
Preon: zk-SNARK based Signature Scheme

Ming-Shing Chen1, Yu-Shian Chen2, Chen-Mou Cheng3, Shiuan Fu3, Wei-Chih Hong3,
Jen-Hsuan Hsiang3, Sheng-Te Hu3, Po-Chun Kuo3, Wei-Bin Lee2, Feng-Hao Liu4, and

Justin Thaler5

1Academia Sinica, Taipei, Taiwan
2Hon Hai Research Institute, Taipei, Taiwan

3BTQ Technologies Corp.
4Florida Atlantic University, FL 33431, USA

5Department of Computer Science, Georgetown University, Washington, DC 20057, USA

May 2023

1

Contents
1 Introduction 4

2 Preliminary 5
2.1 Notations . 5
2.2 R1CS . 5
2.3 Interactive Oracle Proof . 5
2.4 Reed-Solomon Code . 6

3 Our Proposed Signature Scheme 6
3.1 Syntax of a Signature Scheme . 7
3.2 General Construction Paradigm . 7
3.3 Instantiations . 9

3.3.1 Hard Relation . 9
3.3.2 NIZK . 10

4 Aurora 10
4.1 Full Aurora IOP Flow . 10

4.1.1 Preparation . 10
4.1.2 Inputs to Prover and Verifier . 11
4.1.3 Main Interactive Protocol . 11

4.2 FRI Low-degree Test . 14
4.2.1 Commit Phase . 14
4.2.2 Query Phase . 14

4.3 The BCS Transform . 17
4.4 Achieving Zero Knowledge . 17
4.5 Security Analyses . 18

4.5.1 Knowledge Soundness . 18
4.5.2 Zero Knowledge . 21

4.6 Possible Attacks to the Non-interactive Zero-knowledge Aurora Protocol 21
4.6.1 Grinding Attack . 21
4.6.2 Attacks to the FRI Protocol . 22

5 AES Constraints 22
5.1 Constraints for the Four Steps of AES . 22
5.2 R1CS Circuit for AES . 25

5.2.1 Circuit for AES Round . 27
5.2.2 Circuit for AES Key Schedule . 30

6 Recommended Parameter Sets 32
6.1 Parameter Sets for Different Security Levels for Aurora . 33
6.2 Justification for the Parameter Sets . 34

6.2.1 Knowledge Soundness of the Non-interactive Zero-knowledge Aurora Protocol . . . 34
6.3 UF-CMA Security of the Signature Scheme . 35

2

7 Pseudocode 35
7.1 Building Blocks . 35

7.1.1 GetWitness and GetInstance Functions . 35
7.1.2 Instantiation of the Random Oracle . 36
7.1.3 Merkle Tree . 36

7.2 Pseudocode for the Signature Scheme . 38
7.2.1 KeyGen Algorithm . 38
7.2.2 Sign and Verify Algorithms . 38
7.2.3 Making the Algorithms Deterministic . 43

8 Performance 43

A Components of Aurora 46
A.1 Lincheck . 46
A.2 Sumcheck . 48
A.3 Rowcheck . 49

B An Improved Chernoff Bound 49

3

In this proposal, we construct a signature scheme based on the general-purpose zero-knowledge proving
system Aurora [BCR+19].

1 Introduction
General-purpose proving systems have been undergoing rapid development in recent years. A general-
purpose proving system is a Fiat-Shamir transformed interactive protocol in which a prover can convince a
verifier that the prover knows a secret witness for the truthfulness of a somewhat general statement. When this
statement is about knowledge of a secret, we can construct signature schemes, e.g., following the MPC-in-the-
head paradigm [CDG+17, KKW18, dSGMOS19, BdK+21, DKR+22], as well as based on zk-STARK [STA].

More specifically, one such way is for the prover to prove the statement “I know a secret key sk corre-
sponding to the public key pk through the relation pk = OWF(sk),” where OWF is an appropriate function
that is conjectured to be one-way, and then use the Fiat-Shamir transform to turn an interactive protocol into a
non-interactive one. In this paradigm, signing a message msg with the secret key sk amounts to generating a
proof in the non-interactive protocol with msg used to generate the public random coins needed in producing
the proof. Likewise, signature verification is simply proof verification, which any verifier can carry out.

One may (rightly) expect that a major drawback of such an approach is the overhead in terms of space and
time one needs to pay in constructing a signature scheme from a general-purpose proving system, as we do
not have access to any of the optimization opportunities brought about by specialization. However, we argue
for this approach because it can bring a long-term advantage as follows. Once we have a (secure) signature
scheme constructed from a general-purpose proving system like this, the flexibility of the latter would easily
allow us to enhance the functionalities of the former and build at a minimum cost advanced schemes like
group signatures [CvH91], attribute-based signatures [MPR11], functional signatures [BGI14], . . . , to name
a few, by proving a suitable (and potentially more complicated) statement in the proving system. Thus,
the tremendous amount of investment that goes into a unified process of security analysis, standardization,
implementation, deployment, as well as post-deployment continual improvement and optimization can pay
lucrative dividends across a broader and fast-growing landscape of applications, compared with the alternative
approach of independently standardizing all these different signature schemes individually, necessarily having
to start from scratch and repeating much of the work every time.

In this document, we will detail a simple proposal following the above philosophy. Specifically, we will
give the following information.

• A complete specification will be give in sections 3 through 7.

• A detailed performance analysis will be given in section 8.

• A description of the expected security strength will be given in sections 4.5, 6.2, and 6.3.

• An analysis of the algorithm with respect to known attacks will be given in section 4.6.

The rest of this document is organized as follows. In section 2, we give an over of the notations used in
this document. In section 3, we give our signature construction and a high-level argument why it is secure.
In section 4, we introduce some basics of the Aurora proving system. In section 5, we describe our choice of
AES-based one-way function, as well as how we encode it into Aurora. In section 6, we give our suggestions
of security parameters for different security levels. In section 7, we give pseudocode of the signature scheme
to help implementers better understand the components in our construction and reference implementation. In
section 8, we demonstrate the performance of the resulting signature schemes.

4

2 Preliminary

2.1 Notations
We use f, g, h, p, q, r with subscripts to denote polynomials, bold font lowercase letters like a,b, c,v,w to
denote vectors, as well as bold font uppercase letters like A,B,C to denote matrices. Other usual lowercase
letters like a, b, t,m, n are used as constants or parameters, some of the lower case letters are used for both
polynomials and constants, in such cases we will make sure the contents are clear. The lowercase serif letters
like b, r and Greek letters like α, δ, ρ, ϵ, λ are also used to denote numbers or parameters. We use usual
uppercase letters with subscripts like L, S,H1, H2 to denote sets of numbers, and use F to denote a field.
The Reed-Solomon codeword obtained when evaluating a polynomial f on a set L is denoted as f̂ , which we
will go into more detail in section 2.4. We use i,w to denote instances and witnesses. We use R to denote a
relation and use C to denote a circuit.

A notable exception is that we use the uppercase letter Z with subscripts to denote vanishing polynomials
of the form Z(x) = Πs∈S(x− s) for some set S.

2.2 R1CS
A Rank-1 Constraint System (R1CS) can be formalized as a four-tuple (A,B,C, z), with three matrices
A,B,C ∈ Fa×b and a vector z ∈ Fb, such that the i-th entry of the vector Az times the i-th entry of Bz
equals the i-th entry of Cz for all i ∈ {1, 2, ..., a}, which is denoted as Az ◦Bz = Cz, where ◦ denotes the
operator of entry-wise multiplication of vectors.

It is known that any satisfiable arithmetic circuit C over a finite field F can be efficiently transformed into
R1CS (AC ,BC ,CC , z), where AC ,BC ,CC correspond to the fixed circuit C itself, while z = (1,v,w) gives
an instance of computation trace satisfying the circuit C with public instance values v and private witness
values w.

2.3 Interactive Oracle Proof
An interactive oracle proof (IOP) is a multi-round two-party interactive protocol [BCS16]. In the i-th round,
one party (the verifier) sends a message mi to the other party (the prover), and then the prover replies to the
verifier with the commitment πi of a message. After all communication rounds end, the verifier will then
challenge the prover to partially open these commitments in a specific way and, based on the answers to these
queries, decide whether to accept or reject the claim that nthe prover knows some private witness w that is in
a prescribed relationR with some public instance i.

Interactive oracle proof combines the feature of interactive proof (IP) and probabilistically checkable
proof (PCP). IOP has multiple interaction rounds as IP and at the same time is similar to PCP in that the
verifier does not need to read the full messages πi for all i. Instead, it only queries some positions of the
messages in order to accept or reject the prover’s claim. In other words, the prover’s messages {πi}i can be
thought of as “oracles” for the verifier to query at certain positions.

We say that an IOP is “public-coin” if all the verifier messages {mi}i are uniformly chosen from some
domains.

Here we state some properties that will be considered when it comes to IOPs, adapted from the definitions
in [BCR+19].

Completeness. An IOP protocol for a relation R is said to be complete if for any valid instance-witness
pair (i,w) ∈ R, the probability that the verifier outputs 1 (accept) is 1.

5

Soundness. An IOP protocol is said to have soundness error ϵ if for any invalid instance i for which there
is no witness w such that (i,w) ∈ R), the probability for a computationally unbounded prover to convince
the verifier otherwise is at most ϵ, which is allowed to depend on a security parameter. If ϵ is a negligible
function, then we say the IOP is sound.

Proof of Knowledge. An IOP protocol is said to give a proof of knowledge with knowledge soundness
error ϵ(n) if there exists a probabilistic polynomial-time algorithm E, called an extractor algorithm, such that
for every instance i and every computationally unbounded prover P̃ that convinces the verifier to accept i
with probability µ, EP̃ (i, 1wR(n)) outputs w such that (i,w) ∈ R with probability at least µ − ϵ(n), where
wR(n) := max{|w| : (i,w) ∈ R, |i| = n}. If ϵ is a negligible function, then the IOP is said to be knowledge
sound, or simply a proof of knowledge.

Intuitively, if an IOP is knowledge sound, and there exists a prover that can convince the verifier to accept
instance i with high probability, then we can conclude that this prover must actually know a valid witness w
for i.

Remark 2.1 When constructing a signature scheme, we will focus on the knowledge soundness (or proof
of knowledge) property of the proving system, since we need to guarantee that the signer does have the
knowledge of a secret key rather than the mere existence of a secret key.

Zero Knowledge. We refer to Definition 4.2, 4.3, and 4.4 of [BCR+19] for a formal definition of the zero-
knowledge properties of an IOP. Intuitively, we say that an IOP for a relationR has zero-knowledge property
if the verifier cannot get any information about the prover’s private witness after the interaction, whether it is
convinced or not.

Remark 2.2 When constructing a signature scheme, we will need the zero-knowledge property of the proving
system since the signer doesn’t want any part of the private key been revealed to the verifier.

2.4 Reed-Solomon Code
For the sake of completeness, we restate the definition of Reed-Solomon code in [BCR+19]. Given a subset
L of a field F and ρ ∈ (0, 1], we denote by RS[L, ρ] ⊂ F|L| all evaluations over L of univariate polynomials
of degree less than ρ · |L|. That is, a word c ∈ F|L| is a codeword of a Reed-Solomon code RS[L, ρ] ⊂ F|L|

if there exists a polynomial p of degree less than ρ · |L| such that ci = p(i) for every i ∈ L.

Distance Measure. For two vectors v1,v2 ∈ Fk, we define ∆(v1,v2) to be the relative Hamming distance
between v1 and v2, that is, ∆(v1,v2) :=

1
k ·# {i ∈ {1, 2, ..., k}|v1,i ̸= v2,i}. For a set S ⊂ Fk, we define

∆(v1, S) := minv2∈S ∆(v1,v2). When we discuss the distance measure for Reed-Solomon codes, we will
use these two measures.

3 Our Proposed Signature Scheme
In this section, we present our proposed signature scheme, which will be organized as follows: (1) we first re-
call the syntax and security notion for a signature scheme; (2) we present a general paradigm of constructions
and the required building blocks in an abstract way; (3) we present how to instantiate the building blocks,
aiming at different security levels as required by the NIST. Our concrete parameters are given in the later
sections as we will point out as references.

6

3.1 Syntax of a Signature Scheme
A digital signature scheme consists of three algorithms, namely {KeyGen,Sign,Verify}, which work as fol-
lows.

• Key generation: The key generation algorithm KeyGen(·) takes a security parameter 1κ as input, and
then outputs a pair of secret and public keys (sk, pk).

• Signing: The signing algorithm Sign(·) takes a message msg and a secret key sk as input, and then
outputs a signature sig.

• Verification: The verification algorithm Verify(·) takes a message msg, a public key pk and a signature
sig as input, and then outputs 0 or 1 to indicate rejecting/accepting the signature with respect to the
message.

Next, we restate an important security notion—Existential Unforgeability under Chosen Message Attack,
also known as EUF-CMA.

Definition 3.1 Let SIG = {KeyGen,Sign,Verify} be a signature scheme. We consider the following experi-
ment, which is parameterized by an adversary A and security parameter κ.

• KeyGen(1κ) is run to obtain keys (pk, sk).

• Adversary A is given pk and access to a signing oracle Osk(·), which returns a signature with respect
to each input query made by the adversary A. Let Q be the set of queries made by A.

• At the end, A outputs a pair (msg∗, sig∗) as the forgery. A wins the security game if and only if (1)
Verify(pk,msg∗, sig∗) = 1, and (2) msg∗ /∈ Q.

A signature scheme is EUF-CMA secure (or simply secure when it is clear from the context) if, for any
probabilistic polynomial-time A, the winning probability is upper bounded by negl(κ) for some negligible
function negl(·).

3.2 General Construction Paradigm
Now we present a general paradigm to construct a digital signature scheme, using as building blocks (1)
a (true)-simulation extractable non-interactive zero-knowledge proof (NIZK) that supports labels, and (2) a
hard NP relation. We elaborate on these notions next.

Building Blocks. We use Π.{Setup,Prove,Verify} to denote a NIZK for general NP relations, and R =
{(x,w)} a hard NP relation. They should satisfy the following security notions.

Definition 3.2 ((True) Simulation Extractable NIZK) Let R be an NP relation on pairs (x,w) with cor-
responding language LR = {x : ∃ w such that (x,w) ∈ R}. A true-simulation extractable non-interactive
zero-knowledge (NIZK) argument supporting labels and for relationR consists of three algorithms (Setup,Prove,Verify):

• (Pub,TK,EK)← Setup(1κ): creates a public string Pub, a trapdoor TK, and an extraction key EK.

• π ← ProveL(Pub, x, w): creates an argument π that R(x,w) = 1, where L is a string to indicate
label.

• 0/1 ← VerifyL(Pub, x, π): verifies whether or not the argument π is correct, where L is a string to
indicate label.

7

For clarity of presentation, we omit Pub in the Prove and Verify. We require that three basic properties hold:

• Completeness. For any (x,w) ∈ R and any label L, if (Pub,TK,EK)← Setup(1κ), π ← ProveL(x,w),
then VerifyL(x, π) = 1.

• Soundness. For any probabilistic polynomial-time adversaryA and any label L, the probability for the
following event is negligible: (Pub,TK,EK) ← Setup(1κ), (x∗, π∗) ← A(Pub) such that x∗ /∈ LR
but VerifyL(Pub, x∗, π∗) = 1.

