r̄2

6: r ← U({0, 1, . . . , 264 − 1})
7: if r > Exp(x) then
8: restart
9: end if

10: return z + ⌊c⌋

Algorithm 8: BaseSample
Input: None
Output: z+ ← D+

Z,r̄2

1: u← U({0, 1}72)
2: z+ ← 0;
3: for i = 0, . . . , 12 do
4: z+ ← z+ + [[u < RCDT [i]]]
5: end for
6: return z+

9

Algorithm 9: Exp
Input: A floating-point value x
Output: An integral approximation of 264 · exp(−x)
1: s← ⌊x/ ln 2⌋
2: r ← x− s · ln 2
3: s← min(s, 63)
4: z ← (2 · ApproxExp(r)− 1)≫ s
5: return z

Algorithm 10: ApproxExp
Input: Floating point values x ∈ [0, ln(2)]
Output: An integral approximate of 263 · exp(−x)
1: C = [0x00000004741183A3, 0x00000036548CFC06, 0x0000024FDCBF140A, 0x0000171D939DE045,

0x0000D00CF58F6F84, 0x000680681CF796E3, 0x002D82D8305B0FEA, 0x011111110E066FD0,
0x0555555555070F00, 0x155555555581FF00, 0x400000000002B400, 0x7FFFFFFFFFFF4800,
0x8000000000000000]

2: y ← C[0]
3: z ← ⌊263 · x⌋
4: for i = 1, · · · , 12 do
5: y ← C[i]− (z · y)≫ 63
6: end for
7: return y

3.2.3 Quantized Integer Gaussian Sampler The online phase needs to sample from DZ+v′,r̄2 . This task
can be done by the SampleZc sampler (Algorithm 7). However, we notice that v′ is in the discrete set 1

q · Z,
thus one can build q CDT tables for each coset and sample via looking up the according table. Compared to
the arbitrary-centered sampler, the table-based one is faster, simpler and implemented fully over integers. In
practice, we only need (q2 +1) CDT tables for the cosets Sc =

1
q · {0, 1, · · · ,

q
2}, as x← DZ−c,r̄2 is equivalent

to (−x)← DZ+c,r̄2 . The detailed algorithm is given in Algorithm 11. The table used in Algorithm 11 consists
of the (q2 + 1) RCDT tables for DZ+ci,r̄2 − ci for ci ∈ Sc.

Algorithm 11: SampleZd

Input: a coset c ∈ 1
q · Z

Output: z ← DZ+c,r̄2

1: c′ ← c− ⌊c⌋, b← (c′ ∈ Sc)
2: h← (2b− 1)c′ + (1− b)
3: u← U({0, 1}72)
4: zh ← 0
5: for i = −12, . . . , 12 do
6: zh ← zh + [[u < RCDT [h][i]]]
7: end for
8: zh ← zh + h {zh ← DZ+h,r̄2}
9: z ← (2b− 1)zh {z ← DZ+c′,r̄2}

10: return z

3.3 Signature Verification

The verification is straightforward as in other GPV hash-and-sign signatures. A formal description is given
in Algorithm 12.

10

Algorithm 12: Verify
Input: a message m, its signature (salt, str), the public key pk and the acceptance bound B
Output: Accept or Reject
1: Â← XOF(seedÂ)
2: if |str| ̸= L then
3: Reject
4: end if
5: (x1,x2)← Decompress(str) with x1 ∈ Zn,x2 ∈ Zm

6: u← H(m, salt), x′
0 ← (u− Âx1 −Bx2) mod Q

7: Accept if ∥(x′
0,x1,x2)∥ ≤ B, otherwise Reject

3.4 Signature Encoding

The compression encoding is implemented with the range Asymmetric Numeral Systems (rANS) [Dud13].
As discovered in [ETWY22], the rANS encoding gives a nearly optimal storage for Gaussian vectors close to
the entropic bound. Each element is split into the sign, the low bits, and the high bits. The sign and low bits
are nearly uniform, so they are stored directly. The high bits are compressed by the rANS encoding. Details
are shown in Algorithm 13 and Algorithm 14.

