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1 Introduction
This document presents Triangular Unbalanced Oil and Vinegar (TUOV), a digital

signature scheme derived from UOV.

The Unbalanced Oil and Vinegar (UOV) digital signature scheme was first proposed
in 1999 [1]. This cryptographic mechanism leverages the hash-and-sign paradigm under-
pinned by a trapdoored multivariate quadratic map. Over the course of two decades, UOV
has withstood rigorous cryptanalytic scrutiny, which validates its robust security and con-
sistent reliability. However, it shares a common feature with numerous other Multivariate
Public Key Cryptosystems (MPKC); that is, it lacks a security proof grounded in weaker,
more favorable assumptions.

Our TUOV scheme aims to correlate its security to a problem which can eventually
be reduced to a heuristically challenging problem. Specifically, a Multivariate Quadratic
(MQ) problem can be methodically reduced to align with the problem our TUOV scheme
addresses.

The TUOV scheme demonstrates superior performance in terms of time efficiency and
signature size. Especially when it comes to the NIST security level 1, TUOV shows several
advantages over other post-quantum digital signature alternatives such as Dilithium[2],
Falcon[3], and SPHINCS+[4].

• Signature size. TUOV signature can be as short as 80 bytes, are more compact,
with notably smaller lengths compared to the other PQC candidates .

• Signing speed. TUOV showcases an impressive speed in generating signatures,
significantly outpacing the competitors.

• Verification speed. TUOV equates the verification speed of Dilithium and notably
surpasses Falcon and SPHINCS+, displaying a significant advantage in this aspect.

Table 1: Recommended parameter sets and and the corresponding key/signature sizes for
TUOV variants.

NIST Security Level |upk| |usk| |cpk| |csk| |σ|
(n, m, m1, q) (bytes) (bytes) (bytes) (bytes) (bytes)

tuov-Ip 1 (112, 44, 22, 256) 278 432 239 391 42 608 48 112
tuov-Is 1 (160, 64, 32, 16) 412 160 350 272 65 552 48 80
tuov-III 3 (184, 72, 36, 256) 1 225 440 1 048 279 186 640 48 184
tuov-V 5 (244, 96, 48, 256) 2 869 440 2 443 711 442 384 48 244

Beyond these characteristics, TUOV is admired for its simplicity, making it easy and
straightforward to implement. Its streamlined structure reduces the risk of implementa-
tion errors, making it an extremely practical option for real-world usage.

In essence, TUOV offers certain confidence in its security beyond any other MPKCs,
and competitive performance against the new NIST standards in most respects.

§2: Preliminaries. We introduce notations and digital signature conventions for com-
pleteness.

§3: Specifications. Section 3 starts with a brief introduction to UOV signature scheme
and TUOV design rationale. Then we specify three variants of TUOV which offer various
tradeoffs between space efficiency and time efficiency, so as to accommodate a variety
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of different use-cases. We conclude by proposing four sets of recommended parameters
summarized in Table 1, as well as the choice of symmetric primitives.

§4: Security Analysis. In Section 4 we adopt a two-pronged approach. We first delve
into the EUF-CMA security of TUOV. Our proof sketch provisionally maps the scheme’s
security to the TUOV problem, which can be proven to be at least as hard as the MQ
problem. Secondly, we conduct an extensive strength analysis, considering major threats
to MPKCs, such as direct, Kipnis-Shamir, Intersection, and MinRank attacks. We aim to
ensure the robustness of our recommended parameter sets against these attacks, thereby
achieving the NIST-prescribed security level, respectively.

§5: Implementations and Performance. To fully demonstrate the strengths of TUOV
in practice, we describe in Section 5 the implementations of TUOV over NIST PQC
Referenced Platform, together with the experimental results. Please refer to [5] for the
full details on our implementations.

§6: Advantages and Limitations. The advantages and limitations of TUOV are sum-
marized in Section 6.
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2 Preliminaries
2.1 Notations

κ the security parameter
Fq finite field with q elements
A, P, Q boldface capital letters denote matrices over Fq

a, b, . . . lowercase letters in boldface denote column vectors over Fq

x = (x1, . . . , xn)> column vector by default
[n] the set {1, 2, . . . , n}
0k the k-dimensional zero vector

[
0 · · · 0

]>
A += B evaluate A as A + B
Setup system parameter setup algorithm
KeyGen key generation algorithm
Sign signing algorithm
Verify verification algorithm
UT for a square matrix M, UT(M) denotes the unique upper triangular

matrix M′ such that the dierence M′ −M is skew-symmetric

2.2 Conventions
Generally speaking, a digital signature scheme Π = (KeyGen, Sign, Verify) consists of

three probabilistic polynomial-time algorithms where KeyGen is the key generation algo-
rithm, Sign is the signing algorithm and Verify is the verification algorithm.

• (pk, sk)← KeyGen(1κ). pk is a public key and sk is the associated secret key.

• σ ← Sign(sk, µ). σ is a signature of the message µ ∈ {0, 1}∗.

• b := Verify(pk, µ, σ). It outputs b ∈ {accept, reject}, suggesting whether it accepts
the signature σ as a valid signature on µ for the public key pk (i.e., b = accept) or
not (i.e., b = reject).

In addition, a digital signature Π may be endowed with another probabilistic polynomial-
time algorithm Setup running as params← Setup(1κ).

We say a digital signature scheme Π = (KeyGen, Sign, Verify) is correct, if for any suffi-
ciently large κ, and any µ ∈ {0, 1}∗, it holds

Pr[Verify(pk, µ, Sign(sk, µ)) = 1] = 1− negl(κ);

where the probability is taken over the randomness of the key generation and signing
algorithms, and negl(κ) denotes a function that is negligible in the security parameter κ.
Moreover, the standard security definition for a digital signature scheme is that it should
be existentially unforgeable under chosen-message attack, or of EUF-CMA security for
short. Please refer to [6] for formal security definitions.
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3 Specifications
In this section we present the design of the TUOV digital signature scheme in full

detail. Our specification is organized as follows. First, we describe the design rationale,
i.e., the triangular map, behind TUOV. Then, in Section 3.2, we specify three variants of
TUOV. The TUOV digital signature scheme is explained as a collection of five interrelated
algorithms. These consist of the usual key generation, signing, and verification algorithms,
supplemented by a secret key expansion algorithm and a public key expansion algorithm.
This strategic design allows the key generation algorithm to produce compact forms of a
secret key and its associated public key, which can then be expanded by the appropriate
algorithms for use in the signing or verification processes. In Section 3.3 we propose four
sets of recommended parameters. We conclude the section by specifying our recommended
choice of symmetric primitives in Section 3.4.

3.1 Design Rationale
To facilitate our forthcoming discussion, we first provide a block-wise representation

of the quadratic polynomial’s coefficient matrix. Then we revisit the structure of the
UOV scheme. Following this, we unveil a general TUOV scheme, outlining its underlying
design rationale. It is worth noting that, the TUOV scheme to be proposed in Section 3.2
exemplifies a specifically parameterized variant of the general TUOV, offering superior
signing efficiency.

3.1.1 Polynomials

Given parameters n, m, d, q. A quadratic polynomial f over Fq in n variables x1, . . . , xn

has the following form
n∑

i=1

n∑
j=1

αij · xixj +
n∑

i=1
βi · xi + γ,

and it has unique representations as

f(x) = x>Ax + b>x + γ

=
[
x(1)> x(2)>] [ A(1) A(2)

0m×(n−m) A(4)

] [
x(1)

x(2)

]
+
[
b(1)> b(2)>] [x(1)

x(2)

]
+ γ

=
[
x(1)> x(2d1)> x(2d2)>]  A(1) A(2d1) A(2d2)

0d×(n−m) A(4d1) A(4d2)

0(m−d)×(n−m) 0(m−d)×d A(4d4)

 x(1)

x(2d1)

x(2d2)


+
[
b(1)> b(2d1)> b(2d2)>]  x(1)

x(2d1)

x(2d2)

+ γ

where n ≥ m ≥ d ≥ 1, A ∈ Fn×n
q , A(1) ∈ F(n−m)×(n−m)

q , A(4) ∈ Fm×m
q , A(4d1) ∈ Fd×d

q and
A(4d4) ∈ F(m−d)×(m−d)

q are upper-triangular matrices, every matrix(vector) with super-
script (1) has n−m columns (resp. rows), with superscript (2) has m columns(resp.rows),
with superscript (d1) has d columns (resp.rows) and with superscript (d2) has m − d
columns (resp.rows).

Definition 1. An (n, m)-OV-polynomial f over Fq is defined as

n−m∑
i=1

n∑
j=1

αi,j · xixj +
n∑

i=1
βi · xi + γ
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and has unique representation as

f(x) = x>
[

A(1) A(2)

0m×(n−m) 0m×m

]
x + b>x + γ

where A(1) ∈ F(n−m)×(n−m)
q is upper-triangular matrix, A(2) ∈ F(n−m)×m

q , b ∈ Fn
q is

column vector and x = (x1, . . . , xn)> is column vector of variables.

