The Syndrome Decoding in the Head
(SD-in-the-Head) Signature Scheme

Algorithm Specifications and Supporting
Documentation — Version 1.0

Carlos Aguilar Melchor Thibauld Feneuil Nicolas Gama
Shay Gueron James Howe David Joseph Antoine Joux
Edoardo Persichetti Tovohery H. Randrianarisoa
Matthieu Rivain Dongze Yue
May 31, 2023

CISPA
CryptoExperts
Florida Atlantic University
Meta
SandboxAQ
Sapienza University
Umea University
University of Haifa

Contents

1 Introduction

2 High-level description of the SD-in-the-Head signature scheme

2.1

2.2
2.3

Overview of the SD-in-the-Head signature scheme

2.1.1 The syndrome decoding problem
2.1.2 The SD-in-the-Head MPC protocol
2.1.3 The SD-in-the-Head signature scheme
Principle of hypercube variant
Principle of threshold variant

3 Detailed algorithmic description

3.1
3.2

3.3
3.4
3.5

Notations
Subroutines Lo
3.2.1 MPC subroutines
3.2.2 Pseudo-randomness generation
3.2.3 Hashing and commitments
3.2.4 Seed trees (hypercube variant)
3.2.5 Merkle trees (threshold variant)
Key generation
Hypercube variant
Threshold variant

4 Signature parameters

4.1
4.2
4.3
4.4
4.5

Selection of the SD parameters
Selection of the MPC parameters
Symmetric cryptography primitives
Keys and signature sizes
Proposed instances

5 Performances

5.1
5.2

Benchmarks for the hypercube variant
Benchmarks for the threshold variant

6 Security Analysis

6.1
6.2
6.3
6.4
6.5

Security definition
Security assumptions
Security in the ROM
Security in the QROM

Security of the d-split syndrome decoding problem

7 Analysis of known attacks

7.1
7.2

Attacks against the SD problem
Signature forgery attacks

8 Advantages and limitations

8.1
8.2

Advantages of SD-in-the-Head
Limitations of SD-in-the-Head

17
17
20
20
24
25
27
28
30
32
36

41
41
41
42
43
44

46
46
46

47
47
47
47
47
48

49
49
50

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 1

1 Introduction

This specification presents the Syndrome-Decoding-in-the-Head (SD-in-the-Head) digital signa-
ture scheme. The scheme is based on the hardness of the syndrome decoding problem for random
linear codes on a finite field. It consists in a zero-knowledge proof of knowledge of a low-weight
vector x solution of a syndrome decoding instance y = Hx, which is made non-interactive using
the Fiat-Shamir transform. This zero-knowledge proof relies on the principle of “multiparty
computation in the head” (MPCitH) originally introduced in [IKO'07] and notably used by
the Picnic signature scheme [ZCD™'20], candidate to the previous NIST call for post-quantum
algorithms. The MPCitH framework has recently been improved in a series of works which
makes it an effective and versatile tool for the design of post-quantum signature schemes. The
SD-in-the-Head protocol was initially proposed in [FJR22] and further improved in subsequent
works [AMGH'22; FR22]. The present specification provides a detailed description of the SD-
in-the-Head scheme with two variants from these follow-up works: the hypercube variant and
the threshold variant.

Organization of this specification

Section 2 gives a high-level description of the SD-in-the-Head scheme from the underlying MPC
protocol to the signature scheme under its two variants. Section 3 provides a detailed description
of the key generation, signature and verification algorithms for the two variants. This description
intends to allow a non-ambiguous implementation of the scheme. The selection of the parameters
is explained in Section 4 which also exhibits our proposed instances for the two variants and
the three considered security levels. Section 5 provides performance figures for our different
instances. The security of the SD-in-the-Head signature scheme is analyzed in Section 6 while
Section 7 further evaluates the complexity of known attacks. We finally list some advantages
and limitations of the scheme in Section 8.

We welcome enquiries, comments, and corrections at
consortium@sdith.org
Implementations and material related to the SD-in-the-Head signature scheme will be uploaded
and maintained on:

https://github.com/sdith

consortium@sdith.org
https://github.com/sdith

2 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

2 High-level description of the SD-in-the-Head signature scheme

The SD-in-the-Head signature scheme relies on an MPC protocol which efficiently checks whether
a given shared input corresponds to the solution of a syndrome decoding instance [FJR22].
By applying the MPC-in-the-Head paradigm [[KO'07], this protocol is turned into a zero-
knowledge proof of knowledge for the syndrome decoding problem that is then transformed into
a signature scheme using the Fiat-Shamir heuristic [FS87]. The original SD-in-the-Head scheme
has been optimized in two follow-up articles:

1. [AMGH™23] proposes to correlate the sharings of several parallel repetitions of the MPC
protocol using a geometric structure, known as Hypercube-MPCitH ; this technique gives
rise to the hypercube variant of the SD-in-the-Head signature scheme;

2. [FR22] proposes to replace the traditional additive sharings by low-threshold linear secret
sharings to exploit their error-correcting feature; this technique gives rise to the threshold
approach of the SD-in-the-Head signature scheme.

The following sections outline the high-level ideas behind the SD-in-the-Head scheme and the
variants obtained by applying these two approaches. The notations used in these sections are
summarized in Table 1.

2.1 Overview of the SD-in-the-Head signature scheme
2.1.1 The syndrome decoding problem

Syndrome decoding (SD) is a problem that is central to many code-based cryptosystems. A
syndrome is the result of multiplying a vector x with a parity-check matrix H. The “coset
weights” flavor of the SD problem [BMVT78] can be expressed as follows:

e Problem instance: Parity-check matrix H €]F((lm_k)xm and syndrome y € F?‘k .

e Solution: Vector x € Fy* with wt(x) < w such that Hz = y.

To generate an SD instance, H and x (with wt(x) = w) are drawn uniformly at random and
then y = Hx is calculated.

2.1.2 The SD-in-the-Head MPC protocol

In this section, we describe the MPC protocol which is at the core of the SD-in-the-Head signature
scheme. The so-called SD-in-the-Head MPC protocol runs a multi-party computation which
verifies the correctness of a solution z to a public SD instance (H,y). Some witness derived
from x is shared between N parties which, after running the protocol, either output ACCEPT if
the input sharing is believed to encode a correct SD solution or REJECT otherwise.

Standard form of the parity-check matrix. For efficiency, we assume that H is in standard
form H = (H'|I,,—), where H' € Fém_k)Xk. This enables us to express

y=Hx=Hzs+2p, (1)

where x = (z4|zp). This representation has two benefits:

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Table 1: Notations and parameters of the SD-in-the-Head scheme.

Syndrome decoding parameters:

q Size of the SD based field.
m Code length.

k Vector dimension.

w Hamming weight bound.
d

Parameter of the d-splitting variant.

Signature Parameters:

A Security parameter.

N Number of secret parties.

T Number of repetitions.

t Number of random evaluation points.

Syndrome decoding instance:

H Parity-check matrix.

x Solution of the SD instance (wt(z) < w).

y Syndrome y = Hz.

H' Random part of the parity-check matrix s.t. H = (H'|I;,—t).
(xa,zB) Two halves of the SD solution s.t. y = H'z s + zp.

Fields:

F, Field with ¢ elements: base field of the SD instance.

fiooos fq Elements of IF,.

Fooints Extension field of I, (base field of the MPC elements «, 5, v,r,€).
n Field extension s.t. Fpoints = Fgn.

Multi-Party Computation:

S,Q, P Polynomials of F,[X], witness of the syndrome decoding proof.

F Vanishing polynomial of the set {f1,..., fm} C Fq, i.e. F(X) = Hie[l:m] (X = fi).
a,b,c Beaver triple satisfying ay, - by, = ¢k, Vk € [1: ¢].

a, fB,v Broadcast values (coordinates lying in Fpoings)-

i Index of a party in [1: NJ.

[v] Sharing of a value wv.

[v] it? share of a sharing [v].

P False positive probability of the MPC protocol.

Hypercube variant:

D Dimension of the hypercube s.t. N = 20,

7" Index of challenge party, which remains hidden.

(i1,...,ip) Representation of ¢ on dimension D hypercube with side 2.

(k,7) Index of a main party in [1: D] x [1 : 2], where k indexes the hypercube dimension.
auzx Input secret share of leaf party i = N, [S| Q| P|al|b|c]n.

(stat) State and commitment randomness of a leaf party. For i # N,
state;, p; .
P state; is a pseudorandom seed, and statey = (seedy||aux)

Threshold variant:
I Privacy threshold (number of open parties).
1 Set of open parties (I C [1: N, |I| = ¢).

4 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

1. One only needs to send x 4 to reveal the solution, which can then be fully recovered using
xp =y — Hx4. At the MPC level, this implies that we only need to share x4 as input of
the protocol.

2. From a sharing of x4, the parties can locally compute a sharing of xp by linearity of
the above relation. The recovered sharing of x = (z4|zp) then satisfies the SD relation
y = Hx by definition.

Polynomial constraints. Let fi, ..., f, denote the elements of F,. The SD-in-the-Head MPC
protocol is based on three (witness-dependent) polynomials, S, @), and P, and one public polyno-
mial F', for which checking the correctness of the SD solution amounts to verifying the relation:

S-QQ=P-F. (2)
These four polynomials are defined as follows:

e The polynomial S € F,[X] is obtained by Lagrange interpolation of the coordinates of z,
such that S(f;) = x; for i € [1 : m]. This polynomial is of degree deg(S) < m — 1.

e The polynomial Q € F,[X] is defined as Q(X) = [[;cx(X — fi), where E is a subset of
[1: m] of order |E| = w, such that the non-zero coordinates of = are contained in E. This
polynomial is of degree deg(Q) = w.

e The polynomial F' € F,[X] is the “vanishing polynomial” of the set {fi,..., f,} which is
defined as F'(X) = [[;e[1.y) (X — fi). This polynomial is of degree deg(Q) = m.

e The polynomial P € F,;[X] is defined as P = S-Q/F (by definition F' divides S- Q). This
polynomial is of degree deg(Q) < w — 1.

The left-hand side of Equation 2 is designed so that S - Q(f;) = 0 for all f; € [1 : m]. This
is because S(f;) is zero for every x; = 0 (by construction, as S is interpolated over x), and
Q(f;) is zero for every x; # 0. On the right-hand side of Equation 2, by construction the public
polynomial F'is zero over f1, fa, ..., fm, and the polynomial P is required because F' has degree
m, whereas m < deg(S - Q) < m + w — 1. If the prover can convince the verifier that they
know P, (@ such that S-Q = P-F =0 at all points f; € [1 : m], then at each point f;, either
S(fi) =z = 0, or Q(f;) = 0. But since @ has degree w, it can be zero in at most w points,
therefore S is non-zero in at most w points, meaning that « has weight at most w.

In summary, the soundness of the MPC protocol is based on the fact that for S defined as
above, we have:

wt(z) <w < I P,Q with deg(P) < w — 1 and deg(Q)) = w s.t. Equation 2 holds.

The parties then take as input a sharing of the witness (x4, @, P), locally compute sharing
of z (by Equation 1) and S (by Lagrange interpolation), and then run an equality test for
S-Q=P-F.

Equality test. In order to verify that the polynomial relation of Equation 2 holds, the polyno-
mial §-Q — P F'is evaluated at a series of points to check that it evaluates to zero everywhere.
By the Schwartz-Zippel lemma, it is unlikely that the relation of Equation 2 holds true at ran-
dom points if the polynomial relation is not true in general. The probability that the relation is
satisfied at random points {ry} kefy Without Equation 2 being true is known as the false positive

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 5

probability of the protocol which we denote p. In order to further reduce p, the points r; are
sampled from a larger field Fpoints O Fy.

Evaluating shared polynomial in a public point is a linear operation. Therefore, the parties
can locally compute the evaluation S(ry), Q(rg) and P - F(ry) for each random point ri. The
protocol should then simply check that the obtained sharings defined valid multiplication triples,
namely that they satisfy the relation S(ry)-Q(rx) = P-F(ry). This is done by sacrificing random
multiplication triples (a.k.a. Beaver triples) using the protocol of [BN20].

Wrapping up: the SD-in-the-Head MPC protocol. For some variable v, a sharing of v is
denoted with double square brackets as [v] = ([v]1,...,[v]n) where [v]; denotes the share
distributed to (or computed by) the i'" party. As input to the SD-in-the-Head protocol, the
parties receive sharings [z 4], [P], [Q], as well as sharings [a], [0], [¢] corresponding to ¢ Beaver
triples a, b, c € F;oints such that ay - by, = ¢ for every k € [1 : t]. The SD-in-the-Head protocol
assumes a broadcast channel: the parties can broadcast their shares of a sharing [v] and then
publicly recompute the corresponding value v. It further assumes an oracle sampling random
values which are publicly distributed to all the parties (see Step 1 hereafter); this corresponds to
a random challenge from the verifier once the MPC protocol is compiled into a zero-knowledge

proof. The SD-in-the-Head protocol runs as follows:

t
points

1. Sample r,e € F uniformly at random.

2. Parties locally set [zp] =y — H'[x4].
3. Parties locally compute [S] via Lagrange interpolation of [z] = ([za] | [xB])-
4. Parties locally evaluate [S(rg)], [Q(rx)] and [F - P(rg)].

5. For all j € [t], parties verify ([S(r)], [Q(rx)], [P - F(rr)]) by sacrificing ([ax], [box], [cx]):
a) Parties locally compute [a] = e - [Q(rx)] + [ax] and set [Bx] = [S(rx)] + [bk]-
b) Parties broadcast [ay] and [5x] to publicly recompute «ay, and f.
c) Parties locally compute [vg] = eg - [F - P(ri)] — [cx] + o - [0k] + B - [ar] — ak - Bk
d) Parties broadcast [vg] to publicly recompute .
)

e) Parties output ACCEPT if v, = 0 and REJECT otherwise.

In its original description [FJR22], the SD-in-the-Head MPC protocol samples r uniformly
at random among the vectors of Féoims without duplicate coordinates. Here we remove this
constraint on r to make the scheme simpler and less prone to implementation errors. While this
tweak slightly increases the false positive probability p (i.e. the probability that the protocol
outputs ACCEPT for an invalid input witness), this increase is small enough and does not impact
the security category of the scheme for the selected parameters (see Section 4). The false positive
probability of this tweaked protocol (taking r uniformly at random from F?) is given by the

points
following theorem.

Theorem 2.1. Let us denote x4 the plain value of the input sharings [x4]. If x4 corresponds
to a solution of the syndrome decoding instance defined by (H',y) and if the other input sharings
are genuinely computed, the SD-in-the-Head protocol always outputs ACCEPT. If x4 does not

6 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

correspond to such a solution, the SD-in-the-Head protocol outputs ACCEPT with probability at

most . ‘ ‘
t —1\' 1\ 1\t
3 () (B) (g
1 ’Fpoints ‘ ‘Fpoints ’ |Fpomts ‘

=0

over the randomness of r and €.

Moreover, this protocol is (N — 1)-private which means that one can open the internal views
of N — 1 parties without revealing any information about the witness. This ensures the zero-
knowledge property of the protocol after application of the MPC-in-the-Head transformation.

2.1.3 The SD-in-the-Head signature scheme

To obtain the SD-in-the-Head signature scheme, two successive transformations are applied to
the SD-in-the-Head MPC protocol described above:

1. The MPC-in-the-Head paradigm turns the SD-in-the-Head MPC protocol into a zero-
knowledge proof of knowledge (ZK-POK). The obtained ZK-POK, runs as follows:

— the prover generates the input sharings and commit to the parties’ shares,
— the verifier challenges the prover with the randomness r, e of the MPC protocol,

— the prover runs the MPC protocol (in their head) and sends the broadcast values to
the verifier,

— the verifier challenges the prover to open all the parties in I C [1: N],
— the prover reveals the input shares of all the parties in I,

— the verifier checks the consistency of the MPC computation for the revealed parties.

2. The Fiat-Shamir heuristic turns the latter ZK-POK into the SD-in-the-Head signature
scheme. The principle is to replace the verifier challenge of the ZK-POK by the outputs
of hash functions taking previous prover’s communication as inputs.

The high-level architecture of the SD-in-the-Head signature scheme is depicted in Figure 1. We
do not describe the intermediate ZK-POK in details here (the interested reader is referred to the
original paper [FJR22]). We stress that in the hypercube variant, like in most recent MPCitH
schemes, the set I of opened parties is a random subset of cardinality N — 1 (or equivalently
I =[1:N]\{i*} for a random ¢*). On the other hand, in the threshold variant, the set [is a
random subset of [1 : N] of cardinality ¢ where ¢ is a small constant (see Section 2.3 for details).

