
UOV: Unbalanced Oil and Vinegar
Algorithm Specifications and Supporting Documentation

Version 1.0

Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong,
Matthias J. Kannwischer, Jacques Patarin, Bo-Yuan Peng,

Dieter Schmidt, Cheng-Jhih Shih, Chengdong Tao, Bo-Yin Yang

uovsig@gmail.com

https://www.uovsig.org

May 30, 2023

mailto:uovsig@gmail.com
https://www.uovsig.org

2 UOV: Unbalanced Oil and Vinegar

Contents
1 Introduction 3

2 Preliminaries 6
2.1 Notations and Conventions . 6
2.2 A Brief Introduction to MPKC . 6
2.3 An Overview of UOV . 8

3 Specifications 11
3.1 Design Rationale Behind UOV . 11
3.2 The UOV Digital Signature Scheme . 13
3.3 Data Layout in UOV . 18
3.4 Recommended Parameter Sets for UOV 20

4 Concrete Security Analysis 22
4.1 Collision Attack . 23
4.2 Direct Attack . 23
4.3 Kipnis-Shamir Attack . 24
4.4 Intersection Attack . 24
4.5 MinRank Attack . 25
4.6 Quantum Attacks . 25

5 Implementations and Performance 26
5.1 Common Implementation Techniques . 26
5.2 x86 AVX2 Implementation . 28
5.3 Arm Neon Implementation . 29
5.4 Arm Cortex-M4 Implementation . 31
5.5 FPGA Implementation . 33

6 Summary: Advantages and Limitations 36

References 37

A The salt-UOV and Its EUF-CMA Security 41

UOV: Unbalanced Oil and Vinegar 3

1 Introduction
This document introduces Unbalanced Oil and Vinegar (UOV), a digital signature scheme
using the hash-and-sign paradigm from a trapdoored multivariate quadratic map. First
proposed in 1999 [35], UOV has withstood two decades of cryptanalysis, testifying to its
enduring security and reliability.

UOV excels in time efficiency and signature size. Particularly at the NIST security level
1, UOV outshines other post-quantum digital signature candidates such as Dilithium [28],
Falcon [54], and SPHINCS+ [25] in multiple ways:

• Signature size. UOV signatures are more compact, having significantly shorter
lengths compared to those produced by Dilithium, Falcon, and SPHINCS+.

• Signing Speed. The classic variant of UOV is at least a factor 2 faster than
Dilithium, Falcon, and SPHINCS+ when it comes to generating signatures on most
platforms, including x86-64, and Armv8-A platforms.

• Verification Speed. In terms of verifying signatures, UOV matches the efficiency
of Dilithium and significantly surpasses Falcon and SPHINCS+, marking a notable
advantage in the verification speed.

In summary, UOV is competitive with the new NIST standards by most measures, except
for public key size. At NIST level 1, the classic UOV has a public key size of 272 KB,
which is significantly larger than the public keys of Dilithium, Falcon, and SPHINCS+.
We propose variants of UOV with smaller public keys (e.g., 43 KB at SL 1), at the cost of
longer verification times.
In summary, UOV is competitive with the new NIST standards by most measures,

except for public key size. For instance, at NIST security level 1, the classic variant of
UOV has a public key size of 272 KB, which is significantly larger than those of Dilithium,
Falcon, and SPHINCS+. We propose variants of UOV with smaller keys (e.g., 43 KB at
NIST security level 1), at the cost of longer verification time.

§2: Preliminaries. Multivariate public key cryptosystems (MPKC) date back to the
1980s, and since then many leading cryptographers have been trying to build various types
of MPKCs. For instance, two multivariate digital signature schemes, i.e., Rainbow [18]
and GeMSS [16], made it into the third round of the NIST PQC competition [1].