Definition 2. And for d ≥ 1, an (n, m, d)-TOV-polynomial f over Fq is defined as

n−m+d∑
i=n−m+1

n−m+d∑
j=n−m+1

α
(k)
i,j · xixj +

n−m∑
i=1

n∑
j=1

α
(k)
i,j · xixj +

n∑
i=1

β
(k)
i · xi + γ(k)

and has unique notation as

f(x) = x>

 A(1) A(2d1) A(2d2)

0d×(n−m) A(4d1) 0d×(m−d)
0(m−d)×(n−m) 0(m−d)×d 0(m−d)×(m−d)

x + b>x + γ

where A(1) ∈ F(n−m)×(n−m)
q and A(4d1) ∈ Fd×d

q are upper-triangular matrices, A(2d1) ∈
F(n−m)×d

q , A(2d2) ∈ F(n−m)×(m−d)
q , and b ∈ Fn

q is column vector.

Definition 3. A UOV central map in relation to params = (n, m, q) is F : Fn
q → Fm

q , x 7→
F(x) = (f1(x), . . . , fm(x))> where fk’s are (n, m)-OV polynomials over Fq. And a UOV
map in relation to params = (n, m, q) is P = F ◦ T , where F is a UOV central map in
relation to params and T : Fn

q → Fn
q is an affine invertible transformation.

Definition 4. A TUOV central map in relation to params = (n, m, m1, m2, q) is F : Fn
q →

Fm
q , x 7→ F(x) = (f1(x), . . . , fm(x))>, where

fk(x) is


(n, m1)-OV-polynomial, k = 1, . . . , m1

(n, m, k −m1)-TOV-polynomial, k = m1 + 1, . . . , m2

(n, m−m2 + m1 − 1)-OV-polynomial, k = m2 + 1, . . . , m.

And a TUOV map in relation to params = (n, m, m1, m2, q) is P = S ◦ F ◦ T : Fn
q → Fm

q

where S : Fm
q → Fm

q and T : Fn
q → Fn

q are invertible affine transformations and F : Fn
q →

Fm
q is a TUOV central map in relation to params.

3.1.2 Brief on UOV

History of UOV. The origins of UOV scheme, along with its variants, could be traced
back to Patarin’s groundbreaking linearization equations attack [7] in 1995 against the
Matsumoto-Imai cryptosystem. Following this innovative stride, Patarin ingeniously con-
verted the attack’s underlying principle into the design of the Oil and Vinegar signature
scheme (OV) [1] in 1997. However, when an invariant subspace attack [8] cracked the bal-
anced version of this scheme in 1998, Kipnis, Patarin, and Goubin promptly introduced
the Unbalanced Oil and Vinegar (UOV) digital signature scheme [9] in the following year,
1999. The hallmark simplicity ingrained in UOV’s design, coupled with the impressive
resilience it has shown against any discovered vulnerabilities over two decades of relentless
cryptanalysis, furnishing a compelling argument for the scheme’s enduring security.

UOV key pair. Given security parameter κ and params = (n, m, q) ← Setup(1κ), UOV
scheme has key pair (pk = P, sk = (F , T )). In the pair, UOV map P = F ◦ T : Fn

q → Fm
q

is the public key. UOV central map F : Fn
q → Fm

q , x 7→
[
f1(x) · · · fm(x)

]> with fk an
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KeyGen(params = (n, m, q)):
1: Choose OV-polynomials f (1)(x1, ..., xn), ..., f (m)(x1, ..., xn) uniformly at random
2: F := (f (1), ..., f (m))
3: Choose an affine invertible map T : Fn

q → Fn
q uniformly at random

4: P := F ◦ T
5: pk := P
6: sk := (F , T )
7: return (pk, sk)

Sign
(
params, sk = (F , T ), µ ∈ {0, 1}∗):

1: t← Hash(µ)
2: repeat
3: v← Fn−m

q

4: until ∆t :=
{[

v
u

]
∈ Fn

q

∣∣∣∣F ([ v
u

])
= t
}
6= ∅

5: w← ∆t
6: return σ := w

Verify(params, pk = P, (µ, σ = w)):
1: t← Hash(µ)
2: t′ := P(w)
3: return (t == t′)

Figure 1: The key generation, signing and verification algorithms of UOV.

(n, m)-OV polynomial over the field Fq for every k ∈ [m]. Additionally, T : Fn
q → Fn

q

is defined as an invertible affine transformation. It’s important to note that, with the
OV structure, for every x(1) ∈ Fn−m

q , fk(x) is linear in x(2), and consequently, F can be
efficiently inverted. This feature underpins the process of the signing algorithm.

3.1.3 Blueprint of TUOV

Triangular map.The Triangular in the name TUOV refers to a triangular map (or, de
Jonquiére map) as J : Fn

q → Fn
q , x 7→ (x1, x2 + g2(x1), · · · , xn + gn(x1, . . . , xn−1))>

where gi is a polynomial over Fq in i − 1 variables. Notice that given any vector a =
(a1, . . . , an)> ∈ Fn

q , it is easy to find a pre-image u ∈ Fn
q under J as we have

ui =

{
ai i = 1
ai − gi(u1, . . . , ui−1) i ∈ [n] \ {1}

.

Hence the triangular map J is efficiently invertible.

Triangular variables in TUOV. The TUOV scheme, which is basically a variation of the
UOV scheme, uses a similar strategy by first determining the vinegar values and then
using them to obtain the oils. However, the TUOV scheme introduces some triangular
vinegar variables through the use of a triangular map. Once the original vinegars are
determined, these triangular vinegars are evaluated using the inverse of the triangular
map. Then, both types of vinegars - the original and the triangular - are used together
for oil evaluation.

Inversion of TUOV central map. Given parameters params = (n, m, m1, m2, q), a TUOV
central map in relation to params is F : Fn

q → Fm
q consisted of (n, m1)-OV-polynomials

f1, . . . , fm1 , (n, m, k −m1)-TOV-polynomial fk for k = m1 + 1, . . . , m2 and (n, m−m2 +
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m1 − 1)-OV-polynomials fm2+1, . . . , fm, i.e., F = (f1, . . . , fm)>. As for the triangular
map, it lies in some (n, m)-OV-polynomial f and the TOV-polynomials fk’s for k =
m1 + 1, . . . , m2. More specifically, any (n, m)-OV-polynomial f can actually be rewritten
as

f(x) = xn−m+1 + h(x)

and an (n, m, k −m1)-TOV-polynomial fk can be rewritten as

fk(x) = xn−m+k−m1+1 + gk(xn−m+1, . . . , xn−m+k−m1) + hk(x),

where h and hk’s are (n, m)-OV-polynomials. So

(f − h, fm1+1 − hm1+1, . . . , fm2 − hm2)
=(xn−m+1, xn−m+2 + gm1+1(xn−m+1), . . . ,

xn−m+m2−m1+1 + gm2 (xn−m+1, . . . , xn−m+m2−m1))

which is obviously a triangular map in xn−m+1, . . . , xn−m+m2−m1+1. Hence, to find a
pre-image x ∈ Fn

q of y ∈ Fm
q under F , there are three steps. First, we find x(1) that

vanishes x(212) in h and x(2(k−m1+1)2) in hk. Then we invert the triangular map to obtain
x(2(m2−m1)1). Lastly, we substitute values of x(1) and x(2(m2−m1)1), solving the system of
linear equations in x(2(m2−m1)2).

General description of TUOV scheme In general, a TUOV scheme Π = (Setup, KeyGen, Sign, Verify)
can be constructed as follows:

• params← Setup(1κ).
On security parameter, Setup algorithm generates system parameters params =
(n, m, m1, m2, q).

• (pk = P, sk = (S,F , T ))← KeyGen(params).
The key generation algorithm outputs a random key pair (pk = P, sk = (S,F , T )).
The secrete key sk = (S,F , T ) consists of invertible affine transformations S : Fm

q →
Fm

q and T : Fn
q → Fn

q , together with a TUOV central map F : Fn
q → Fm

q in relation
to params. The public key P = S ◦ F ◦ T : Fn

q → Fm
q is a TUOV map in relation to

params.

• σ ← Sign(params, sk, µ).
The signing algorithm first computes the hash digest of the message µ ∈ {0, 1}∗ as
z ← Hash(µ), then successively finds preimages y ∈ Fm

q of z under S, x ∈ Fn
q of

y under the TUOV central map F as described above, and w ∈ Fn
q of x under T .

Finally, it returns the signature σ := w. Here Hash : {0, 1}∗ → Fm
q denotes a hash

function.

• b := Verify(params, pk, µ, σ)
The verification algorithm checks whether P(σ) = Hash(µ), and it returns accept if
and only if the equality holds; otherwise, it returns reject.

For completeness, Figure 2 presents pseudocodes of the KeyGen, Sign and Verify algorithms.
Notice that for each (T)OV-polynomial fk in the TUOV central map F = (f1, . . . , fm)>,
it has the unique representation as

fk(x) = x>Akx + b>
k x + γk

where Ak ∈ Fn×n
q is upper-triangular, bk ∈ Fn

q and γk ∈ Fq.
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KeyGen(params = (n, m, m1, m2, q)):
1: Choose TUOV map F : Fn

q → Fm
q in relation to params uniformly at random

2: Choose affine invertible maps T : Fn
q → Fn

q and S : Fm
q → Fm

q uniformly at random
3: P := S ◦ F ◦ T
4: pk := P
5: sk := (S,F , T )
6: return (pk, sk).