• Composable Zero-knowledge. There exists a probabilistic polynomial-time simulator S such that for
any label L and any probabilistic polynomial-time A, the advantage (the probability A wins minus
0.5) is negligible in the following game.

– A challenger samples (Pub,TK,EK)← Setup(1κ) and sends (Pub,TK) to A
– A chooses (x,w) ∈ R and sends to the challenger.

– The challenger generates π0 ← ProveL(x,w), π1 ← S(x, L,TK), and then samples a random
bit b← {0, 1}. Then it sends πb to A.

– A outputs a guess bit b′ and wins if b′ = b.

• Extractibility. Additionally, true simulation extractability requires that there exists a probabilistic
polynomial-time extractor Ext such that for any probabilistic polynomial-time adversary A, the prob-
ability A wins is negligible in the following game:

– A challenger samples (Pub,TK,EK)← Setup(1κ) and sends Pub to A.

– A is allowed to make oracle queries to the simulation algorithm S ′((x,w), L,TK) adaptively
with input (x,w) and L, where S ′ first checks if (x,w) ∈ R and returns S(x, L,TK) if that is the
case.

– A outputs a tuple x∗, L∗, π∗.

– The challenger runs the extractor w∗ ← Ext(L∗, (x∗, π∗),EK).

– A wins if (1) the pair (x∗, L∗) was not part of the simulator query, (2) the proof π∗ verifies, i.e.,
VerifyL

∗
(x∗, π∗) = 1 and (3)R(x∗, w∗) = 0.

The simulation extractability captures the concept of non-malleability, meaning that the adversary cannot
generate a valid proof after seeing several simulated proofs (as well real proofs), without knowing a witness.
This property is crucial for the signature design based on NIZK. Next, we define our next building block—a
hard NP relation.

Definition 3.3 Let R be an NP relation associated with the probabilistic polynomial-time sampling algo-
rithm Gen(·). The relationR is hard if and only if the following holds:

• For any (x,w) ∈ Gen(1κ), we have (x,w) ∈ R.

• There is a polynomial-time algorithm that determines whether (x,w) ∈ R for any input (x,w). The
decision algorithm is denoted asR(x,w) ∈ {0, 1}.

• For any probabilistic polynomial-time adversary A, the following probability is negligible:

Pr [R(x,w∗) = 1 | w∗ ← A(x), (x,w)← Gen(1κ)] ≤ negl(κ).

8

General Construction. Given Π.{Setup,Prove,Verify} as a true-simulation extractable NIZK supporting
labels for general NP relations (as Definition 3.2), andR = {(x,w)} as a hard NP relation (as Definition 3.3),
below is a general paradigm to construct signature schemes.

Construction 3.4 (General Paradigm) Consider the following scheme SIG.{KeyGen,Sign,Verify}:

• There is a one-time system setup algorithm that runs the NIZK Pub← Π.Setup(1κ). Then it publishes
Pub. In all the following three algorithms, we assume that Pub is implicitly taken as the public input.

• KeyGen(1κ): on input the security parameter 1κ, the algorithm runs the relation sampling algorithm
ofR, i.e., (x,w)← Gen(1κ), and sets pk := x, and sk := w.

• Sign(sk,msg): to sign a message msg with secret key sk = w, the algorithm runs π ← Π.Provemsg(x,w)
with respect to the relationR, using msg as the label. It outputs the signature as sig := π.

• Verify(pk, (msg, sig)): to verify a message-signature pair (msg, sig), the algorithm parses sig as a
NIZK proof π, and outputs Π.Verifymsg(pk, π) where msg is the label.

To analyze the security of the design, we can use the result of the work [DHLW10] as summarized in the
following theorem.

Theorem 3.5 ([DHLW10]) Assuming that R is a hard relation and Π is a NIZK that is true-simulation
extractable, then Construction 3.4 is EUF-CMA secure.

3.3 Instantiations
In this section, we present our concrete parameters to instantiate the building blocks—(1) the hard relation,
and (2) the NIZK proof system.

3.3.1 Hard Relation

We propose to use AES to build the hard relation, following the work of BBQ [dSGMOS19] and Banquet[BdK+21].
The general idea is to set the public string as (r, y) and the secret witness as sk such that y = AESsk(r). Below
we present the formal forms for different security levels.

• (Level 1) Let R1 =
{
(x = (r, y), w = sk) : r, y ∈ {0, 1}128, y = AESsk(r)

}
. Here the AES uses the

L1-level parameters as suggested by NIST. The Gen algorithm is: (1) choose uniformly at random
r ∈ {0, 1}128 and sk ∈ {0, 1}128; (2) compute y = AESsk(r); (3) output x = (r, y) and w = sk.

• (Level 3) Let R3 =
{
(x = (r, y = (y1, y2)), w = sk) : r ∈ {0, 1}192, y1, y2 ∈ {0, 1}128, y1 =

AESsk(r1), y2 = AESsk(r2)
}

, where r1 is the first 128 bits of r and r2 is the last 64 bits of r padded
with 64 zeros. Here AES uses the L3-level parameters as suggested by NIST. The Gen algorithm is:
(1) choose uniformly at random r ∈ {0, 1}192 and sk ∈ {0, 1}192; (2) set r1 and r2 as above, and then
compute y1 = AESsk(r1), y2 = AESsk(r2); (3) output x = (r, y = (y1, y2)) and w = sk.

• (Level 5) Let R5 =
{
(x = (r1, r2, y1, y2), w = sk) : r1, r2 ∈ {0, 1}128, y1, y2 ∈ {0, 1}128, y1 =

AESsk(r1), y2 = AESsk(r2)
}

. Here AES uses the L5-level parameters as suggested by NIST. The Gen

algorithm is: (1) choose uniformly at random r1, r2 ∈ {0, 1}128 and sk ∈ {0, 1}256; (2) then compute
y1 = AESsk(r1), y2 = AESsk(r2); (3) output x = (r1, r2, y1, y2) and w = sk.

9

3.3.2 NIZK

In this section, we highlight how we instantiate the required NIZK. First, we notice that the building block
as presented above is a proof system that supports labels. This is easy to achieve for an IOP (interactive
oracle proof) system with the BCS transform (using Fiat-Shamir techniques). Particularly, we can embed the
label to some hash function, i.e., H(L, ·), and then use it as the random oracle. In this way, the label can be
associated with the proof as we need.

To instantiate the basic NIZK, we choose the scheme Aurora, whose details are presented in Section 4.
We notice that a true-simulation extractable NIZK can be achieved by using a CCA2 encryption scheme and
a regular NIZK via the simple construction of [DHLW10]. Thus Aurora can be used to realize this notion
together with a CCA2 encryption via their framework.

This work further conjectures that the Aurora itself (without the construction of [DHLW10]) is already
true-simulation extractable. The work [FKMV12] showed that Fiat-Shamir transform can already achieve
some form of non-malleability. This provide some confidence for our conjecture theoretically.

4 Aurora
In this section, we describe the Aurora proving system which is proposed in [BCR+19].

Aurora is a public-coin IOP protocol for R1CS relations, where the prover’s goal is to convince the verifier
of the statement “I know a witness vector w such that Az ◦Bz = Cz for z = (1,v,w) ∈ Fn+1.” Here the
arithmetic take place over a finite field F; both the matrices A,B,C ∈ Fm×(n+1) and the vector v ∈ Fk are
publicly known.

The truthfulness of the statement is equivalent to that of the following two statements: (1) “I know the
witness vector w, along with three vectors a,b, c such that a = Az,b = Bz and c = Cz”; (2) “a ◦ b = c.”

The high-level idea of Aurora is thus to use the “Lincheck protocol” to prove the first statement, and then
use the “Rowcheck protocol” to prove the second statement. Further details of “Lincheck” and “Rowcheck,”
as well as other subprotocols are presented in Appendix A.

In section 4.3, we introduce a transform that can turn the interactive Aurora protocol into a non-interactive
one. In section 4.4, we describe how to add a zero-knowledge property to the Aurora protocol. We call the
protocol after applying the techniques in section 4.3 and section 4.4 to the interactive Aurora IOP the “non-
interactive zero-knowledge Aurora protocol.”

4.1 Full Aurora IOP Flow
In this section, we explain the way how Aurora combines all the components in order to form an IOP for
R1CS relations.

4.1.1 Preparation

The prover and the verifier agree upon the following:

• A predetermined R1CS relation that they want to prove;

• A finite field F;

• Subspaces H1, H2 ⊂ F with proper sizes, where H1 = {h1, ..., hm} and H2 = {h1, ..., hn+1};

• Three positive numbers λi, λ
′
i , ℓ ∈ N as repetition parameters;

10

• A configuration of the FRI protocol, which contains additive cosets {Li}i with proper sizes and poly-
nomials {qi}i.

The prover and verifier also precompute the polynomial ZH1
(x) := Πj∈{1,...,m}(x − hj), the polynomial

Z
≤(k+1)
H2

(x) := Πj∈{1,...,k+1}(x− hj), and the polynomial ZH1∪H2
(x) := Πh∈H1∪H2

(x− h) for later use.

4.1.2 Inputs to Prover and Verifier

The prover takes as inputs the private witness vector w ∈ F(n−k), the public instance vector v ∈ Fk, and
three public matrices A,B,C ∈ Fm·(n+1), where m denotes the number of rows of the matrices, and n+ 1
denotes the number of columns (as well as the length of the vector z := (1,v,w)). The verifier takes inputs
the public instance vector v ∈ Fk and the matrices A,B,C ∈ Fm·(n+1).

4.1.3 Main Interactive Protocol

1. Polynomial Interpolation. In this part, the prover uses its inputs to compute fw, fAz, fBz, fCz via
Lagrange interpolation, such that

f(1,v)(x) =

{
1 for x = hi where i = 1

vi−1 for x = hi where i ∈ {2, ..., k + 1} (1)

fw(x) =

{
wi−k−1−f(1,v)(x)

Z
≤(k+1)
H2

(x)
for x = hi where i ∈ {k + 2, ..., n+ 1} (2)

fAz(x) =
{

(Az)i for x = hi where i ∈ {1, ...,m} (3)

fBz(x) =
{

(Bz)i for x = hi where i ∈ {1, ...,m} (4)

fCz(x) =
{

(Cz)i for x = hi where i ∈ {1, ...,m} (5)

Note that if we define the polynomial fz via Lagrange interpolation such that

fz(x) =
{

zi for x = hi where i ∈ {1, ..., n+ 1} (6)

, then by the uniqueness of Lagrange interpolation and comparing (1), (2), (6), we have that

fz(x) = f(1,v)(x) + fw(x) · Z≤(k+1)
H2

(x) (7)

The prover then evaluates these polynomials over a domain L, i.e., computes the Reed-Solomon code-
words f̂w := fw|L ∈ RS[L, n−k

|L|], f̂Az := fAz|L ∈ RS[L, m
|L|], f̂Bz := fBz|L ∈ RS[L, m

|L|], f̂Cz :=

fCz|L ∈ RS[L, m
|L|], and sends these codewords as message oracles to the verifier.

Note that after receiving these oracles, if the verifier wants to know fz(x0) for some point x0 ∈ L, the
verifier only needs to query the prover to open fw(x0), since the verifier can compute f(1,v)(x0), Z

≤(k+1)
H2

(x0)
by itself and then compute fz(x0) via formula (7). In Aurora’s original paper, the authors called poly-
nomials like fz “virtual oracles,” as their value can be computed by the verifier from querying some
previously received message oracles.

11

2. Lincheck. The prover and the verifier will repeat this part λi times, during which they engage in an
amortized Lincheck to prove that if fz is indeed the Lagrange interpolation of z, then fAz, fBz, and
fCz are those of Az, Bz, and Cz, respectively, for the public matrices A, B, and C that are known to
both of them. To do this, in the i-th iteration for i ∈ {1, ..., λi}, the verifier first samples four uniformly
random elements αi, si,1, si,2, si,3 ∈ F and sends them to the prover. The prover then interpolates a
polynomial p1αi

such that

p1α(x) =

{
αi−1 for x = hi where i ∈ {1, 2, ...,m}

0 for x ∈ {H1 ∪H2} \H1,
(8)

as well as polynomials p2,Aαi
, p2,Bαi

, p2,Cαi
such that

p2,Aα (x) =

{ ∑m
i=1(Ai,j · αi−1) for x = hj where j ∈ {1, 2, ..., n+ 1}

0 for x ∈ {H1 ∪H2} \H2,
(9)

replacing A by B and C the remaining two polynomials p2,Bαi
and p2,Cαi

. Then the prover computes
low-degree polynomials gi, hi such that

si,1(fAz · p1αi
− fzp

2,A
αi

) + si,2(fBz · p1αi
− fzp

2,B
αi

) + si,3(fCz · p1αi
− fzp

2,C
αi

)

= gi + hi · ZH1∪H2

(10)

The prover then sends the Reed-Solomon codeword ĥi := hi|L ∈ RS[L, |H1∪H2|
|L|] to the verifier. Note

that after receiving ĥi, the verifier can compute queries to the virtual oracle ĝi := gi|L = [si,1(fAz ·
p1αi
− fzp

2,A
αi

) + si,2(fBz · p1αi
− fzp

2,B
αi

) + si,3(fCz · p1αi
− fzp

2,C
αi

)− hi · ZH1∪H2
]|L via queries to

f̂Az, f̂Bz, f̂Cz, f̂z and ĥi, since it can compute p1αi
, p2,Bαi

, ZH1∪H2
by itself.

3. Reduction to FRI. Finally, the prover and the verifier will repeat this part λ′
i times. In the j-th repetition

for j ∈ {1, ..., λ′
i}, the verifier needs to use FRI low-degree test protocol (Section 4.2) to show that

all the committed Reed-Solomon codewords correspond to low-degree polynomials of varying bounds.
The prover needs to show that f̂w is indeed in the codeword set RS[L, n−k

|L|], which is equivalent to

showing that the degree of fw is lower than n−k. The prover also needs to show that f̂Az, f̂Bz, f̂Cz ∈
RS[L, m

|L|], ĥi ∈ RS[L, max{m,n+1}
|L|], the virtual oracle ĝi ∈ RS[L, max{m−1,n}

|L|], and the virtual

oracle f̂Az·f̂Bz−f̂Cz

ZH1
|L ∈ RS[L, n

|L|]. This last check is the Rowcheck procedure; recall formula (46). We
also note that the degree bound for g is extremely important, since in Sumcheck we need to check g
has a degree exactly lower than max{m,n+ 1} − 1.