Algorithm 13: Compress
Input: a vector x ∈ Zn+m

Output: a string str of length L, or ⊥
1: for i = 1, . . . , n+m do
2: si ← (xi < 0)
3: hi ← |xi| ≫ 7
4: li ← |xi|&0x7f
5: end for
6: str← rANSEncode(h1 ∥ · · · ∥ hn+m) ∥ s1 ∥ l1 ∥ · · · ∥ sn+m ∥ ln+m ∥ 1
7: if |str| > L then
8: return ⊥
9: else

10: str← str ∥ 0L−|str|

11: end if
12: return str

Algorithm 14: Decompress
Input: a string str of length L
Output: a vector x ∈ Zn+m, or ⊥
1: r ∥ s1 ∥ l1 ∥ · · · ∥ sn+m ∥ ln+m ∥ 1 ∥ 0∗ ← str
2: h1 ∥ · · · ∥ hn+m ← rANSDecode(r)
3: for i = 1, . . . , n+m do
4: if si = 1 then
5: xi ← −(hi ≪ 7&li)
6: else
7: xi ← hi ≪ 7&li
8: end if
9: end for

10: return x = (x1, x2, . . . , xn+m)

11

3.5 Recommended Parameters
We specify three sets of parameter for the NIST-1, NIST-3, NIST-5 security levels respectively. They are
shown in Table 2. The numbers for concrete security are estimated as the core-SVP hardness of known
attacks. Details are shown in Section 4.

Security level NIST-1 NIST-3 NIST-5
Dimensions (m,n) (736, 848) (1024, 1232) (1312, 1552)

Modulus Q 216 217 217

Gadget parameters (p, q) (212, 24) (213, 24) (213, 24)

Acceptance bound B 62521 108493 130320
Signature size (in bytes) 2455 3540 4520

Public key size (in kilobytes) 1059 2177 3573

Key recovery:
{BKZ blocksize 443 663 878

Classical core-SVP security 129 194 256
Quantum core-SVP security 117 176 233

Forgery:
{BKZ blocksize 438 659 883

Classical core-SVP security 128 192 258
Quantum core-SVP security 116 175 234

Table 2. Recommended parameters.

4 Security

4.1 Security Reduction
4.1.1 Simulatable Signatures The HuFu signatures can be simulated without knowing the secret key
in the random oracle model (ROM). The proof is sketched as follows. We follow the notations in Algorithm 5.
Let x = (x0,x1,x2) and T =

[
E
S
I

]
, then x = p+Tz, AT = p · I mod Q and

Ax = pz+ c = v − e+ v = u− e mod Q.

In the ROM, the target u is uniformly random over Zm
Q and then e is uniformly random over Zm

p . In HuFu,
r = qr̄ ≥ η′ϵ(qZm) and σ2 ≥ (r2 + r̄2)(s1(T)2 + 1). By the same arguments in [YJW23], it follows that the
distribution of (u,x, e) in the signing procedure is statistically close to the one where x ← DZn+2m,σ2 , e ←
U(Zm

p) and u = Ax+ e mod Q. The latter is publicly simulatable.

4.1.2 Strong Unforgeability We now prove the SUF-CMA security in the ROM. We basically follows
the same arguments for the GPV signatures, and thus only give a proof sketch. Under the LWEn,m,Q,χ

assumption, the public key (Â,B) is computationally indistinguishable from uniform. Since the signature
distribution is simulatable without using the secret key, one can simulate the random oracle and the signing
oracle , and interact with the forgery adversary. Once a successful forgery is made, a short solution to the
SISm,n,Q,2B problem is constructed with high probability. The security proof in the quantum ROM can be
also given by the arguments in [BDF+11, CD20].

The above security reduction is mainly in an asymptotic sense. As is the case for Falcon, the SIS bound
2B is larger than the modulus Q for the recommended parameters of HuFu, which allows q-vectors as trivial
solutions to SISm,n,Q,2B . However, this is not known to affect the concrete security, as the forgery attack in
effect solves ISISm,n,Q,B where B < Q. Moreover, this can be addressed by using larger parameters (leading
to ≈ 10% increase on the sizes), if so desired.

12

4.2 Concrete Security

We analyze the cost of known lattice attacks and translate the analysis into concrete bit-security following
the core-SVP methodology.