Introduction of the message. Although this does not appear in Figure 1, one needs to intro-
duce the message in the hash computation to obtain a message-binding signature. We choose
to introduce the message in the second hash only. This enables message-independent pre-
computation of the Steps 1-to-4, which are the computationally-greedy steps of the signing
algorithm.

Introduction of a salt. For security reasons, we further introduce a salt of 2\ bits. The salt is
passed as argument of the hash commitments and extends the seed in some pseudo-randomness
generation, in both cases to avoid collision issues. The salt is added to the signature to allow
its the verification.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Signature:
1. Generate random sharing [z 4], [P], [Q], [a], [], []
2. Commit the parties’ shares:
Commi
[241i, [PLi, QL [l o) [eli —"*— com;

3. Derive the first challenge (randomness of MPC protocol):

Hash

comy,...,comy ——— hy —re
4. Simulate the MPC protocol:
MPC
[[xAﬂv [[P]], [[Q]]’ [[Cl]], [[bﬂa [[C]],T‘,E —— [[aﬂv [[/8]]7 [[U]]

5. Derive the second challenge (index of non-opened party):

Hash

hi, [a], 18], [v] ——— ha—1I

6. Build the signature from

hy, ha, {[[J:Aﬂiv [[P]]iv [[Qﬂl’ [[a]]i7 [[bﬂ% [[C]]i}iel’ {Comi? [[O‘ﬂ% [[ﬁ]]h [[Uﬂi}igél

Verification:

1. Recompute the commitments, for parties ¢ € I (with I obtained from hy):
Commi
[#ali, [P, [QL:, [ali, [B]:s [e]: —— com;

2. Recompute the first challenge (randomness of MPC protocol):

Hash
comy,...,comy ——— h; —>71€

3. Simulate the MPC protocol, for parties ¢ € I:

MPC

[z als, [Pli, [Q:, [als, [6]:, [clis e ——— [als, [B]:, [v]i

4. Recompute the second challenge (index of non-opened party):

h, [ol, I8, o] —22s by

5. Check that recomputed hi, ho match the signature.

Figure 1: Architecture of the SD-in-the-Head signature scheme.

8 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Omitting one hash in the signature. Although the description of Figure 1 includes both
hashes h; and hs to the signature, it is actually possible to omit one of them, either hy or ho,
but at least one of them must be included. Omitting h; for instance, the verification algorithm
would simply used the recomputed hq to derive the MPC challenge and to compute hs. A correct
verification of hs then ensure the validity of the recomputed hy by the collision resistance of
the hash function. On the other hand, one can omit he and recompute it from hy in order to
derive the view-opening challenge which is necessary to interpret the shares in the signature.
Since hg deterministically depends on other elements in the signature, replacing its verification
by its recomputation does not change the soundness of the scheme.

Our two variants of the SD-in-the-Head scheme makes two different choices regarding this
matter: the hypercube variant omit h; while the threshold variant omit hs.

Parallel repetition. As shown in [FJR22], the SD-in-the-Head ZK-POK has soundness error
€= % + p(l — %) In order to scale this to 27> for a target security level \, we use parallel
repetition. This means that the ZK-POK is repeated 7 := [log, ()] times in parallel to reach
a global soundness error of 7 < 27*. (NB: This does not translate to an €7 security against
forgery attacks in the non-interactive setting where we need to take a greater 7 — see Section 7.2.)
While applying the Fiat-Shamir heuristic, the NV commitments of the 7 executions are hashed to
derive hq, which then generates the 7 independent MPC random samples 7, €, and the broadcast
messages of the 7 executions are hashed to derive hsy, which then generates T independent sets
I for the non-opened party of each execution.

In practice, this means that all the elements appearing in Figure 1 (all shares, commitments,
MPC randomness), except h; and hgy, are 7-dimensional vectors of elements of the original
ZK-POK.

Splitting syndrome decoding. Some instances of the SD-in-the-Head scheme rely on a variant
of the syndrome decoding problem, which is called the d-split syndrome decoding problem. In
the latter problem, the solution z is split into d blocks x1,...,x4 € IFZL/ d, each satisfying a
Hamming weight constraint:

z=(z1] ... |zq) st Wt(:nj):%VjE[lzd].

When using this variant, the MPC protocol is run d times in parallel to prove the above weight
constraint on each block of x. This means that the polynomial P and @ in the witness are
replaced by vectors of polynomials P = (P[1],...,P[d]) and Q = (QI[11,...,Q[d]l) such
that deg(P[j]) < w/d and Q[j] is unary of degree w/d for every j € [1 : d]. The sample
challenges r, ¢ are also d-vectorized (with one slot for each of the d protocol executions) as well
as the broadcast sharings [«], [3], [v]-

We note that using the d-split variant implies a loss of security compared to the standard SD
instance with same parameters (¢, m, k, w). However, we can compensate this loss by increasing
the security of the standard SD instance by a few bits (see Section 6 for details).

Avoiding interpolations. The SD-in-the-Head MPC protocol needs to compute a Lagrange
interpolation to build the polynomial S from the secret x. We can avoid this interpolation by
tweaking the definition of y in the public key. Instead of defining y := Hx, we can define:

y:=HVx

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 9

where V' is the matrix satisfying:
S = Lagrange Interpolation(z) < s=Vx (3)

for s the vector of coefficients of S. Let us remark that, for a uniformly random linear code
Cy represented by the matrix H as parity-check matrix, the linear code Cpy represented by
HYV is also uniformly random. This is because V is an invertible m x m matrix. By denoting
s = (sa | sp) :== Vz, we can give [sa] instead of [x4] as input to the MPC protocol. Thus
the parties can deduce [s] from [s4] and from [sp] := y — H'[sa]. Now, the sharing of the
polynomial [S] is directly obtained from the sharing [s] of its coefficients, and so we do not
need to perform Lagrange interpolations in the MPC protocol anymore.

Two variants of the SD-in-the-Head signature scheme. We propose two variants of the SD-
in-the-Head signature scheme relying on two follow-up improvements of the scheme [AMGH™22;
FR22]. These two variants differ in the underlying secret sharing scheme, the format of the
commitments and the way the MPC computation is performed. We outline the specificities of
the two variants in the following sections.

2.2 Principle of hypercube variant

In the MPCitH setup used in the original SD-in-the-Head scheme [FJR22], the commitment
boils down to PRG expansion from seeds for the first N — 1 input shares, subtraction to the
plain witness for the last share, and commitments. Using this initial commitment, the prover
then simulates the MPC computation on each of these N parties to be able to produce the
relevant communications. Once the N — 1 commitments are opened, the verifier also needs to
replay those N — 1 computations for the consistency check. Instead of following this approach,
[AMGH™22] proposes a geometric method, and arranges the N shares on a D-dimensional
hypercube such that N = 2P. Using the same initial commitment, the prover and the verifier
only need to simulate the computation of logy(N) + 1 parties, for the exact same soundness
error as the original protocol. This hence lowers the amount of expensive MPC computations
and the cost of increasing the number of cheap hash calculations.

Secret Sharing. The hypercube variant uses additive secret sharing, [s] = ([s]1,..., [s]~)
where the plain value is s = Zfil [s];- Input shares of a given plain value s are usually
constructed by drawing [s]1,...,[s]x—1 uniformly at random or deriving them from a seed,
and set [s]n as the remainder, often called the auxiliary share. A share of a public con-
stant ¢ implicitly corresponds to the trivial share [c¢] = (0,...,0,c). Broadcasting a share [s]
means that each party broadcasts its local share [s];. This operation reveals in particular the
plain value s, which becomes public. Finally, given any public description of a linear function
o(x1,...,xp) with p variables, and p secret-shares [s1], ..., [sp], parties can compute a secret-
share of y = ¢(s1,...,sp) by locally setting [y]; = ¢([s1]is--.,[sp]i)- The description of the
function ¢ may depend on previously revealed plaintexts, even non-linearly.

Commitments. The hypercube variant uses a TreePRG construction as suggested in [KKW18],
which derives 2P leaf seeds from a root master seed. The leaf seeds are expanded into the input
leaf shares. The last leaf share, which can not be solely derived from a seed, uses an auxiliary,
as explained in the previous paragraph. This is illustrated in Figure 2.

The state of a leaf share is the minimal information needed to reconstruct it: for i € [1,27 —1],
it is the leaf seed, and for i = 2P, the last state is the tuple (leaf_seed,aux). Each state is

10 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

master seed

Ty e@? “G

&

e

ﬁ\‘\)\f\

W\
&

R\
xne

pued?
Q‘uﬂﬂoo
pued
g“ﬂ“xoo
pue dxo
| o2
s

aIeys Jeo[
aIeyS Jeo[
4+
“» oIeyX Jeor
9IRS Jeo[Se

puedx®

m to disclose N — 1 leaf shares, we need

1 hidden
to reveal only log,(N) seeds

share
Figure 2: TreePRG construction.

committed as a leaf commitment, and the 2P leaf commitments are hashed together to form
hi. This commitment ensures that to open all the leaf shares except one, and all the leaf
commitments, one only needs to publish a sibling path of D seeds and 1 leaf commitment.

MPC simulation. An MPCitH computation based on an additive secret sharing relies on

shares of the MPC parties adding up to the witness for which we want a zero-knowledge proof.
Additive secret sharing correctness does not depend on how these shares are sampled: they can
be uniform samples, additions of uniform samples, etc. As long as the shares add up to the
witness, the result of the computation is correct. The hypercube approach proposes a way to
re-express one instance of the protocol over N = 2P parties into D instances of 2 parties. For
each of instance, the 2 parties add up to the original witness, thus each of these instances will
be correct no matter the additive scheme or the functionality computed.

Let us explain the principle on a 2-dimensional toy example. Suppose we consider a traditional
4-party protocol with shares s, so, s3, and aux that sum up to the witness. If we distribute
them in a 2-dimensional hypercube of side 2 (i.e. a two-by-two square) we obtain what is shown
in Figure 3.

N9 = S9 + aux

ny =81+ 83 nq n2
S1 S92 my1 = S1 + S9
S3 aux Mo = S3 + aux

Figure 3: A simple 2-dimensional example of the hypercube construction.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 11

Per construction we have s; + sy + s3 + aux = witness. The hypercube approach leads to
an MPC execution for two parties holding m; = (s1 + s2) and ms = (s3 + aux) on one side,
and an MPC execution for two parties holding ny = (s1 + s3) and ny = (s2 + aux) on the
other side. By associativity and commutativity, in both cases the sum of the shares is equal to
the witness, and both MPCitH executions will lead to a correct result. Just as the traditional
4-party protocol would have. The non-trivial part is to prove that by doing this, the soundness
error in the presence of a dishonest prover is the same in the hypercube splitting as it is in the
original protocol; we refer the reader to [AMGH™"22] for the explanations.

From a performance standpoint, using a 2-dimensional hypercube of side 2 provides no ad-
vantage. In the traditional approach one would: generate 4 states, commit to 4 states, and
compute with 4 MPC parties. In the hypercube approach one also generates a state, commit,
and do an MPC computation 2 + 2 = 4 times. But when the dimension D increases, we see
the advantage appearing. For instance, if an MPCitH protocol does a 256 party protocol, as in
the original SD-in-the-Head, it requires 256 state generations and commitments. By using an
8-dimensional hypercube of side 2, one will then only perform 16 MPC computations, instead
of 256 originally. The exact same information is revealed: one opens 255 initial states and give
the communications that would have resulted from the unopened state, so one gets the same
proof size, the MPC cost is reduced by a factor of more than 10.

An additional benefit of Hypercube-MPCitH is that it can avoid, for most of the D executions,
running the MPC protocol for all the parties. Indeed, each of the D executions corresponds
to a given aggregation of the same hypercube shares. Thus each secret shared variable that
occurs throughout a run of the MPC algorithm corresponds to the same plain value when the
shares are summed up. Therefore the prover only needs to compute these plain values once, for
instance by evaluating the first 2 parties, and then, for the remaining D — 1 runs, the last share
is simply deduced by the difference to the plaintext value. Consequently, only 2 —1 parties need
to be evaluated instead of 2 per run, which makes 24 (2 —1)(D — 1) = D + 1 in total. For a
256-party protocol, the prover needs only to simulate the computation of 9 parties instead of
16 in the above paragraph, and 256 in the original protocol.

The N = 2P original parties (also called leaf-parties) are indexed on the D dimensions by
coordinates (i1, ...,ip) € [1,2]P. For each dimension k € [1, D], we have one MPC run between
2 main parties, and by convention, for each index j € [1,2], the main party of index (k,7)
regroups the contributions of the leaf-party shares whose k-th coordinate is j. Hence, for each
axis k € [1, D], the main parties (k,1),...,(k,2) form a partition of the leaf parties. With this
partitioning, whenever we disclose the values of 2 — 1 leaf shares and keep a single one hidden,
it automatically discloses the value of exactly 2 — 1 out of 2 main-parties shares on each of the
D axes.

Signature format. Because of the specificities of the threshold variant discussed above, the
format of the signature depicted in Figure 1 is tweaked as follows:

— the input of the second hash ho is made of the plain broadcast values as well as the
broadcast shares of D main parties (D + 1 broadcast values in total) instead of the 2P
broadcast shares of the leaf parties,

— for each repetition, the set I of open parties is defined as I = [1: N]\ {i*},

— thanks to the TreePRG, the revealed input shares {[zali, [P];, [Q]:, [als, [b]:, [[C]]i}iel
simply consist of the sibling path in the seed tree as well as the auxiliary share (which is
omitted if i* = N).

12 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

A per-signature salt is also included (see Section 3 for details). Wrapping up, an hypercube
SD-in-the-Head signature has the following format:

o = (salt | ha | (view[e], broad_plain [e], com [e] [i* [e]])ecltir])

where i indexes the 2P leaves of the hypercube, seed; (contained within view [e]l) enables the
verifier to derive {[za]i, [P]i, [Ql:, [ali, [b]i, [c]i}, except for the case i = 2P when they are
sent from directly via aux = {[za]sn, [P]an, [Q]ap, [c]op }. As a caveat, in the unlikely (with
1/2P chance) case i* = 2P, aux is not sent.

Trade-off offered by the hypercube variant. Compared to the original SD-in-the-Head scheme,
the main benefit of the hypercube variant is to require much fewer costly MPC computations,
leading to significant speed-up for equivalent parameters (and thus the same signature sizes) or
to comparable running times with much smaller signature (by increasing the number of parties
N). The computational complexity of the hypercube verification algorithm is essentially the
same as the signature algorithm. Also, it is worth noting that with parameters beyond N = 216,

the trade-off of increasing computations to reduce the signature size plateaus (as shown in Figure
4 in [AMGH™23]).

2.3 Principle of threshold variant

The threshold variant relies on a low-threshold linear secret sharing scheme [FR22]. Besides
changing the definition of the underlying sharing scheme, the format of the commitments and
the way the MPC computation is performed are further impacted.

Sharing scheme. Given a privacy threshold ¢, a linear secret sharing scheme (LSSS) shares a
secret s € Fy into a sharing [s] := ([s]1,...,[s]~) such that s can be reconstructed from any
£+ 1 shares while no information is revealed about s from the knowledge of £ shares. The linear
feature of the sharing scheme further implies that linear operations can be computed locally by
the parties which make any LLSSS compatible with the SD-in-the-Head MPC protocol described
in Section 2.1.

For the threshold variant of the SD-in-the-Head scheme, we use Shamir’s secret sharing
(SSS) [ShaT79]. A sharing [s] = ([s]1,...,[s]n) of a value s € F, is generated by sampling
¢ random elements (si,...,sp) < Fg, letting sg := s, and defining the shares as follows:

[s]h = >i_gsi- fi

[sIv = Yoo si - f&

where f1, ..., fy denotes N fixed non-zero elements of the field F,. For an [F -tuple s € Flfl,
the sharing [s] is defined by applying the above process to each coordinate of s.

The Shamir’s secret sharing has a polynomial interpretation: let P be the polynomial with
coefficients sg, ...,s, (with so := s the secret and si,...,s; random coefficients), then the "
share [s]; is defined as the evaluation of P, in the point f;, that is [s]; := Ps(fi). Equivalently,
the sharing [s] = ([s]1, .-, [s]~) is a Reed-Solomon (RS) codeword for the message (so, ..., S¢)
where the underlying RS code is of length N and dimension ¢ + 1. This notably implies that
(for a small ¢), the sharing [s] is highly redundant. In particular, the entire sharing can be
derived from any set of £ 4 1 shares.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 13

When applying the MPCitH paradigm to the SD-in-the-Head MPC protocol with Shamir’s
secret sharing, the prover only reveals ¢ party views instead of IV — 1. This is because the latter
sharing is ¢-private and not (N — 1)-private as the additive sharing. For the SD-in-the-Head
signature scheme overview in Figure 1, this notably means that the set I C [1 : N| of opened
parties derived from the second hash hs is a random subset of cardinality £.