To simultaneously run all above low-degree tests on all polynomials, Aurora combines all polynomials
into one. The verifier first samples random coefficient vector yj = (yj,1,yj,2, ...,yj,5+3λi) ∈ F5+3λi

and sends yj to the prover. The prover and the verifier then engage in one run of the FRI protocol
where the first prover message is the virtual oracle corresponding to the Reed-Solomon codeword of
the following polynomial with a degree less than 2max{m,n+ 1}:

fj,0 := yj,1 · fw + yj,2 · fAz + yj,3 · fBz + yj,4 · fCz + yj,5 ·
fAz · fBz − fCz

ZH1

+

λi∑
i=1

(yj,5+i · hi) +

λi∑
i=1

(yj,5+λi+i · gi)

+

λi∑
i=1

(yj,5+2λi+i ·X(2max{m,n+1})−(max{m,n+1}−1) · gi)

(11)

12

Intuitively, Aurora takes a random linear combination of all the committed polynomials and performs
only one low-degree test on this random linear combination. However, since all polynomials have dif-
ferent claimed degrees, Aurora raises the degree of gi to the maximum degree bound for the committed
polynomials by multiplying the term X(2max{m,n+1})−(max{m,n+1}−1). This way, the polynomials
{X(2max{m,n+1})−(max{m,n+1}−1) · gi}i have degree bound 2max{m,n + 1}, which becomes the
maximum degree among all the tested polynomials.

To formally prove that the idea of shifting important polynomials and using random linear combination
really works, we refer to the original paper [BCR+19], the soundness part of Protocol 8.2 for a detailed
analysis.

We summarize the flow of the Aurora IOP in Figure 1.

Part 1
P (w,v,A,B,C) V (v,A,B,C)

compute fw, fAz, fBz, fCz

f̂w,f̂Az,f̂Bz,f̂Cz−−−−−−−−−−−−−−−−−−−−−→

Part 2, for indices i ∈ {1, ..., λi}, do the following independently

P V

sample αi, si,1, si,2, si,3
$←− F

αi,si,1,si,2,si,3←−−−−−−−−−−−−−−−−−
compute gi, hi

from formula (10)
ĥi−−−−−−−−−−−−→

Part 3, for indices j ∈ {1, ..., λ′
i}, do the following independently

P V

sample yj
$←− F5+3λi

yj←−−−−−−−−−
P and V run an FRI protocol for
deg(fj,0) < 2max{m,n+ 1}

where fj,0 is defined by formula (11)
−−−−−−−−−−−−→

Figure 1: The Aurora IOP

13

4.2 FRI Low-degree Test
Aurora uses the Fast Reed-Solomon Interactive oracle proof of proximity (FRI) low-degree test protocol as
one of its core components. Here we describe how the protocol works at a high level. For a more detailed
protocol description and analysis, refer to [BBHR17].

In the FRI protocol, the prover wants to prove the statement “I know a polynomial f whose degree is
lower than d.” The FRI protocol contains two phases: the commit phase and the query phase.

4.2.1 Commit Phase

The commit phase contains about log d rounds. In each round, the prover starts with a polynomial fi, where f0
is defined as the claimed low-degree polynomial f . The prover first computes the Reed-Solomon codeword of
fi over an additive coset Li, where L0 is the predetermined space L. In order to encode the full information
of f0, the set L should be chosen to be sufficiently large. Then the prover sends the corresponding Reed-
Solomon codeword f̂i as a message oracle to the verifier as the commitment. The verifier then replies with a
uniformly sampled random element xi ∈ F to the prover. After receiving the reply, the prover first rewrites
fi with a predetermined public round polynomial {qi(x)}i as

fi(x) = fi,0(qi(x)) + x · fi,1(qi(x)) + x2 · fi,2(qi(x)) + ...+ xdeg(qi)−1 · fi,deg(qi)−1(qi(x)) (12)

and then computes

fi+1(x) := fi,0(x) + xi · fi,1(x) + x2
i · fi,2(x) + ...+ x

deg(qi)−1
i · fi,deg(qi)−1(x) (13)

by evaluating fi,0 and fi,1 at the receiving point xi. They then continue to the next round with the folded
polynomial fi+1, as well as the domain

Li+1 := {qi(x)|x ∈ Li}, (14)

over which the Reed-Solomon codewords will be constructed.
The commit phase ends when the polynomial fi has a degree at most one. In this case, the prover sends

all the coefficients of fi (one or two field elements) directly to the verifier. Form (12) and (13), we have
deg(fi+1) ≤ deg(fi)

deg(qi)
. So, for example, if all the polynomials {qi}i have degree 2η := 2, then there will be

⌊log d⌋ rounds. After these rounds, f⌊log d⌋ will have a degree at most one.
The concrete setting of the predetermined round polynomials qi(x) for our use will be presented in sec-

tion 7.

4.2.2 Query Phase

After the commit phase, the prover and the verifier enter the query phase. In this phase, the verifier asks
the prover to open some entries of committed Reed-Solomon codewords and then checks the consistency
between each fi and fi+1 using these opened values. The consistency check fails if the prover did not
honestly compute fi+1 from fi and xi via the rules (12) and (13).

Specifically, suppose there are r rounds in the commit phase. At the start of the query phase, the
verifier first samples a challenge element y0 uniformly from L0 and sends y0 to the prover. Then the
prover opens values fi(yi), fi(y

(1)
i), fi(y

(2)
i), ..., fi(y

(deg(qi)−1)
i) for all i ∈ {0, 1, ..., r − 2} to the verifier,

where yi, y
(1)
i , ..., y

(deg(qi)−1)
i are deg(qi) distinct elements in Li that share the same image under qi, i.e.,

qi(yi) = qi(y
(1)
i) = ... = qi(y

(deg(qi)−1)
i). The prover also computes yi+1 := qi(yi) and opens fi+1(yi+1)

14

to the verifier. To check the consistency of fi and fi+1, the verifier interpolates a polynomial Fi(x) with
degree less than deg(qi) such that

Fi(x) =

{
fi(yi) for x = yi

fi(y
(j)
i) for x = y

(j)
i where j = 1, 2, ..., deg(qi)− 1

(15)

and then checks if Fi(xi) equals to fi+1(yi+1). If Fi(xi) did not equal to fi+1(yi+1) for any i ∈ {0, 1, ..., r−
1}, the verifier rejects. The verifier only accepts if all checks pass. Note when i = r − 1, since the verifier
already received all the coefficients of fr, the verifier can compute fr(yr) alone. The prover only opens
fr−1(yr−1), fr−1(y

(1)
r−1), ..., fr−1(y

(deg(qr−1)−1)
r−1).

To boost the soundness of the FRI protocol, one will parallel execute the query phase for ℓ times inde-
pendently. The verifier then outputs accept if and only if it accepts all the query phases.

The interaction flow of the FRI protocol is shown in Figure 2.

15

Commit phase
P (f) V

set f0 := f

compute f̂0 := f0|L0

f̂0−−−−−−−−−−−−→
sample x0

$←− F
x0←−−−−−−−−−−−−

compute f̂1 := f1|L1

f̂1−−−−−−−−−−−−→
sample x1

$←− F
x1←−−−−−−−−−−−−
...

compute f̂r−1 := fr−1|Lr−1

f̂r−1−−−−−−−−−−−−−→
sample xr−1

$←− F
xr−1←−−−−−−−−−−−−−

compute fr
explicitly all coefficients of fr−−−−−−−−−−−−−−−→

Query phase, independently executed for ℓ times
P V

sample y0
$←− L0

y0←−−−−−−−−−−−−

open the following values:
f0(y0), f0(y

(1)
0), ..., f0(y

(deg(q0)−1
0)

and f1(y1), f1(y
(1)
1), ..., f1(y

(deg(q1)−1
1)

...
and fr−1(yr−1), fr−1(y

(1)
r−1), ..., fr−1(y

(deg(q1)−1
r−1).

−−−−−−−−−−−−−−−−−−−−→
compute F1, F2, ..., Fr−1

check Fi(xi) = fi+1(yi+1)
for i ∈ {0, 1, ..., r − 1}

Figure 2: FRI protocol

16

4.3 The BCS Transform
In [BCS16], the authors introduced a transformation, called the BCS transform in this document, which
transforms a public-coin IOP into a non-interactive random oracle proof.

The BCS transform contains two parts. The first part uses Merkle commitment to instantiate two proce-
dures of IOP: “commit to message oracle” and “open at given queried positions.” Using a random function,
the prover builds a Merkle tree with the messages to commit as leaves and sends the Merkle root as the com-
mitment to the verifier. To answer a query from the verifier, the prover sends the message leaf along with the
authentication path from that leaf to the Merkle root.

The other part makes the protocol non-interactive using the Fiat-Shamir transform. All random coins in
the protocol are generated by applying a random function, again modeled as a random oracle, on previously
generated public messages.

In [BCS16], the BCS transform is proven to preserve soundness, proof-of-knowledge, as well as zero-
knowledge properties in the random oracle model. In [CMS19], the authors prove that the BCS transform
(with a slight modification) preserves these properties in the quantum random oracle model.

4.4 Achieving Zero Knowledge
The Aurora protocol described so far doesn’t have the zero-knowledge property yet. It can be made to be zero-
knowledge by using the following modifications, which are designed to prevent the verifier from obtaining
private information through queries to the message oracles.

Choosing L to be Disjoint from H1 ∪ H2. In zero-knowledge mode, Aurora should be configured such
that the subspace H1 ∪H2 does not intersect the additive coset L, so that the verifier cannot query the private
witness values directly.

Adding Random Polynomials to Mask Original Polynomials. We will add a new parameter b ∈ N to
represent an estimated upper bound for the total number of queries made by the verifier to all of the message
oracles.

In zero-knowledge mode, the polynomial fw is chosen uniformly at random from all polynomials with
degrees lower than n − k + b that satisfy the system of equations (2). Similarly, each of the polynomials
fAz, fBz, fCz are chosen uniformly at random from polynomials with degree lower than m + b such that
fAz satisfies (3), fBz satisfies (4), and fCz satisfies (5), respectively.

In addition, at the beginning of Aurora’s Lincheck protocol, for each index i ∈ {1, ..., λi}, the prover first
samples a random polynomial ri with degree less than 2|H1∪H2|+b−1 = 2max{m,n+1}+b−1, computes
µi :=

∑
x∈H1∪H2

ri(x) ∈ F, and then sends µi and the Reed-Solomon codeword message oracle r̂i :=

ri|L ∈ RS[L, 2max{m,n+1}+b−1
|L|] to the verifier. The verifier replies with random elements αi, si,1, si,2, si,3.

The prover then proves the statement “si,1(fAz · p1αi
− fzp

2,A
αi

)+ si,2(fBz · p1αi
− fzp

2,B
αi

)+ si,3(fCz · p1αi
−

fzp
2,C
αi

)+ ri sums to µi on the set H1∪H2.” To do this, we need to adjust the amortized Sumcheck protocol.
The prover computes ξ :=

∑
x∈H1∪H2

x(max{m,n+1}−1) and then computes

si,1(fAz · p1αi
− fzp

2,A
αi

) + si,2(fBz · p1αi
− fzp

2,B
αi

) + si,3(fCz · p1αi
− fzp

2,C
αi

) + ri

= gi +
µi

ξ
· x|H1∪H2|−1 + hi · ZH1∪H2

(16)

to get the polynomial gi with degree less than |H1 ∪ H2| − 1 and the polynomial hi with degree less
than |H1 ∪ H2| + b. The prover then sends the Reed-Solomon codeword message oracle ĥi := hi|L ∈

17

RS[L, max{m,n+1}+b
|L|] to the verifier. From this point, the queries to the virtual oracle ĝi := gi|L ∈

RS[L, max{m,n+1}−1
|L|] where

gi = si,1(fAz · p1αi
− fzp

2,A
αi

) + si,2(fBz · p1αi
− fzp

2,B
αi

) + si,3(fCz · p1αi
− fzp

2,C
αi

) + ri

−µi

ξ
· x|H1∪H2|−1 − hi · ZH1∪H2

(17)

can be computed by the verifier via queries to f̂z, f̂Az, f̂Bz, f̂Cz and ĥi.
Finally, in Aurora’s reduction to FRI, for each index j ∈ {1, ..., λ′

i}, the prover samples a random mask-
ing polynomial r(j)LDT with degree less than 2max{m,n + 1} + 2b and sends message oracle r̂

(j)
LDT :=

r
(j)
LDT |L ∈ RS[L, 2max{m,n+1}+2b

|L|] to the verifier. The verifier then sample random coefficient vector
yj = (yj,1,yj,2, ...,yj,5+4λi) ∈ F5+4λi and sends yj to the prover. Then the prover and the verifier en-
gage in one run of FRI protocol where the first prover message is the virtual oracle corresponding to the
Reed-Solomon codeword of the following polynomial with degree less than 2max{m,n+ 1}+ 2b:

fj,0 := yj,1 · fw + yj,2 · fAz + yj,3 · fBz + yj,4 · fCz + yj,5 ·
fAz · fBz − fCz

ZH1

+

λi∑
i=1

(yj,5+i · ri) +
λi∑
i=1

(yj,5+λi+i · hi) +

λi∑
i=1

(yj,5+2λi+i · gi)

+

λi∑
i=1

(yj,5+3λi+i ·X(2max{m,n+1}+2b)−(max{m,n+1}−1) · gi)

+r
(j)
LDT

(18)

Remark 4.1 An optimization for choosing the random polynomials ri is that one can choose ri uniformly
from the set of polynomials that with degree less than 2max{m,n + 1} + b − 1 and sums to zero on the
set |H1 ∪ H2|. In this way, the protocol is still zero-knowledge since the simulator can still simulate the
distribution of the masked polynomial perfectly, and one can set the µi in formula (16), (17) to be zero which
saves some computation effort. We note that this sampling procedure of ri can be done efficiently (see our
implementation for more details).

Adding Randomness to Merkle Tree Construction. In [BCS16], the authors show that the BCS transform
preserves zero-knowledge property if the prover pads the messages at the leaves of the Merkle tree with
random bit strings, which will be included as part of the authentication path when opening a message leaf.

4.5 Security Analyses
4.5.1 Knowledge Soundness

Interactive Aurora Knowledge Soundness. We have the following theorem from [BCR+19].

Theorem 4.2 ([BCR+19], Theorem 9.2) Given an R1CS with n variables and m constraints, let ρ ∈ (0, 1) be
a constant and L be any subspace of F such that ρ|L| > 2max{m,n+1}+2b and let δ := min{ 1−2ρ

2 , 1−ρ
3 , 1−

ρ}, then the interactive Aurora protocol is a zero-knowledge proof of knowledge IOP against b queries with
knowledge soundness error upper bounded by:

ϵ ≤ (
m+ 1

|F|
)λi + (

|L|
|F|

)λ
′
i + ϵFRI(δ), (19)

18

where ϵFRI(δ) is the soundness error of the FRI protocol with proximity parameter δ, and λi, λ
′
i are repeti-

tion parameters described in section 4.1.

It is conjectured that the requirement of δ is not necessary for the theorem:

Conjecture 4.3 Theorem 4.2 holds for δ := 1− ρ instead of δ := min{ 1−2ρ
2 , 1−ρ

3 , 1− ρ}.

Interactive FRI Soundness. [BBHR17] gives the soundness error of the FRI protocol as follows.

Theorem 4.4 ([BBHR17], Theorem 3.3) Let L0 be an additive coset of F with order |L0| a power of 2. When
the FRI protocol is invoked on the oracle f0 : L0 → F with localization parameter η, rate parameter ρ
such that ρ|L0| > 16 and query phase repetition parameter ℓ, let δ := ∆(f0, RS[L0, ρ]) be the proximity
parameter. Then the soundness error of the FRI protocol is upper bounded by:

ϵFRI(δ) ≤
3|L0|
|F|

+ (1−min{δ,
1− 3ρ− 2η√

|L0|

4
})ℓ. (20)

We mention that the FRI protocol is an interactive oracle proof “of proximity,” which has a different
definition of the soundness property. We say that FRI has soundness error ϵFRI(δ) with proximity parameter
δ if for every f0 ∈ F|L0| that has been sent by the prover as the first message oracle to the verifier with
∆(f0, RS[L0, ρ]) ≥ δ, the probability that the verifier accepts after executing the FRI protocol is at most
ϵFRI(δ).