Sign(params, sk = (S,F , T ), µ ∈ {0, 1}∗):
1: z← Hash(µ) ▷ Hash : {0, 1}∗ → Fm

q

2: y := S−1(z)
3: while True do:
4: [λ1, . . . , λm1 ]> $← Fm1

q

5: Ã :=
∑m1

k=1 λkAk, b̃ :=
∑m1

k=1 λkbk,
[
γ̃ ỹ

]
:=
∑m1

k=1 λk

[
γk yk

]
6: for l ∈ [m2] \ [m1] do:
7: Ãl := Al, b̃l := bl,

[
γ̃l ỹl

]
:=
[
γl yl

]
8: for k ∈ [m1] do:
9: λlk

$← Fq

10: Ãl += λlkAk, b̃l += λlkbk,
[
γ̃l ỹl

]
+= λlk

[
γk yk

]
11: Find a solution x(1) = v ∈ Fn−m

q to the following system of equations:
[
Ã(2)>x(1) + b̃(2)

]
=

[
1

0m−1

]

Ã(2(l−m1)2)>
k x(1) + b̃(2(l−m1)2)

k =

[
1

0m−k+m1−1

]
for k ∈ [m2] \ [m1]

12: u(1) :=
[
ỹ −

(
v>Ã(1) + b̃(1)>

)
v− γ̃

]
13: for k ∈ [m2] \ [m1] do:

14: u := ỹk −
[

v
u(d)

]>
[

Ã(1)
k Ã(2d1)

k

0 A(4d1)
k

] [
v

u(1)

]
−

[
b̃(1)

k

b̃(2d1)
k

]> [
v

u(1)

]
− γ̃k

15: u(1) :=
[
u(1)

u

]
16: d := m2 −m1 + 1
17: Find a solution x(2d2) = u(2) ∈ Fm−m2+m1−1

q to the system of equations:

(
v>A(2d2) + b(2d2)>

k

)
x(2d2) = yk − γk

−

v> [A(1) A(2d1)]+

[
b(1)

k

b(2d1)
k

]>
[ v

u(1)

]
for k ∈ [m1]

(
v>A(2d2)

k + b(2d2)>
k

)
x(2d2)

k = yk

−

[ v
u(1)

]>
[

A(1)
k A(2d1)

k

0 A(4d1)
k

]
+

[
b(1)

k

b(2d1)
k

]>
[ v

u(1)

]
for k ∈ [m2] \ [m1]

18: return w := T −1

 v
u(1)

u(2)

 ▷ w ∈ Fn
q ;

Verify(params, pk = P, µ, σ = w):
1: z← Hash(µ)
2: return (z == P(w)).

Figure 2: The key generation, signing and verification algorithms of a general TUOV.
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3.2 TUOV Scheme Description
In this section, we provide a detailed description to TUOV scheme with m2 = m1,

including its key generation, signing and verification algorithms.

When m2 = m1, there is only one triangular variable, namely xn−m+1, and the TUOV
central map F only contains two layers of polynomials:

fk(x1, · · · , xn) =
n−m∑
i=1

n∑
j=1

α
(k)
i,j xixj , k ∈ [m1]

fk(x1, · · · , xn) =
n−m+1∑

i=1

n∑
j=1

α
(k)
i,j xixj , k ∈ [m1 + 1, m]

The first layer has m1 polynomials, and the second has m−m1 polynomials.

Conventions. In order to speed up key generation / signing process and compress the
public key, we make the following restrictions on our TUOV instances:

• We can restrict ourselves to homogeneous maps S, F and T , since it is widely
accepted that the homogeneous requirement does not weaken the security of multi-
variate public key cryptosystems (MPKC). In this manner the size of key could be
slightly decreased.

• We can restrict that the linear maps S and T are of the form

S =
[
Im1 S
0 Im−m1

]

T =

In−m T(1) T(2)

0 1 T(3)

0 0 Im−1

 (1)

where S and T(1), T(2) and T(3) are random matrices. Since it does not shrink the
key space much. For our special choice of S and T we have

S−1 =
[
Im1 −S
0 Im−m1

]

T −1 =

In−m −T(1) T(1) ·T(3) −T(2)

0 1 −T(3)

0 0 Im−1


For abbreviation, we set T(4) := T(1) ·T(3) −T(2)

We introduce an intermediate map Q = F ◦T . Note that the three multivariate quadratic
maps F , Q and P can be represented by matrices in two different ways.

1. As a set of upper-triangular matrices {Pi (resp. Fi, Qi) }i∈[m]. We divide the Pi

into submatrices as

Pi =

P(1)
i P(2)

i P(3)
i

0 P(5)
i P(6)

i

0 0 P(9)
i

 , (2)

where P(1)
i ∈ F(n−m)×(n−m)

q , P(2)
i ∈ F(n−m)×1

q , P(3)
i ∈ F(n−m)×(m−1)

q , P(5)
i ∈ Fq,

P(6)
i ∈ F1×(m−1)

q , P(9)
i ∈ F(m−1)×(m−1)

q . Similar notations carry over to Fi, Qi.



12 TUOV: Triangular Unbalanced Oil and Vinegar

2. As block Macaulay matrices P (resp. F, Q ) in Fm×D
q where D = n(n+1)/2 denotes

the number of nonzero elements in the upper-triangular matrix shown in (2). The i-
th row of P contains all the elements in Pi with first (n−m)(n−m+1)

2 elements contain
all the elements in P(1)

i and the second n −m elements correspond to P(2)
i and so

on. Therefore,

P :=

[
P(1)

1 P(2)
1 P(3)

1 P(5)
1 P(6)

1 P(9)
1

P(1)
2 P(2)

2 P(3)
2 P(5)

2 P(6)
2 P(9)

2

]

where P(k)
1 contains every matrix element in {P(k)

i }i∈[m1] and P(k)
2 contains every

matrix element in {P(k)
i }i∈[m1+1,m].

Both expressions are to be used in our algorithms.

Generation of P. Inspired by the design of the CyclicRainbow scheme [10], the process
of generating a public key from the secret key could be partially reversible in standard
TUOV, which can be used to compress public key.

Since Q = F ◦ T , we get

UT


In−m −T(1) T(4)

0 1 −T(3)

0 0 Im−1

> Q(1)
i Q(2)

i Q(3)
i

0 Q(5)
i Q(6)

i

0 0 Q(9)
i


In−m −T(1) T(4)

0 1 −T(3)

0 0 Im−1




=

F(1)
i F(2)

i F(3)

0 F(5)
i F(6)

i

0 0 F(9)
i


(3)

Hence,

F(1)
i = Q(1)

i

F(2)
i = −(Q(1)

i + Q(1)>
i )T(1) + Q(2)

i

F(3)
i = (Q(1)

i + Q(1)>
i )T(4) −Q(2)

i T(3) + Q(3)
i

F(5)
i = T(1)>Q(1)

i T(1) −T(1)>Q(2)
i + Q(5)

i

F(6)
i = −T(1)>(Q(1)

i + Q(1)>
i )T(4) + T(1)>Q(2)

i T(3) −T(1)>Q(3)
i + Q(2)>

i T(4) + Q(6)
i

F(9)
i = UT

(
T(4)>(Q(1)

i T(4) −Q(2)
i T(3) + Q(3)

i ) + T(3)>(Q(5)
i T(3) −Q(6)

i ) + Q(9)
i

)
(4)

By definition, F(9)
i = 0 for i ∈ [m] and

[
F(5)

i F(6)
i

]
= 0 for i ∈ [m1]. Then

Q(5)
i = −T(1)>Q(1)

i T(1) + T(1)>Q(2)
i i ∈ [m1]

Q(6)
i = T(1)>(Q(1)

i + Q(1)>
i )T(4) −T(1)>Q(2)

i T(3) + T(1)>Q(3)
i −Q(2)>

i T(4) i ∈ [m1]

Q(9)
i = UT

(
T(4)>(−Q(1)

i T(4) + Q(2)
i T(3) −Q(3)

i ) + T(3)>(−Q(5)
i T(3) + Q(6)

i )
)

i ∈ [m]
(5)

It can be shown thatQ is determined by T , {Q(1)
i , Q(2)

i , Q(3)
i }i∈[m], {Q

(5)
i , Q(6)

i }i∈[m1+1,m]

and so is F . In other words, if we have T , {Q(1)
i , Q(2)

i , Q(3)
i }i∈[m], {Q

(5)
i , Q(6)

i }i∈[m1+1,m],
then we can compute {Q(5)

i , Q(6)
i }i∈[m1+1], {Q

(9)
i }i∈[m], {F

(1)
i , F(2)

i , F(3)
i }i∈[m], {F

(5)
i , F(6)

i }i∈[m1+1,m]
efficiently.
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Since P = S ◦ Q, we have [
Q(1)

1 Q(2)
1 Q(3)

1 Q(5)
1 Q(6)

1 Q(9)
1

Q(1)
2 Q(2)

2 Q(3)
2 Q(5)

2 Q(6)
2 Q(9)

2

]

=
[
Im1 −S
0 Im−m1

] [
P(1)

1 P(2)
1 P(3)

1 P(5)
1 P(6)

1 P(9)
1

P(1)
2 P(2)

2 P(3)
2 P(5)

2 P(6)
2 P(9)

2

] (6)

It can be shown that {Q(1)
j Q(2)

j Q(3)
j }j=1,2, {Q(5)

2 , Q(6)
2 } are determined by S, {P(1)

j

P(2)
j P(1)

j }j=1,2, {P(5)
2 , P(6)

2 } Stated differently, if we have S, T , {P(1)
j P(2)

j P(1)
j }j=1,2,

{P(5)
2 , P(6)

2 }, then we can first compute {Q(1)
i , Q(2)

i , Q(3)
i }i∈[m], {Q

(5)
i , Q(6)

i }i∈[m1+1,m],
then {Q(5)

i , Q(6)
i }i∈[m1], {Q

(9)
i }i∈[m], {F

(1)
i , F(2)

i , F(3)
i }i∈[m], {F

(5)
i , F(6)

i }i∈[m1+1,m], and fi-
nally, {P(5)

1 , P(6)
1 }, {P

(9)
j }j=1,2. This procession is explained in Figure 3.