Commitments. Since the shares in a (low-threshold) Shamir’s secret sharing are highly re-
dundant, it is not possible to expand them from random seeds. This means that the threshold
variant cannot benefit of seed trees as proposed in [KKW18] and as used in the original SD-
in-the-Head scheme and in the hypercube variant. Since only a low number ¢ of committed
views are revealed to the verifier, the threshold variant uses a Merkle tree as commitment
scheme. For the signature scheme (see Figure 1), this means that the commitments of the
shares comy,...,comy are aggregated into a global Merkle commitment:

com := MerkleTree(comy,...,comy) .

This global commitment is then used as the input of the first hash hy. As a consequence of this
tweak, the commitments com; of the non-opened parties i ¢ I do not need to be included in the
signature. On the other hand, the commitments of the opened parties i € I must come with
their authentication paths to the global Merkle commitment com. In practice, we include the
authentication path to each com; such that ¢ € I in the signature while excluding the Merkle
root com. The latter is recomputed from the paths by the verification algorithm and then
checked by recomputing the first hash h;.

MPC simulation. The goal of the MPC simulation in the signature scheme (see Figure 1) is to
derive the broadcast messages [, [A], [v]. By definition of the SD-in-the-Head MPC protocol,
there exist linear functions

S071»75 : (.’BA,P,Q,G, b7 C) = (aaﬁ)
9072",5,(1,5 : (.IA,P, Q,a,b, C) = v

such that each party locally evaluates ¢! and ¢? to the input shares [z 4], [P]:, [Q]:, [a]s, [6]s, [c]:
to get the broadcast shares [a];, [8]i, [v]i- The obtained sharings [o], [£], [v] are Shamir’s
secret sharing of the values o, 3, v (outputs of ¢! and ¢? on the plain inputs). As a consequence,
we only need to commit ¢ 4 1 shares of the broadcast sharings [o], [A], [v] to commit them
entirely, and hence we only need to perform the MPC computation for a subset of ¢+ 1 shares.

Alternatively, we can directly run the MPC computation (i.e. evaluate the functions (! and
©?) on the £ + 1 coefficients of the polynomials involved in the Shamir’s secret sharing. We
denote input_plain as the F,-tuple containing the witness and the Beaver triples:

input_plain := (24, P,Q,a,b,¢)

namely the plain input of the protocol. The initial sharing of this plain input is done by sampling
¢ vectors input_coef, . .. input_coef, uniformly at random from Fg"p“t’pla'"|, and defining the 7*!

share of input_plain as

¢
[input_plain]; := input_plain + Zfzj - input_coef; .
j=1

14 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

The MPC computation is then run on input_plain, input_coef;, ..., input_coef, to get the (vec-
torized) coefficients of the polynomials corresponding to the broadcast sharings:

1,2
input_plain M broad_plain,

, (¢'9?)
input_coef; ————— broad_coef,

: (¢'¢%)

input_coef, ———— broad_coef;.
From those ¢ 4+ 1 vectorized coeflicients, one can then recover the broadcast shares associated
to any party ¢ by:

¢
([ei, 18], [v]i) = broad_plain + Z fij - broad_coef; . (4)
j=1

We use this approach to perform the MPC computation in the threshold variant. Thanks
to an additional tweak explained hereafter, we only need to perform the MPC computation
for the plain values input_plain — broad_plain once for the 7 executions, whereas the ¢ other
vectorized coefficients broad_coef;, ..., broad_coef; are evaluated for each execution (as they
rely on different randomness).

Tweak in the equality test. As shown in [FR22], the soundness error obtained while applying
the threshold approach is slightly degraded compared to the standard case with additive sharing.
More precisely, the false positive probability p has a greater impact on the soundness error, which
is further amplified while turning to the non-interactive setting. To compensate the security
loss, one hence needs to decrease p by increasing the number of random points in the challenge
r derived from h;.

While getting closer to a negligible value for p, we can use a trick proposed in the Limbo
proof system [dOT21] and which consists in using the same MPC challenge across the 7 protocol
executions. Using this tweak in our context implies that we sample a single pair (¢,r) from hy
which is used in the 7 parallel protocol executions. We can then also use the same Beaver triples
across the 7 executions. We thus get the same plain values «, 8,v (a.k.a. broad_plain) for the
broadcast messages in the 7 executions. As a result, we only need to perform the computation
of broad_plain a single time (instead of 7 times) and the obtained value is included a single time
in the signature (instead of 7 times).!

Avoiding interpolations. As depicted in Figure 1, the broadcast shares are used to derive the
second hash ho in the signature. In the threshold variant, the full set of broadcast shares can
be deduced from any set of £ 4+ 1 broadcast shares because of the sharing redundancy (i.e. the
full sharing is a Reed-Solomon codeword). One can then hash any predetermined set of shares
{lads, [B]i, [v]i }icE, with |E| = £+ 1, to derive hy. The signature then includes the open shares
{[zali, [P, [Qs [als, [b]5, [[Cﬂi}z‘el from which the verifier can recompute {[a], [8]i, [v]i}ier
which, together with a single additional share ([«];, [B]i,[v]i) for @ ¢ I (or the plain value
of the broadcast), allows the verifier to recompute {[«];, [5]:, [v]i}icr (and hence verify ho).

!'We note that this tweak is not interesting in the standard case of additive sharing or for the hypercube variant
since having the same Beaver triples across the 7 executions would require the introduction of auxiliary values
for a and b in at least 7 — 1 out of 7 executions.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 15

However such a process implies that the verifier must interpolate the polynomial coefficients
broad_plain, broad_coefy, . .., broad_coefy from {[a];, [8]i, [v]i}ier (plus the additional share or
plain value) to then recover the evaluations on the set E. We use a different approach to avoid
such inefficient interpolations.

Let us first remark that since the broadcast shares are fully defined from their polynomial
coefficients broad_plain, broad_coefy, ..., broad_coef,, the latter can be directly used as input to
the second hash hy instead of the evaluations for a predetermined set E. This way and given the
previous tweak, the signer avoids computing these evaluations. These polynomial coefficients
are further included to the signature thereby allowing the verifier to compute ho and to evaluate
[, [5]:, [v]i for every i € I, hence avoiding interpolations.

While one adds the above polynomial coefficients to the signature, one can in return remove
the Beaver shares of the open parties {[a];, [0];, [[C]]Z}z ;- Indeed, by definition of the SD-in-the-
Head MPC protocol, for every party ¢ € [1 : N] and given the shares [xa];, [P]i, [Q]:, there
is a one-to-one (linear) relation between ([a];, [B]s, [v]i) and ([a];, [b]i, [c]:). Therefore, the
Beaver shares {[a];, [b]:, [c]:}, ¢; (which are necessary to verify the consistency of the opened
parties) can be derived from the witness shares {[z], [P];, [[Q]]Z}z ¢; and the broadcast shares
{[e]:, 18], [[v]]l}l ;- This process is called “reversed multiparty computation” in Section 3.

Signature format. Because of the specificities of the threshold variant discussed above, the
format of the signature depicted in Figure 1 is tweaked as follows:

the hash hs is omitted from the signature (see explanation in Section 2.1.3),

the authentication paths of the commitments com; for ¢ € I are included in the signature,
— the commitments com; for i ¢ I are removed from the signature,

— the shares {[a];, [8]i, [v]i}igr are replaced by the plain values «, 3, v (common to all the 7
executions) and the vectorized coefficients broad_coefy, ..., broad_coef; of the polynomials
defining the sharings [o], [3], [v] (¢ vectorized coefficients for each of the 7 executions),

— the shares {[a], [b]:, [c]: }, <; are removed from the signature.

To sum-up, the obtained signature has the following format:
(salt | hi | broad_plain | broad_share | ((wit_share[e] [i]);crre7 | auth [e])ee[l:ﬂ)

where broad_plain contains the serialized plain broadcast values (for all the repetitions), broad_share
contains the serialized shares {[a];, [8]:; [v]i}ie[1:q (for all the repetitions), wit_share[e] [i] con-
tains the ith share of the witness {[za]i, [P];, [Q]: for repetition e, i.e. (wit_sharele] [i])icrie)
are the open witness shares for repetition e, and auth[e] contains the Merkle authentication
paths for repetition e.ui

Trade-off offered by the threshold variant. The main advantage of the threshold variant is to
reduce the computation performed by the signer and the verifier. On the signer side, only £+ 1
parties must be simulated instead of N in the standard case. The gain is even more significant
for the verifier: they only need to perform ¢ party computations and verify Merkle paths for the
commitment of these ¢ parties (while the signer still needs to compute and commit the shares
of the N parties).

16 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

As in the hypercube variant, the computational bottleneck of the threshold variant is the
generation and commitment of the input shares, while in comparison the MPC simulation is
light. Here, we need to generate and commit N shares for each of the 7 protocol executions.
To reduce this computation cost, we can use the privacy threshold . When targeting a specific
security level, slightly increasing ¢ will decrease 7. For example, for the 128-bit security level,
we need to have at least 7 = 16 executions when ¢ = 1, while this reduces to 7 = 6 if we take
¢ = 3. However, taking a larger ¢ will increase the communication cost, thus the choice of ¢
offers an additional size vs. speed trade-off.

The main limitation of the threshold variant is to induce a larger signature size than in the
standard case and hypercube variant. This is due to the use of Merkle trees instead of seed
trees, where the former roughly requires twice as much space as the latter. A second limitation
of the threshold variant is that the number N of parties is limited by the size of the field F,,
i.e. N < ¢, which is due to the MDS conjecture [MS10] (see [FR22] for details).

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 17

3 Detailed algorithmic description

3.1 Notations

The elements manipulated by the signature and verification algorithms are vectors of field
elements. In the following, we denote F to mean a field which might either be the SD base field
[F, or the extension field Fpoints = Fgn.

Vectors. For a vector v over I, we denote its length |v|, namely v € F¢ & |v| = £. We further
denote v [i] the ith coordinate of v. For any two vectors v; and v, we denote (vy || vo) € Flvilt+vzl
their concatenation. For a vector v € FlYl, for any n € N, and for any sequence of positive
integers /1, ..., £, such that [v| = ¢, + - -+ £,, we denote

(V1. ..,0p) Parse(v,]FEl, .. ,IF‘K”)
the operation which splits v into n vectors of field elements such that
v=(v1||...||vp) and J|v;|=¢Vie[l:n].

We shall also manipulate two-dimensional vectors of field elements. For instance v € (F¢)?
is a vector with d coordinates which are vectors of F. For such a vector, we naturally extend
the coordinate notation such that v[i] € F¢ is the ith coordinate of v, itself a vector, and
vl [j] € F is the jth coordinate of v[i]. We further extend the definition of the Parse
function to handle two-dimensional vectors. For some vector v € FIYl| if we denote

(v1,...,0,) < Parse(v, (Ff)4 ... (F%)dn)
then vy, is the two-dimensional vector from (F%)% satisfying
v L1) =vldp +i- b + 51 V(E,5) € [1:di] x [1: 4] .

where 61 = 0 and 0, = l1dy + - - - + €j_1dj—q1 for k > 1.

We shall also denote Serialize the inverse of Parse. For any tuple (vi,...,v,) of two-
dimensional vectors, the Serialize function “flattens” this tuple by returning the vector v defined
as:

v = Serialize(vy,...,v,) € Flrdi+-+Lndn

& (v1,...,v,) = Parse(v, (FA)4, ..., (F)dn) .
In the algorithmic description below, we sometimes perform linear operations between seri-

alized variables, such as varl + var2 (or varl — var2). This is to be interpreted as adding (or
subtracting) each coordinate of the F-vector represented by the serialized variable.

Arithmetic operations. In the algorithmic description, we shall use the operator - to denote
the product over IF,. We shall further use this operator for the scalar product between a value
u € F, and a vector v = (vy,...,v) € Fé, that is

w-v=(u-v[1],...,u-vl]).

An element of Fp,oints = Fgn is represented as a vector of) elements of ;. For any v € Fyn, we
denote v = (v1,...,v,) € Fg the relation between v and the corresponding F ¢-vector. We shall

18 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

use the operator ® to denote the product over Fgn. For any u,v € FJ, with u = (u1,...,uy)
and v = (v1,...,vy), the product z = u ® v is defined as:

z = (21,...,2y) st Z:leiXi_l = (Z:ZluiXi_1> (Z:ZlviXi_1> mod f(X) , (5)

where f(X) is the degree-n irreducible polynomial of F,[X] such that Fgn = Fy[X]/f(X).

Intermediate variables. We use the mathematical notations introduced in Section 2.1 and
summarized in Table 1. We use bold characters to stress that a variable is d-vectorized: it is
a d-dimensional array for which each coordinate corresponds to one block of the witness in the
d-split SD variant (see Section 2.1.3). The different variables are serialized in Fy-strings which
are summarized in Table 2.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 19

Table 2: Descriptions of the low-level notations used in our scheme.

Bit strings:

seedyoot {0,1}* Root seed which is expanded into seedy;; and seedy.

seedyit {0,1}* Seed for the generation of the witness (s4, Q’, P).

seed {0,1}* Seed for the generation of the parity-check matrix H.
mseed {0,1}* Master seed for all the pseudo-randomness of the signature.
salt {0,1} Salt for the pseudo-randomness and commitments of the signature.
com {0,1}** Commitments of the parties’ input shares.

Indexes:

e 1,...,7 Index for the current repetition.

i 1,...,N Index for the current party.

P 1,...,D Index for the current dimension (only for hypercube).

P 1,...,¢ Index for the current open party (only for threshold).

j 1,...,t Index for the current evaluation point r.

v 1 d Index for the current chunk of the d-split SD solution.

Yty

Serialized variables:

wit_plain
input_plain
beav_ab_plain
beav_c_plain
broad_plain
wit_share
input_share
beav_ab_share
beav_c_share
broad_share
chal
input_mshare
aux[e]
input_coef

broad_coef

Fk+2k
q
Fk+2“’+t(2d+1)"
qd
2dtn
IF‘I
tn
qu
2dtn
Fq
]Fk+2k
q
IFk+2u}+t(2d-¢—1)n
2d
tn
Fq
tn
et
2d+1)tn
b0
1+d)-t-n
Fq
pht2wtt(2d+1)n
L
+2w—+t
Fq g
IFJH»2w+t(2d+1)n
q

IF.((fd—}—l)t'r)

Serialized plain witness (sa,Q’, P).

Serialized plain input (s4, Q’, P,a,b,c) of the MPC protocol.

Serialized plain uniformly-sampled part (a,b) of the Beaver triple.

Serialized plain correlated part ¢ of the Beaver triple.

Serialized plain broadcast values a, 3.

Serialized shares [(sa, Q’, P)];.

Serialized input shares [(s4, Q’, P, a,b,c)];.

Serialized shares [(a, b)];.

Serialized shares [c];.

Serialized shares [(ex, 3,v)]; of the broadcast values a, 3, v.

The MPC challenges (r, €)

Serialized input share [(s4,Q’, P,a,b,c)], of a main party (hypercube only).
Auxiliary state of the last party for the repetition e (hypercube only).
Serialized polynomial ceofficient for SSS of (s4,Q’, P, a,b,c) (threshold only).
Serialized polynomial ceofficient for SSS of a;, 3, v (threshold only).

Notations for hypercube approach:

rseed [e]
seed [e] [7]
acc
state[e] [i]
path [e]
view [e]

A-bit seeds
A-bit seeds
F§+2w+t(2d+1)n
Bit string

Bit string

Bit string

Seeds which are the roots of the seed tree.

Parties’ seeds (leaves of the seed trees).

Accumulator which sums all the parties’ shares.

Parties’ initial state.

Seed path giving the open parties’ seeds.

Components enabling to derive the parties’ initial states.

Notations for threshold approach:

!

com 2A-bit digests Digests of parties’ input shares (leaves of Merkle trees).
auth [e] Bit string Authentication paths of the open parties’ views.

seed A-bit seed Master seed from which all signature randomness is derived.
Misc:

with_offset Boolean Current party is involved in constant addition.

20 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

3.2 Subroutines

In this subsection, we describe different subroutines which are involved in our key generation,
signature, and verification algorithms. These sub-routines are related to (i) the MPC simulation,
(ii) the randomness generation, (iii) the hash functions, (iv) the seed trees and (v) the Merkle
trees.

3.2.1 MPC subroutines

We describe hereafter all the subroutines required for the MPC simulation following the de-
scription of Section 2.1.2.