After [BBHR17], a series of works tried to improve the bound [BGKS19, BCI+20]. To the best of our
knowledge, the best upper bound for the soundness error of the FRI protocol is given by:

Theorem 4.5 ([BCI+20], Theorem 8.3, adapted to our notation) When the FRI protocol is invoked on the
oracle f0 : L0 → F with localization parameter η, rate parameter ρ, query phase repetition parameter ℓ, let
u be an integer with u ≥ 3. Let δ := ∆(f0, RS[L0, ρ]) be the proximity parameter. Then under the condition
1−√ρ(1 + 1

2u) < δ, the soundness error of the FRI protocol is upper bounded by:

ϵFRI(δ) ≤
(u+ 1

2)
7 · |L0|2

2ρ3/2|F|
+

(2u+ 1)(|L0|+ 1)
√
ρ

· (log2
η |L0|)(2η − 1)

|F|
+ (
√
ρ(1 +

1

2u
))ℓ. (21)

In our case, unfortunately, the Aurora protocol uses the proximity parameter δ := min{ 1−2ρ
2 , 1−ρ

3 , 1−ρ},
which may result in u < 3 for our concrete parameter set, so we have to use some heuristics in order to use
the result from Theorem 4.5.

BCS Transform Preserves Knowledge Soundness. According to [BCS16], the BCS transform can pre-
serve soundness in the random oracle model:

Theorem 4.6 ([BCS16], Theorem 7.1) For every relation R, let (P, V) be an IOP protocol for relation R,
and let (P,V) be the non-interactive oracle proof obtained by applying the BCS transform to (P, V). Then
we have the following:

ϵ′(q) ≤ ϵ̄sr(q) +
3(q2 + 1)

2λ
, (22)

where ϵ′(q) is the knowledge soundness error of (P,V) against a malicious adversary which can perform q
queries to the random oracle, ϵ̄sr(q) is the restricted state-restoration attack knowledge soundness error of
(P, V) against q times of state restoration, and λ is the random oracle output length measured in bits.

19

Informally speaking, the state-restoration attack knowledge soundness error is analogous to the knowl-
edge soundness error. The difference is that here we are considering a malicious “state-restoring prover” to
convince the verifier to accept at the end of the attack. A state-restoration prover is a generalization of the
usual malicious prover where the prover has the added ability to “restore” the verifier to any previously seen
verifier state, continues the protocol from that point for one more round of interaction, and then records the
verifier’s state and performs the next state restoration. For the formal definition of state-restoration attack,
refer to [BCS16], section 5.1. A state-restoration prover can restore the verifier’s state many times when
trying to convince the verifier to accept at the end of the attack. Note that in order to use this theorem, we
have to use the following conjectured Aurora property:

Conjecture 4.7 The restricted state-restoration knowledge soundness error of the interactive Aurora proto-
col against q times of state-restoration is upper bounded by the formula

ϵ̄sr(q) ≤ q · ϵ, (23)

where ϵ is the knowledge soundness error of the interactive Aurora protocol, which is in turn upper bounded
by formula (19).

Remark 4.8 The restricted state-restoration knowledge soundness is a weaker notion of state-restoration
knowledge soundness in the sense that in the restricted case, the state-restoration prover cannot restore the
verifier’s state to the null state (except for the initial trial). This means that we have ϵ̄sr(q) ≤ ϵsr(q) where
ϵsr(q) is the state-restoration attack soundness error against q times of state restoration. In the case of
Aurora, restricted state-restoration attack and state-restoration attack are equivalent, since the prover is the
one who makes the first move in the interactive protocol (here we use the same argument as in the analysis of
[MRV+21] about state-restoration soundness).

We recall that in [CMS19], the authors are able to show that the BCS transform (with some modification)
can preserve knowledge soundness property in the quantum random oracle model, provided that the original
IOP protocol satisfies a knowledge soundness notion called “round-by-round knowledge soundness”:

Theorem 4.9 ([CMS19], Theorem 8.6, item 1) Let (P, V) be an IOP for a relation R with proof length l
and query complexity q. Then the BCS transform, when based on (P, V), is a non-interactive argument for
relation R such that if (P, V) have round-by-round knowledge soundness error ϵ, then the argument has
knowledge soundness error O(t2ϵ + t3/2λ) against quantum attackers that makes at most t − O(q log l)
quantum queries to the random oracle.

Informally speaking, the round-by-round soundness error is a quantity that upper bounds the probability
that a malicious prover can cheat the verifier in each single round of the IOP protocol, and the round-by-round
knowledge soundness error is the “proof of knowledge” version of this notion. For the formal definition of
round-by-round knowledge soundness, refer to [CMS19], section 8.3. In [Hol19], the author shows a relation
between the state-restoration soundness error and the round-by-round soundness error:

Theorem 4.10 ([Hol19], Theorem 3.2, adapted to our notation) If (P, V) is an r-round IOP with state-
restoration soundness error ϵsr(q), then (P, V) is an IOP with round-by-round soundness error ϵrbr ≤
r
q ln

2r
1−ϵsr(q)

.

Here we conjecture that this formula also holds in the knowledge soundness case:

Conjecture 4.11 If (P, V) is an r-round IOP with state-restoration knowledge soundness error ϵsr(q), then
(P, V) is an IOP with round-by-round knowledge soundness error ϵrbr ≤ r

q ln
2r

1−ϵsr(q)
.

20

For example, if we assume Conjecture 4.11 holds, and the interactive Aurora protocol has restricted state-
restoration knowledge soundness error ϵ̄sr(q) ≤ q

2128 (as the state-restoration knowledge soundness error by
Remark 4.8), then we can see that the round-by-round knowledge soundness error of the interactive Aurora
protocol is at most 1

2115 by using r = 32 as an upper bound of rounds for q = 2128 − 1.
When trying to apply Theorem 4.9, we are also going to consider the following conjecture for Aurora’s

knowledge soundness property:

Conjecture 4.12 The round-by-round knowledge soundness error of the interactive Aurora protocol is upper
bounded by the formula

ϵrbr ≤ ϵ, (24)

where ϵ is the knowledge soundness error of the interactive Aurora protocol, which is in turn upper bounded
by formula (19)

4.5.2 Zero Knowledge

Interactive Aurora Protocol. The interactive Aurora protocol is an IOP protocol with perfect zero-knowledge
against b queries to the message oracle [BCR+19]. This means that there exists a probabilistic polynomial-
time simulator algorithm S that satisfies the following. S takes only the public instance as input. When given
straight-line access to a verifier that makes at most b queries to the message oracle, S can output a view of
the verifier having the same distribution as that of a verifier that interacts with a prover truly possessing the
knowledge of a private witness of the claimed relation. In other words, the simulator is able to simulate the
view of the verifier perfectly without knowing the private witness, which means that the verifier cannot get
any information about the witness from the prover during the interaction.

BCS Transform Preserves Zero Knowledge. The BCS transform can preserve zero-knowledge in the
explicit programmable random oracle model. More precisely, in [BCS16] the author shows that if the original
IOP protocol is z-statistical zero-knowledge, then after applying BCS transform, the protocol becomes a non-
interactive random oracle proof that is z′-statistical zero-knowledge in the explicit programmable random
oracle model for

z′ = z +
p

2λ/4+2
, (25)

where p is the proof length and λ, the output length of the random oracle.
Note that the bound used in the paper (Fact 1 in Lemma 3.4 [BCS16]) is very loose, so it is possible to

adjust the Chernoff bound to get a loss smaller than the term p
2λ/4+2 . We provide a more detailed explanation

for how to tweak formula (25) in Appendix B.

4.6 Possible Attacks to the Non-interactive Zero-knowledge Aurora Protocol
4.6.1 Grinding Attack

Grinding attack is a well-known attack on non-interactive protocols obtained from transforms analogous
to Fiat-Shamir. The idea is that since the verifier’s random coins come from the hash value of previous
committed information, a malicious prover can control each round’s random coins by trying different prover
messages.

We prevent this type of attack by setting the public coin space (the hash output length and the size of the
public coin domain) sufficiently large so that it’s impractical for the prover to grind the public coins.

21

4.6.2 Attacks to the FRI Protocol

We describe a known attack to the FRI protocol where a malicious prover can convince the verifier that it
knows a polynomial f0 with corresponding Reed-Solomon codeword f̂0 := f0 ∈ RS[L, ρ] with probability
ρℓ no matter what initial polynomial f0 is. In the attack, the prover will commit the message f0|L to the
verifier, and then the verifier will sample x0 to the prover. The malicious prover then first picks ρ|L| distinct
positions l1, l2, ..., lρ|L| ∈ L0 in a way that l1, l2, ..., lρ|L| can be partitioned into ρ|L|

deg(q0)
sets such that each

of the sets corresponds to the same image value when applying the polynomial q0(x) to its elements, and
then compute f̄0 to be the unique polynomial with degree less than ρ|L| such that f̄0(li) = f0(li) for all
i ∈ {1, 2, ..., ρ|L|}. The malicious prover uses f̄0 and x0 to compute f1 honestly as FRI does and then sends
the commitment of the message f1|L1

to the verifier. It then continues the FRI protocol honestly for the
remaining rounds. Note that the verifier will sample a point y0 ∈ L0 to challenge the prover to open the
corresponding preimage set of f0 with image value q0(y0) and f1(q0(y0)). Observe that if y0 ∈ {l1, ..., lρ|L|}
then there is no way for the verifier to distinguish f0 and f̄0 by the opening value given by the prover, so in
this case, the verifier will accept the proof. The probability that y0 ∈ {l1, ..., lρ|L|} is exactly ρ|L|

|L| = ρ. Since
there are total ℓ independent repetitions of the query phase in a single execution of FRI, we can see that this
malicious prover has probability ρℓ to succeed.

We mention that the malicious prover’s success probability can be improved to (1 − δ0)
ℓ for δ0 :=

∆(f̂0, RS[L, ρ]) by first using list decodeing algorithm such as Guruswami–Sudan algorithm to find a nearest
codeword f̂ ′

0 ∈ RS[L, ρ] such that ∆(f̂0, f̂
′
0) = δ0 and then use f̂ ′

0 as f̄0 in the attack described in the last
paragraph. But this attack won’t happen in the scenario of the Aurora’s use of FRI, since in the Aurora case
the probability that (1−δ0)|L| is smaller than the tested degree (over the public coins of the verfier which are
used to compute f0) is negligible due to the guarantee of the Lincheck phase and the Reduce to FRI phase of
the Aurora protocol.

5 AES Constraints
In this section, we describe a method to turn each component of the AES cipher [DBN+01] into R1CS
format. We use GF8 := F2[x]/(x

8 + x4 + x3 + x+ 1) to denote the native field of AES. Let GF64 :=
F2[x]/(x

64 + x4 + x3 + x+ 1), and our native field for the Aurora proving system will be extension fields
of GF64 (extended to a proper size for security).

Since there are a large number of variables that would be present in this section, the notations in this
section are independent from the other sections of this document. We use x̄ to indicate the variable x is a
Boolean variable. Lower-case variables in a bold font like v are vectors, while upper-case variables in a bold
font like A are matrices.

5.1 Constraints for the Four Steps of AES
Let bj be the j-th input byte of AES to a step function for j ∈ {0, 1, · · · , 15}. We use b′j to represent
the j-th output byte from the step function for j ∈ {0, 1, · · · , 15}. Let ki,j be the round keys of AES for
j ∈ {0, 1, · · · , 15} in i-th round.

AddRoundKey In each round, b′ = b⊕ k, where k is the corresponding round key of b.

SubBytes In this step, the Sbox function is applied to each input byte b. The first operation of Sbox is to
invert b in a suitable field. For b ̸= 0, the set of inversion constraints that ensures y = b−1 mod (x8 + x4 +
x3 + x + 1) consists of b ∗ y = 1 + h × (x8 + x4 + x3 + x + 1), as well as the range proof for h, which

22

consists of h = h̄0 + h̄1x + · · · + h̄6x
6 and h̄k × (h̄k − 1) = 0 for k ∈ {0, · · · , 6}. For the bit-rotation

operation in SubBytes step, the constraints of bit-wise representation for b−1 are: y = ȳ0+ ȳ1x+ · · ·+ ȳ7x
7,

ȳk × (ȳk − 1) = 0 for k ∈ {0, · · · , 7}. The output of this step is thus:

b′ =

b̄′0
b̄′1
b̄′2
b̄′3
b̄′4
b̄′5
b̄′6
b̄′7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

ȳ0
ȳ1
ȳ2
ȳ3
ȳ4
ȳ5
ȳ6
ȳ7

+

1
1
0
0
0
1
1
0

(26)

The field element 0 is non-invertible, so the “inverse” of b = 0 is set to be 0 in the Sbox of AES. However,
we can combine these two conditions of b into one logic expression: (b ̸= 0∧ b ∗ y = 1+ h(x8 + x4 + x3 +
x+ 1) ∧ deg(y) ≤ 7 ∧ deg(h) ≤ 6) ∨ (b = 0 ∧ y = 0). The corresponding constraints are:

• b ∗ y = 1 + h× (x8 + x4 + x3 + x+ 1) + h̄7;

• the range proof for h:
h = h̄0 + h̄1x+ · · ·+ h̄6x

6, h̄k × (h̄k − 1) = 0 for k ∈ {0, · · · , 7};

• y = ȳ0 + ȳ1x+ · · ·+ ȳ7x
7, ȳk × (ȳk − 1) = 0 for k ∈ {0, · · · , 7};

• (h̄7)(h̄0 + h̄1x+ · · ·+ h̄6x
6 + (h̄7 + 1)x7 + ȳ0x

8 + · · · ȳ7x15) = 0.

As a result, this accounts for 19 constraints per byte so far.
Next, we will show an algebraic technique to merge two constraints of the SubBytes phase with the

ShiftRows and MixColumns steps into a single constraint.

ShiftRows The constraints of this phase can be combined into MixColumns, since the operation of ShiftRows
is equivalent to “re-indexing” the variables. Therefore, we can re-index the variables when loading them in
the MixColumns step.