Figure 3: keygen

Inversion of F . For any t = (t1, · · · , tm) ∈ Fm
q , we want to find an (s1, · · · , sn) such that

F(s1, · · · , sn) = t. For the sake of convenience, we divide (s1, · · · , sn) into three part
v, x, x, where v := (s1, · · · , sn−m), x := sn−m+1, x := (sn−m+2, · · · , sn). We want to
compute them one by one. Firstly, careful analysis shows that if we can pick a random
vector v satisfying the following conditions:

There exist {λi}i∈[m1] ∈ Fm1
q such that

∑
i∈[m1] λiv>F(3)

i = 0,
∑

i∈[m1] λiv>F(2)
i = 1,

Then we can recover x as follows:

x =
∑

i∈[m1]

λi(ti − v>F(1)
i v),

Secondly, we can solve the following system of linear equations to get x: Since the first
m1 equations have only m1 − 1 linear independent equations, the following system is
compatible with probability roughly 1− 1/q.

{
v>F(3)

i x = ti − v>F(1)
i v− v>F(2)

i x i ∈ [m1]
(xF(6)

i + v>F(3)
i )x = ti − v>F(1)

i v− F(5)
i x2 − v>F(2)

i x i ∈ [m1 + 1, m]

If so, (v, x, x) is a desired pre-image obviously.
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Finally, it remains to show how to recover a desired vector v. In fact, we can find v by
solving the system of linear equations

∑
i∈[m1]

λi

[
F(2)

i F(3)
i

]>
v =

[
1

0m−1

]
.

Variants of TUOV. In order to achieve optimal efficiency under different circumstances,
we introduce and implement three efficient variants of TUOV. We name them as classic,
pkc and pkc+skc, which are in accordance with the three variants (classic, circumzenithal,
compressed) of Rainbow signature scheme [11], respectively.
Before doing so, we give two key expansion procedures to achieve space/time efficiency
tradeoff:

• ExpandPK: cpk → upk. Here cpk (resp. upk) denotes compressed public key (resp.
uncompressed public key).

• ExpandSK: csk → usk. Similarly, csk (resp. usk) denotes compressed secret key
(resp. uncompressed secret key).

In both cases, using the compressed key pair (cpk, csk) instead of uncompressed one
(upk, usk) can lead to smaller memory requirement, at the cost of slower signing and
verification speed.

Hence, the original key generation algorithm can be separated into three parts: KeyGen,
ExpandPK, and ExpandSK where KeyGen only returns cpk and csk as output. This
separation leads us to introduce and implement the following three TUOV variants.

• classic: the public/secret pair is (upk, usk). This means that both ExpandPK and
ExpandSK are still parts of key generation algorithm. In this case, signing and
verification procedure is quick but key sizes is very large.

• pkc: the public/secret pair is (cpk, usk). This means that ExpandSK is still part
of key generation algorithm while ExpandPK is a part of verification algorithm. In
this case, public key size is much smaller but verification procedure is slower in
comparison with the classic variant.

• pkc+skc: the public/secret pair is (cpk, csk). This means that ExpandPK is a part
of verification algorithm and ExpandSK is a part of signing algorithm. In this case,
secret key size is extremely small but signing procedure is much slower in comparison
with the pkc variant.

Description of pkc+skc variant. In the following part we will provide the detailed pseu-
docode of the pkc+skc variant to show how it scheme works. And the other two variants
are straight forward. When dealing with pkc+skc, the secret key size is as short as
pk_seed_len + sk_seed_len bits and the current public parameter is

params = (n, m, q, pk_seed_len, sk_seed_len).

Firstly, two seeds are picked uniformly at random, seedsk ← {0, 1}sk_seed_len and seedpk ←
{0, 1}pk_seed_len in the key generation algorithm. Then seedsk is used to generate {S, T(1), T(3), T(4)},
and seedpk is used in the generation of {P(1)

j , P(2)
j , P(3)

j }j=1,2∪{P
(5)
2 , P(6)

2 }; thus P(5)
1 , P(6)

1 , P(9)
1

as well as P(9)
2 can be computed. And the key generation algorithm eventually returns

cpk = (seedpk, P(5)
1 , P(6)

1 , P(9)
1 , P(9)

2 ) and csk = (seedpk, seedsk).
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Then it comes to the signing algorithm. With ExpandSK, usk can be obtained with the
outcomes of Expandsk(seedsk) and ExpandP(seedpk). Here

usk = (seedsk, S, T(1), T(3), T(4), {F(1)
j := P(1)

j , F(2)
j , F(3)

j }j=1,2 ∪ {F
(5)
2 , F(6)

2 }).

And with some delicate and intricate computation, an inversion of t = Hash(µ) under
P = S ◦ F ◦ T will be eventually output as the signature σ.

In the verification algorithm, the full public key, i.e., upk = {Pi}i∈[m] is obtained
from the public key expansion ExpandPK(cpk) first. And it returns accept if and only if
Hash(µ) = [s>Pis]i∈[m].
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KeyGen(params):
1: seedsk ← {0, 1}sk_seed_len

2: seedpk ← {0, 1}pk_seed_len

3: {S, T(1), T(3), T(4)} := Expandsk(seedsk)
4: {P(1)

j , P(2)
j , P(3)

j }j=1,2 ∪ {P
(5)
2 , P(6)

2 } := ExpandP(seedpk)
5:
[

Q(1)
1 Q(2)

1 Q(3)
1

]
:=
[

P(1)
1 P(2)

1 P(3)
1

]
− S

[
P(1)

2 P(2)
2 P(3)

2

]
6:
[

Q(1)
2 Q(2)

2 Q(3)
2 Q(5)

2 Q(6)
2

]
:=
[

P(1)
2 P(2)

2 P(3)
2 P(5)

2 P(6)
2

]
7: for i = 1 upto m1 do
8: Q(5)

i := −T(1)>Q(1)
i T(1) + T(1)>Q(2)

i

9: Q(6)
i := T(1)>(Q(1)

i + Q(1)>
i )T(4) −T(1)>Q(2)

i T(3) + T(1)>Q(3)
i −Q(2)>

i T(4)

10: for i = 1 upto m do
11: Q(9)

i := UT
(

T(4)>(−Q(1)
i T(4) + Q(2)

i T(3) −Q(3)
i ) + T(3)>(−Q(5)

i T(3) + Q(6)
i )
)

12:
[

P(5)
1 P(6)

1 P(9)
1

]
:=
[

Q(5)
1 Q(6)

1 Q(9)
1

]
+ S

[
Q(5)

2 Q(6)
2 Q(9)

2

]
13: P(9)

2 := Q(9)
2

14: cpk :=
(

seedpk, {P(5)
1 , P(6)

1 , P(9)
1 , P(9)

2 }
)

15: csk := (seedpk, seedsk)
16: return (cpk, csk).

ExpandSK(params, csk): ▷ csk = (seedsk, seedpk)
1: {S, T(1), T(3), T(4)} := Expandsk(seedsk)
2: {P(1)

j , P(2)
j , P(3)

j }j=1,2 ∪ {P
(5)
2 , P(6)

2 } := ExpandP(seedpk)
3:
[

Q(1)
1 Q(2)

1 Q(3)
1

]
:=
[

P(1)
1 P(2)

1 P(3)
1

]
− S

[
P(1)

2 P(2)
2 P(3)

2

]
4:
[

Q(1)
2 Q(2)

2 Q(3)
2 Q(5)

2 Q(6)
2

]
:=
[

P(1)
2 P(2)

2 P(3)
2 P(5)

2 P(6)
2

]
5: for i = 1 upto m do
6: F(2)

i := −(Q(1)
i + Q(1)>

i )T(1) + Q(2)
i

7: F(3)
i := (Q(1)

i + Q(1)>
i )T(4) −Q(2)

i T(3) + Q(3)
i

8: for i = m1 + 1 upto m do
9: F(5)

i := T(1)>Q(1)
i T(1) −T(1)>Q(2)

i + Q(5)
i

10: F(6)
i := −T(1)>(Q(1)

i +Q(1)>
i )T(4) +T(1)>Q(2)

i T(3)−T(1)>Q(3)
i +Q(2)>

i T(4) +Q(6)
i

11: usk :=
(

seedsk, S, T(1), T(3), T(4), {F(1)
j := P(1)

j , F(2)
j , F(3)

j }j=1,2 ∪ {F
(5)
2 , F(6)

2 }
)

12: return usk.

ExpandPK(params, cpk): ▷ cpk =
(

seedpk, {P(5)
1 , P(6)

1 , P(9)
1 , P(9)

2 }
)

1: {P(1)
j , P(2)

j , P(3)
j }j=1,2 ∪ {P

(5)
2 , P(6)

2 } := ExpandP(seedpk)

2: upk :=

[
P(1)

1 P(2)
1 P(3)

1 P(5)
1 P(6)

1 P(9)
1

P(1)
2 P(2)

2 P(3)
2 P(5)

2 P(6)
2 P(9)

2

]
3: return upk.