4.2.1 Lattice Reduction and Core-SVP Hardness The BKZ lattice reduction algorithm [SE94] and
its optimized variants [CN11, MW16] are the best known algorithms for solving lattice problems. The BKZ
algorithm can find short lattice vectors and this strength increases with the blocksize β of BKZ. For a
d-dimensional lattice Λ, BKZ with blocksize β would find some short v ∈ Λ with

∥v∥ ≤ δdβ vol(Λ)
1/d and δβ ≈

(
(πβ)

1
β β

2πe

) 1
2(β−1)

when d > β > 50.
The core-SVP methodology, proposed in [ADPS16], gives a common method to assess the cost of lattice

attacks. Following this methodology, one first estimates the blocksize β required for successful attacks and
then quantify the attack cost with the core-SVP hardness model that is conservative. Specifically, the cost
of BKZ with blocksize β is estimated as 20.292β [BDGL16] in the classical setting and 20.265β [Laa16] in the
quantum setting.

4.2.2 Key Recovery The key recovery attack against HuFu boils down to solving the underlying LWE
problem. It can be done by finding short (s, e) ∈ Zn × Zl such that As + e = b mod Q where A ∈ Zl×n

Q

and b ∈ Zl
Q are public. The primal attack is a primary method for this. As shown in [ADPS16], the primal

attack succeeds when the blocksize β of the used BKZ algorithm satisfies

∥(s, e, 1)∥

√
3β

4(l + n+ 1)
≤ δ

2β−(l+n+1)−1
β ·Q

l
l+n+1

where
√
3/4 is set for a conservative estimate as per [Duc18]. Note the the number of LWE samples l is

between 0 and m in our case, and we choose the one minimizing the cost of the attack.

4.2.3 Signature Forgery The forgery attack against HuFu is essentially to solve the approximate-CVP
problem. A common used approach for this is the nearest-colattice algorithm [EK20]. In our case, given
(A,u) ∈ Zm×(2m+n)

Q × Zm
Q and B > 0, the nearest-colattice algorithm can find a short vector x such that

Ax = u mod Q and ∥x∥ ≤ B by calling BKZ with blocksize β satisfying

B ≥ min
k≤m+n

(
δ2m+n−k
β Q

m
2m+n−k

)
.

5 Implementation and Performances

The submission includes three implementation versions written in standard C:

– Reference implementation. This is mainly used for proof-of-concept.
– Optimized implementation. This version uses some code optimizations excluding AVX2 instructions.
– AVX2 implementation. Based on the optimized implementation, the AVX2 implementation further uti-

lizes AVX2 instructions for x86_64 platform.

In this section, we describe the technical implementation details and report the performance of our imple-
mentation.

13

5.1 Public Key Packing
The public key pk consists of a 32-byte string seedÂ and a matrix B ∈ Zm×m

Q . In the NIST-1 parameter
set, the elements of B are in 2 bytes and densely packed one after another. In other two parameter sets, the
elements of B are in 17 bits. In this case, the low 16 bits of each element are densely packed into 2 bytes,
and the rest of 1 most significant bit of all elements are collected and packed together.

5.2 Floating-Point Arithmetic
The key generation and the offline phase of the signing procedure involve the computations on real numbers.
We implement these with double-precision floating-point numbers that is the IVerify standard for floating-
point arithmetic (IVerify 754). This floating-point arithmetic offers 53 bits of precision. Note that the online
operations in signing procedure and the verification are implemented fully over integers.

5.3 Performances
The implementation is complied by gcc 11.3.0 with command -mavx2 -mbmi2 -mpopcnt -O3 -std=gnu11
-march=native -Wextra -DNIX -mfpmath=sse -msse2 -ffp-contract=off and runs on Ubuntu 22.04.2.
Table 3 reports the performance of our implementations on a single core of Intel Core i9-12900K @ 3.20 GHz
with 32GB RAM.

NIST-1 NIST-3 NIST-5
Optimized implementation (AES256NI)

KeyGen 1,193,896 8,916,915 9,727,510
Sign (offline) 6,618 16,606 28,639
Sign (online) 704 1,807 3,257
Sign (total) 7,322 18,413 31,896

Verify 1,804 6,105 10,424
Optimized implementation (SHAKE256)

KeyGen 1,158,074 9,686,255 8,848,380
Sign (offline) 10,550 24,631 42,303
Sign (online) 1,165 2,749 4,515
Sign (total) 11,715 27,380 46,818

Verify 6,133 15,658 26,152
AVX2 implementation (AES256NI)

KeyGen 703,222 2,500,839 5,109,743
Sign (offline) 3,473 6,324 10,933
Sign (online) 399 677 1,158
Sign (total) 3,872 7,001 12,091

Verify 801 2,358 3,811
AVX2 implementation (SHAKE256)

KeyGen 707,749 2,494,678 5,098,358
Sign (offline) 5,695 11,786 19,658
Sign (online) 647 1,236 2,191
Sign (total) 6,342 13,022 21,849

Verify 3,069 8,510 13,697

Table 3. Performance (in kilocycles) of HuFu on a single core of Intel Core i9-12900K
@ 3.20 GHz. Numbers are the average measured over 1, 000 executions.