Polynomial evaluation. We define the function Evaluate which takes as input an Fg-vector
@ representing the coefficients of polynomial of F,[X] and a point r € Fpgints, computes the
evaluation Q(r). Formally, we have

Ui (Fg)/@! x Fgn = Fgn

Evaluate : Q] . -
(@Q,r) =y o QLA -t

where ' ' =r@re - -@r .
N——_————

i — 1 times

Let us stress that the powers r? lies on the extension field F¢n while the polynomial coefficients
Q[i 4 1] lies on the base field F,.

Complete and truncate Q. Each polynomial Q[v] is defined as Q[v1(X) = [[;cp(X — fi)
for some set E of cardinality w/d. By definition, this polynomial is unary and we do not need
to share its leading coefficient (which always equals 1). We then define Q' as the d-vectorized
polynomial such that Q'[v]1(X) = Q[¥]1(X) — X®/? for every v € [1 : d]. We thus have
Q< (IFZU/ d+1)d while Q' € (IF;U/ d)d. We shall denote CompleteQ the subroutine which complete
Q' with the leading coefficient and TruncateQ the subroutine which truncates from its leading

coefficient @, so that we have:

Q = CompleteQ(Q’, 1)
Q' = TruncateQ(Q)

We shall call the routine CompleteQ(-,0) on some shares of Q’. Indeed, the shares of @’ must
all be completed with a leading 0 but one of them which is completed by a leading 1, so that
the shares of the leading coefficient of @ well sum up to 1.

Inner product. The subroutine InnerProducts, described in Algorithm 1, computes the Beaver
triples to be sacrificed in the MPC protocol. It takes as input a serialized [F-string beav_ab_plain
representing the pairs (a, b) of the Beaver triples and returns the corresponding serialized vector
of inner products. Note that those inner products are simple multiplications when d = 1.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 21

Algorithm 1 InnerProducts

Input: beav_ab_plain
Output: beav_c_plain
1: (a,b) < Parse(beav_ab_plain, (F%,)*, (F,)")
2: for j € [1:t] do
3 cljl « 2% aljl1lv] ®blj1V] > clj] € Fyn
4: beav_c_plain = Serialize(c)
5: return beav_c_plain

Computation of plain broadcast values. The subroutine ComputePlainBroadcast, described
in Algorithm 2, computes the publicly recomputed values of the MPC protocol (i.e. the plain
values corresponding to the broadcasted shares). It takes as input the plain input of the MPC
protocol, made of the witness (s4, Q’, P) and the Beaver triples (a, b, ¢), the syndrome decoding
instance (H',y), and the MPC challenge (r,&). From these inputs, it computes and returns the
plain broadcast values («,3). Note that the subroutine does not recompute v which is always
Zero.

Algorithm 2 ComputePlainBroadcast

Input: input_plain := (wit_plain, beav_ab_plain, beav_c_plain), chal, (H’,y)
Output: broad_plain

1: (s4,Q', P) < Parse(wit_plain, %, (Fy/®), (Fe/")?)

2: (a,b) < Parse(beav_ab_plain, (FZ,)")

3: ¢ + Parse(beav_c_plain, F!,)

4: (r,€) < Parse(chal,FL,, (FZ,)")

5 5= (sa|y+ H'sa) >s € Fy
6: @ = CompleteQ(Q’,1) > Q€ (Fgw/d)ﬂ)d
7. S < Parse(s, (F7/%)d)

8: for je[l:t do

9: for v e [1:d] do

10: alj]1[v] = elj]l [v] ® Evaluate(Q [v1,7[5]) + alj] [v] > aljllv] € Fp
11: Bj1[v] = Evaluate(S[v1,7[j1) + bl;]1 [v] > Bl € Fypn
12: broad_plain = Serialize(a, 3)

—_
w

: return broad_plain

22 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Party computation. The subroutine PartyComputation, described in Algorithm 3, performs
the party computation, namely it computes the shares broadcast by a party. It takes the
input shares of the party [(s4,Q’, P)]; and [(a, b, ¢)];, the syndrome decoding instance (H',y),
the MPC challenge (r,e) and the recomputed values (e, 3) and returns the broadcast shares
[(e,3,v)]; of the party.

This subroutine further takes as input a Boolean with_offset which indicates whether the
constant part of the computed affine function should be introduced or not for this party. For
instance, in the case of additive sharing (hypercube variant), when the parties locally add a
constant value to a sharing, the constant addition is only done by one party. The Boolean
with_offset is set to True for this party while it is set to False for the other parties.

In Algorithm 3, we use (&, 3) to denote the plain broadcast values while (ct, 3) denotes one
share of these values (corresponding to the party being computed).

Algorithm 3 PartyComputation

Input: input_share := (wit_share, beav_ab share, beav_c share), chal, (H’,y), broad_plain,
with_offset
Output: broad_share

1: (s4,Q', P) < Parse(wit_share, F, (Fy/%)?, (Fe/%)?)

2: (a,b) < Parse(beav_ab_share, (FZ,)")

3: ¢ < Parse(beav_c share, I,

4: (r,€) < Parse(chal, F, x (F&,)")

5: (&, 3) < Parse(broad_plain, (an)t, (]an)t)

6: if with_offset is True then

7: s=(sa|ly+H'sa) > s cFy
s Q=@ >Q e (Fy/Ty
9: else

10: s=(sa| H'sa) >s ey
1 Q=(Q0) > Q € (Fy/
12: S + Parse(s, (F2/%)9)

13: for j € [1:1] do

14: v[j] = —clj] >vljl € Fgn
15: forve[l:d] do

16: alj]1[v] = elj1 [v] @ Evaluate(Q [v1,7[j]) + alj1 [v] > oaljlv] € Fg
17: B[] [v] = Evaluate(S[v],r[j]) + bj1 [v] > BLj1[v] € Fyn
18: v[j]1 += e[j]1 [v] ® Evaluate(F, r[j]1) ® Evaluate(P [v],r[j])

19: vl += aljl1 vl @blj1 V] + B V] ® aljl V]
20: if with_offset is True then
21: vyl += —aljl vl ® BL7] [v]
22: broad_share = Serialize(a, 3, v)

: return broad_share

[\o]
w

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

23

Inverse computation.

The subroutine InversePartyComputation, described in Algorithm 4,

computes the shares of the Beaver triples from the shares of the witness and the broadcast
shares of a party. This subroutine is used by the verification in the threshold variant to avoid
interpolations, as explained in Section 2.3. For any wit_share, beav_ab_share, beav_c_share and
broad_share, the functionality of this subroutine is such that:

(beav_ab_share, beav_c_share) = InversePartyComputation(wit_share, broad_share, extra)

<= broad_share = PartyComputation(wit_share, beav_ab_share, beav_c_share, extra)

where extra corresponds to any (chal, (H',y), broad_plain, with_offset).

Algorithm 4 InversePartyComputation

Input: wit_share, broad_share, chal, (H',y), broad_plain, with_offset
Output: (beav_ab_share, beav_c_share)

—
@

NN N N R~ = = =2 = = ==
W2 Q © 00 PR Ww

s4,Q’, P) < Parse(wit_share, FF, (F;U/d)d, (F;U/d)d)

(

(o, B,v) < Parse(broad_share, (F2,), F,)

(r,e) < Parse(chal,FL, x (F4,)")

(@, B) + Parse(broad_plain, (an)t, (an)t)

if with_offset is True then
s=(sa|ly+H'sa)

Q=(Q1)
else

s=(sa| H'sa)

Q: (Q,,O)

. S « Parse(s, (F1"/%4)d)
: for je[l:¢] do

clj] = —vlj]
forve[l:d] do
aljllv] = aljl [v] —eljl [v] ® Evaluate(Q [v]1,7[j]1)
b[j]1 [v] = B[] [v] — Evaluate(S [v1,7[5])
cljl += e[j1 [v] ® Evaluate(F, r[j]1) ® Evaluate(P [v],r[j])
cljl += aljl W] @ b1 V] + Bl V] ® aljl V]
if with_offset is True then

cljl += —aljl vl ® BL7] [vV]

: beav_ab_share = Serialize(a, b)
: beav_c_share = Serialize(v)
: return (beav_ab_share, beav_c_share)

> s €y
> Q € (B

>seE IE‘Z

> clj] € Fqn

>aljllv] € Fp
>bljlv] € Fgn

24 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

3.2.2 Pseudo-randomness generation

Several subroutines used in the SD-in-the-Head signature schemes involve pseudorandomness
generation from a seed. Several seeds are expanded from a master seed in the key generation
and in the hypercube variant of the signature algorithm (to generate the sharings). One also
needs to sample sequences of field elements from a seed in the key generation, the signature and
verification algorithms (both variants). Finally pseudorandomness generation is also involved to
derive the challenges (MPC challenge and view-opening challenge) from the Fiat-Shamir hashes
hy and hs.

Extendable output function. The pseudorandomness in SD-in-the-Head is generated through
an extendable output hash function (XOF). Such a function takes an arbitrary-long input bit-
string « € {0,1}* and produces an arbitrary-long output bit-string y € {0, 1}* whose length is
tailored to the requirements of the application. Formally, a XOF is equipped with two routines:
XOF .Init(z) initializes the XOF state with the input = € {0,1}*. Once initialized, the XOF
can be queried with the routine XOF.GetByte() to generate the next byte of the output y
associated to x. The concrete instance of the XOF we use in the SD-in-the-Head scheme is given
in Section 4.5. In our context, we use the XOF as a secure pseudorandom generator (PRG)
which tolerates input seeds of variable lengths.

Sampling from XOF. We shall denote by Sample, the routine generating pseudorandom ele-
ment from an arbitrary set V. A call to

v + XOF.Sample(V)

outputs a uniform random element v € V. The Sample routine relies on calls to GetByte to
generate pseudorandom bytes which are then formatted to obtain a uniform variable v € V,
possibly using rejection sampling. The implementation of Sample depends on the target set V.
We detail the case of sampling field elements hereafter, namely when V = Fy for some n.

Sampling field elements. The subroutine XOF. SampleFieldElements(n) samples n pseudo-
random elements from F,. It assumes that the XOF has been previously initialized by a call to
XOF.Init(-). The implementation of the SampleFieldElements routine use the following process.
It first generates a stream of bytes By, ..., B, for some n’ > n. Those bytes are converted into
n field elements as follows:

e For F, = Fa56: The byte B; is simply returned as the 7th sampled field element. The XOF
is called to generate n’ = n bytes.

e For F; = Fa51: The byte B; is interpreted as an integer B; € {0,1,...,255}. We use the
principle of rejection sampling to only select integer values modulo 251, namely we reject
byte values in {251,...,255}. The procedure goes as follows:

1:2=1

2: while 1 <n do

3 B + XOF.GetByte()

4: if Be€{0,1,...,250} then
5: fi=B;i++

6: return (fi,..., fn)

The number of generated bytes n’ which are necessary to complete the process is non-
deterministic. In average on needs to generates n’ ~ (256/251)n ~ 1.02n bytes.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 25

Seed expansion. The subroutine ExpandSeed expands a salt and a master seed into a given
number of seeds. Specifically, a call to ExpandSeed(salt, seed, n) initializes the XOF by calling
XOF .Init(salt || seed) and then calls XOF.GetByte() to generate a stream of bytes By, ...,
B,,5/g which are divided into n output A-bit seeds seed, ..., seed, as follows:

(B1,--, Byjgs - s Bi—1)a/841, - - - » Bnays)

seedq seed,,

Expansion of the parity-check matrix. The subroutine ExpandH takes as input A-bit seed
seed; and returns an (m — k) x k matrix of elements of F,. This generated matrix is the random
part H' of the parity-check matrix in standard form H = (H'|I,,_). A call to ExpandH(seed)
generates H' column-wise as follows:

XOF .Init(seeds)
(f1s- s fom—i).k) < XOF. SampleFieldElements((m — k) - k)

Expansion of MPC challenge. The subroutine ExpandMPCChallenge expands the first Fiat-
Shamir hash h; into the MPC challenges (r,€) € Fi, x (F%,)". This subroutine takes as input
the hash h; and the number n of pairs (r,€) to be generated. It consists of the following steps:

XOF Init (hy)
v + XOF. SampleFieldElements(ntn(d + 1))

(chal[11,...,chal[n]) = Parse(v, Fi1(@+1) Fin(dtl))

where each chal[e] represents a serialized pair (r,€) € Fiy x (FZ,)".

For the hypercube variant we have one challenge per parallel execution, i.e. n = 7, while
for the threshold variant, we use a global challenge for all the executions, i.e. n = 1 (see
Section 2.3).

Expansion of view-opening challenge. The subroutine ExpandViewChallenge, expands the
second Fiat-Shamir hash hg into the view-opening challenge I'[1]1, ..., I[7], where I[e] C [1:
N] is the set of parties to be opened for execution e. This subroutine takes as input the hash hy
and a mode character, either hypercube or threshold. It first initializes the XOF by calling

XOF Init(hs) .

For the hypercube mode, the generated sets are of cardinal N — 1 and are simply represented
by the indexes i*[1], ..., i*[7] such that I[e] = [1 : N]\ ¢*[e] for each execution e. The
subroutine then calls

i*[e] +— XOF.Sample([1: N]) Vee[l:7].
For the threshold mode, the generated sets are of cardinal ¢. The subroutine then calls

Ile] <~ XOF.Sample({J C[1: N]; |J|=4}) Vee[l:7].

3.2.3 Hashing and commitments

Several subroutines used in the SD-in-the-Head signature scheme involve cryptographic hashing.
This is the case of the subroutines computing the Fiat-Shamir hashes and the commitments.
We also use a cryptographic a hash function for the seed trees (hypercube variant) and the
Merkle trees (threshold variant).

26 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Cryptographic hash function. The different hash and commitment subroutines are all derived
from a common cryptographic hash function

Hash : {0,1}* — {0,1}** .

The concrete instance of the hash function we use in the SD-in-the-Head scheme is given in
Section 4.5.

We use domain separation for the different usages of the hash function. This is simply done
by prepending a fixed byte value to the data to be hashed, as specified below for the different
cases.

Commitments. The subroutine Commit takes as input a 2A-bit salt, an execution index e,
a share index i and some data data € {0,1}*. It hashes them all together and returns the
corresponding digest. Specifically, we define:

Commit(salt, e, i, data) = Hash(0 || salt || eo || e1 || %0 || 41 || data) ,

where eg, e, ig, 11 are the byte values such that e = eg 4+ 256 - e; and @ = 49 = 256 - 41, where 0,
€o, €1, i9 and i1 are encoded on one byte, and where salt is encoded on 2\/8 bytes.

Fiat-Shamir Hashes. The hash functions Hash; and Hashs used to derive the Fiat-Shamir
Hashes hq1 and hy are defined as:

Hash; (data) = Hash(1 || data) ,

and
Hashg(data) = Hash(2 || data) ,

where the prefixes 1 and 2 are both encoded on one byte.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 27

3.2.4 Seed trees (hypercube variant)

To save communication, the hypercube variant relies on seed trees via three subroutines:

e TreePRG: it takes a 2A-bit salt and a A-bit seed, and returns N A-bit seeds which cor-
respond to the leaves of a binary seed tree with seed as root. The nodes are numbered
in hierarchical order: the root has index 1, and the left and right children of node i have
indexes 2i,2i + 1, and the seeds of the whole tree for i € [2,2.2” — 1] are derived via the
following recursive formula:

(seedy; || seeda;y1) < Hash(3 || salt || eo || e1 || 0 || 71 || seed;)

Here, e = eg + 256 - 1 € [1,7] and i = ip + 256 - i1 € [1,2 -2 — 1] are 16-bit little-endian
execution and node indexes.

o GetSeedSiblingPath: it takes a 2\-bit salt, a A-bit seed and an index ¢*, and it returns
the sibling path of the seed leave indexed by ¢* in a binary seed tree. It returns the D
seeds that are sibling of the ancestors of i* in the tree, namely:

path; = seed ;- (p—j))@1 for j € [1, D]

Here, > is the logical right shift, and &1 flips the least significant bit. It is possible to
store the 2.2P — 1 seeds, extract the sibling path from it, and delete the remaining seeds,
or equivalently to re-derive those seeds from the root seed and the salt in D calls of the
derivation formula above.

e GetLeavesFromSiblingPath: it takes an index ¢*, a 2A-bit salt and a seed path, and it re-
turns all the leaves except the one of index i* of the seed tree for which GetSeedSiblingPath
on 7* would output this path.