Figure 4: The key generation algorithms of pkc+skc variant of TUOV.
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Sign(params, csk, µ):
1: usk := ExpandSK(csk) ▷ sk :=

(
seedsk, S, T(1), T(3), T(4), {Fi}i∈[m]

)
2: t :=

[
t1
t2

]
← Hash(µ) ▷ t1 ∈ Fm1

q , t2 ∈ Fm−m1
q .

3: t̃ :=
[

t1 + St2
t2

]
4: for ctr = 0 upto 255 do
5: λ := (λ1, · · · , λm1) := Expandλ(µ‖seedsk‖ctr) ▷ λ ∈ Fm1

q

6: M := λ1

[
F(2)

1 F(3)
1

]
+ · · ·+ λm1

[
F(2)

m1 F(3)
m1

]
▷ M = λ

[
F(2)

1 F(3)
1

]
7: if M>v =

[
1

0m−1

]
is solvable then

8: v← solution space of M>v =
[

1
0m−1

]
▷ v′ ∈ Fn−m

q

9: x := λ
[
t̃i − v>F(1)

i v
]

i∈[m1]
10: Choose k ∈ [m1] such that λk 6= 0
11: L := 0(m−1)×(m−1)
12: y := 0m−1
13: for i = 1 upto k − 1 do
14: Set i-th row of L to v>F(3)

i

15: Set i-th row of y to v>F(1)
i v + v>F(2)

i x

16: for i = k upto m1 − 1 do
17: Set i-th row of L to v>F(3)

i+1

18: Set i-th row of y to v>F(1)
i+1v + v>F(2)

i+1x

19: for i = m1 − 1 upto m− 1 do
20: Set i-th row of L to v>F(3)

i+1 + xF(6)
i+1

21: Set i-th row of y to v>F(1)
i+1v + v>F(2)

i+1x + F(5)
i+1x2

22: if L is invertible then
23: remove the k-th row of t̃
24: Solve Lx = t̃− y for x ▷ x ∈ Fm−1

q

25: s :=

 v
0

0m−1

+

 T(1)

1
0m−1

x +

 T(4)

T(3)

Im−1

 · x ▷ s ∈ Fn
q

26: σ := s
27: return σ
28: return ⊥.

Verify(params, cpk, (µ, σ = s)):
1: upk := ExpandPK(cpk) ▷ upk = {Pi}i∈[m]
2: t← Hash(µ)
3: return

(
t ==

[
s>Pis

]
i∈[m]

)
.

Figure 5: The signing and verification algorithms of pkc+skc variant of TUOV.
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3.3 Recommended Parameter Sets
To accommodate different security needs, we propose four sets of recommended param-

eters for TUOV and implement them in our submission, as shown in Table 2. Each set of
parameters is applicable to all TUOV variants proposed in Section 3.2, with pk_seed_len
always being 128 and sk_seed_len being 256. The variation in these sets is based on the
choice of (n, m, m1, q) :

• For NIST security level 1, we suggest two sets of parameters: tuov-Ip, which em-
ploys F256 and has smaller key sizes, and tuov-Is, which operates over F16 and has
shorter signatures.

• For NIST security level 3, we propose tuov-III as the recommended parameter set.

• Finally, we recommend tuov-V for NIST security level 5.

In Section 4, we conduct a concrete security analysis of the computational hardness of
TUOV and provide evidence that each set of recommended parameters can achieve its
intended security level, respectively.

We choose F256 and F16 as our finite fields, with one element in F256 occupying one
byte and two elements in F16 occupying one byte. Note that if the F16 vector has an odd
length, we pad the last element with a zero. For specific calculation details of key/signature
lengths, please refer to the Section 5.

Table 2: Recommended parameter sets and and the corresponding key/signature sizes for
TUOV. Note that in each parameter set, we have pk_seed_len = 128, and sk_seed_len =
256.

NIST Security Level |upk| |usk| |cpk| |csk| |σ|
(n, m, m1, q) (bytes) (bytes) (bytes) (bytes) (bytes)

tuov-Ip 1 (112, 44, 22, 256) 278 432 239 391 42 608 48 112
tuov-Is 1 (160, 64, 32, 16) 412 160 350 272 65 552 48 80
tuov-III 3 (184, 72, 36, 256) 1 225 440 1 048 279 186 640 48 184
tuov-V 5 (244, 96, 48, 256) 2 869 440 2 443 711 442 384 48 244

3.4 Choice of Symmetric Primitives
We use various hash functions and pseudo-random functions in the implementation of

TUOV. Concretely, we make use of shake256 [12] to process both public and secret data
in the performance non-critical functions, namely Hash, Expandv and Expandsk. On the
other hand, we instantiate the performance critical function Expandpk using aes128 [13]
with counter [14], i.e., aes128ctr.

By taking advantage of the properties of aes128ctr, there is some technique to achieve
faster implementations. We will show the implementation details of these function in the
following context.

• Hash(µ) : {0, 1}∗ ← Fm
q

This function hashes a message µ to the target vector t. The size of the target vector
is m · dlog2 qe bits.

• Expandλ(µ‖seedsk‖ctr) : {0, 1}∗ × {0, 1}sk_seed_len → Fn−2m+m1
q

This function samples a partial vinegar vector (last n − 2m entries of the v in
Fn−2m

q ) and a vector λ = (λ1, . . . , λm1) ∈ Fm1
q . And the size of its output in total

is (n− 2m + m1) · dlog2 qe bits.
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• Expandsk(seedsk) : {0, 1}sk_seed_len → Fm1(m−m1)+(n−m)(m−1)+n−1
q

This function expands the 32-byte secret key seed to a matrix S, and three matrices
{T(1), T(3), T(4)} sequentially. Here S relates to S−1 = S while {T(1), T(3), T(4)}
relate to T −1. And the size of its output in total is [m1(m −m1) + (n −m)(m −
1) + n− 1] · dlog2 qe bits.

• ExpandP(seedpk) : {0, 1}pk_seed_len → Fm·[v(v+1)/2+vm]+(m−m1)m
q

This function expands the 16-byte public key seed to eight column-major Macaulay
matrices {P(1)

j , P(2)
j , P(3)

j }j=1,2 ∪ {P
(5)
2 , P(6)

2 }. And the size of its output in total is
{m · [v(v + 1)/2 + vm] + (m−m1)m} · dlog2 qe bits.

• When it comes to implementing the four symmetric primitives (Hash, Expandv, Expandsk,
ExpandP) efficiently, we resort to the OpenSSL library to gain access to the stan-
dard cryptographic primitives, to be more precise, shake256 and aes128 in our cases.
In addition, we may make use of the round-reduced AES, i.e., 4-round aes128ctr
[Gue10], for faster implementation of ExpandP.
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4 Security Analysis
This section conducts the security analysis of TUOV. To be precise, we perform a

comprehensive analysis from two perspectives:

• First, we analyze the EUF-CMA of the TUOV. While we fail to present a reduction
between the TUOV problem and the EUF-CMA security of the TUOV scheme, we
can base the hardness of the intermediate problem, i.e.the TUOV problem, on that
of the MQ problem,

• Second, we perform a comprehensive security strength analysis that takes into ac-
count the most important attacks against TUOV. This includes, but is not limited
to, the analysis of various forms of direct, Kipnis-Shamir, intersection, and quantum
attacks, as well as the potential strategies to counter such threats. Our goal is to
ensure that our recommended parameter set is robust against these threats and thus
meets the respective security strength level required by NIST.

4.1 Security Reductions
4.1.1 Security Problems

Definition 5 (MQ map). An (n, q)-MQ-polynomial f over Fq is defined as

n∑
i=1

n∑
j=1

αi,jxixj +
n∑

i=1
βixi + γ

and has unique representation as x>Ax+b>x+γ, where A ∈ Fn×n
q is anupper-triangular

matrix, b ∈ Fn
q is a vector. An (n, m, q)-MQ-map M : Fn

q → Fm
q consists with (n, q)-MQ

polynomials f (1), . . . , f (m), i.e. M = (f1, . . . , fm)>.

Definition 6 (MQ problem hardness). Fix Setup(·) that outputs (n, m, q) on input 1κ.
MQ problem in relation to Setup(·) is (t, ε)-hard if there exists no algorithm that, given
security parameter κ, params = (n, m, q) ← Setup(1κ) and a random params-MQ-map
M : Fn

q → Fm
q in relation to params, on input y :=M(w) with w $← Fn

q , outputs w′ such
that M(w′) = y with probability no less than ε(κ) in processing time t(κ).

Definition 7 (TUOV problem hardness). Fix Setup(·) that outputs params = (n, m, m1, m2, q)
on input 1κ. TUOV problem in relation to Setup(·) is (t, ε)-hard if there exists no algo-
rithm that, given params and a random TUOV map P : Fn

q → Fm
q in relation to which,

on input z = P(w) with w $← Fn
q , outputs w′ such that P(w′) = z with probability no

less than ε(κ) in processing time t(κ).

Definition 8 (TUOV scheme security). A TUOV scheme Π = (Setup, KeyGen, Sign, Verify)
is (t, ε, qH , qs)-secure under random oracle model if there exists no algorithm that on se-
curity parameter κ, params = (n, m, m1, m2, q) ← Setup(1κ) and (pk, sk) ← KeyGen(1κ),
with at most qH hash queries and qs signing queries, outputs (µ, w) such that Verify(pk, µ, w) =
accept in processing time t(κ) with probability no less than ε(κ).