MixColumns We first re-index both for the ShiftRows and this step. Let
c0 c4 c8 c12
c1 c5 c9 c13
c2 c6 c10 c14
c3 c7 c11 c15

 =

b0 b1 b2 b3
b5 b6 b7 b4
b10 b11 b8 b9
b15 b12 b13 b14

 . (27)

This re-indexing is just for readability. We don’t need to write any constraint for the variable substitution.
The MixColumns constraints are as follows:

c′0 c′1 c′2 c′3
c′4 c′5 c′6 c′7
c′8 c′9 c′10 c′11
c′12 c′13 c′14 c′15

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

c0 c4 c8 c12
c1 c5 c9 c13
c2 c6 c10 c14
c3 c7 c11 c15

 . (28)

Normally we would need a modulo constraint to ensure the degree of the MixColumns output is less than
8. Here we introduce an efficient technique to avoid this additional constraint. The multiplication by 2 and

23

modulo operations on the outputs of SubBytes can be done by multiplying a matrix to the left of (26), which
is

2b′ =

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

(

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

ȳ0
ȳ1
ȳ2
ȳ3
ȳ4
ȳ5
ȳ6
ȳ7

+

0
1
1
0
0
0
1
1

)

=

0 0 0 1 1 1 1 1
1 0 0 1 0 0 0 0
1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0
1 1 1 0 1 1 1 0
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0

ȳ0
ȳ1
ȳ2
ȳ3
ȳ4
ȳ5
ȳ6
ȳ7

+

0
1
1
0
0
0
1
1

. (29)

Furthermore, 3b′ can be obtained by adding equations (26) and (29). Note that the MixColumns operations
are basically linear combinations of the input variables and thus can easily be merged with other constraints.

AES Single Round. Based on the description above, we are able to merge the linear operations of all three
other steps into the constraints of the SubBytes step. First, the constraint of AddRoundKey is simply an
addition, so it can be combined with the SubBytes step as the No. 1 constraint in Table 1. Secondly, the
constraint of MixColumns is a linear combination of the input, which is a combination of the inverse of the
SubBytes input and additional constant terms. Therefore, these two linear combinations can be combined,
and the output of MixColumns is a linear combination of y, which costs only one constraint for each output
byte. For the last round of AES, the whitening AddRoundKey before outputting the ciphertext can be com-
bined into the last constraint in SubBytes as well. Furthermore, the last constraint of each round can further
be combined with the first constraint of the next round.

As a result, the numbers of constraints describing the round functions are 16 × 18 × 10 = 2880 for
AES-128, 3456 for AES-192, and 4032 for AES-256, respectively.

No. Constraints
1 (b+ k) ∗ y = 1 + h(x8 + x4 + x3 + x+ 1) + h̄7

2-9 ȳi(ȳi + 1) = 0 for i ∈ {0, . . . , 7}
10-17 h̄i(h̄i + 1) = 0 for i ∈ {0, . . . , 7}

18 h̄7(ȳ0 + ȳ1x+ . . .+ ȳ7x
7 + h̄0x

8 + . . .+ h̄6x
14 + (h̄7 + 1)x15) = 0

Table 1: Constraints for AES single round

Key Schedule. Let N be the length of the key in 32-bit words; that is, N = 4, 6, 8 for AES-128,192,256,
respectively. The round keys of AES are expanded using the following formula.

24

Wi =

Ki for i < N,
Wi−N ⊕ SubWord(RotWord(Wi−1))⊕ rconi/N for i ≤ N and i = 0 mod N,
Wi−N ⊕ SubWord(Wi−1) for i ≤ N,N > 6 and i = 4 mod N,
Wi−N ⊕Wi−1 otherwise,

(30)

where Wi is a 4-byte word, RotWord ([b0 b1 b2 b3]) = [b1 b2 b3 b0], and SubWord ([b0 b1 b2 b3]) = [(b0)
Sbox(b1) Sbox(b2) Sbox(b3)]. The round constant rconi = [rci 0016 0016 0016] for round i of the key
expansion is the 32-bit word, where rci can be computed in advance as shown in Table 2. The operations in
the key expansion are basically Sbox and selective addition with the round constant rci to the first element in
each round.

1 2 3 4 5 6 7 8 9 10
rci 01 02 04 08 10 20 40 80 1B 36

Table 2: Round constant in AES key schedule with elements in hexadecimal representation

Note that for round i, we only need to store the variables Ri,j , which are the output of the SubWord
function added by the rcon of round i for 0 ≤ j ≤ 3. Then the round keys can be expressed as combinations
of the key basis K = {K0, ...,K15, R1,0, ..., Rl′,3}. For example, we can obtain the round keys of AES-128
using

ki,j =

 Kj for i = 0,
Ri,j ⊕Ki−1,j for j < 4,
Ki,j−4 ⊕Ki−1,j otherwise.

(31)

The formulas for AES-192 and AES-256 are similar to (31).
Next, similar techniques to what we used for merging the four steps in a single round can be used here

again to combine the RotWord and addition of rcon in key expansion, reducing the number of constraints
to 18 for each variable. A slight difference is that we use one constraint for each Ri,j to simplify the repre-
sentation of ki,j , unlike the merging of all the linear combinations in the AES rounds, where l′ is the number
of “AES key schedule rounds,” and l′ = 10, 8, 13 for AES-128, 192, 256, respectively. Therefore, the key
expansion requires 19 × 4 × 10 = 760 constraints for AES-128, and 380 for AES-192. For AES-256, the
number of constraints is 19× 4× 13 = 988.

To describe the entire AES encryption, we require the constraints for all round functions and key schedule,
together with additional 16 constraints for the output (ciphertext). As a result, there are a total number of
3656, 4080, and 5036 constraints for AES-128, 192, 256, respectively.

5.2 R1CS Circuit for AES

To express the AES computation in an R1CS circuit Az ◦Bz = Cz, it suffices to construct the matrices A,
B, and C, all of which follow a general pattern as described by the following matrix M.
Note that all elements outside the submatrix blocks in M are zero.

25

M =

T1 Vi R1 K1

T2 R2 K2

...
. . .

...

Tl−1 Rl−1 Kl−1

Tl Vo Rl Kl

T′
1 K′

1 S1

...
...

. . .

T′
l K′

l Sl′

zT =

(
1 vout vin wR1

, wR2
, ..., wR1−1

, wRl
, k, wS1

, ..., wSl′

)
Here, the matrices T1, . . . ,Tl correspond to some constants in AES constraints, whereas the matrices

Vout, Vin correspond to the public outputs and inputs of AES. The matrices Ri are the round constraints,
where R2 = . . . = Rl−1. R1 is the constraint for the first round, which takes input from the public variables
instead. Rl is the constraint for the last round, which does not have MixColumns step but has an additional
AddRoundKey step.

Specifically, [T1, . . . ,Tl]
T ∈ F(288l+16)×1 and [T′

1, . . . ,T
′
l′]

T ∈ F76l×1 are the matrices corresponding
to the constants for AES round and key schedule round, respectively. Vo ∈ F304×16 is the matrix correspond-
ing to the output, that is, the ciphertext of the AES. Vi ∈ F288×16 is the matrix corresponding to the input,
that is, the plaintext of the AES.

The dimensions and arrangement of the variables in z and its subvectors are as follows.

z = (1,v,w) (32)
v = (vout︸︷︷︸

16

, vin︸︷︷︸
16

) (33)

w = (wR1 , ...,wRl︸ ︷︷ ︸
(16×8×2)×l

, k︸︷︷︸
56,56, or 84

,wS1 , ...,wSl′)︸ ︷︷ ︸
(4×8×2)×l′

(34)

First, wRi
= (h̄i,α,0, ..., h̄i,α,7)

15
α=0, (ȳi,α,0, ..., ȳi,α,7)

15
α=0, so the length of wRi

is (8+8)×16 = 256, where
l is the number of AES round. wSi

= (h̄i,α,0, ..., h̄i,α,7)
3
α=0, (ȳi,α,0, ..., ȳi,α,7)

3
α=0, so the length of wSi

is
(8 + 8)× 4 = 64.

26

5.2.1 Circuit for AES Round

We need to following data to describe the submatrices for the AES circuit.

e7 = (0, 0, 0, 0, 0, 0, 0, 1)

v1 = (1, x, x2, x3, x4, x5, x6, x7)

v2 = v1x
8 = (x8, x9, x10, x11, x12, x13, x14, x15)

f8 = 1 + x+ x3 + x4 + x8

vf = (f8, xf8, x
2f8, x

3f8, x
4f8, x

5f8, x
6f8, 1)

Let w ∈ Fm, we use I
(n)
w = w ⊗ In denote the following matrix.

I(n)w = w ⊗ In =

w 0 0

0
. . . 0

0 0 w

 ∈ Fn×mn

We use the notation AM1||M2||M3
to denote the matrix obtained by arranging the submatrices M1,M2,

and M3 of A side by side; similarly, we build matrices like BM1||M2||M3
and CM1||M2||M3

from some
submatrices M1,M2, and M3 of B and C, respectively.

First, AVi||R1||K1
describes the first round of AES: it takes the input from the public input in Vi and

adds the round key ki from k submatrix, both of which are identity matrix I16. BTi||Ri
matrix takes the

inverse of input, and CTi||Ri
describes the right-hand side of the equation. For the second and third parts, the

constraints on the variables are either 0 or 1 for all 128 variables. Fourth, the A matrix takes “h̄7” for each
variable and B matrix takes h̄0 + h̄1x+ · · ·+ (̄h7 +1)x7 + ȳ0x

8 + · · ·+ ȳ6x
14 + ȳ7x

15. The counterpart in
C is 0. Note that AT1 ,AVo ,BVo ,BVi

,CVi
,BKi

, and CKi
are all zero for 1 ≤ i ≤ l.

AVi||R1||K1
=

I16 I16

I128

I128

I
(16)
e7

∈ F 288×(16+256+56)

27

BTi||Ri
=

I
(16)
v1

1
... I128
1
1 O288×128

... I128
1
x7

... I
(16)
v1 I

(16)
v2

x7

, for 1 ≤ i < l

CTi||Ri
=

1
... O16×128 I

(16)
vf O16×128

1

, for 1 ≤ i ≤ l

The matrices for AES round 2 to l−1 are similar to that of the first round, except for the inputs and round
keys of each round. Specifically, the input is a combination of the “ȳ” variables from the previous round,
while the round keys are combinations of the key basis. The 0 in MC is actually a zero vector of dimension
8. We use the hexadecimal number 63 = 1 + x+ x5 + x6 to simplify the representation of ATi||Ri||Ki

.

ATi||Ri||Ki
=

63
... MC Ki

63

I128

I128

I
(16)
e7

, for 1 < i < l

28

MC =

w2 0 0 0 0 w3 0 0 0 0 w1 0 0 0 0 w1

w1 0 0 0 0 w2 0 0 0 0 w3 0 0 0 0 w1

w1 0 0 0 0 w1 0 0 0 0 w2 0 0 0 0 w3

w3 0 0 0 0 w1 0 0 0 0 w1 0 0 0 0 w2

0 0 0 w1 w2 0 0 0 0 w3 0 0 0 0 w1 0
0 0 0 w1 w1 0 0 0 0 w2 0 0 0 0 w3 0
0 0 0 w3 w1 0 0 0 0 w1 0 0 0 0 w2 0
0 0 0 w2 w3 0 0 0 0 w1 0 0 0 0 w1 0
0 0 w1 0 0 0 0 w1 w2 0 0 0 0 w3 0 0
0 0 w3 0 0 0 0 w1 w1 0 0 0 0 w2 0 0
0 0 w2 0 0 0 0 w3 w1 0 0 0 0 w1 0 0
0 0 w1 0 0 0 0 w2 w3 0 0 0 0 w1 0 0
0 w3 0 0 0 0 w1 0 0 0 0 w1 w2 0 0 0
0 w2 0 0 0 0 w3 0 0 0 0 w1 w1 0 0 0
0 w1 0 0 0 0 w2 0 0 0 0 w3 w1 0 0 0
0 w1 0 0 0 0 w1 0 0 0 0 w2 w3 0 0 0

∈ F 16×128

The three vectors of dimension 8 can be derived from SubBytes, ShiftRows, and MixColumns steps,
which are listed as follows.

w1 = (0x1f, 0x3e, 0x7c, 0xf8, 0xf1, 0xe3, 0xc7, 0x8f)

w2 = (0x3e, 0x7c, 0xf8, 0xeb, 0xf9, 0xdd, 0x95, 0x05)

w3 = (0x21, 0x42, 0x84, 0x13, 0x08, 0x3e, 0x52, 0x8a)

The differences between the last round and the previous rounds are the lack of the MixColumns step and
an additional AddRoundKey in the end. We construct an I

(16)
w1 matrix to describe the relations of the outputs

(ciphertext) in Vo with the corresponding keys {kl,j}15j=0 in the matrix Kl.

ATl||Rl||Kl
=

63
63 MC I16
63

I128

I128

I
(16)
e7

63
... I

(16)
w1 Kl

63

BTl||Rl

is similar to BTl||Rl
but with 16 vectors of (1,0,...,0) appended.

29

CTl||Vo||Rl
=

1
... O16×128 I

(16)
vf O16×128

1

I16

5.2.2 Circuit for AES Key Schedule

This section presents the constraints for AES key schedule. First, let i′ = i mod 2:

Ri,j = (SubWord(RotWord(Wi−1))⊕ rconr/N)j

=

Sbox(ki−1,12+(j+1 mod 4))⊕ rconi,j for AES-128;
Sbox(k 3i−2+i′

2 ,12−8i′+(j+1 mod 4)
)⊕ rconi,j for AES-192;

Sbox(ki,12+(j+i′ mod 4))⊕ (rconi,j ∧ i′) for AES-256.

The Si matrix is similar to Ri matrix except for the RotWord and adding rcon functions. The RotWord
function is described in K′

i, and the rcon addition is described in the last part of AT′
i||K

′
i||Si

matrix. Note
that the constraints consist of both adding the constant in Sbox as well as the round constant. For AES-256,
there is no need to add round constants in the even rounds, so there is a note rci/0 in AT′

i||K
′
i||Si

matrix.
A slight difference is that we need to use one more constraint for each variable Ri,j to reduce the non-zero
entries in matrix A (since it can be represented by “ȳi” as in AES round), and this leads to 40, 32, and 52
more constraints for AES-128, 192, and 256, respectively. Note that BK′

i
is zero matrix for 1 ≤ i ≤ l.

30

AT′
i||K

′
i||Si

=

K′
i

I32

I32

I
(4)
e7

rci/0 + 63

63 I
(4)
w1

63
63

, for 1 ≤ i ≤ l′

BT′
i||Si

=

I
(4)
v1

1
... I32
1
1
... I32
1
x7

... I
(4)
v1 I

(4)
v2

x7

1
...
1

, for 1 ≤ i ≤ l′

31

CT′
i||K

′
i||Si

=

1
... I

(4)
vf O4×32

1

I4

, for 1 ≤ i ≤ l′

Last, for repeating the AES in the security level 3 or 5, we construct the matrix as following. The output
matrix Vo,V

′
o and input matrix Vi,V

′
i take the corresponding variables in z as AES outputs and inputs in

two AES and the constraints for key schedule keep the same. The corresponding matrix A,B and C can be
derived by the method we used for the single AES.

M =

ViT1 R1 K1

...
. . .

...
Tl Vo

Rl Kl

V′
iT1 R1 K1

...
. . .

...
Tl V′

o
Rl Kl

T′
1 K′

1 S1

...
...

. . .

T′
l K′

l Sl′

6 Recommended Parameter Sets
In this section, we recommend parameters for Aurora at different security levels. Together with the hard
relationR in section 3.3.1, this suffices to derive a secure signature scheme.

Particularly, this section recommends the sizes of |F| and |L| (and the other parameters) in Aurora. As the
security analysis only depends on the sizes but not particular choices of the field and set, this section would

32

only determine their sizes. In section 7, we recommend how to choose the particular finite field F and the set
L in the implementation.