28 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

3.2.5 Merkle trees (threshold variant)

The threshold variant relies on Merkle trees for the commitment of the party shares. Those
Merkle commitments and decommitments are handled using the following subroutines:

e MerkleTree (Algorithm 5): This subroutine takes as input a list of N commitments
c1,...,cn € {0,132} (outputs of the Commit subroutine) and returns the nodes and
root of the binary Merkle tree with c1,...,cy as leaves. In this tree, the hash call to
compute the ith node is prefixed by (3 || ig || 1) where ig, i1 are the byte values such that
1 = 19 + 256 - i1, and where 3, 79, 71 are encoded on one byte. We use null to denote a
special character which specifies that a node value is undetermined.?

e GetMerklePath (Algorithm 6): This subroutine takes as input a list of nodes nodes repre-
senting a Merkle tree and a set I C [1 : N] indexing leaves to be authenticated. It returns
the authentication paths for leaves indexed by I in the Merkle tree.

o GetMerkleRootFromAuth (Algorithm 7): This subroutine takes as input a set of indexes
I C [N], the corresponding commitments (or leaves) {¢;}ics to be authenticated and the
corresponding authentication paths auth. It returns the root of the Merkle tree recomputed
from these leaves and authentication paths or invalid in case it fails to compute the
root. The proposed algorithm involves a queue structure. This structure comes with four
dedicated subroutines:

— Queue.Init() returns a empty queue,

— Queue.Enqueue(v) pushes a value v at the end of the queue,

— Queue.Dequeue() pops the value which is at the top of the queue, and

— Queue.Head() returns the value which is at the top of the queue without removing it.

Algorithm 7 has the advantage to require only a small memory space, since the number
of elements in the queue is always less than |].

Algorithm 5 MerkleTree

Input: N commitments ci,...,cy € {0,1}2
Output: nodes, root, the nodes and root of the Merkle tree
15 = [logy(N)]
2: nodes[2"] = ¢y, ..., nodes[2" + N — 1] = ¢y > Leaves of the Merkle tree
3: nodes[2" + N1 = ... = nodes[2"*! — 1] = null
4: for i from 2" — 1 downto 1 do
, Hash(3 || 79 || 41 || nodes[2:] || nodes[2: + 11) if nodes[2i + 1] # null
5: nodes[:] = ,
nodes [27] otherwise
6: > i =19+ 256 - 11
7: root = nodes[1]
8: return (nodes, root) > Merkle tree, with its root

2We stress that the value of null does not need to be specified since it does not enter any hash computation.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 29

Algorithm 6 GetMerklePath

Input: A Merkle tree nodes, a set I C [1: N]| indexing leaves to be authenticated
Output: The authentication paths auth for the leaves in I

1: missing «— {2" +i—1,i ¢ I'}

2: for i from 2™ — 1 downto 1 do

3 if (2i) € missing and (2i 4+ 1) € missing then
4 missing <— (missing\{2i,2i + 1}) U {i}
5: auth + ()
6
7
8
9

: for h from n downto 1 do
for i from 2" to 2"*1 — 1 do
if ¢ € missing then
auth < (auth || nodes[i])

10: return auth

Algorithm 7 GetMerkleRootFromAuth

Input: a set I C [1 : N] indexing leaves to be authenticated, the commitments {¢; };cs, the
authentication paths auth
Output: root, the recomputed Merkle root
1. queue < Queue.Init()
2: for ¢ € I in the increasing order do

3: queue.Enqueue((¢;, 2" +1i — 1)) > queue < (¢;,2" +1i—1)
4: (height, last_index) = (2",2" + N — 1)

5. while i # 1 where (__,4) < queue.Head() do > While the queue head is not the root.
6 (node, i) <— queue.Dequeue() > (node, i) <— queue
7: if ¢ < height then > If the height changes
8 (height, last_index) = (| height/2], |last_index/2])

9: if ¢ even and ¢ == last_index then

10: queue.Enqueue((node, [i/2]))

11: else

12: (") < queue.Head() > Get the index of the next node in the queue
13: if ¢ even and ¢/ =i+ 1 then

14: (node’, i) + queue.Dequeue()

15: else

16: if |auth| > 2\ then

17: (node’ || auth) < auth > Extract the 2 first bits of auth
18: else

19: return invalid

20: if < odd then

21: (node, node’) < (node’, node) > Swap the nodes
22: pnode < Hash(3 || io || 41 || node || node’) > |i/2] =idg+ 256 - i)
23: queue.Enqueue((pnode, [i/2]))

24: (root, __) < queue.Dequeue() > (root, __) <— queue

25: return root

30 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

3.3 Key generation

The key generation simply consists in sampling a (d-split) syndrome decoding instance. The
public key is the instance (H,y) while the secret key is composed of the instance and the
associated solution (H,y,z). We use the trick described in Section 2.1 to avoid interpolations
in the signing and verification algorithms: the vector y is defined as y := HVzx (instead of
y = Hzx) where V is the interpolation matrix (see Equation 3) and we denote s := V.
Moreover, we consider that H is in standard form, i.e. H := (H' | I;,_).

Algorithm 8 SampleWitness

Input: seed,;; € {0,1}*
Output: (Q,S,P)
1 (Q, S, P) « Tnit((Fg/ "), (5, (7))
2: XOF .Init(seedyit)
3: for v € [1:d] do
4: pos[v] < XOF.Sample({J C [1: m/d] ; |J| = w/d})
5. val[v] + XOF.Sample((F;)“/9)
6: for i € [1:m/d] do
7: z W10 = 3 1.4 val V1 [5] - (pos[v] [j1==i) > (pos[v] [j1==i) € {0,1}
3
9

> with True = 1, False =0
: Q[v] = ComputeQ(pos[v])
10: S [v] = ComputeS(x[1])
11: P[v] = ComputeP(QI[v], S[v])

12: return (Q, S, P)

We describe in Algorithm 8 the subroutine SampleWitness which samples the d-split SD solu-
tion from a seed and builds the polynomials (S, Q, P) of the SD-in-the-Head witness. Sampling
a d-split SD solution consists in generating a vector

x:= (1]] ... [|xld]) eF st wtxlv])=w/d Yve[l:d].

For every v € [1 : d], we sample a list pos[r] of the w/d positions of the non-zero coordinates
of x[v] as well as a list val[v] of w/d non-zero field elements (to be assigned to the non-zero
coordinates). The polynomials S[v], Q[r] and P[v] are derived from the obtained chunk
x[v]. This is done according to the definition of the SD-in-the-Head witness (see Section 2.1)
using the following functions:

e The function ComputeQ maps a list of indices from [1 : m/d] to a polynomial Q:

w/d

Q = ComputeQ(ir, .. .,inja) < QX)=[[(X—f).

j=1
.. . w/d+1
The output is interpreted as a vector of coefficients) € Fy .

e The function ComputeS maps a vector of IF;”/ 440 a polynomial S:

m/d

F(X
S = ComputeS(r1,...,Tp/q) < S(X):Zgi-:vi- (X)
i=1

X —fi

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 31

where
m/d
F(X) = H(X - fz) and g; ‘= H (fz - fj)_l .
i=1 je[l:m/d)\{i}
Namely, S is obtained by Lagrange interpolation of the input vector. The output is

interpreted as a vector of coefficients S € F?/ e
e The function ComputeP maps polynomials () and S output of the previous functions to
a polynomial P:

P = ComputeP(Q,S) < P(X)=

where F' is defined as above. The output is interpreted as a vector of coefficients P € F zu/ d

The key generation is described in Algorithm 9. It first sample a root seed seed,oot and then
expands it into two subseeds (seedyit, seedr). The first subseed seed,yit is used to sample the SD-
in-the-Head witness (Q, S, P) through the subroutine SampleWitness. The second seed seedy
is used to generate the matrix H' which defines the parity check matrix H := (H' | I). The
algorithm then builds the public key by packing the seed seed which encodes H and the vector
y:=Hs=sp+ H'sy, where s := (s | sg) is the serialized form of S. It also builds the secret
key by packing the seed seedy, the vector y and the formatted witness wit_plain := (s4,Q’, P).
Here @’ is the truncated version of Q, i.e., for which the leading coefficient —which always equals
1- has been removed (see Section 3.2.1). We recall that only s4 is necessary in the formatted
witness since sg can be recovered as sp =y — H's 4.

Algorithm 9 SD-in-the-Head — Key Generation

1: seedroor ¢ {0, 1}

2: (seedyit, seedfr) <— ExpandSeed(salt := 0, seedoot, 2) > seed,,, seedy € {0,1}*
3: (@, S, P) < SampleWitness(seedyit) > Qe (F;U/dﬂ)d, S e (F?/d)d, P e (F;”/d)d
4: s = Serialize(.S) >s e R
5 (sa,sp) = Parse(s, F¥, F7"~F) >sa €Fh, speFpF
6: H' < ExpandH(seed) > H' €]F((Im_k)Xk
7. y=sp+ H'sy pyeF;n—k’
8: Q" = TruncateQ(Q)

9: wit_plain = Serialize(sa, Q’, P)

10: pk = (seedp,y); sk = (seedy, y, wit_plain)
11: return (pk, sk)

32 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

3.4 Hypercube variant

We describe the signing and verification algorithms for the hypercube variant.

Signing algorithm. The signing algorithm is described in Algorithm 10. It consists of the
following steps:

1. It starts with some initialization: it samples a 2A-bit salt and a A-bit seed, then it expands
the matrix H'.

salt « {0,1}?*
seed < {0, 1}
H' + ExpandH(seedy)

2. For each parallel repetition, it generates the 2P seeds of the leaf parties using TreePRG,
expands those seeds into the 27 leaf shares. For all the leaf parties i € [1,2P — 1], the
leaf seeds expand to the full leaf shares, whereas for i = 2P, the last seed expands to the
uniform term of the Beaver triple, while the remaining fields are zero.

3. To avoid having to store the 2 shares, they are aggregated on the fly:
— the sum of all expanded leaf shares, named acc in the algorithm
— the main party (p,0) in each dimension p € [1, D]. In the algorithm, we omit the 0,

so input_mshare is only indexed by g.

4. We deduce the auxiliary, which is the difference between the plaintext and the accumulated
value at the previous step. The auxiliary is part of the last leaf share, but does not affect
any main party share (p,0).

5. We compute the 27 leaf commitments of the 2 leaf states: for i € [1,2P — 1] the leaf
state is solely the corresponding leaf seed, and for i = 27, the last leaf state includes the
last leaf seed and the auxiliary. All the leaf commitments are then hashed together to
form the state commitment digest hq

6. It then expands the obtained digest h; as the MPC challenge chal.
chal «+ ExpandMPCChallenge(h, 1)
7. For each repetition, it computes the plain broadcast values broad_plain = (o, 3,v = 0).
The latter only depends on the plain witness and plain Beaver triple, and thus, it is

identical for the D dimensions of the hypercube. We just compute it once per repetition
and include it in the signature.

broad_plain <— ComputePlainBroadcast(input_plain, chal, (H’,y))
8. It emulates the MPC protocol for each repetition and each dimension, for main party
(p,0) only.
for (e,p) €[1:7] x[1: D] do
broad_share[e] [j] = PartyComputation(input_coef[e] [j1,chal, (H’,y), broad_plain, False)
9. It hashes the broadcast messages and expand the obtained digest ho as the list of hidden

leaf parties (one per repetition).

10. For each repetition e, it builds the sibling paths for the revealed views.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 33

Algorithm 10 SD-in-the-Head — Hypercube Variant — Signature Algorithm

Input: a secret key sk = (seedy, y, wit_plain) and a message m € {0,1}*
1: salt + {0, 1}

2: mseed + {0,1}*

3. H' + ExpandH(seedy) > H' € Fhxk
4: {rseed[e] }.c[1.r] ¢ ExpandSeed(salt, mseed, 7) > rseed [e] € {0,1}*
5. foree[l:7] do

6: (seed [e] [4])ie[1:2D} + TreePRG(salt, rseed [€])

7. acc=0 > acc € Fh2wtt@drln
8: input_mshare[e] [p] = 0 for all (e,p) € [1: 7] x [1: D]

9: > input_mshare[e] [i] € IFSHwH(?dH)n
10: for i € [1:2"] do

11: if i # 20 then

12: input_share [e] [i] < SampleFieldElements(salt, seed [e] [i], k + 2w + t(2d + 1)n)

. . k+2w—+t(2d+1)n

13: > input_share[e] [] € Iy

14: acc += input_share[e] [¢]

15: state[e] [i] = seed [e] []

16: for p € [1: D] : the p*™® bit of i — 1 is zero, do

17: input_mshare[e] [p] += input_share[e] [¢]

18: else

19: acc_wit, acc_beav_ab, acc_beav_c = acc
20: beav_ab_plain [e] = acc_beav_ab + SampleFieldElements(salt, seed [e] [i], 2dtn)
21: beav_c_plain[e] = beav_c_plain <— InnerProducts(beav_ab_plain) >a-b=c
22: aux[e] = (wit_plain — acc_wit, beav_c_plain [e] — acc_beav_c) > aux[e] € IF];““JH"
23: state[e] [i] = (seed [e] [i],aux[e])
24: com [e] [i] = Commit(salt, e, 7, state [e] [i])
25: hy = Hash (seedy, 3, salt,com [1] [1],...,com[7] [2P])
26: (challel)ce1:7) < ExpandMPCChallenge(h, 7)
27: for e [1:7] do
28: input_plain[e] = (wit_plain, beav_ab_plain [e], beav_c_plain[e])
29: broad_plain [e] + ComputePlainBroadcast(input_plain[e], chal[e], (H',y))
30: for pe[1: D] do
31: broad_share[e] [p] = PartyComputation(input_mshare [e] [p], chal[e],
32: (H',y), broad_plain[e], False)
33: > broad_share[e] [p] € FL24H1m

34: hg = Hashy(m, salt, hq, {broad_plain [e], {broad_share[e] [p] } ,c(1.p] }ee|1:r])-
35: {1* [e] }eei:r) ¢ ExpandViewChallenge(hg, 1).

36: for e € [1:7] do

37: path[e] + GetSeedSiblingPath(rseed [e],i* [e]).

38: if i*[e] = 2P then

39: view [e] = path [e]
40: else
41: view [e] = (path[el,aux[e])

42: 0 = (salt | ho | (view[e], broad_plain [e], com [e] [i* [e]])e€[117]>
43: return o

34

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Verification algorithm. The verification algorithm is described in Algorithm 11. It consists of
the following steps:

1.

2.

First, it parses the signature.

Then, it expands the matrix H', the digest h; as the MPC challenge chal and the digest
ho as the list of the open parties.

. For each parallel repetition, it recomputes the 2P —1 open leaf seeds from the sibling path

of the TreePRG, and reconstructs the 2 — 1 leaf commitments of opened parties.

. For each dimension, it aggregates the main share that is fully disclosed (the one that does

not contain the hidden leaf), and computes its broadcast.

. For each dimension, it deduces the broadcast share of the main party (p,0): either because

(p,0) is the disclosed main party, or by difference with the plain broadcast if (p, 1) is the
disclosed main party.

. It hashes together the broadcast shares of all main parties (p,0) for each repetition and

each dimension, and match the digest with ho.

The verification is valid if the reconstructed hs coincide with the ones parsed from the
signature.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 35

Algorithm 11 SD-in-the-Head — Hypercube Variant — Verification Algorithm

Input: a public key pk = (seedy,y), a signature o and a message m € {0,1}*

1

e e e

16:
17:
18:

19:
20:
21:

22:
23:

24:
25:
26:
27:
28:
29:
30:
31:
32:

33

34:

Parse o as (salt | ha | (view[el, broad_plain [e], com [e] [* [e]])eew)

H' <+ ExpandH(seedy) > H' € Fénik)x}g
{i*[el }eeq:r) < ExpandViewChallenge(ha, 1)
foreec[1:7] do
(seed [e] [i]);cp1.00\i+ (1] < GetLeavesFromSiblingPath(i* [e], salt, path [e])
for i € {2P\i*[e]} do
if i # 2P then
state[e] [¢] = seed[e] []
else
state[e] [i] = (seed[e] [i],aux[e]) > aux[e] is in view [e]

com[e] [i] = Commit(salt, e, i, state[e] [4])

. hy = Hash;(seedp, y, salt,com[1]1 [1],...,com[7] [2P])
: chal «— ExpandMPCChallenge(h1, 7)
: foree[l:7] do

input_-mshare*[e] [p] = 0 for all (e,p) € [1:7] x [1: D] > input_mshare’ is main party
share not containing *
for i € [1:2P\i*[e]] do
if i # 2P then
input_share[e] [i] < SampleFieldElements(salt, seed [e] [i], k + 2w + ¢(2d + 1)n)
> input_share[e] [i] € Fh 2w+l
else
beav_ab_plain[e] [2”] = SampleFieldElements(salt, seed [e] [271, 2dtn)
input_share [e] [2”] = (aux[e] | beav_ab_plain[e] [27])
for p € [1: D] : the p'" bit of i — 1 and i* [e] are different do
input_mshare’ [e] [p] += input_share[e] [i] > input_mshare’ does not contain i*
for pe[1: D] do > Deduce the broadcasts of main party 0
if the p'" bit of i* [e] is 1 then
broad_share [e¢] [p] = PartyComputation(input_mshare’ [¢] [p], chal,
(H',y), broad_plain, False)
else
broad_share[e] [p] = broad_plain [e] —PartyComputation(input_mshare’ [e] [p], chal,
(H',y), broad_plain, True)

> broad_share[e] [p] € Fg2d+1)tn

hiy = Hasha (m, salt, hq, {broad_plain [e], {broad share[e] [p] }pe(1:p) }eef1:r])-

?
return hy = hj

36 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

3.5 Threshold variant

We describe the signing and verification algorithms for the threshold variant.