4.1.2 Reduce MQ problem to TUOV problem

Theorem 1. Given Setup(·) that outputs params = (n = 1
2 · m

2, m, m1 = 1
2 · m, m2 =

3
4 ·m, q) on input 1κ and its restriction Setup′ that outputs params′ = (n = 1

2 ·m
2, m, q).

If MQ map in relation to Setup′(·) is (t, ε)-hard, then TUOV map in relation to Setup(·)
is (t, ε)-hard.
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Proof. Without loss of generality, we consider quadrtic polynomials only with their quadratic
part. Roughly speaking, for arbitrary MQ map M : Fn

q → Fm
q , if there exists an in-

vertible affine transformation T : Fn
q → Fn

q and a TUOV central map F : Fn
q → Fm

q

such that M = F ◦ T , then the MQ input (M, y) can be modified into TUOV input
(P = S ◦M, z = S(y)) for arbitrary invertible affine transformation S : Fm

q → Fm
q .

Hence, if there exists an algorithm A that can break TUOV problem in relation to
Setup(·), then we can construct an algorithm B that on MQ input (M, y), can randomly
sample an S and makes query (P = S ◦M, z = S(y)) on S and outputs the w′ returns
by A. Hence the theorem is proved.

Since T is invertible affine transformation, it suffices to find Q : Fn
q → Fn

q such that
M ◦ Q is TUOV central map. Then we can claim that T = Q−1, so F := M ◦ Q is
an equivalent TUOV central map that we are looking for. Notice our goal is to prove

the existence, with abuse of symbols, consider Q =
[

Q(1) Q(2)

0m×(n−m) Im

]
∈ Fn×n

q as the

associate upper triangular matrix of Q in orthonormal basis, and let Mk =

[
M(1)

k M(2)
2

0 M(4)
k

]
be the coefficient matrix of M’s k-th polynomial. Notice that

Q>MkQ =

[
Q(1)>M(1)

k Q(1) Q(1)>M(1)
k Q(2) + Q(1)>M(2)

k

Q(2)>M(1)
k Q(1) Q(2)>M(1)

k Q(1) + Q(2)>M(2)
k + M(4)

k

]

and we want it to be somewhat equal to some upper triangular Ak with

Ak =



[
A(1)

k A(2)
k

0 0

]
, k ∈ [m1]A(1)

k A(2d1)
k A(2d2)

k

0 A(4d1)
k 0

0 0 0

 , d = k −m1 and k ∈ [m2] \ [m1]

A(1)
k A(2(m2−m1+1)1)

k A(2(m2−m1+1)2)
k

0 A(4(m2−m1+1)1)
k A(4(m2−m1+1)2)

k

0 0 0

 , k ∈ [m] \ [m2]

then our undetermined variables are terms in Q(2) ∈ F(n−m)×m
q . So there are (n−m)×m ≈

1
2 m3 variables.

Now we have to count number of equations:

• for k ∈ [m1], UT
(

Q(2)>M(1)
k Q(1) + Q(2)>M(2)

k + M(4)
k

)
= 0m×m brings (m+1)m

2

equations. So total number of equations here is m1(m+1)m
2 .

• for k ∈ [m2] \ [m1], let d = k −m1

UT
(

Q(2)>M(1)
k Q(1) + Q(2)>M(2)

k + M(4)
k

)
=
[

A(4d1)
k 0d×(m−d)

0(m−d)×d 0m−d

]

brings (m+1)m
2 − d(d−1)

2 equations. So total number of equations here is

m2−m1∑
d=1

(
(m+1)m

2 − d(d−1)
2

)
= 1

6 (m2 −m1)
(
3m(m + 1)− (m2 −m1)2 + 1

)
.
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• for k ∈ [m] \ [m2],

UT
(

Q(2)>M(1)
k Q(1) + Q(2)>M(2)

k + M(4)
k

)
=
[
A(4)

k A(23)
k

0 0m−m2+m1−1

]
brings 1

2 (m−m2 + m1 − 1)(m−m2 + m1) equations. So total number of equations
here is (m−m2)

2 (m−m2 + m1 − 1)(m−m2 + m1).

So the total number of equations to solve is

m1
2 (m + 1)m + m2−m1

6
(
3m(m + 1)− (m2 −m1)2 + 1

)
(7)

+ m−m2
2 (m−m2 + m1 − 1)(m−m2 + m1).

Let m1 = (1−β)m and m2−m1 = βγm, then m−m2 +m1 = (1−βγ)m. And coefficient
of m3 in Equation (7) is

1
2 + β2γ

( 2
3 βγ2 − 1 + 1

2 β + γ
)

. (8)

If we evaluate β = γ = 1
2 , then we have roughly 11

24 m3 equations. With underdetermined
assumption, as long as n ≥ 11

24 ·m
2, there exists invertible affine transformation Q such

that M◦Q is TUOV central map.

4.1.3 Reduce TUOV problem to TUOV scheme

Claim 1. Given Setup(·) that outputs (n, m, m1, m2, q) on input 1κ. If TUOV problem
in relation to Setup(·) is (t, ε)-hard, then TUOV scheme Π = (Setup, KeyGen, Sign, Verify)
is (t, ε, qH , qs)-secure under random oracle model.

The TUOV scheme, like its UOV predecessor, is constructed according to the hash-and-
sign paradigm. As such, its security proof involves a standard approach: manipulating the
hash value to avoid the computationally expensive inversion process, thus redirecting the
procedure to more manageable operations, which consequently reduces a hard problem to
the security of the scheme. However, as part of such proofs, it is crucial to show that a
set of variables are indistinguishable in their distribution between the real signing process
and a simulated one. Specifically, it is necessary to prove that the joint distribution of the
public key, hash values, and signature values, i.e.(pk, {hi}, {σj}) where hi’s denote Hash
query responses and σj ’s denote signing query responses, is indistinguishable under the
two scenarios.

Computationally, it turns out that in the real scenario, the possible values of the vinegar
variables occupy a tiny fraction of the total vinegar space (q(−2m+m2+m1)(m2−m1+1)/2),
making the above distributions statistically distinguishable. The typical fallback is to
study computational indistinguishability, but this often introduces an additional assump-
tion. A review of the history of MPKCs has underscored the need for extreme caution
when introducing hard problems, as doing otherwise can lead to a false sense of security.
As a matter of fact, we have proven that the real values of the vinegar variables are in-
distinguishable from uniform sampling in the vinegar space, which we believe provides an
initial level of confidence in the security of TUOV. Nevertheless, we welcome any possible
adjustments to the scheme that could lead to a stronger proof of security.

4.2 Attack Scenarios
In this section we introduce the state-of-the-art attacks against TUOV scheme, and

analyze the hard estimation result of the four sets of recommended parameters of TUOV.

Similar to most of the cryptosystems in MPKC, we have not presented a formal secu-
rity proof which reduces certain well-known “hard” mathematical problem(s) say, the MQ
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problem, to the security of TUOV. Here, in this documentation the security analysis for
TUOV is carried out by listing some of the critical attacks against TUOV that may influ-
ence its concrete hardness estimation result. Our confidence in the security of TUOV lies
in the facts that UOV remains secure after more than twenty years of cryptanalysis, and
TUOV seems to be more secure than UOV, and that there is a solid theoretical founda-
tion on the concrete hardness estimation of practical attacks against MPKC such that the
theoretical hardness estimation of TUOV matches the experimental results consistently.

Historically, those attacks against TUOV are usually classified into two types: The
key-recovery attacks aims to recover the secret key from the given public key, e.g., the
Kipnis-Shamir attack [8], the Intersection attack [15] and the MinRank attack; and the
forgery attacks that aims to forge a message/signature pair passing the verification test,
e.g., the direct attack. The collision attack is not considered in this submission, because
when the hash function is fixed, every message has a unique hash digest, making the
collision attack against TUOV far from practical.

4.2.1 Direct Attack

The most straightforward attack against TUOV, (and even against most of the MPKC
cryptosystems) is the direct attack, where the attacker aims to solve an instance of the MQ
problem associated with the public key P. In the direct attack, the attacker first chooses
a message µ∗ ∈ {0, 1}∗ and a salt salt∗ ∈ {0, 1}∗ on his will, computes t = Hash(µ∗‖salt∗),
and then is devoted to the recovery of a preimage s for t under the public key P via the
system-solving techniques.

At the heart of the attack is to solve a random system of m quadratic equations in n
variables; and the state-of-the-art approach is to first take advantage of the underdeter-
minedness of the system by reducing to the problem of solving a system of m′ = m − 1
equations in n′ = m− 1 variables with the approach of Thomae and Wolf [16], and then
using the hybrid WiedemannXL algorithm to solve the new system. The estimated cost
of this state-of-the-art approach is

min
k

qk · 3
(

n′ − k + dn′−k,m′

dn′−k,m′

)2(
n′ − k + 2

2

)
(2r2 + r) , (9)

and is identified as the cost of the direct attack against TUOV. Here, dN,M is the operating
degree of XL, and is defined to be the smallest d > 0 such that the coefficient of td in the
power series expansion of

(1− t2)M

(1− t)N+1

is non-positive.

Note that the attacker might compute Hash(µ‖salt) for a large number of message/salt
pairs, and then solve a multi-target version of the system-solving problem. Nevertheless,
our foregoing estimation is justified by the fact that there are no known algorithms that
can take advantage of multiple targets (beyond the naive collision attacks).