6.1 Parameter Sets for Different Security Levels for Aurora
In this section, we provide a list of suggested parameter sets for the L1, L3, and L5 security levels required
by NIST. Table 3 summarizes security- and implementation-related parameters.

|F| the size of the native field F
m the number of constraints in the R1CS of the hard relation (see section 3.3.1 and section 5)
n the number of public and private variables in the R1CS of the hard relation
t an upper bound for max{m,n+ 1}
|L| the size of the set L in the Aurora protocol
ρ the rate of the Reed-Solomon code
b upper bound for the number of opening values provided from the prover to the verifier
λi number of parallel repetitions of the Lincheck phase of the Aurora protocol
λ′
i number of parallel repetitions of the Reduce to FRI phase of the Aurora protocol
η logarithm of the degree of the polynomials {qi}i in FRI (which means the degree of each qi is 2η)
ℓ number of parallel repetitions of query phases correspond to single commit phase in the FRI
λ number of the output bits of the hash function

Table 3: List of parameters related to both security and implementation

We provide three parameter sets for each of the L1, L3, and L5 security levels: aggressive (A), balanced
(B), and conservative (C). In all the parameter sets, we suggest ρ := 1

32 , λi := 1, λ′
i := 1, and η := 1. Table 4

gives our suggested parameter sets for different security levels.

ρ λi λ′
i η

1
32 1 1 1

security level Parameter Set |F| t |L| b ℓ λ

L1
Preon128A 2192 212 219 1040 26 256
Preon128B 2192 212 219 2320 58 384
Preon128C 2192 212 221 16764 381 384

L3
Preon192A 2256 213 220 1638 39 384
Preon192B 2256 213 220 3654 87 512
Preon192C 2256 213 221 24464 556 512

L5
Preon256A 2320 214 220 2184 52 512
Preon256B 2320 214 220 4956 118 512
Preon256C 2320 214 222 33534 729 512

Table 4: Summary of different parameter sets, in all of which we use ρ = 1
32 , λi := 1, λ′

i := 1, and η := 1

Although we suggest three parameter sets for each of the L1, L3, and L5 security levels, we stress that we
only recommend the aggressive and balanced parameter sets in answer to NIST’s call for general-purpose
signature schemes. The (overly) conservative parameter set leads to too large a signature size for general-

33

purpose applications; we believe it is only justifiable to use in those rare and extreme applications for which
only paranoiacally low risk-taking is allowed.

6.2 Justification for the Parameter Sets
6.2.1 Knowledge Soundness of the Non-interactive Zero-knowledge Aurora Protocol

L1 Security, Conservative (Preon128C). In this parameter set, we assume Conjecture 4.7 is true, and the
hidden constant in Theorem 4.9 is close to 1. We configure the first and second terms of formula (19) to be
much smaller than 1

2141 , and we use formula (20) as the third term of formula (19). Overall, we configure the
formula (19) to be less than 1

2141 .
Assuming Conjecture 4.7 is true and combining this parameter set with Theorem 4.6, we can see that the

non-interactive zero-knowledge Aurora protocol has a knowledge soundness error smaller than q
2141 in the

random oracle model against q classical queries to the random oracle.
To further argue that our configuration is secure against quantum attackers that makes quantum queries

to the random oracle in the quantum random oracle model, we use this configuration with Theorem 4.9 and
Theorem 4.10 (with a possible 213 factor of security lost here, which is why we configure the state restoration
knowledge error to be smaller than 1

2141), assuming that the hidden constant in Theorem 4.9 is close to 1.
For the zero-knowledge aspect, combining our choice of hash output length along with the result in

Appendix B shows that the security lost when applying BCS transform is less than 1
2128 in the classical

setting.

L1 Security, Balanced (Preon128B). In this parameter set, we assume Conjecture 4.3 and Conjecture 4.12
are true, and the hidden constant in Theorem 4.9 is close to 1.

Assuming Conjecture 4.3 is true, we can use Theorem 4.5. Applying this parameter set, using u = 4 to
Theorem 4.5, and combining with formula (19), one gets that the knowledge soundness error of the interactive
Aurora protocol is smaller than 1

2128 .
To argue for quantum security, unfortunately when we use Theorem 4.5, we can not afford a security lost

factor like 213 as in the conservative setting, so we have to make a stronger assumption that Conjecture 4.12
is true, with this assumption and the assumption that the hidden constant in Theorem 4.9 is close to 1, the
quantum security comes directly from Theorem 4.9.

For the zero-knowledge aspect, the security argument is the same as the conservative setting.

L1 Security, Aggressive (Preon128A). In this parameter set, we assume that Conjecture 4.3 and Conjec-
ture 4.12 are true, the hidden constant in Theorem 4.9 is close to 1, and moreover, we assume the following
Conjecture 6.1 is true:

Conjecture 6.1 When invoked on the oracle f0 : L0 → F with localization parameter η, rate parameter ρ,
query phase repetition parameter ℓ, the soundness error of the FRI protocol is upper bounded by:

ϵFRI ≤
|L0|
|F|

+ (1− δ)ℓ (35)

In other words, we conjecture that the attack presented in section 4.6.2 is the best attack on the FRI protocol
in Aurora.

The security of this parameter set comes directly from our assumption and the argument in the medium
setting, where we replace ϵFRI by formula (35) with δ := 1− ρ.

Note that in the aggressive setting, since we set λ to be exactly twice the security parameter, the security
guarantee from Theorem 4.6 and Appendix B will be slightly less than 128 bits but larger than 125 bits.

34

L3 and L5 Security. For the justification of L3 and L5 security parameter sets, we use the same argument
as in the L1 security parameter sets. Let q be the number of queries to the (classic) random oracle. In
L3 parameter sets, the knowledge soundness error of the non-interactive zero-knowledge Aurora protocol is
configured to be less than q

2192 in the conservative (Preon192C) and balanced (Preon192B) setting (using the
same assumption as the L1 cases respectively, and using u = 4 to Theorem 4.5 in the balanced parameter
set), and is slightly larger than q

2192 but smaller than q
2189 in the aggressive (Preon192A) setting (using the

same assumption as the L1 case), where q is the number of classical queries to the random oracle. In L5
parameter sets, the knowledge soundness error of the non-interactive zero-knowledge Aurora protocol is
configured to be less than q

2256 in the conservative (Preon256C) and balanced (Preon256B) setting (using the
same assumption as the L1 cases respectively, and using u = 3 to Theorem 4.5 in the balanced parameter
set), and is slightly larger than q

2256 but smaller than q
2253 in the aggressive (Preon256A) setting (using the

same assumption as the L1 case). For the knowledge soundness of non-interactive zero-knowledge Aurora
protocol in the quantum random oracle model against q′ queries to the quantum random oracle, we replace
q by q′

2 in the above knowledge soundness formulas. Last but not least, we note that, unlike L1 and L3, for
L5 we set the output length of the random oracle to λ := 512 in balanced and conservative settings, same
as in the aggressive setting and leaving no further margin. We feel that this is justifiable because the 256-bit
security requirement of SHA3-512 already provides a substantial margin such that a relatively small number
of bits of security loss should not result in any calamities, rendering our proposal insecure in any practical
sense.

6.3 UF-CMA Security of the Signature Scheme
In section 6.2.1, we have justified that the non-interactive zero-knowledge Aurora protocol is a NIZK proof
of knowledge, so when we instantiate the signature scheme using the non-interactive zero-knowledge Aurora
prover algorithm and verifier algorithm as Π.Prove and Π.Verify for hard relation R in section 3.3.1, the
UF-CMA security of the signature scheme directly follows from Theorem 3.5 and the following conjecture,
which we have mentioned in section 3.3.2:

Conjecture 6.2 The non-interactive zero-knowledge Aurora protocol is true-simulation extractable.

7 Pseudocode

7.1 Building Blocks
7.1.1 GetWitness and GetInstance Functions

The GetWitness and GetInstance functions are deterministic algorithms used to generate the private witness
vector w for the Aurora prover and the public instance vector v for the Aurora verifier in a specific format.
The format follows from the specific form of the R1CS system of the AES described in the section 5, and the
R1CS system for the hard relation described in section 3.3.1. We refer to our C reference implementation for
more details on the format.

Algorithm 1 GetWitness(κ, sk)

Input: κ: security parameter, sk: secret key
Output: w: witness vector

1: w← sk
2: return w

35

Algorithm 2 GetInstance(κ, pk)

Input: κ: security parameter, pk: public key
Output: v: instance vector

1: v← pk
2: return v

7.1.2 Instantiation of the Random Oracle

Each security level is associated with a parameter λ indicating the number of output bits of the random oracle.
We will use two independent random oracles Gλ and Hλ in our signature scheme: Gλ is used to construct
Merkle trees, while Hλ is used to generate non-interactive verifier’s random coins. We model the random
oracles Gλ and Hλ with an arbitrary-length input and a λ-bit output:

Gλ :{0, 1}∗ → {0, 1}λ

Hλ :{0, 1}∗ → {0, 1}λ

In practice, Gλ can be instantiated with any cryptographic hash function with proper security level. For Hλ,
we use the duplex construction [BDPVA12] to instantiate the random oracle, which acts like a reseedable
pseudo-random bit sequence generator. We refer to our C reference implementation for more details on the
instantiation of Gλ and Hλ.

7.1.3 Merkle Tree

We use the Merkle tree construction described in [BCS16] to commit and open the prover’s message oracle
(message vector).

Merkle.GetRoot(Gλ,m): this is a randomized algorithm that takes a random oracle Gλ and a vector
m = (m1, ...,m|m|) as input, uses m to construct a Merkle tree using random oracle Gλ, and then outputs
the Merkle root rt ∈ {0, 1}λ of m as shown in figure 3, along with the random strings used to generate the
tree (denoted as rand).

Algorithm 3 Merkle.GetRoot(Gλ,m)

Input: Gλ: a random oracle, m: a vector with length |m|
Output: rt: a λ bits string

1: for i = 1 to |m| do
2: ri

$←− {0, 1}2λ
3: end for
4: rand := (r1, ..., r|m|)
5: rt←Merkle root of of the tree in figure 3
6: return (rt, rand)

Remark 7.1 As [BCS16] stated, in order to construct a hiding commitment scheme, we first accompany each
element mi with a random value ri ∈ {0, 1}2λ and then perform the two-to-one hash process to construct
the Merkle tree, as shown in figure 3.

36

Figure 3: Structure of the Merkle tree for vector (m1, ...,m|m|) using random oracle G

Merkle.BatchOpen(Gλ,m, p1, ..., pt): this is a deterministic algorithm which takes a random oracle Gλ,
a vector m, a vector rand = (r1, ..., r|m|) of randomness strings, and t position indices p1, p2, ..., pt as input,
and then outputs the authentication set Auth, which contains the number t, the opening values mp1 , ...,mpt ,
randomness strings rp1 , ..., rpt , and several λ-bit strings that contain the necessary information to authenticate
the opening values. We refer to our C reference implementation for the specific format of Auth.

Algorithm 4 Merkle.BatchOpen(Gλ,m, rand, p1, ..., pt)

Input: Gλ: a random oracle, m: a vector with length |m|, rand: strings for the
randomness of the Merkle tree, p1, ..., pt: the positions indices which
are wanted to be opened

Output: Auth: an authentication set for the opening values mp1 , ...,mpt

1: Auth← authentication set of mp1 , ...,mpt from the Merkle tree in figure 3
2: return Auth

Merkle.BatchVerify: this is a deterministic algorithm that takes a random oracle Gλ, a Merkle tree root
rt ∈ {0, 1}λ corresponding to some vector m, and an authentication set Auth as input, and then outputs 0
or 1 to indicate whether the Auth truly gives a valid batch opening for values mp1 , ...,mpt . The verification
process basically keeps performing two-to-one hashes for the values and strings in Auth, and then checks
if the final outcome equals rt. We refer to our C reference implementation for the more detailed hashing
procedure.

Algorithm 5 Merkle.BatchVerify(Gλ, rt, Auth)

Input: Gλ: a random oracle, rt: a λ bits string, Auth: an authentication set
Output: 0 or 1

1: rt′ ← final output from the two-to-one hashing process of Auth using Gλ

2: if rt′ ̸= rt then
3: return 0
4: else
5: return 1
6: end if

37

7.2 Pseudocode for the Signature Scheme
In this section, we provide the pseudocode for our signature scheme using building blocks outlined in sec-
tion 7.1. We follow Construction 3.4 for the hard relation in section 3.3.1 to construct the signature scheme.

7.2.1 KeyGen Algorithm

Algorithm 6 KeyGen(1κ)

Input: κ: security parameter
Output: (sk, pk): (secret key, public key) pair

1: if κ = 128 then ▷ L1 security level

2: r
$←− {0, 1}128, sk $←− {0, 1}128

3: y ← AESsk(r)
4: pk := r∥y
5: else if κ = 192 then ▷ L3 security level

6: r
$←− {0, 1}192, sk $←− {0, 1}192

7: Parse r = r1︸︷︷︸
128 bits

∥ r′︸︷︷︸
64 bits

8: r2 := r′∥064
9: y1 ← AESsk(r1)

10: y2 ← AESsk(r2)
11: pk := r∥y1∥y2
12: else if κ = 256 then ▷ L5 security level

13: r1
$←− {0, 1}128, r2

$←− {0, 1}128, sk $←− {0, 1}256
14: y1 ← AESsk(r1)
15: y2 ← AESsk(r2)
16: pk := r1∥r2∥y1∥y2
17: end if
18: return (sk, pk)

7.2.2 Sign and Verify Algorithms

Public Parameters. We first list the public parameters that can be predetermined once the security param-
eter is determined. These parameters will be treated as global variables in the pseudocode of Sign and Verify,
which correspond to Pub in Construction 3.4.

• F: this is the native field of the proving system. In order to embed AES constraint into R1CS over the
field F, as suggested in section 5, we will consider the field GF64 := F2[x]/(x

64 + x4 + x3 + x+ 1).
In L1 setting, we set F to be a degree 3 extension of GF64; in L3 setting, we set F to be a degree 4
extension of GF64; in L5 setting, we set F to be a degree 5 extension of GF64. We view the elements in
GF64 as polynomials over F2 and denote them using the coefficients as 64-bit strings in the descending
power order. We view the elements in F as polynomials over GF64 and denote the elements in F by
concatenation of elements in GF64 again in the descending power order. We will also write the strings
as integers in decimal for convenience (for example, we write 000...011 as (3)2). We refer to the C
reference implementation for more details on the arithmetic of F.

• A,B,C: these three matrices in Fm·(n+1) corresponds to the R1CS circuit of the hard relation we are
using in different security level; c.f. section 3.3.1. The R1CS circuit for AES is constructed via the

38

method in section 5. We refer to the C reference implementation for the specific format and sizes we
are using for these matrices.

• m,n, k: The integers m denotes the number of rows in A,B,C, whereas the integer n + 1 denotes
the number of columns in A,B,C. m is also the number of R1CS constraints, and n, the number of
R1CS variables. The integer k indicates the number of public R1CS variables.

• b: this integer is the query upper bound and also represents the degree that needs to be added to the
committed polynomials in order to achieve zero-knowledge property; c.f. section 4.4: Adding random
polynomials to mask original polynomials.