Signature algorithm. The signature algorithm is described in Algorithm 12. It consists of the
following steps:

1. It expands the random part H’ of the parity-check matrix from seedy:

H' + ExpandH(seedp)

2. It generates the pseudo-randomness used for the Beaver triples and the shares. This starts
by sampling a 2A-bit salt and a A-bit master seed to initialize the XOF:

salt + {0, 1}
mseed < {0,1}*
XOF .Init(salt || mseed)

Since we target a negligible false positive probability p in this variant (see Section 2.3), the
same plain Beaver triple (a, b, ¢) is used across all the executions. The serialized random
part of the triple denoted beav_ab_plain is randomly sampled, then the coordinate-wise
inner product is computed to obtain beav_c_plain. The plain input of the MPC protocol
denoted input_plain is then obtained by serializing wit_plain, beav_ab_plain, and beav_c_plain.

beav_ab_plain <— SampleFieldElements(mseed, 2dtn)
beav_c_plain <— InnerProducts(beav_ab_plain)
input_plain = (wit_plain, beav_ab_plain, beav_c_plain)

Since we use Shamir’s secret sharing with threshold ¢ to share the serialized plain input
input_plain, the algorithm samples ¢ Fy-vectors input_coef[e] [1], ..., input_coefle] [4],
for each parallel execution e € [1 : 7], where |input_coef[e] [j]| = |input_plain| = k 4+ 2w +
t(2d 4+ 1)n. Those vectors will then be used to compute the parties’ shares.

forec[l1:7] do
for je[l:/] do
input_coef[e] [j] <— XOF. SampleFieldElements(k + 2w + t(2d + 1)n)

3. It computes and commits the parties’ shares. For each execution e € [1 : 7], we have a
Merkle tree whose leaves are the commitments of the shares com’[e] [¢] and whose root
is denoted com [e].

forec[1:7] do
forie[1: N]do
input_plain + E?:l ff -input_coefle]l [j1 wheni# N
input_coef[e] [/] otherwise
com’ [e] [i] = Commit(salt, e, ¢, input_share[e] [i])
com[e] = MerkleTree(com’[e] [1],...,com’[e] [N])

input_share[e] [i] =

4. It hashes the Merkle roots to obtain the first Fiat-Shamir hash h; and expands it as the
MPC challenge chal.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 37

hy = Hash; (seedy, y,salt,com[1], ..., com[7])
chal < ExpandMPCChallenge(hi, 1)

The MPC challenge is a single serialize pair (r,¢) for the threshold variant which is why
the second argument of ExpandMPCChallenge is set to 1.

5. It performs the MPC simulation. Since the plain input and the MPC challenge remain
the same, the publicly recomputed values (i.e. plain values of the broadcast shares) are
the same across all the executions.

broad_plain <— ComputePlainBroadcast(input_plain, chal, (H',y))

The algorithm then simulates the party computation which is done on the sharing ran-
domness as explained in Section 2.3.

forec[l1:7] do
for je[l:/] do
broad_share[e] [j1 = PartyComputation(input_coef[e] [j]1, chal, (H',y), broad_plain, False)

6. It hashes the broadcast messages to obtain the second Fiat-Shamir hash hy and expands
it as the view-opening challenge {1 [e] }ccp.7-

ho = Hashg(m, salt, h1, broad_plain, broad_share).
{Ilel }eepiir) ¢ ExpandViewChallenge(hz, £).

7. After building the authentication paths for the revealed views, it finally assembles the
signature.

foree[l:7] do
auth[e] + GetMerklePath(com[el, I[e]).
wit_share[e] [i] < Truncateg o, (input_share[e] [:]) for all i € I [e]

o= (salt | hi1 | broad_plain | broad_share | ((wit_share[e] [i]);crrey | auth [e])ee[m])

As explained Section 2.3, we include broad_share in the signature instead of the shares of
the Beaver triples which simplifies the verification algorithm.

38

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Algorithm 12 SD-in-the-Head — Threshold Variant — Signature Algorithm

Input: a secret key sk = (seedy, y, wit_plain) and a message p € {0,1}*
Output: a signature o = sign(sk, u)

—_
e

11:
12:

13:

14:
15:

16:
17:

18:
19:
20:
21:

22:
23:

24:
25:
26:
27:
28:

> Fxpansion of parity-check matriz

: H' + ExpandH(seedp) > H' ¢ B Rk

> Randomness generation for the Beaver triples and the shares
salt + {0,1}?*

mseed < {0, 1}

XOF .Init(salt || mseed)

beav_ab_plain <— XOF. SampleFieldElements(2dtn) > beav_ab_plain € ngt"
beav_c_plain + InnerProducts(beav_ab_plain) > beav_c_plain € IFg”
input_plain = Serialize(wit_plain, beav_ab_plain, beav_c_plain) > input_plain € FZHwH(?dH)n
forec[1:7] do
for je[l:/¢] do
input_coef[e] [j] < XOF. SampleFieldElements(k 4+ 2w + t(2d + 1)n)
> input_coef[e] [j] € FrT2wtt2dtln
> Computation and commitment of the shares
foree[1:7] do
forie[1: N]do
input.share [] [i] — ?nput,plain + Z§:1 [} - input_coeflel [j1 when 71.7& N
input_coef [e] [£] otherwise
com’ [e] [i] < Commit(salt, e, i, input_share [e] [i])
(nodes, com [e]) < MerkleTree(salt,com’[e] [1],...,com’[e] [N])
> First challenge (MPC challenge)
hi < Hash; (seedy, y,salt,com[1],...,com[7])
chal +— ExpandMPCChallenge(h1, 1) > chal € FéHd)‘t'n
> MPC simulation
broad_plain <— ComputePlainBroadcast(input_plain, chal, (H’,y)) > broad_plain € ngt”
foree[1:7] do
for je[l:/] do
broad_share[e] [j1 = PartyComputation(input_coef[e] [51, chal,
(H',y), broad_plain, False)
(2d+1)tn

> broad_share[e] [j]1 € Fy

> Second challenge (view-opening challenge)
h < Hashs(y, salt, by, broad_plain, broad_share). > broad_share € Fy “ (41

{Ilel}eepiir) ¢ ExpandViewChallenge(hz, ¢).
> Signature building
forec[1:7] do
auth [e] < GetMerklePath(nodes, I [e]).
wit_share[e] [i] < Truncatey o, (input_sharele] [1]) for all i € I [e]
o= (salt | hy | broad_plain | broad_share | ((wit_share[e] [i]);cre; | auth [e])ee[ho
return o

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 39

Verification algorithm. The verification algorithm is described in Algorithm 13. It consists of
the following steps:

1. It expands the random part H’ of the parity-check matrix from seed:

H' + ExpandH(seedp)

2. It parses the input signature:

(salt | hy | broad_plain | broad_share | ((wit_share[e] []);ere7 | auth [e])ee[l:ﬂ) —o

3. It recomputes the second Fiat-Shamir hash ho from the message p and the components
of the signature and regenerate the second challenge (view-opening challenge).

ho < Hashsa(u, salt, hq, broad_plain, broad_share)
{1 el }eepiir) ¢ ExpandViewChallenge(hz, £).

4. It recomputes the broadcast shares of the open parties, deduces the corresponding Beaver
triples, and regenerates the share commitments (see explanation in Section 2.3). Specifi-
cally, for each execution e and for each open party ¢ € I [e],

— It computes the broadcast shares of the party using the open values broad_plain and
the sharing randomness broad_share.

(broad_plain, 0) + 3-%_, f/ - broad_share[e] [j1 ~ when i # N

sh_broadcast[e] [i] =
broad_share[e] [/] otherwise

— It reverses the MPC protocol for the considered party to get the share of the Beaver
triples from which the complete input share is recomposed.
with_offset = (True if i # N, False otherwise)
(beav_ab_share, beav_c_share) - PartyComputationFromBroadcast(
wit_share[e] [i], sh_broadcast [e] [¢], chal,
(H',y), broad_plain, with_offset)
input_share[e] [i] = (wit_share[e] [i], beav_ab_share, beav_c_share)

— It recomputes the commitment for this party as done in the signature algorithm.
com’[e] [i] = Hashy(salt, e, 4, input_share[e] [i])

Then for each execution e, it computes the root of the corresponding Merkle tree using
the recomputed commitments of the opened parties as well as their authentication paths.

com[e] = GetMerkleRootFromAuth(auth [el, {com’[e] [i] }icrre1, I Le])

5. It recomputes the first Fiat-Shamir hash h; by hashing all the roots of the Merkle trees
and checks that it is consistent with the signature.

h! + Hash; (seedy, y,salt,com[1],...,com[7])

?
return h; = b

40

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Algorithm 13 SD-in-the-Head — Threshold Variant — Verification Algorithm

Input: a public key pk = (seedy,y), a signature o and a message p € {0,1}*
Output: True if ¢ is a valid signature of y under pk and False otherwise

: H' + ExpandH (seedy) > H' €Fy

> Expansion of parity-check matriz
(n—k)xk

> Signature parsing

(salt | hy | broad_plain | broad_share | ((wit_share[e] []);ere7 | auth [e])ee[lﬂ) —o

> First challenge (MPC challenge)
chal < ExpandMPCChallenge(h1, 1) > chal € F{ 447

> Second challenge (view-opening challenge)
he < Hashsa(p, salt, hq, broad_plain, broad_share)

5: {I[e]}eep1:r] ¢ ExpandViewChallenge(hs, £).

> Party computation and regeneration of Merkle commitments

6: foreec[1:7] do

Xt

®

10:

11:
12:

13:
14:
15:

16:
17:

for i € I[e] do ‘
(broad_plain, 0) + Z§=1 f] - broad_share[e] [j1 ~wheni# N
broad_share[e] [/] otherwise
with_offset = (True if i # N, False otherwise)
(beav_ab_share, beav_c_share) +— PartyComputationFromBroadcast(
wit_share[e] [i], sh_broadcast [e] [i], chal,
(H',y), broad_plain, with_offset)
input_share [e] [i] = (wit_share[e] [i], beav_ab_share, beav_c_share)
com’[€] [i] = Hashy(salt, e, 7, input_share[e] [i])
com[e] = GetMerkleRootFromAuth(auth [el, {com’[e] [] }icrre1, I [€])
if com[e] = invalid then
return False

sh_broadcast[e] [¢] =

> Regeneration and verification of hy
h < Hash(seedy, y,salt,com[1],...,com[7])

?
return h; = h}

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 41

4 Signature parameters

In this section, we propose several parameter sets for the SD-in-the-Head signature scheme.
As explained hereafter, those parameters have been selected to meet the security categories I,
IIT and V defined by the NIST while targeting good performances (signature size and running
times).

4.1 Selection of the SD parameters

To select the parameters relative to the syndrome decoding problem, we estimate the cost of the
best known algorithms to solve this problem. There exists two main families of such algorithms:
the Information Set Decoding (ISD) algorithms and the Generalized Birthday Algorithms (GBA)
[TS16; BBCT19]. The SD parameters are chosen such that both types of SD solving algorithms
have complexity at least 2% corresponding to the complexity of breaking AES by exhaustive
search (in the gate-count metric). In practice, we take x equal to 143, 207 and 272 respectively
for categories I (AES-128), III (AES-192) and V (AES-256) in accordance to [NIS22].

We chose to focus on syndrome decoding instances relying on the fields Fo51 and Fosg. Fields
with up to 256 elements yield signature sizes close to the optimal. Moreover, for those fields an
element can be stored on a byte. The field Fao54 is particularly convenient to sample field ele-
ments and its arithmetic can be efficiently implemented on the platforms supporting carry-less
multiplications. The field Fy51 is more convenient on platforms without carry-less multiplica-
tions and it might be less sensitive to future attacks exploiting the structure of the syndrome
decoding problem on an extension field such as Fosg.

The remaining SD parameters (the code length m, the code dimension k and the weight w)
are chosen to meet the desired security category while minimizing the signature size. For a given
code length m and dimension k, the weight parameter is defined as the greatest integer below
the Gilbert-Varshamov bound. Moreover, since the SD-in-the-Head protocol requires to have
m < ¢ (to enable interpolation of a (m — 1)-degree polynomial on Fy), we use the d-split variant
of the SD problem whenever necessary: we split the SD solution z (or s) into d chunks which
have independent weight constraints. This relax the constraint between m and q as 7 < ¢.2 In
practice, we can rely on standard SD instances for Category I, and we need to rely on 2-split
SD instances for Categories III and V.

The analysis of the existing attacks against the syndrome decoding problem are described
in Section 7. The SD parameters we proposed are common for both variants (hypercube and
threshold) and are detailed hereafter in Table 4.

4.2 Selection of the MPC parameters

For the hypercube variant, we take the hypercube dimension D equal to 8 (i.e. N = 28) to
achieve running times around few milliseconds while keeping short signatures. For the threshold
variant, we take the maximal number N of parties allowed by the base field, namely N = ¢
(recalling that the number of parties is at most the size of the field for this variant). The
signature size is then minimized for privacy threshold ¢ = 1. However, this choice of ¢ induces
an important computational overhead for commitments, thus we choose £ = 3 which provides a
good trade-off between signature size and running times.

3 Another option would be to consider field extension of F, for the polynomial, but this approach results in worst
performances and further prevents using the tweak to avoid interpolations (see end of Section 2.1).

42 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

It remains to select the number ¢ of evaluation points in the MPC protocol, the field extension
Fpoints = Fg¢n for the evaluation points and the number 7 of repetitions. The two first param-
eters impact the false positive probability of the MPC protocol. We chose to have a common
extension field for Fpeints for the two variants (hypercube and threshold) and the three security
categories in order to allow a unique (optimized) implementation of the underlying extension
field arithmetic. In practice, we select the degree-4 extension field Fyoints = g4 which represents
a good compromise between the different settings. Then the parameters ¢t and 7 are chosen such
that the signature size is minimal while having a forgery cost larger than A bits, when A is 128,
192 and 256 respectively for the categories I, IIT and V. Currently, the best forgery attack is
obtained by applying the approach of [KZ20b] and its cost is given by:

1 1\™
cost = min - -+ | =)
e T it | S, (P07 ()

where p is the false positive probability of the SD-in-the-Head MPC protocol (see Theorem 2.1)
and p’ is the probability to guess the open parties for a repetition, namely

for the hypercube variant,

\
=2l

™ for the threshold variant.
4

]

Field representations. For ¢ = 256, we use the following field representation:
F, = Fa[X]/fo(X) with fo(X) = X3+ X+ X3+ X 41

The elements of Fo56 are stored on bytes in integer form. Namely, ZLO a; X" € Fos6 is repre-
sented by the integer a = 21‘7:0 a;2¢, which is denoted (a) € Fas6. For instance (2) = X € Fase.
On the other hand, the elements of Fo5; are naturally represented as integers in the interval
[0 : 250] which are also stored on bytes.

As explained above, the extension field Fpoints used for the evaluation points in the MPC
protocol is always defined as an extension of degree n = 4 of the base field, i.e. Fpoints = Fga.
For g = 256, this extension is defined as:

Fpe=F,[Y]/f1(Y) with fi(Y) =Y%+Y 4 (32)
Fou =F2[Z)/fo(Z) with fo(Z) = Z* + Z + (32)X

For g = 251, the field extension is defined as:

Feo=TF,[Y]/f1(Y) with f1(Y)=Y?%-2

Fpu =Fp2[Z]/f2(2Z) with fo(Z) = Z* — (X + 1)

4.3 Symmetric cryptography primitives

The SD-in-the-Head signature scheme relies on two types of symmetric cryptography primitives:
a hash function (Hash) which we instantiate with SHA3 [Dwol5], and an extendable output
function (XOF) which we instantiate with SHAKE [Dwol5]. Table 3 summarizes the instances
for each security category.