4.2.2 Kipnis-Shamir Attack

The Kipnis-Shamir attack [8] tries to recover the subspace O from the public map
P : Fn

q → Fm
q . Historically, this attack was first proposed for the case n = 2m, where

it runs in polynomial time and demonstrates the insecurity of the original balanced OV
scheme proposed in [1]. Moreover, it can generalized to the cases n > 2m, and in the
literature its cost was identified as O(qn−2mn4), if n is even or q is odd.
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However, it turns out that the foregoing formula overestimates the cost of the attack,
as the following analysis indicates. First, the cost of finding a single vector in O is
dominated by the cost of computing an average of qn−2m characteristic polynomials of
n-by-n matrices, and solving the same number of linear systems in n variables; This
takes O(qn−2mnω log(n)) field multiplications, where ω denotes the exponent of matrix
multiplication. The n4 factor in the literature was obtained by putting ω = 3. Moreover,
the foregoing attack should be repeated m = O(n) times so as to get a basis for O.
Nevertheless, this does not contribute an m factor into the overall cost intuitively, because
once a first vector in O is found, it could be fully utilized and the other vectors in O can
be found more efficiently with other methods (e.g., see [15]).

With this in mind, in this submission the cost of Kipnis-Shamir attack is identified as

qn−2mn2.8(2r2 + r).

4.2.3 Intersection Attack

The intersection attack tries to simultaneously find k vectors in the oil space O ={
u ∈ Fn

q

∣∣P(u) = 0m

}
, by solving a system of quadratic equations on some target vectors

in the Fq-subspace ∩k
i=1MiO determined by the matrices Mi. As shown in [15], when

n < 2k−1
k−1 m, the foregoing intersection subspace is of positive dimension.

The intersection attacker is parameterized by k, anmd most of its running time is
devoted to solving a random system of

M =
(

k + 1
2

)
m− 2

(
k

2

)
equations in N = kn − (2k − 1)m variables. When k gets larger, the dimension of
the foregoing intersection subspace decreases. In particular, when a larger k is chosen,
the intersection subspace cannot be guaranteed to be nontrivial (e.g., for the tuov-Ip
parameter set in this submission with k = 3), the attack may still work with approximate
probability 1/(q − 1). Nevertheless, by running this intersection attacker multiple times,
the attacker with a larger k may still outperform that with a smaller k.

4.2.4 MinRank Attack

In the MinRank attack, the attacker tries to find a linear combination of the public
polynomials of minimal rank [17, 18].. And the MinRank problem can be formulated as:
given the m matrices P1, ..., Pm ∈ Fn×n

q representing the quadratic polynomials p1, ..., pm

in the public key P, find a linear combination Q =
∑

ci ·Pi with rank no more than
r. Historically, there exist many different approaches to solve the MinRank problem, in-
cluding the linera algebra approach, the Kipnis-Shamir method, and the Minors Modeling
method.

Let Ai be the submatrix of Pi which consists of the last k =
⌈

n−m
m

⌉
rows. Then

A =

 A1
...

Am

 ∈ Fkm×n
q has rank no more than n−m. In this way, the MinRank attacker

can be used to recover the secret key of TUOV, with cost

The complexity of MinRank attack on TUOV is

O

((⌈
n−m

m

⌉
(n−m)

(
n′

n−m

))2

·
⌈

n−m

m

⌉
(n−m)(n−m + 1)

)
,
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where the positive integer n′ ∈ {n−m + 1, ..., n} satisfies

m

(
n′

n−m + 1

)
≥ (n−m)

(
n′

n−m

)
− 1.

Although this attack works for TUOV scheme, in regard to our four sets of recommended
parameters, its cost estimate is much larger than those of the other attackers.

4.2.5 Quantum Attacks

All the known quantum attacks against TUOV are obtained by speeding some part of
a classical attack up with Grover’s algorithm. Therefore, they outperform the classical
attacks by at most a square root factor, and they do not threaten our security claims.
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5 Implementations and Performance
In this section, we introduce the implementation details of TUOV variants on both

reference and AVX2 implementations. We also present the benchmark results on the
AVX2 optimization, in order to showcase the practical strengths of TUOV.

5.1 Reference Implementation
We use the following two finite fields in our TUOV implementations:

• F256 := F2[x]/(x8 + x4 + x3 + x + 1);

• F16 := F2[x]/(x4 + x + 1).

Every element in F256 could be represented by a polynomial over F2 with degree no
more than 7, and hence could be packed into one byte precisely: its most significant bit
corresponds to the coefficient of x7, and the constant corresponds to the least significant
bit, etc. The vector of Fℓ

256 is represented as an ℓ-byte string. The first element of the
vector is the first byte of the string.

For F16, every element could also be represented by a polynomial over F2 with degree
no more than 3, and hence we pack every two field elements into one byte precisely: the
first element is in the least significant nibble, and the most significant bit of each nibble
corresponds to x3. A vector of Fℓ

16 is represented as an dℓ/2e-byte string. The first el-
ement of the vector is in the least significant nibble of the first byte of the string. The
most significant nibble in the last byte is zero-padded if ℓ is odd.

5.1.1 Data Layout of Keys and Signatures

In this section, we define how keys and signatures in TUOV are translated into byte
strings that can be processed by computers.

Encoding of upk. Recall that the uncompressed public key

upk =
[

P(1) P(2) P(3) P(5) P(6) P(9)
]

=

[
P(1)

1 P(2)
1 P(3)

1 P(5)
1 P(6)

1 P(9)
1

P(1)
2 P(2)

2 P(3)
2 P(5)

2 P(6)
2 P(9)

2

]
.

In implementation, a flow of bytes reformulates upk into a vector such that {P(1)
i , P(2)

i , P(3)
i ,

P(5)
i , P(6)

i , P(9)
i }(i ∈ {1, 2}) are stored in a specific manner. First,

[
P(1)

1

P(1)
2

]
is stored as a

column-major m× (n−m)(n−m+1)
2 Macaulay matrix. And then a column-major m× (n−

m)m Macaulay matrix

[
F(2)

1 F(3)
1

F(2)
2 F(3)

2

]
is stored sequentially. Finally,

[
F(5)

1 F(6)
1 F(9)

1

F(5)
2 F(6)

2 F(9)
2

]
is

stored as a column-major m× m(m−1)
2 Macaulay matrix. This vector requires dm · n(n+1)

2 ·
dlog2 qe

8 e bytes for storage.

Encoding of usk. Recall that the uncompressed secret key

usk = (seedsk, S, T(1), T(3), T(4), {F(1)
j , F(2)

j , F(3)
j }j=1,2 ∪ {F

(5)
2 , F(6)

2 }).

In implementation, a flow of bytes reformulates the parts of usk into three vectors
{seedsk, ST, F}.
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• seedsk is a random chosen string of dsk_seed_len/8e bytes, i.e., always 32 bytes in
our implementations.

• ST stores S, T(1), T(3), T(4) in order. Here S is a m1 × (m −m1) matrix, T(1) is a
(n −m) × 1 matrix, T(3) a 1 × (m − 1) one while T(4) is a (n −m) × (m − 1) one.
They are formatted as column-major matrices respectively. Notice that the length
of T(3) is odd, then in F16, 4 zero bits are padded. ST requires

d(m1(m−m1) + n− 1 + (n−m)(m− 1))dlog2 qe
8

e

bytes for storage in total.

• F stores {F(1)
j , F(2)

j , F(3)
j }j=1,2∪{F

(5)
2 , F(6)

2 } in a specific manner. Firstly,

[
F(1)

1

F(1)
2

]
is

stored as a column-major m× (n−m+1)(n−m)
2 Macaulay matrix. Then is

[
F(2)

1 F(3)
1

F(2)
2 F(3)

2

]
as a column-major m×(n−m)m Macaulay matrix. Finally,

[
F(5)

1 F(6)
1

]
is stored

as a column-major (m−m1)×m Macaulay matrix. F requires

d(m · (n−m)(n−m + 1)
2

+ (n−m)m2 + (m−m1)m) · dlog2 qe
8

e

bytes for storage in total.

Encodings of cpk. Recall that compressed public key

cpk = (seedpk, {P(5)
1 , P(6)

1 , P(9)
1 , P(9)

2 }).

In implementation, a flow of bytes reformulates cpk into four parts. First part is seedpk,
a random chosen string of dsk_seed_len/8e bytes, i.e., always 16 bytes in our imple-
mentations. Then P(5)

1 is stored as a column-major m1× 1 Macaulay matrix sequentially,

following a m1×m1 Macaulay matrix P(6)
1 . Finally,

[
P(1)

9

P(2)
9

]
is stored as a column-major

m× (m−1)(m−1)
2 Macaulay matrix. The latter three parts relating to {P(5)

1 , P(6)
1 , P(9)

1 , P(9)
2 }

requires

d(m · (n−m)(n−m + 1)
2

+ (n−m)m2 + (m−m1)m) · dlog2 qe
8

e

bytes for storage in total.

Encodings of csk. The compressed secret key csk = (seedpk, seedsk) is separated into
two vectors containing dpk_seed_len/8e, dsk_seed_len/8e bytes respectively.

Encodings of signature. The byte string of σ ∈ Fn
q is dn dlog2 qe

8 e bytes.