• H1: H1 is defined to be the additive subspace {(0)2, (1)2, ..., (2m − 1)2} ⊂ F, and we also denote the
elements of H1 in this order by H1 = {h1, h2, ..., hm}.

• H2: H2 is defined to be the additive subspace {(0)2, (1)2, ..., (2n+1 − 1)2} ⊂ F, and we also denote
the elements of H2 in this order by H2 = {h1, h2, ..., hn+1}.

• ZH1
(x), Z

≤(k+1)
H2

(x) and ZH1∪H2
(x): these three polynomials are defined by ZH1

(x) := Πj∈{1,...,m}(x−
hj), Z

≤(k+1)
H2

(x) := Πj∈{1,...,k+1}(x− hj), and ZH1∪H2
(x) := Πy∈H1∪H2

(x− y).

• L: L is defined to be the additive affine subspace {(0)2, (1)2, ..., (|L| − 1)2} + (|L|)2 of F, i.e., L is
the additive subspace {(0)2, (1)2, ..., (|L| − 1)2} shifted by (|L|)2. The suggested size of L is defined
in Table 4 for different security parameter sets. We denote the elements of L with the aforementioned
order by L = {l1, l2, ..., l|L|} in the pseudocode.

• Configuration for the FRI protocol (Li, qi(x)): We define the element s0 := (|L|)2 ∈ F, the set
L0 := L ⊂ F, the polynomial q0(x) := (x− (0)2)(x− (1)2)+(s0− (0)2)(s0− (1)2) ∈ F[x], and then
we set s1 := (s0−(0)2)(s0−(1)2), L1 := {(0)2, ..., (|L0|

2 −1)2}+s1, q1(x) := (x−(0)2)(x−(1)2)+
(s1−(0)2)(s1−(1)2). We continue this process recursively, defining si := (si−1−(0)2)(si−1−(1)2),
Li := {(0)2, ..., (|Li−1|

2 −1)2}+si, qi(x) := (x−(0)2)(x−(1)2)+(si−(0)2)(si−(1)2). We denote
the elements of Li with the aforementioned order by Li = {li,1, li,2, ..., li,|Li|} in the pseudocode.

• ℓ: the integer ℓ is the number of repetitions of query phases corresponding to a single commit phase in
the FRI. The suggested value of ℓ is provided in Table 4 for different security parameter sets.

• λ: the integer λ is the output length of the random oracle and is defined in Table 4 for different security
parameter sets.

Remark 7.2 We implicitly use the repetition parameter λi = 1 for Lincheck phase and λ′
i = 1 for Reduce

to FRI phase of the Aurora protocol in the pseudocode, since we suggest these values in all of the parameter
sets. In the configuration of FRI, we implicitly consider η = 1 so that all the polynomials {qi}i have a degree
equal to 2η = 2.

Special Symbols Used in Sign and Verify.

• We use the symbol f ← eq.(b) for a polynomial f , an integer b to indicate that the polynomial f is
computed from formula eq.(b).

• We use the symbol f ←−
a

eq.(b) for a polynomial f , integers a and b to indicate that the polynomial f
is derived by using Lagrange interpolation on the constraint system eq.(b) in this document to obtain
the unique polynomial with a degree less than a. In this case, the number of constraints of the system
eq.(b) will be equal to a. If the constraint system is simple, we will write the system directly on the
right side of the left arrow.

39

• We use the symbol f $←−
a

eq.(b) for a polynomial f , integers a and b to indicate that the polynomial
f is obtained by uniformly choosing a polynomial that satisfies the constraint system eq.(b) in this
document and with degree less than a. In this case, the number of constraints of the system eq.(b) will
be smaller than a.

• We use the symbol f $←−
a
Poly for a polynomial f , integers a and b to indicate that the polynomial f is

obtained by uniformly choosing a polynomial with a degree less than a.

• We use the symbol f $←−
a

Poly∑
S=0 for a polynomial f , integers a and b and a set S to indicate that

the polynomial f is obtained by uniformly choosing a polynomial that satisfies
∑

x∈S f(x) = 0 and
with degree less than a.

• We use the symbol st1
trunc←−−−

a
st2 for a bit string st1, an integer a, and a bit string st2 to indicate that

st1 is obtained by truncating st2 to a bit string with a bits. In this case, we assume that the length of
st2 is longer than a. We refer to the C reference implementation for the specific truncation method.

Pseudocode for Sign and Verify.

Algorithm 7 Sign(κ, sk,msg)

Input: κ: security parameter, sk: secret key, msg: message
Output: sig: a signature that corresponds to (sk, pk) and msg

1: σ0 ← Hλ(Public parameters∥msg)
2: w← GetWitness(κ, sk)
3: v← GetInstance(κ, pk)
4: f(1,v) ←−−

k+1
eq.(1) ▷ Start polynomial interpolation

5: fw
$←−−−−

n−k+b
eq.(2) ▷ Sample random polynomials

6: fAz
$←−−−

m+b
eq.(3), fBz

$←−−−
m+b

eq.(4), fCz
$←−−−

m+b
eq.(5)

7: r
$←−−−−−−−−−−−−−

2max{m,n+1}+b−1
Poly∑

H1∪H2
=0

8: rLDT
$←−−−−−−−−−−−−

2max{m,n+1}+2b
Poly

9: f̂w ← fw|L := (fw(l1), fw(l2), ..., fw(l|L|))

10: f̂Az ← fAz|L, f̂Bz ← fBz|L, f̂Bz ← fBz|L
11: r̂ ← r|L
12: r̂LDT ← rLDT |L
13: f̃ ← (f̃(l1), ..., f̃(l |L|

2
))

where f̃(li) :=fw(l2i) ∥ fw(l2i+1) ∥ fAz(l2i) ∥ fAz(l2i+1) ∥ fBz(l2i) ∥
fBz(l2i+1) ∥ fCz(l2i) ∥ fCz(l2i+1) ∥ fr(l2i) ∥ fr(l2i+1) ∥
frLDT

(l2i) ∥ frLDT
(l2i+1)

14: (rt1, rand1)← Merkle.GetRoot(Gλ, f̃)
15: σ1 ← Hλ(σ0∥rt1) ▷ Start Lincheck
16: α

trunc←−−−−
log |F|

Hλ(σ1∥1∥1)

17: s1
trunc←−−−−
log |F|

Hλ(σ1∥1∥2)

40

18: s2
trunc←−−−−
log |F|

Hλ(σ1∥1∥3)

19: s3
trunc←−−−−
log |F|

Hλ(σ1∥1∥4)

20: p1α ← eq.(8)
21: p2,Aα ←eq.(9), p2,Bα ←eq.(9), p2,Cα ←eq.(9) ▷ Replace A with B, C in eq.(9) respectively
22: fz ←eq.(7)
23: g, h←eq.(16) ▷ µ = 0 and ignore i in eq.(16)
24: h̃← (h̃(l1), ..., h̃(l |L|

2
)) where h̃(li) := h(l2i) ∥ h(l2i+1)

25: (rt2, rand2)← Merkle.GetRoot(Gλ, h̃)
26: σ2 ← Hλ(α∥s1∥s2∥s3∥rt2) ▷ Start Reduce to FRI
27: for i = 1 to 9 do
28: yi

trunc←−−−−
log |F|

Hλ(σ2∥2∥i)

29: end for
30: f0 ← eq.(18) ▷ λi = 1 and ignore j in eq.(18)
31: r := ⌊log(2max{m,n+ 1}+ 2b− 1)⌋ ▷ Commit phase of FRI
32: x0

trunc←−−−−
log |F|

Hλ(σ2∥3∥1)

33: for i = 1 to r − 1 do
34: f̃i ← (f̃i(li,1), ..., f̃i(li, |Li|

2

))

where f̃i(li,j) := fi(li,2j) ∥ fi(li,2j+1)

35: (rti+2, randi+2)←Merkle.GetRoot (Gλ, f̃i)
36: σi+2 ← Hλ(xi−1∥rti+2)
37: xi ← Hλ(σi+2∥i+ 3∥1)
38: fi+1 ← eq.(13)
39: end for
40: c1, c2 ← linear term and constant term of fr ▷ fr should be a linear polynomial
41: σr+2 ← Hλ(xr−1∥c1∥c2)
42: for i = 1 to ℓ do ▷ ℓ independent FRI query phase
43: yi,0

trunc←−−−−−−
log |L0|−1

Hλ(σr+2∥r + 3∥i) ▷ yi,0 ∈ {1, 2, ..., |L0|
2 } is the

query position index
44: for j = 1 to r − 1 do
45: yi,j := ⌈yi,j−1

2 ⌉
46: end for
47: end for
48: Authrt1 ← Merkle.BatchOpen(Gλ, f̃ , rand1, y1,0, y2,0, ..., yℓ,0)

49: Authrt2 ← Merkle.BatchOpen(Gλ, h̃, rand2, y1,0, y2,0, ..., yℓ,0)
50: for i = 1 to r − 1 do
51: Authrti+2

← Merkle.BatchOpen(Gλ, f̃i, randi+2, y1,i, y2,i, ..., yℓ,i)
52: end for
53: sig ← (rt1, rt2, ..., rtr+1, c1, c2, Authrt1 , ..., Authrtr+1

)

Algorithm 8 Verify(κ, pk,msg, sig)

Input: κ: security parameter, pk: public key, msg: message, sig: signature
Output: 0 or 1

1: Parse sig = (rt1, rt2, ..., rtr+1, c1, c2, Authrt1 , ..., Authrtr+1
)

2: v← GetInstance(κ, pk)

41

3: f(1,v) ←−−
k+1

eq.(1)

4: σ0 ← Hλ(Public parameters∥msg) ▷ Start Lincheck
5: σ1 ← Hλ(σ0∥rt1)
6: α

trunc←−−−−
log |F|

Hλ(σ1∥1∥1) ▷ Use the same truncation method as Sign

7: s1
trunc←−−−−
log |F|

Hλ(σ1∥1∥2)

8: s2
trunc←−−−−
log |F|

Hλ(σ1∥1∥3)

9: s3
trunc←−−−−
log |F|

Hλ(σ1∥1∥4)

10: p1α ← eq.(8)
11: p2,Aα ←eq.(9), p2,Bα ←eq.(9), p2,Cα ←eq.(9) ▷ Replace A with B, C in eq.(9) respectively
12: σ2 ← Hλ(α∥s1∥s2∥s3∥rt2)
13: for i = 1 to 9 do
14: yi

trunc←−−−−
log |F|

Hλ(σ2∥2∥i)

15: end for
16: r := ⌊log(2max{m,n+ 1}+ 2b− 1)⌋
17: x0

trunc←−−−−
log |F|

Hλ(σ2∥3∥1)

18: for i = 1 to r − 1 do
19: σi+2 ← Hλ(xi−1∥rti+2)
20: xi ← Hλ(σi+2∥i+ 3∥1)
21: end for
22: σr+2 ← Hλ(xr−1∥c1∥c2)
23: for i = 1 to ℓ do ▷ ℓ independent FRI query phase verification
24: yi,0

trunc←−−−−−−
log |L0|−1

Hλ(σr+2∥r + 3∥i) ▷ yi,0 ∈ {1, 2, ..., |L0|
2 } is the

query position index
25: Parse f̃(lyi,0

) from Authrt1

26: Parse f̃(lyi,0
) =fw(l2yi,0

) ∥ fw(l2yi,0+1) ∥ fAz(l2yi,0
) ∥ fAz(l2yi,0+1) ∥

fBz(l2yi,0) ∥ fBz(l2yi,0+1) ∥ fCz(l2yi,0) ∥ fCz(l2yi,0+1) ∥
fr(l2yi,0) ∥ fr(l2yi,0+1) ∥ frLDT

(l2yi,0) ∥ frLDT
(l2yi,0+1)

27: Parse h̃(lyi,0
) from Authrt2

28: Parse h̃(lyi,0
) = h(l2yi,0

) ∥ h(l2yi,0+1)
29: g(l2yi,0

), g(l2yi,0+1)← eq.(17) ▷ µ = 0 and ignore i in eq.(17)
30: f0(l0,2yi,0), f0(l0,2yi,0+1)← eq.(18) ▷ λi = 1 and ignore j in eq.(18)
31: for j = 1 to r − 1 do
32: yi,j := ⌈yi,j−1

2 ⌉
33: Parse f̃j(lj,yi,j

) from Authrtj+2

34: Parse f̃j(lj,yi,j
) = fj(lj,2yi,j

) ∥ fj(lj,2yi,j+1)

35: Fj−1 ←−
2

{
Fj−1(lj−1,2yi,j−1) = fj−1(lj−1,2yi,j−1)

Fj−1(lj−1,2yi,j−1+1) = fj−1(lj−1,2yi,j−1+1)
36: if Fj−1(xj−1) ̸= fj(lj,2yi,j) then ▷ Check the consistency of

fj−1 and fj
37: return 0
38: end if
39: end for

42

40: Fr−1 ←−
2

{
Fr−1(lr−1,2yi,r−1) = fr−1(lr−1,2yi,r−1)

Fr−1(lr−1,2yi,r−1+1) = fr−1(lr−1,2yi,r−1+1)

41: yi,r := ⌈yi,r−1

2 ⌉
42: if Fr−1(xr−1) ̸= c1 · lr,2yi,r + c2 then ▷ Check the consistency of fr−1 and fr
43: return 0
44: end if
45: end for
46: for i = 1 to r + 1 do ▷ Verify all openings of the i-th Merkle tree
47: if Merkle.BatchVerify(Gλ, rti, Authrti) ̸= 1 then
48: return 0
49: end if
50: end for
51: return 1

7.2.3 Making the Algorithms Deterministic

The pseudocodes of KeyGen, Sign, and Merkle.GetRoot functions shown in this section are randomized
algorithms. To make KeyGen deterministic, one can take a seed as its input and generate random numbers
with a proper PRNG. For deterministic signing, the seed of the PRNG can be derived from the secret key sk
and the message msg, and the generated random numbers can be used by the Merkle.GetRoot function as
well.

8 Performance
Asymptotic Analysis. As shown in figures 1 and 2 of [BCR+19], for an arithmetic circuit of N gates,
the asymptotic prover time is O(N logN) field operations (assuming the number of non-zero elements in
the matrices of the circuit’s corresponding R1CS is linear in N), the asymptotic verifier time is O(N) field
operations, and the final argument size is Oκ(log

2 N) for security parameter κ. The argument size scales
poly-logarithmically in N since the FRI protocol has O(logN) rounds, and each Merkle tree has height
O(logN) so the authentication set for the openings in each round also scales as O(logN).

Implementation Performance. The Preon reference implementation on a single core of AMD EPYC 73F3
3.5GHz 16-core achieves the following performance. Though we only have very few data points, the results
seem to fit the above asymptotics. Last but not least, the numbers here are not at all suggestive of Preon’s
performance in practice, as the reference implementation is meant for expository purposes only. We are sure
that there is plenty of room for further optimization, which we expect to see in the few months to come.