We recall here the usage of these symmetric primitives in the SD-in-the-Head signature scheme
(see Section 3 for details):

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 43

Table 3: Symmetric cryptography primitives for NIST Security Categories I, ITI, and V.

Category 1 Category 111 Category V
Hash SHA3-256 SHA3-384 SHA3-512
XOF SHAKE-128 SHAKE-256 SHAKE-256

e Hash is used for
— the commitments,
the Fiat-Shamir hashes h; and ho,
the nodes of the seed trees (hypercube variant only),

the nodes of the Merkle trees (threshold variant only).

e XOF is used for
— the expansion of the parity-check matrix H,
— the expansion of the hashes h; and he into MPC challenges,
— the expansion of the seeds (key generation and hypercube variant),

— the expansion of the shares from the seeds (hypercube variant only).

4.4 Keys and signature sizes

The hypercube and threshold approaches share the same key generation procedure, originally
from [FJR22|, described in Algorithm 9. However, their signature and verification algorithms
differ and thus their signature format (and sizes) will also be different.

Public key. The public key has format pk := (seedy,y); consisting of a A-bit seed seedpy
representing the linear code of the SD instance, and a vector y € an_k corresponding to the
syndrome. Since we represent a field element by a byte, the public key has a total size of
A/8 + (n — k) bytes.

Secret key. The secret key has format sk := (seedys, y, wit_plain); consisting of the same seed
and y as the public key, as well as the witness wit_plain = (s4,@Q, P). The latter is made
up of a vector s4 € IF’; and two polynomials Q, P € F;’. Thus, the size of the secret key is
Ipk| + k + 2w := A\/8 + n + 2w bytes.

As all the existing public-key schemes, let us remark that we have an alternative defini-
tion of the key generation in which the secret key would be seed,oot, the seed from which
(seedpr, y, wit_plain) are derived. In that case, the size of the secret key would be of A/8 bytes,
but the signer would need to recompute wit_plain at each signature, increasing the running time
of the signing process. Moreover, the signature algorithm would be more sensitive to side-
channel attacks. We recommend to use this alternative only when the size of the secret key is
critical.

44 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Signature size for the hypercube variant. The size (in bits) of a signature is:

Total Size = 2\ — size of the salt
+ 2 — size of hg
+ 7 (k- logy(|Fy|) + 2w - logy(|Fyl)) — size of aux[e] in view[e]
+7-(2d+1) - t-logy(|Fpoints|) — size of broad_plain [e]
+ 7 X-logy(N) — size of path[e] in view [e]
+ 72 — size of com[e] [i* [e]]

Assuming that the field element in F, is represented by a byte, the signature size (in bytes)
is given by:

A A A
|g|_§+7-(k:+2w+(2d+1)‘t‘77+§'10g2(N)+4)

We present the hypercube signature parameters, with associated key and signature sizes, in
Table 5.

Signature size for the threshold variant. The size (in bits) of a signature is:

Total Size = 2\ — size of the salt
+ 2\ — size of hy
+2d - t - 1ogy (|Fpoints|) — size of broad_plain
+ 7L (k-logy(|Fy|) + 2w - logy(|Fy|)) — size of (wit_share[e] [i]);crie
+7-0-(2d+1)-t-logy(|Fpoints|) — size of broad_share
+ 742X logy(N/Y) — size of auth [e]

Assuming that the field element in F, is represented by a byte, the signature size (in bytes)
is given by:

\ A
|g|:§+2d~t-n—|—7‘-€-(k+2w+(2d+1)'t"'7+1'10g2(N/€)>

We present the threshold signature parameters, with associated key and signature sizes, in
Table 5.

4.5 Proposed instances

The signature parameters of our proposed instances are summarized in Table 4 and in Table 5
for the different security categories, the two base fields and the two variants (hypercube and
threshold). Table 4 gives the syndrome decoding parameters which are common to both variants
while Table 5 gives the MPCitH parameters and obtained sizes. We assume that a field element
is represented on one byte and hence make Table 5 field-agnostic.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 45

Table 4: Syndrome decoding parameters for both SD-in-the-Head variants for NIST Security
Categories I, ITI, and V.

Parameter NIST Security SD Parameters

Sets Category Bits q m k w d
SDitH-L1-gf256 I 143 256 230 126 79 1
SDitH-L1-gf251 I 143 251 230 126 79 1
SDitH-L3-gf256 11 207 256 352 193 120 2
SDitH-L3-gf251 111 207 251 352 193 120 2
SDitH-L5-gf256 \Y% 272 256 480 278 150 2
SDitH-L5-gf251 A% 272 251 480 278 150 2

Table 5: The hypercube parameters and the threshold parameters, with key and signature sizes
in bytes. The sizes are the same for both fields (Fa51 and Fos6), assuming each field
element is represented on one byte.

Parameter MPCitH Parameters Sizes (in bytes)

Set N ! T N t P pk sk Sig. Avg Sig. Max
SDitH-L1-hyp 28— 17 4 3 27712 120 404 8241 8260
SDitH-L3-hyp 28— 26 4 3 27724 183 616 19161 19206
SDitH-L5-hyp 28— 34 4 4 27948 234 812 33370 33448
SDitH-L1-thr g 3 6 4 7 271662 120 404 10117 10424
SDitH-L3-thr g 3 9 4 10 2715 183 616 24918 25603
SDitH-L5-thr g 3 12 4 13 273085 234 812 43943 45160

46 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

5 Performances

Benchmark platform. Intel Xeon E-2378 at 2.6GHz. All the measurements were performed
with Turbo Boost disabled. The scheme has been compiled with Clang compiler (version 14.0.6).
5.1 Benchmarks for the hypercube variant

Benchmarks for an optimized implementation of the hypercube variant on an AVX2 machine

are given in Table 6.

Table 6: Benchmark of variants based on the hypercube approach on an AVX2 machine. Tim-
ings and cycles were collected on an Intel Xeon E-2378 at 2.6GHz while disabling Intel

Turbo Boost.

Instance keygen ms | sign ms cycles | verify ms cycles RAM
SDitH-gf256-L1-hyp 4.12 5.18 13.4M 4.81 12.5M | 370KB
SDitH-gf256-L3-hyp 4.89 11.77 30.5M 10.68 27.7TM | 859KB
SDitH-gf256-L5-hyp 8.75 22.86 59.2M 20.98 54.4M | 1.5MB
SDitH-gf251-L1-hyp 2.70 8.51 22.1M 8.16 21.2M | 371KB
SDitH-gf251-L3-hyp 3.31 19.72 51.1M 18.89 49.0M | 861KB
SDitH-gf251-L5-hyp 5.93 36.56 94.8M 35.23 91.3M 1.5MB

5.2 Benchmarks for the threshold variant

Benchmarks for an optimized implementation of the threshold variant on an AVX2 machine are
given in Table 7.

Table 7: Benchmark of variants based on the threshold approach on an AVX2 machine. Timings
and cycles were collected on an Intel Xeon E-2378 at 2.6GHz while disabling Intel Turbo

Boost.
KeyGen Sign Verify
Instance - -

ms cycles | sign ms cycles RAM | verify ms cycles RAM
SDitH-gf256-L1-thr | 1.23 3.2M 1.97 5.1M 199KB 0.62 1.6M 50KB
SDitH-gf256-L3-thr | 1.51 3.9M 5.72 14.8M 395KB 1.90 4.9M 96KB
SDitH-gf256-L5-thr | 2.74 7.1M 11.78 30.56M 670KB 3.94 10.2M 173KB
SDitH-gf251-L1-thr | 0.66 1.7TM 1.71 4.4M 197KB 0.23 0.6M 50KB
SDitH-gf251-L3-thr | 0.74 1.9M 4.50 11.7M 392KB 0.57 1.56M 96KB
SDitH-gf251-L5-thr | 1.45 3.7TM 9.20 23.9M 664KB 1.23 3.2M 173KB

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 47

6 Security Analysis

6.1 Security definition

The SD-in-the-Head signature scheme is claimed to achieve unforgeability against chosen message
attacks (EUF-CMA). In this setting, the adversary is given a randomly generated public key
pk and they can ask an oracle (called the signature oracle) to sign messages (my, ..., m,) that
they can chose at will. The goal of the adversary is to produce a pair (m, o) such that m is
not one of the requests to the signature oracle and such that ¢ is a valid signature of m with
respect to pk.

6.2 Security assumptions

Our main security assumption is that our proposed SD instances cannot be solved in complexity
lower than 2% (in gate-count metric) with x = 143 for Category-I instances, k = 207 for
Category-III instances, and x = 272 for Category-V instances. This assumption is tailored with
respect to state-of-the-art algorithms for solving syndrome decoding (see Section 7).

We further assume that the used XOF is a secure pseudorandom generator with 128-bit
security level for Category-I instances, 192-bit security level for Category-III instances, and
256-bit security level for Category-V instances.

Finally, we assume that the used hash function behaves as a random function. Namely, our
security results hold in the Random Oracle Model (ROM) and the Quantum Random Oracle
Model (QROM).

6.3 Security in the ROM

We refer the reader to [FJR22; FR22; AMGHT23] for security proofs of the SD-in-the-Head
scheme in the random oracle model. Soundness of the underlying IDS and the HVZK property
are separately proven, and then the EUF-CMA security is proven via a series of game hops
from a signing oracle to an HVZK simulator which is efficiently simulable by any spectator who
knows pk. In [AMHJ 23] a further detail, multi-transcript HVZK is proven to cover the case
where transcripts are parallel composed via the Fiat Shamir transform.

6.4 Security in the QROM

In a recent work [AMHJ 23], the authors provide a proof of security against EUF-CMA for
the hypercube variant in the QROM. The proof proceeds by presenting an argument that the
five round protocol presented in [AMGH™23] can in fact be interpreted as a three round sigma
protocol. Mechanically the schemes are near-identical (save for a small optimization that has
no bearing on security in the QROM).

Instead of getting challenge points from the verifier, the prover derives the evaluation points
via a hash and PRG procedure. Breaking the scheme hence reduces to a search problem over
the space of evaluation (and mask) points in order to find points {r;, e;} such that the predicate
S-Q = P - F is not satisfied, yet is true when evaluated at those points, i.e. S(r;)Q(r;) =
P(r;)F(r;). The cost of cheating at this stage in the QROM is equivalent to the cost of Grover
search.

What results is a three round sigma protocol with a single Fiat Shamir transform, for which
the authors can straightforwardly apply the results of [DFM™'22] in which the security of

48 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

commit-and-open schemes is analyzed, but only for three round schemes. The security parame-
ters for parallel repetition must still be subject to the Kales-Zaverucha (KZ) attack [KZ20a], as
despite the three round presentation, the choice of how many parallel repetitions on which to
break the polynomial check is still at the discretion of the attacker, with the remaining repeti-
tions broken by correctly guessing challenge parties. The cost of such an attack must be greater
than 2* where \ is the security parameter corresponding to the NIST security level.

The approach of this recent work is directly applicable to the threshold approach too, though
it is not explicitly analyzed in this work.

6.5 Security of the d-split syndrome decoding problem

We stress that the d-split SD problem which is used in some instances of our signature scheme
(see Section 4) does not rely on a different weaker assumption than the standard SD problem.
Any d-split SD instance is at least as secure as a standard SD instance with slightly degraded
parameters. This degradation is formally given by the following theorem

Theorem 6.1 ([FJR22]). Let F be a finite field. Let m, k, w be positive integers such that m >
k,m>w,d|w andd|m. Let Ay be an algorithm which solves a random (F, m, k,w)-instance
of the d-split syndrome decoding problem in time t with success probability 4. Then there exists
an algorithm Ay which solves a random (F, m, k,w)-instance of the standard syndrome decoding
problem in time t with probability €1, where

(2/a)’

w/d

()

Informally, the above result holds because an instance of the standard SD problem is an

€1 >

*&d -

o o .) . m/d\% ; rm
instance of the d-split syndrome decoding problem with probability (w y d) / (w) Moreover, a
standard syndrome decoding instance can be “randomized” and input to the d-split adversary
as much as desired.

All our instances of the d-split SD problem are chosen such that the corresponding standard
SD instance achieves the upgraded security level which compensates the degradation. We stress
that this might be overly conservative though it does not have a strong impact on performances

for the chosen parameters.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 49

7 Analysis of known attacks

7.1 Attacks against the SD problem

To begin, we recall the syndrome decoding problem: given H €]Fgmfk)xm and y € F;”_k, the
goal is to find z € Fy* such that wt(z) = w and Hz = y.

The most obvious attack is to guess the vector x by brute force. Since there are (Z}L)q
possible such vectors (and only one solution), this is not feasible for standard parameters such
as ours. The next best thing, then, is trying to make “educated guesses”, using the information
at our disposal. This idea was first fleshed out by Prange [Pra62], which kickstarted a long and
fertile line of work yielding what is now known as the Information-Set Decoding (ISD) family
of algorithms.

In its simplest form, an information-set decoding algorithm is an iterative procedure, where
in each step one guesses a set I of k indexes (the information set). Let J =[1,...,m]\ I, i.e. the
set of columns not indexed by I. A successful step requires that the submatrix H; is invertible
and the support of x is entirely contained in J. Indeed, if this is the case, then x can be found
by computing x; = H}ly and setting the other entries of x to 0. This attack can equivalently
be expressed using the dual code, using a generator matrix G instead of H.

Note that the original idea of Prange does not admit errors in the information set. An
early improvement due to Lee and Brickell [LB88] changes this by allocating p positions to the
coordinates in I, and the remaining w — p to the coordinates to J; in other words, this variant
works by searching for a weight-p word in I and checking the weight using the remaining
columns. This idea was expanded by Leon [Leo88] and Krouk [Kor89], and yields a noticeable
speed-up over the original approach.

A successive work by Stern [Ste89] brings in new ideas that result in further efficiency gain.
Originally, Stern’s algorithm was intended to solve a different problem, namely, that of finding
a low-weight codeword (and particularly, a minimum-weight codeword). However, such a tech-
nique can intuitively be used to solve SDP as well. Indeed, if C is the linear code of length n
defined by H, and y is a word at distance w from a codeword ¢ € C, then = is the minimum-
weight codeword in C @ (y). Stern builds on the previous ideas of splitting the positions among
various coordinates (as in Lee-Brickell, Leon, Krouk) in an even more sophisticated way: the
algorithm partitions the information set into subsets X and Y, allocating p positions in each,
and the remaining w — 2p in J (with the exception of a set of columns set to 0, of size corre-
sponding to a certain parameter £). The algorithm is able to improve over its predecessors by
exploiting collisions among words in the respective coordinates, and additionally by choosing
each column adaptively as a result of pivots in previous, thus avoiding the cost of a restart and
guaranteeing an invertible submatrix.

The literature is rich with several successive works (e.g. [BLP11; MMT11; BJM*12]), all
bringing in their own improvement; however, for our purposes, it is sufficient to stop at Stern’s
algorithm. In fact, the majority of such successive improvements are tailored to the binary
case (i.e. ¢ = 2): for instance, the representation technique dubbed “1 +1 = 0" in [BJM™12].
As noted by Meurer in [Meul3], sophisticated algorithms become significantly less powerful for
large values of ¢. It is worth noting also that such algorithms also come with an increasingly
heavy memory cost, so much that, in practice, it is debatable whether they truly represent the
best options, for parameters of cryptographic interest, over the early ISD variants, even in the
binary case.

An adaptation of Lee-Brickell to the generic g-ary case is straightforward, easy to understand,
and useful as a loose estimation of the complexity, for given parameters. On the other hand, the

w

50 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

work of Peters [Pet10] provides an efficient adaptation of Stern’s algorithm to [, incorporating
all relevant improvements, and providing a clear security assessment. More recent approaches
such that the ones in [NPCT17] provide no noticeable speed up for practical instances. In
conclusion, we deem Peters’ ISD to be the best attack for the instance of interest to our scheme,
and we report its complexity below.

The cost at each iteration is given by

Citer =

%(n—k)z(n—i—k)—i- <<§—p+1> ((Lk/2] > + <k_ km))(q—l)?ﬂ)e

> (W?J) k— L /2])(q_ 1)%

i

+ L (w—2p+1)2p <1+

qg—1 —1

whereas the probability of success at each step is given by

(Lk/QJ)(k— Lk/2j><n—k—€> <n>
Psuce = / .
P P w—2p w
The total cost of ISD can then be obtained as

Cite'r . 10g2 q

pSUCC

7.2 Signature forgery attacks

When we apply the Fiat-Shamir transformation to a zero-knowledge proof of knowledge, there is
a security drop. The forgery cost of the obtained signature scheme can be lower than %, where
€ is the soundness error of the original proof of knowledge. The best forgery attack against
FS-based schemes with several parallel repetition (7 > 1) is currently the attack of [KZ20b].