5.1.2 Common Implementation Techniques

In this section, we describe our implementation techniques that are shared among plat-
forms for solving linear equations as well as verification.

Solving linear equations.
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Algorithm 1 Constant-time linear equation solving using Gaussian elimination directly
Input: Linear equation Ax = b, A ∈ Fm×ℓ (ℓ ≥ m)
Output: Solution x ∈ Fℓ or ⊥

1: for i = m upto ℓ− 1 do
2: xi

$←− Fq

3: for i = 0 upto m− 1 do
4: for j = m upto ℓ− 1 do
5: bi := bi + ai,j · xj

6: A′ = (first m columns of A | b) ∈ Fm×(m+1)

7: for i = 0 upto m− 1 do
8: for j = i + 1 upto m− 1 do
9: if a′

i,i = 0 then
10: for k = i upto m do
11: a′

i,k := a′
i,k + 1 · a′

j,k

12: else
13: for k = i upto m do
14: a′

i,k := a′
i,k + 0 · a′

j,k

15: if a′
i,i = 0 then return ⊥

16: p := a′
i,i

17: for k = i upto m do
18: a′

i,k := a′
i,k · p−1

19: for j = i + 1 upto m− 1 do
20: for k = i upto m do
21: a′

j,k := a′
j,k + a′

j,i · a′
i,k

22: for i = m− 1 downto 0 do
23: xi := a′

i,m

24: for j = i + 1 upto m− 1 do
25: xi := xi + a′

i,j · xj

return x = (x0, . . . , xℓ−1)

TUOV signing requires solving two systems of linear equations: one is M>v = e1 with
M> ∈ Fm×v

q , the other is Lx = t̃ − y with a square matrix L ∈ F(m−1)×(m−1)
q . We

outline the both approaches according to Algorithm 1. At first (line 1-2), we sample the
last ℓ − m entries of x in Fℓ−m

q as the free variables in the case the linear system has
a fundamental set of solutions. Secondly, we add them to the right-hand constant side
to reduce the system to m variables (line 3-5, be aware that addition is equivalent to
subtraction in the fields of characteristic 2). Next, we conditionally add all following rows
in order to make sure the pivoting element a′

i,i is non-zero and perform the operations
in constant time (line 8-14). In case it is still zero, we return ⊥ (line 15) as the matrix
is not invertible or the newly obtained system of linear equations has no unique solution.
Subsequently, we multiply the current row by the inverse of the current pivoting element
(line 16-18). We then add multiples of that row to the lower part of the remaining matrix
to obtain a row echelon form (line 19-21). Finally, we back-substitute the variables into
the system of equations to acquire the solutions directly (line 22-25).

Directly solving a system of linear equations of m equations and v variables as in Algo-
rithm 1 requires vm + m3

3 multiplications approximately.

Restricting the number of conditional additions. In line 8-14 of Algorithm 1, we per-
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form a large number of conditional additions to insure constant time. As the additions
will be meaningless once the the pivoting element has become nonzero, we can restrict
the number of additions to a smaller number in order to obtain better performance. In
practice, we choose to add at most 15 (resp. 7) subsequent rows in F16 (resp. F256).

Using accumulators to reduce multiplications. In the verification procedure of TUOV,
we need to evaluate and check whether [s>Pks]k∈[m] == t. This is identical to the one in
Rainbow and may involve a very large number of multiplication. As Chou, Kannwischer,
and Yang has introduced some techniques to greatly reduce the number of multiplication,
we avail ourselves of these ingenious techniques to accelerate verification: As we have
to perform many multiplications like pi,j · sisj when computing one sTPis, we can sort
these pi,j into 15 accumulators according to the multiplicands sisj ∈ F×

16 to defer the
multiplications until the end. While dealing with F256, we use 15× 2 = 30 accumulators
instead of 255: one 15 for the four most significant bits and the other 15 for the four least
significant bits. In both cases, the verification procedure can be accelerated significantly.

Additionally, recall that we format the upk = {Pk}k∈[m] as a column-major Macaulay
matrix P and each of the column is representing all (i, j)-th entries in Pk sequentially.
Hence we can skip the evaluation of the column related to pi,j ’s when sisj = 0. A fraction
of (2q − 1)/q2 ≈ 2/q among all sisj is expected to be zero. This can lead to a great
speed-up when dealing with F16.

Skipping parts of sampling when acquiring upk. We use compressed public keys
when using pkc or pkc + skc variant of TUOV. In both cases, we evaluate ExpandP(seedpk)
to pseudo-randomly sample the P(5)

i , P(6)
i (i ∈ [m1]) and P(9)

i (i ∈ [m]) matrices in the
verification procedure. As discussed before, if some variables in the signature is zero, i.e.,
some sisj = 0, then the column related to (i, j)-th entry in the Macaualy matrix form
is useless when evaluating the result. Hence, we can skip sampling the corresponding
elements in the P(5)

i , P(6)
i (i ∈ [m1]) and P(9)

i (i ∈ [m]) by using a PRNG that can sample
one position at a time sequentially instead of sampling all positions in one call. In practice,
we choose aes128ctr as the PRNG. Note that this technique also gives rise to a significant
speed boost especially when working in F16.

5.2 AVX2 Optimized Implemention
In this section, we present the AVX2 optimization of TUOV on the Intel Skylake archi-

tecture, which is designated as the reference platform in NIST PQC standardization [42].
We focus on the AVX2 instruction set, which is considered the most useful instruction set
for its availability on modern x86 platforms.

The C source code is compiled using gcc version 9.4.0 (-1ubuntu1 20.04.1), and the per-
formance results are measured on a laptop with an Intel Core i5-10210U CPU 1.60GHz
(Skylake) with turbo boost and hyper-threading disabled.

Table 3 presents the performance comparison of our AVX2 implementations with those
of Dilithium [19]. In the table, we combine the results for Sign() from both the classic
and pkc versions, and results for Verify() from both the pkc and pkc+skc versions to
indicate the same implementations. From the comparisons shown in Table 3, we observe
that: 1) tuov-Ip has the fastest signing performance; 2) tuov-Is has the fastest verifi-
cation performance despite having a larger public key size than tuov-Ip. This can be
attributed to the fact that tuov-Ip uses more XOR operations for the two accumulators
while evaluating F256 public polynomials (refer to Section verify); 3) When verifying with
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Table 3: Benchmarking results of AVX2 implementations. Numbers are the median CPU
cycles of 10000 executions each.

Optimized Implementations (AVX2)
Schemes KeyGen Sign Verify

tuov-Ip 10,682,834 220,792 127,722
tuov-Ip-pkc 491,120tuov-Ip-pkc+skc 6,617,102 6,698,588
tuov-Is 32,007,930 272,394 103,746
tuov-Is-pkc 570,194tuov-Is-pkc+skc 15,635,380 21,534,990
Dilithium-II 113,316 272,332 123,916
tuov-III 57,322,074 608,604 442,770
tuov-III-pkc 1,914,056tuov-III-pkc+skc 33,336,974 33,409,538
Dilithium-III 197,026 448,172 199,656
tuov-V 139,948,218 1,133,958 786,450
tuov-V-pkc 4,520,748tuov-V-pkc+skc 85,778,546 74,923,822
Dilithium-V 303,434 551,760 313,096

compressed keys, the execution time is dominated by the computation of ExpandP; 4)
During signing with compressed secret keys, the primary computational load is expended
on the process of Expandsk.
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6 Summary: Strengths and Limitations of TUOV
This section encapsulates the strengths and constraints of the Triangular Unbalanced

Oil and Vinegar (TUOV) digital signature scheme.

In comparison to other post-quantum digital signature schemes, the principal advan-
tages of the TUOV signature scheme include:

Efficiency. The signature generation procedure of TUOV consists of rudimentary linear
algebra operations such as matrix-vector multiplication and resolution of linear sys-
tems over small finite fields. Consequently, the TUOV scheme exhibits excellent
efficiency and stands as one of the swiftest signature schemes available.

Concise signatures. The signatures produced by the TUOV signature scheme are concise,
spanning only a few hundred bits. This makes them significantly shorter than those
of RSA and other post-quantum signature schemes.

Modest computational demands. Given that TUOV solely requires elementary linear
algebra operations over a small finite field, it can be implemented efficiently on cost-
effective devices, eliminating the need for a dedicated cryptographic coprocessor.

Security. While we can only provide with a reduction from the MQ problem to our TUOV
problem, we hold steadfast confidence in our scheme’s security. No effective attack
against TUOV has been discovered since its inception, despite intensive cryptanaly-
sis efforts. Furthermore, we observe that, unlike some other post-quantum schemes,
the theoretical complexities of known attacks against TUOV correspond impeccably
with empirical data. Therefore, we remain assured of the TUOV signature scheme’s
overall security.

Simplicity. The design of the TUOV scheme is profoundly simple, requiring minimal al-
gebraic knowledge for understanding and implementation. This straightforwardness
suggests a paucity of structures within the scheme that could be exploited for at-
tacks.

On the flip side, TUOV’s primary drawback lies in the large size of its public keys. For
security levels surpassing 128-bit, TUOV’s public key sizes are substantially larger than
those of traditional schemes such as RSA, ECC, and certain other post-quantum schemes.
Nonetheless, with the ever-increasing memory capacities of even medium-sized devices,
such as smartphones, we believe this will not pose a significant hurdle. Moreover, we
propose several variants of TUOV to cater to a diverse array of practical requirements.
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