43

Size [bytes] timing [ms]
Security Level Parameter Set sk pk signature KeyGen Sign Verify

L1
Preon128A 16 32 139k 0.002 76,067 397
Preon128B 16 32 372k 0.002 80,870 561
Preon128C 16 32 1,725k 0.002 76,919 2,303

L3
Preon192A 24 56 312k 0.002 132,411 2,182
Preon192B 24 56 778k 0.002 137,306 2,688
Preon192C 24 56 3,541k 0.002 137,252 7,460

L5
Preon256A 32 64 598k 0.002 414,713 11,552
Preon256B 32 64 1,157k 0.002 415,207 12,487
Preon256C 32 64 5,248k 0.002 417,464 26,835

Table 5: Performance of different parameter sets

References
[BBHR17] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon in-

teractive oracle proofs of proximity. Electron. Colloquium Comput. Complex., TR17-134,
2017.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
gaps for reed-solomon codes. In 61st Annual Symposium on Foundations of Computer Sci-
ence, pages 900–909, Durham, NC, USA, November 16–19, 2020. IEEE Computer Society
Press.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476
of Lecture Notes in Computer Science, pages 103–128, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Mar-
tin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference,
Part II, volume 9986 of Lecture Notes in Computer Science, pages 31–60, Beijing, China,
October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[BdK+21] Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl,
and Greg Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor,
PKC 2021: 24th International Conference on Theory and Practice of Public Key Cryptog-
raphy, Part I, volume 12710 of Lecture Notes in Computer Science, pages 266–297, Virtual
Event, May 10–13, 2021. Springer, Heidelberg, Germany.

[BDPVA12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge:
Single-pass authenticated encryption and other applications. In Ali Miri and Serge Vaudenay,
editors, Selected Areas in Cryptography, pages 320–337, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference on Theory

44

and Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Sci-
ence, pages 501–519, Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg,
Germany.

[BGKS19] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: sam-
pling outside the box improves soundness. CoRR, abs/1903.12243, 2019.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer and Com-
munications Security, pages 1825–1842, Dallas, TX, USA, October 31 – November 2, 2017.
ACM Press.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum
random oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory
of Cryptography Conference, Part II, volume 11892 of Lecture Notes in Computer Science,
pages 1–29, Nuremberg, Germany, December 1–5, 2019. Springer, Heidelberg, Germany.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor,
Advances in Cryptology — EUROCRYPT ’91, pages 257–265, Berlin, Heidelberg, 1991.
Springer Berlin Heidelberg.

[DBN+01] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham, E. Roback,
and James Dray. Advanced encryption standard (aes), 2001-11-26 2001.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient
public-key cryptography in the presence of key leakage. In Masayuki Abe, editor, Advances
in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
613–631, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany.

[DKR+22] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg
Zaverucha. Shorter signatures based on tailor-made minimalist symmetric-key crypto. In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th
Conference on Computer and Communications Security, pages 843–857, Los Angeles, CA,
USA, November 7–11, 2022. ACM Press.

[dSGMOS19] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart.
BBQ: using AES in picnic signatures. In Kenneth G. Paterson and Douglas Stebila, editors,
Selected Areas in Cryptography - SAC 2019 - 26th International Conference, Waterloo, ON,
Canada, August 12-16, 2019, Revised Selected Papers, volume 11959 of Lecture Notes in
Computer Science, pages 669–692. Springer, 2019.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the
non-malleability of the Fiat-Shamir transform. In Steven D. Galbraith and Mridul Nandi,
editors, Progress in Cryptology - INDOCRYPT 2012: 13th International Conference in Cryp-
tology in India, volume 7668 of Lecture Notes in Computer Science, pages 60–79, Kolkata,
India, December 9–12, 2012. Springer, Heidelberg, Germany.

[Hol19] Justin Holmgren. On round-by-round soundness and state restoration attacks. Cryptology
ePrint Archive, Report 2019/1261, 2019. https://eprint.iacr.org/2019/1261.

45

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Com-
puter and Communications Security, pages 525–537, Toronto, ON, Canada, October 15–19,
2018. ACM Press.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In
Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture
Notes in Computer Science, pages 376–392, San Francisco, CA, USA, February 14–18, 2011.
Springer, Heidelberg, Germany.

[MRV+21] Silvio Micali, Leonid Reyzin, Georgios Vlachos, Riad S. Wahby, and Nickolai Zeldovich.
Compact certificates of collective knowledge. In 2021 IEEE Symposium on Security and
Privacy, pages 626–641, San Francisco, CA, USA, May 24–27, 2021. IEEE Computer Society
Press.

[STA] STARKWARE. Ziggy: Post-quantum-secure signature scheme based on a ZK-
STARK. https://github.com/starkware-libs/ethSTARK/tree/ziggy#
11-ziggy.

A Components of Aurora
Here we describe each of the components of Aurora and explain what relation each component can proof, for
more general and complete description and analysis of these components, please refer to the original paper
[BCR+19].

We mention that a core protocol which is used in Aurora is the fast Reed-Solomon interactive oracle proof
of proximity (FRI) low degree test protocol. Which uses properties of the Reed-Solomon code, thus for most
of its component, the input vectors are encoded as a polynomial and then be transformed into Reed-Solomon
codes over some domain. Through this way Aurora can leverage the benefit of asymptotically O(log2 N)
argument size from FRI, where N is the number of gates of the arithmetic circuit. We will see how the
vectors are encoded in the following sections.

In the following, we assume that all the arithmetic operations are over a native binary field F, which
contains two subspaces H1, H2 where |H1| = a, |H2| = b and an additive coset L with suitable size in order
to encode the vector polynomials into Reed-Solomon codes, if a ≥ b we will set H1 ⊃ H2 and if a < b we
will set H1 ⊂ H2.

A.1 Lincheck
In the Lincheck protocol, the prover’s input is a matrix A, the vector z and the vector a, and the verifier’s
input is the matrix A.

The goal of Lincheck is to let the prover shows the statement “I know secret vectors a, z such that
a = Az”, the idea is to let the verifier sample a field element α, and check if the inner product < a −

46

Az, (1, α, ..., αa−1) > equals to 0. The inner product can be rewrite as

(

a∑
i=1

ai · αi−1)− [

a∑
i=1

(

b∑
j=1

Ai,j · zj) · αi−1] (36)

= (

a∑
i=1

ai · αi−1)− [

b∑
j=1

zj · (
a∑

i=1

Ai,j · αi−1)] (37)

With the above observation in mind, we first order all the elements in H1 and H2. Write H1 = {h1, ..., ha},
and H2 = {h1, ..., hb} (remember that either H1 ⊃ H2 or H1 ⊂ H2). The prover uses Lagrange interpolation
to compute two polynomials fa, fz, where deg(fa) < |H1|, deg(fz) < |H2|, such that

fa(x) =
{

ai for x = hi where i ∈ {1, 2, ..., a} (38)

fz(x) =
{

zj for x = hj where j ∈ {1, 2, ..., b} (39)

, and then after receives verifiers random element α, the prover uses Lagrange interpolation to compute two
polynomials p1α, p

2,A
α such that

p1α(x) =

{
αi−1 for x = hi where i ∈ {1, 2, ..., a}

0 for x ∈ {H1 ∪H2} \H1
(40)

p2,Aα (x) =

{ ∑a
i=1(Ai,j · αi−1) for x = hj where j ∈ {1, 2, ..., b}

0 for x ∈ {H1 ∪H2} \H2
(41)

After computing this four vector polynomials, the inner product formula

(

a∑
i=1

ai · αi−1)− [

b∑
j=1

zj · (
a∑

i=1

Ai,j · αi−1)] = 0 (42)

becomes to ∑
x∈H1∪H2

[fa(x)p
1
α(x)− fz(x)p

2,A
α (x)] = 0 (43)

, which means that the prover need to convince the verifier that the polynomial fa(x)p1α(x) − fz(x)p
2,A
α (x)

sums to 0 over the domain H1∪H2, this is done by engaging a Sumcheck protocol with the verifier, Sumcheck
will be discussed in section A.2.

Naively, the prover needs to use three Linchecks for proving a = Az,b = Bz and c = Cz. An
optimization using random linear combination can reduce the number of Linchecks to one, the modified
Lincheck is called the “amortized Lincheck protocol”, in which the verifier first samples three uniformly
random elements s1, s2, s3 ∈ F and send to the prover, and then asks the prover to show that the private
vector s1 · a+ s2 ·b+ s3 · c is equal to s1 ·Az+ s2 ·Bz+ s3 ·Cz using only one call to Lincheck protocol.

Figure 4 shows the interactive flow of Lincheck protocol under IOP model, here one thing to keep in mind
is that when the prover sends a polynomial to the verifier in the figure, it actually means to send a commitment
of the polynomial at that time, and then after all the interactions, the verifier will ask the prover to open some
values of the committed polynomial at some points.

47

P (A, z,a) V (A)

compute polynomials fz, fa
fz, fa−−−−−−−−−−−→

sample α
$←− F

α←−−−−−−−−−−−−
compute polynomials p1α, p

2,A
α

−−−−−−−−−−−−→
P and V run a Sumcheck for∑

x∈H1∪H2
[fa(x)p

1
α(x)− fz(x)p

2,A
α (x)] = 0

←−−−−−−−−−−−−

Figure 4: Lincheck protocol

A.2 Sumcheck
The Sumcheck protocol is an interactive protocol which the prover can show the statement “I know a poly-
nomial f such that

∑
x∈S f(x) = 0” to the verifier, where S is a public know set predetermined by the

prover and the verifier. In the use of Lincheck, prover’s claimed polynomial is fa(x)p1α(x) − fz(x)p
2,A
α (x)

and the set is H1 ∪H2. The prover first computes a polynomial division of f(x) divided by ZH1∪H2
(x) :=

Πy∈H1∪H2(x − y), getting polynomials g and h such that f(x) = g(x) + h(x) · ZH1∪H2 . We have that∑
x∈H1∪H2

f(x) =
∑

x∈H1∪H2
g(x) + h(x) · ZH1∪H2

=
∑

x∈H1∪H2
g(x). Now, we use a mathematical

fact that
∑

x∈S xt = 0 for any t ∈ {0, 1, 2, ..., |S| − 2} and for any non-trivial subspace S of F. Using this
fact, the term

∑
x∈H1∪H2

g(x) actually equals to
∑

x∈H1∪H2
β · x|H1∪H2|−1 where β ∈ F is the coefficient

of x|H1∪H2|−1 in g. Thus
∑

x∈H1∪H2
f = 0 if and only if g is a polynomial with degree strictly less than

|H1 ∪ H2| − 1. The prover sends polynomials f and h to the verifier and then engages a low degree test
with the verifier to check that f − h · ZH1∪H2

(= g) has degree less than |H1 ∪H2| − 1. Figure 5 shows the
interactive flow of Lincheck protocol under IOP model.

P (f) V

compute the polynomial h
f,h−−−−−−−−−−−−−→

compute g
←−−−−−−−−−−−−

P and V run a low degree test for
checking deg(g) < |H1 ∪H2| − 1

−−−−−−−−−−−−→

Figure 5: Sumcheck protocol

48

A.3 Rowcheck
After using three Linchecks (or one amortized Lincheck) to show that prover knows a = Az,b = Bz, c =
Cz, the prover still needs to prove that a ◦ b = c, this is equavalent to show that the corresponding encoded
polynomials fa, fb, fc in the Lincheck protocol satisfies the following:

fa(x) · fb(x) = fc(x) for all x ∈ H1 (44)

, which is equivalent to

fa(x) · fb(x)− fc(x) = p(x) · ZH1
(x) for all x ∈ F (45)

for some polynomial p with degree less than max{deg(fa)+ deg(fb)− deg(ZH1
), deg(fc)− deg(ZH1

)}+
1 = |H1| − 1, and that ZH1

(x) := Πy∈H1
(x − y). Therefore if we choose L to have size larger than

max{deg(fa) + deg(fb), deg(fc)} = 2|H1|, then (45) holds if and only if the polynomial p′ defined by the
corresponding Reed-Solomon code

p′(x) :=
fa(x) · fb(x)− fc(x)

ZH1
(x)

for all x ∈ L (46)

over space L, is a polynomial with degree less than |H1| − 1.
In summary, for the prover to prove the statement “I know secret vectors a,b, c ∈ Fa such that a◦b = c”,

the prover and the verifier only need to engage an FRI protocol to check the polynomial f with corresponding
Reed-Solomon codeword (46) has degree less than |H1| − 1, this process is called Rowcheck.

B An Improved Chernoff Bound
In this section, we explain how to use Chernoff bound more carefully in order to get a tighter bound of
formula (25). We will use the notation in [BCS16], Lemma 3.4, Fact 1. Recall that if we let ρ be a random
function chosen uniformly from the functions with domain {0, 1}2λ and range {0, 1}λ, and let z ∈ {0, 1}λ
be a fixed value, then the authors define the random variable (over the choice of ρ) δρ(z) := |Prr[ρ(r) =
z] − Pr[X = z]| where r is taken over {0, 1}2λ and X has the uniform distribution over {0, 1}λ. Note that
the definition of δρ(z) is equivalent to δρ(z) := |

∑
r χρ(r)=z

22λ
− 1

2λ
| where r is taken over {0, 1}2λ and χρ(r)=z

is the indicator function to indicate whether ρ(r) = z.
Now we define a random variable Yρ (the randomness is taken over random choice of ρ) for a fixed value

z ∈ {0, 1}λ to be Yρ(z) :=
∑

r χρ(r)=z , note that the expectation for Yρ(z) is µ = 2λ for all z.
We have

Pr
ρ
[δρ(z) ≥ δ · 2−λ] = Pr

ρ
[|
∑

r χρ(r)=z

22λ
− 2−λ| ≥ δ · 2−λ] (47)

= Pr
ρ
[|(
∑
r

χρ(r)=z)− 2λ| ≥ δ · 2λ] (48)

= Pr[|Yρ(z)− µ| ≥ δ · µ] (49)

≤ 2e−
δ2µ
3 (50)

where the first equality uses the equivalent definition of δρ(z), the second equality comes from multiplying
both side in the probability by 22λ, the third equation uses the definition of Yρ(z) and the fact that µ = 2λ,
and the final inequality comes from the Chernoff bound.

49

In the original paper, the authors set δ to be 2−
λ
4 and use the inequality 2e−

δ2µ
3 ≤ 2−2λ, note that here

the inequality is very loose if λ is large enough. The value δ will eventually shows up as a major part of the
denominator of the second term of formula (25). Here we also recall that λ represents the output length of
the random oracle (measured in bits).

In our L1 security parameter sets, λ is always larger than or equal to 256, so we can actually set δ to be

2−0.48λ without violating the inequality 2e−
δ2µ
3 ≤ 2−2λ, and the resulting formula for the zero-knowledge

lost becomes

z′ = z +
p

20.48λ+2
(51)

In our L3 security parameter sets, λ is always larger than or equal to 384, so we can set δ := 2−0.486λ

without violating the inequality 2e−
δ2µ
3 ≤ 2−2λ, and the resulting formula for the zero-knowledge lost

becomes

z′ = z +
p

20.486λ+2
(52)

In our L5 security parameter sets, λ is always larger than or equal to 512, so we can set δ := 2−0.489λ

without violating the inequality 2e−
δ2µ
3 ≤ 2−2λ, and the resulting formula for the zero-knowledge lost

becomes

z′ = z +
p

20.489λ+2
(53)

50