14

6 Advantages and Limitations

6.1 Advantages

Strong security assurance: HuFu is based on the plain SIS and LWE that have the least amount of
structure among the security assumptions of lattice-based schemes. This mitigates the potential cryptanalytic
risk from algebraic structures [CDW17, DPW19] and dense sublattices [KF17, DvW21].

Extended applications: Thanks to the gadget framework, HuFu has the potential to be adapted to
advanced primitives, e.g. (hierarchical) identity-based encryption and aggregate signatures. Such powerful
versatility is the unique advantage of HuFu, making HuFu support a wide range of applications.

Online/offline structure: Most complex and costly signing operations can be done in the offline phase.
The online operations are particularly simple, fast and fully over integers. For this, Sign is of special interest
in certain scenarios, e.g. an architecture in which the offline phase is performed on FPGA or CPU while
the online phase on a regular device. Furthermore, such an online/offline structure may greatly ease the
side-channel protection that remains a challenging problem for lattice-based hash-and-sign signatures.

Short signatures & Fast speed: The signature size of HuFu is on par with CRYSTALS-Dilithium,
while HuFu is not based on structured lattices. The signing and verification of HuFu are efficient. HuFu is
also highly parallelizable, which provides some room for optimizations. In addition, its online/offline structure
allows to further reduce the online runtime and computation resource.

6.2 Limitations

Large public keys: The public key size of HuFu is around 1 to 3.5 megabytes for three different security
levels, thus HuFu may not be so desirable for many applications. Nevertheless, HuFu is totally qualified for
the usecases where keys are not transmitted frequently.

Floating-point arithmetic: While the online phase in the signing procedure is implemented fully over
integers, the offline phase still heavily uses floating-point arithmetic. This may be a limitation when the
online/offline mode is disabled, especially for the implementations on constraint devices. However, this can
be addressed by using the integral Gram decomposition technique [DGPY20]. We leave the fully integer
implementation as the follow-up works.

Bibliography

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched NTRU
assumptions - cryptanalysis of some FHE and graded encoding schemes. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 153–178.
Springer, Heidelberg, August 2016.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange
- A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages 327–
343. USENIX Association, August 2016.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM
STOC, pages 99–108. ACM Press, May 1996.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.

15

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th SODA, pages
10–24. ACM-SIAM, January 2016.

[BLNR22] Olivier Bernard, Andrea Lesavourey, Tuong-Huy Nguyen, and Adeline Roux-Langlois. Log-S-
unit lattices using explicit stickelberger generators to solve approx ideal-SVP. In Shweta Agrawal
and Dongdai Lin, editors, ASIACRYPT 2022, Part III, volume 13793 of LNCS, pages 677–708.
Springer, Heidelberg, December 2022.

[BR20] Olivier Bernard and Adeline Roux-Langlois. Twisted-PHS: Using the product formula to solve
approx-SVP in ideal lattices. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 349–380. Springer, Heidelberg, December 2020.

[CD20] André Chailloux and Thomas Debris-Alazard. Tight and optimal reductions for signatures based
on average trapdoor preimage sampleable functions and applications to code-based signatures.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 453–479. Springer, Heidelberg, May 2020.

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class relations and
application to ideal-SVP. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 324–348. Springer, Heidelberg, April / May
2017.

[CGM19] Yilei Chen, Nicholas Genise, and Pratyay Mukherjee. Approximate trapdoors for lattices and
smaller hash-and-sign signatures. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 3–32. Springer, Heidelberg, December
2019.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20. Springer,
Heidelberg, December 2011.

[DGPY20] Léo Ducas, Steven Galbraith, Thomas Prest, and Yang Yu. Integral matrix gram root and
lattice gaussian sampling without floats. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 608–637. Springer, Heidelberg, May 2020.

[dK22] Rafaël del Pino and Shuichi Katsumata. A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 306–336. Springer,
Heidelberg, August 2022.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over
NTRU lattices. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume
8874 of LNCS, pages 22–41. Springer, Heidelberg, December 2014.