Hypercube approach Given a parameter 7" € {0,...,7}, the [KZ20b]’s forgery attack aims
to build commitments for the 7 parallel executions such that the corresponding first challenges
(the MPC challenges) lead to a valid verification for at least 7* executions. More precisely,
the adversary tries to guess the 7 challenges (chal) [e])66[117}, builds the corresponding commit-
ments, computes h; and expands the real challenge (chali [e€])cc[1.,- She repeats this process
until chal| [e] = chal;[e] for 7* executions. It will be repeated in average PMF(7,7* p) :=
PR (z)pk (1 — p)™~% times before being successful, where p is the false positive rate of the
MPC protocol (see Theorem 2.1). Then, the adversary simply needs to guess the view chal-
lenges for the 7 — 7* remaining executions and build the corresponding responses. Since the
size of the second challenge set is N per execution, she will try in average N™~7 times before
guessing correctly all the view challenges. At the end, the forgery cost of the attack is the cost
for the optimal 7*:

1 T
COStfmngery max m + N .

The scheme parameters proposed in Table 5 have been chosen such that the associated forgery
cost is at least of 128-bits for Category I, of 192-bits for Category III and of 256-bits for Category
V.

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 51

Threshold approach We can apply the [KZ20b]’s attack to the threshold approach. However,
there is two variations:

e the MPC challenge (i.e. the first challenge) is the same for all the 7 parallel executions,
thus instead of having 7 + 1 strategies (for 7), we only have two:

1. either the adversary tries to guess this unique MPC challenge,

2. or she only focus on the view challenges (i.e. the second challenges) of the 7 execu-
tions.

e As explained in [FR22], the adversary is not forced to commit a valid sharing for each
execution. With the strategy 2 where she tries to guess the view challenges, committing
an invalid sharing will not help to decrease the attack cost. The strategy 1 aims to produce
some false positive in the MPC protocol. We can lower bound the cost of this strategy by
the cost to obtain a false positive for a single witness encoded by a subset of £ 4 1 shares
among N (in at least one of the 7 parallel executions). The latter cost is given by

1 1

~
~

1-(1 —p)T’(Zﬁl) T (514*[1) D

where p is the false positive rate of the MPC protocol (see Theorem 2.1)

Thus, when we adapt [KZ20b]’s attack to our scheme variant relying on the threshold approach,
we get a forgery cost which is lower bounded by

e { 1-(1 _1p)T-(efl) ’ (]DT} '

The scheme parameters proposed in Table 5 have been chosen such that this lower bound is at
least of 128-bits for Category I, of 192-bits for Category III and of 256-bits for Category V.

52 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

8 Advantages and limitations

In this section we describe some advantages and limitations of the SD-in-the-Head signature
scheme. The bottom line is that it provides both conservative security and relatively small
signatures compared to current PQC standards. There are more specific advantages, and also
limitations, in which we discuss hereafter.

8.1 Advantages of SD-in-the-Head

Conservative hardness assumption. Our signature scheme is based on the presumably hardest
problem in code-based cryptography: the Syndrome Decoding (SD) problem for random linear
codes. This problem is known to be NP-hard and the cryptanalysis state-of-the-art has been
stable and well-established for decades. We also utilize two conservative base finite fields to
define our instances, namely Fo5; and Fys, which give better performances (compared to Fy)
and are still expected to provide high security.

Adaptive and tunable parameters. Instead of using permutations like most of the previous
zero-knowledge protocols for syndrome decoding, we rely on the MPC-in-the-head (MPCitH)
paradigm in which the task of proving the low Hamming weight of the SD solution is reduced
to proving some relations between specific polynomials. Using MPCitH enables us to tailor
parameters, in particular the number of parties, meaning (like SPHINCS™) that we can provide
a variety of parameter sets tailored to different use cases. Although this specification targets
small signature sizes, it is possible to increase the number of MPC parties (giving smaller
signatures at the cost of slower timings) or decreasing the number of MPC parties (giving faster
performance at the cost of larger signatures). We can also support different base fields (such
as, e.g., Fa).

We propose two variants of the SD-in-the-Head signature scheme which provide different
trade-offs between efficiency and signature size. Our hypercube variant allows us to increase the
number of parties while mitigating the computational overhead and thus obtaining a smaller
signature size. Our threshold variant allows us to decrease the MPC computation to a small
number of parties and get an efficient signature verification at the cost of a slightly increased
signature size. For both variants, the main part of the computation can be pre-computed in
a message-independent “offline” phase to leave a very small (< 1 ms) online cost which can
become important for constrained embedded devices.

Small code-based signatures. The SD-in-the-Head signature scheme achieves among the smaller
signature sizes for code-based signatures to-date, and is particularly performant in terms of the
common “signature size + public-key size” metric. When comparing to other PQC signature
schemes, our scheme competes most closely to SPHINCS™; with similar signature and key sizes,
better performances, and maintaining a similar standard of conservative security, albeit from
an alternative (yet well-established) hardness assumption.

Compared to other code-signature signature schemes (see for example [F.JR22, Table 6]), only
Durandal [ABG*19], Wave [DST19], and LESS-FM II [BBP"21] have smaller signature sizes.
However, Wave has a very large public-key, and Durandal and LESS-FM II are based on a much
less conservative hardness assumption.

We can also compare SD-in-the-Head to other signature schemes based on the MPCitH
paradigm, such as Picnic [ZCD"20] and Banquet [BAK'21]. The SD-in-the-Head signature

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 53

+ key sizes are much smaller than Picnic3 and Banquet (fast), we are actually much closer in
size and performance to Picnic4 and Banquet (short) while still outperforming these schemes.

Small key sizes. Both the secret key and public key sizes are much smaller in comparison to
the lattice-based signature standards, and compete with SPHINCS™. In particular, the public
key, which is often transported with the signature (e.g., certificates in TLS), is between 120-240
bytes across all security levels for both variants.

8.2 Limitations of SD-in-the-Head

Quadratic growth w.r.t. the security level. As other MPCitH-based signature schemes, or,
more generally, as other schemes applying the Fiat-Shamir transform to a parallelly repeated
ZK-PoK with non-negligible soundness error, SD-in-the-Head suffers a quadratic growth of the
signature size. In practice, the size of SD-in-the-Head signatures increase of ~140% while going
from Category I to Category III and of ~75% while going from Category III to Category V.

Randomness required for the hypercube approach. The novel trade-off that the hypercube
approach brings, compared to the original SD-in-the-Head scheme, trades expensive MPC com-
putations against less expensive randomness generation [AMGH™23, Table 6]. However, for
systems without good hardware support for symmetric primitives, the performances of the
hypercube variant may be degraded.

Signature size for the threshold approach. The threshold approach has a bigger signature
size in comparison to the hypercube approach. The sizes in comparison are roughly an extra
25% bigger. However, verification for the threshold approach is in-turn much faster.

o4

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

References

[ABGT19]

[AMGH*22]

[AMGH*23]

[AMHJ 23]

[BBCt19]

[BBP*21]

[BAK*21]

[BIM*12]

[BLP11]

[BMVTT8]

[BN20]

[DFM*22]

N. Aragon, O. Blazy, P. Gaborit, A. Hauteville, and G. Zémor. Durandal: A
rank metric based signature scheme. In Y. Ishai and V. Rijmen, editors, EU-
ROCRYPT 2019, Part III, pages 728-758. Springer, Heidelberg, 2019 (cited on
page 52).

C. Aguilar-Melchor, N. Gama, J. Howe, A. Hiilsing, D. Joseph, and D. Yue.
The return of the SDitH. Cryptology ePrint Archive, Report 2022/1645, 2022.
https://eprint.iacr.org/2022/1645 (cited on pages 1, 9, 11, 54).

C. Aguilar-Melchor, N. Gama, J. Howe, A. Hiilsing, D. Joseph, and D. Yue. The
return of the SDitH. In EUROCRYPT, 2023. For full version see [AMGH™"22]
(cited on pages 2, 12, 47, 53).

C. Aguilar-Melchor, A. Hiilsing, D. Joseph, C. Majenz, E. Ronen, and D. Yue.
Sdith in the qrom. Cryptology ePrint Archive, Paper 2023/756, 2023. https :
//eprint.iacr.org/2023/756 (cited on page 47).

M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini. A finite regime
analysis of information set decoding algorithms. Algorithms, (10):209, 2019 (cited
on page 41).

A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini. LESS-FM: fine-tuning
signatures from the code equivalence problem. In J. H. Cheon and J.-P. Tillich,
editors, Post-Quantum Cryptography - 12th International Workshop, PQCrypto
2021, pages 23-43. Springer, Heidelberg, 2021 (cited on page 52).

C. Baum, C. de Saint Guilhem, D. Kales, E. Orsini, P. Scholl, and G. Zaverucha.
Banquet: short and fast signatures from AES. In J. Garay, editor, PKC 2021,
Part I, pages 266-297. Springer, Heidelberg, 2021 (cited on page 52).

A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes
in 2%/29: how 1 + 1 = 0 improves information set decoding. In D. Pointcheval and
T. Johansson, editors, EUROCRYPT 2012, pages 520-536. Springer, Heidelberg,
2012 (cited on page 49).

D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: ball-
collision decoding. In P. Rogaway, editor, CRYPTO 2011, pages 743-760. Springer,
Heidelberg, 2011 (cited on page 49).

E. Berlekamp, R. McEliece, and H. Van Tilborg. On the inherent intractability
of certain coding problems (corresp.) IEEE Transactions on Information Theory,
(3):384-386, 1978 (cited on page 2).

C. Baum and A. Nof. Concretely-efficient zero-knowledge arguments for arith-
metic circuits and their application to lattice-based cryptography. In A. Kiayias,
M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part I, pages 495—
526. Springer, Heidelberg, 2020 (cited on page 5).

J. Don, S. Fehr, C. Majenz, and C. Schaffner. Efficient NIZKs and signatures
from commit-and-open protocols in the QROM. In Y. Dodis and T. Shrimpton,
editors, CRYPTO 2022, Part II, pages 729-757. Springer, Heidelberg, 2022 (cited
on page 47).

https://eprint.iacr.org/2022/1645
https://eprint.iacr.org/2023/756
https://eprint.iacr.org/2023/756

The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 55

[dOT21] C. de Saint Guilhem, E. Orsini, and T. Tanguy. Limbo: efficient zero-knowledge
MPCitH-based arguments. In G. Vigna and E. Shi, editors, ACM CCS 2021,
pages 3022-3036. ACM Press, 2021 (cited on page 14).

[DST19] T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. Wave: A new family of trapdoor
one-way preimage sampleable functions based on codes. In S. D. Galbraith and
S. Moriai, editors, ASTACRYPT 2019, Part I, pages 21-51. Springer, Heidelberg,
2019 (cited on page 52).

[Dwolb| M. Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions, 2015. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf (cited on page 42).

[FIR22] T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: shorter
signatures from zero-knowledge proofs. In Y. Dodis and T. Shrimpton, editors,
CRYPTO 2022, Part II, pages 541-572. Springer, Heidelberg, 2022 (cited on
pages 1, 2, 5,6, 8,9, 43, 47, 48, 52).

[FR22] T. Feneuil and M. Rivain. Threshold linear secret sharing to the rescue of MPC-
in-the-head. Cryptology ePrint Archive, Report 2022/1407, 2022. https : //
eprint.iacr.org/2022/1407 (cited on pages 1, 2, 9, 12, 14, 16, 47, 51).

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, pages 186—194.
Springer, Heidelberg, 1987 (cited on page 2).

[TKO™07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from se-
cure multiparty computation. In D. S. Johnson and U. Feige, editors, 39th ACM
STOC, pages 21-30. ACM Press, 2007 (cited on pages 1, 2).

[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In D. Lie, M. Mannan, M. Backes,
and X. Wang, editors, ACM CCS 2018, pages 525-537. ACM Press, 2018 (cited
on pages 9, 13).

[Kor89] E. A. Koruk. Decoding complexity bound for linear block codes. Problemy Peredachi
Informatsii, (3):103-107, 1989 (cited on page 49).

[KZ20a] D. Kales and G. Zaverucha. An attack on some signature schemes constructed
from five-pass identification schemes. In Cryptology and Network Security: 19th
International Conference, CANS 2020, Vienna, Austria, December 14—16, 2020,
Proceedings, pages 3-22. Springer, 2020 (cited on page 48).

[KZ20b)] D. Kales and G. Zaverucha. An attack on some signature schemes constructed
from five-pass identification schemes. In S. Krenn, H. Shulman, and S. Vaudenay,
editors, CANS 20, pages 3-22. Springer, Heidelberg, 2020 (cited on pages 42, 50,
51).

[LB8S] P. J. Lee and E. F. Brickell. An observation on the security of mceliece’s public-
key cryptosystem. In D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D.
Luckham, C. Moler, A. Pnueli, G. Seegmiiller, J. Stoer, N. Wirth, and C. G.
Giinther, editors, Advances in Cryptology — EUROCRYPT ’88, pages 275-280,
Berlin, Heidelberg. Springer Berlin Heidelberg, 1988. 1sBN: 978-3-540-45961-3
(cited on page 49).

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://eprint.iacr.org/2022/1407
https://eprint.iacr.org/2022/1407

56 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

[Leo88] J. S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, (5):1354—
1359, 1988 (cited on page 49).

[Meul3| A. Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis, Verlag nicht
ermittelbar, 2013 (cited on page 49).

[MMT11] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in O(20-954"),
In D. H. Lee and X. Wang, editors, ASTACRYPT 2011, pages 107—124. Springer,
Heidelberg, 2011 (cited on page 49).

[MS10] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. 9th Edi-
tion. Elsevier Science, 1978, 2010. 1SBN: 9780444851932 (cited on page 16).
[NIS22] NIST. Call for additional digital signature schemes for the post-quantum cryp-

tography standardization process, 2022. https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-
2022.pdf (cited on page 41).

INPCT17] R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin, and J. Buchmann. On lower
bounds for information set decoding over 𝕗q and on the effect of partial
knowledge. International Journal of Information and Coding Theory, (1):47-78,
2017 (cited on page 50).

[Pet10] C. Peters. Information-set decoding for linear codes over Fy. In N. Sendrier, edi-
tor, The Third International Workshop on Post-Quantum Cryptography, PQCRYPTO
2010, pages 81-94. Springer, Heidelberg, 2010 (cited on page 50).

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, (5):5-9, 1962 (cited on page 49).

[Sha79] A. Shamir. How to share a secret. Communications of the Association for Com-
puting Machinery, (11):612-613, 1979 (cited on page 12).

te . otern. method for finding codewords of small weight. In . Cohen an

Ste89 J. S A hod for findi d ds of 1l weight. In G. Coh d

J. Wolfmann, editors, Coding Theory and Applications, pages 106-113, Berlin,
Heidelberg. Springer Berlin Heidelberg, 1989. 1sBN: 978-3-540-46726-7 (cited on
page 49).

[T'S16] R. C. Torres and N. Sendrier. Analysis of information set decoding for a sub-
linear error weight. In T. Takagi, editor, Post-Quantum Cryptography - 7th Inter-
national Workshop, PQCrypto 2016, pages 144-161. Springer, Heidelberg, 2016
(cited on page 41).

[ZCD*20] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C.
Rechberger, D. Slamanig, J. Katz, X. Wang, V. Kolesnikov, and D. Kales. Picnic.
Technical report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum- cryptography - standardization/round-3-submissions (cited on
pages 1, 52).

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	Introduction
	High-level description of the SD-in-the-Head signature scheme
	Overview of the SD-in-the-Head signature scheme
	The syndrome decoding problem
	The SD-in-the-Head MPC protocol
	The SD-in-the-Head signature scheme

	Principle of hypercube variant
	Principle of threshold variant

	Detailed algorithmic description
	Notations
	Subroutines
	MPC subroutines
	Pseudo-randomness generation
	Hashing and commitments
	Seed trees (hypercube variant)
	Merkle trees (threshold variant)

	Key generation
	Hypercube variant
	Threshold variant

	Signature parameters
	Selection of the SD parameters
	Selection of the MPC parameters
	Symmetric cryptography primitives
	Keys and signature sizes
	Proposed instances

	Performances
	Benchmarks for the hypercube variant
	Benchmarks for the threshold variant

	Security Analysis
	Security definition
	Security assumptions
	Security in the ROM
	Security in the QROM
	Security of the d-split syndrome decoding problem

	Analysis of known attacks
	Attacks against the SD problem
	Signature forgery attacks

	Advantages and limitations
	Advantages of SD-in-the-Head
	Limitations of SD-in-the-Head