[dLS18] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 574–591. ACM Press, October
2018.

[DN12] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of NTRUSign
countermeasures. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 433–450. Springer, Heidelberg, December 2012.

[DP16] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In ISSAC 2016, pages 191–198,
2016.

[DPW19] Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. On the shortness of vectors to be found
by the ideal-SVP quantum algorithm. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 322–351. Springer, Heidelberg, August
2019.

[Duc18] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
125–145. Springer, Heidelberg, April / May 2018.

16

[Dud13] Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of huffman coding
with compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540, 2013.

[DvW21] Léo Ducas and Wessel P. J. van Woerden. NTRU fatigue: How stretched is overstretched? In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 3–32. Springer, Heidelberg, December 2021.

[EFG+22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi
Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: A simpler, parallelizable, maskable variant
of falcon. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III,
volume 13277 of LNCS, pages 222–253. Springer, Heidelberg, May / June 2022.

[EK20] Thomas Espitau and Paul Kirchner. The nearest-colattice algorithm: Time-approximation trade-
off for approx-cvp. ANTS XIV, 4(1):251–266, 2020.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter hash-and-sign lattice-
based signatures. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 245–275. Springer, Heidelberg, August 2022.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 545–554. ACM Press, June 2013.

[HHSS17] Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Implementing
BP-obfuscation using graph-induced encoding. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 783–798. ACM Press, Octo-
ber / November 2017.

[HPRR20] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous gaussian sam-
pling: From inception to implementation. In Jintai Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020, pages 53–71. Springer,
Heidelberg, 2020.

[KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched NTRU pa-
rameters. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 3–26. Springer, Heidelberg, April / May 2017.

[Laa16] Thijs Laarhoven. Search problems in cryptography. PhD thesis, PhD thesis, Eindhoven University
of Technology, 2016., 2016.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor
Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Technical report, Na-
tional Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions.

[LW20] Changmin Lee and Alexandre Wallet. Lattice analysis on mintru problem. Cryptology ePrint
Archive, Paper 2020/230, 2020. https://eprint.iacr.org/2020/230.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718. Springer, Heidelberg, April 2012.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 820–849. Springer, Heidelberg, May 2016.

[NR06] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
271–288. Springer, Heidelberg, May / June 2006.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 80–97. Springer, Heidelberg, August 2010.

17

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2020/230

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhen-
fei Zhang. FALCON. Technical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[PHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal lattices with
pre-processing. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 685–716. Springer, Heidelberg, May 2019.

[PP19] Thomas Pornin and Thomas Prest. More efficient algorithms for the NTRU key generation using
the field norm. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of
LNCS, pages 504–533. Springer, Heidelberg, April 2019.

[Pre15] Thomas Prest. Gaussian Sampling in Lattice-Based Cryptography. PhD thesis, PhD thesis, École
Normale Supérieure Paris, 2015., 2015.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming, 66:181–199, 1994.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages
27–47. Springer, Heidelberg, May 2011.

[YD18] Yang Yu and Léo Ducas. Learning strikes again: The case of the DRS signature scheme. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of
LNCS, pages 525–543. Springer, Heidelberg, December 2018.

[YJW23] Yang Yu, Huiwen Jia, and Xiaoyun Wang. Compact lattice gadget and its applications to hash-
and-sign signatures. In CRYPTO 2023, page (to appear), 2023.

18

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	Introduction
	Lattice-based Hash-and-Sign Signatures and the GPV Framework
	Practical GPV Hash-and-Sign Signatures
	Design Rationale
	Standard Worst-case Problems on Generic Lattices.
	Gadget Trapdoor Framework.
	Compact Lattice Gadget.

	Preliminaries
	Notations
	Cryptographic Definitions
	Lattices and Gaussians
	SIS and LWE

	Specification
	Key Generation
	Signature Generation
	Perturbation Sampler
	Arbitrary-centered Integer Gaussian Sampler
	Quantized Integer Gaussian Sampler

	Signature Verification
	Signature Encoding
	Recommended Parameters

	Security
	Security Reduction
	Simulatable Signatures
	Strong Unforgeability

	Concrete Security
	Lattice Reduction and Core-SVP Hardness
	Key Recovery
	Signature Forgery

	Implementation and Performances
	Public Key Packing
	Floating-Point Arithmetic
	Performances

	Advantages and Limitations
	Advantages
	Limitations