In a MPKC, the public/secret key pair is composed of multivariate polynomials, and the
hardness of MPKC is firmly connected to the hardness of solving a system of multivariate
equations. Years of research show that multivariate polynomials are well suited to building
digital signature schemes [19, 31, 42, 35, 16, 12]. Take the UOV signature scheme [35] as
an example. Generally speaking, the secret key in UOV is (F , T), where F : Fnq → Fmq is
a specific quadratic map and is usually called central map due to its critical role in UOV,
and the invertible linear transformation T : Fnq → Fnq is used to “hide” the structure of
the central map in the public key; the associated public key is P = F ◦ T : Fnq → Fmq that
consists of a set of multivariate quadratic polynomials, i.e.,

P =
(
p(1)(x1, ..., xn), p(2)(x1, ..., xn), ..., p(m)(x1, ..., xn)

)
,

where

p(k)(x1, ..., xn) =
n∑
i=1

n∑
j=i

p
(k)
i,j · xixj +

n∑
i=1

p
(k)
i · xi + p

(k)
0 , ∀1 ≤ k ≤ m,

and all coefficients are taken from the finite field Fq. For cryptographic purposes, the
central map F is carefully designed so that carrying out the inversion operation of P is

4 UOV: Unbalanced Oil and Vinegar

hard, but is easy once the trapdoor (F , T) is given; moreover, the hardness of the UOV
scheme relies on the UOV assumption that no (even quantum) efficient algorithms can
carry out the inversion operation of P with “high” probability.
Given the public/secret key pair (P, (F , T)), it is straightforward to build the original

UOV scheme [35] according to the hash-and-sign paradigm, as the following shows.

• In the signing algorithm, the given message is first hashed to a target vector t ∈ Fmq ,
and the secret key (F , T) enables us to efficiently find a preimage s ∈ Fnq of t under
the map P; finally, s is outputted as a valid signature of the given message.

• In the verification algorithm, it accepts the given message/signature pair and outputs
True if the evaluation of the signature under the public key P is equal to the hash value
of the given message; otherwise, False is outputted, indicating the message/signature
pair is invalid.

The brief history of MPKC and the general idea behind UOV, together with the notations
in this submission, are presented in Section 2.

§3: Specifications. Section 3 starts with the design rationale behind our UOV digi-
tal signature scheme. Then we specify three variants of UOV, i.e., classic, pkc and
pkc+skc, which offer various tradeoffs between space efficiency and time efficiency, so as
to accommodate a variety of different use-cases. We conclude by proposing four sets of
recommended parameters summarized in Table 1, so as to accommodate different security
requirements. The 12 = 3 × 4 UOV instances implemented in this submission package
correspond precisely to the three UOV variants in combination with the four recommended
parameter sets, and the benchmarking results of their implementations over NIST PQC
Reference Platform can be found in Table 2..

Table 1: Four sets of recommended parameters of UOV. The notation epk denotes the
public key in its expanded representation, whereas cpk denotes its compact representation;
similar notations apply to the secret key.

NIST
n m q

|epk| |esk| |cpk| |csk| signature
S.L. (bytes) (bytes) (bytes) (bytes) (bytes)

uov-Ip 1 112 44 256 278 432 237 896 43 576 48 128
uov-Is 1 160 64 16 412 160 348 704 66 576 48 96
uov-III 3 184 72 256 1 225 440 1 044 320 189 232 48 200
uov-V 5 244 96 256 2 869 440 2 436 704 446 992 48 260

§4: Security analysis. On the one hand, researchers have been working on the security
proof of UOV for the past decades; for instance, a security proof was proposed in 2011 [32]
which connects the security of a UOV variant (i.e., the salt-UOV to be introduced in
Appendix A) to the hardness of a less natural problem in MPKC realm (namely, the UOV
problem). On the other hand, it should be noted that we do not have a formal security
proof which reduces certain commonly accepted “hard” mathematical problem(s), e.g.,
the MQ problem [23], to the security of UOV. Instead, the security analysis for UOV is
usually carried out by looking at all the known attacks against UOV that may influence
its concrete hardness. This is in sharp contrast to that of lattice-based cryptosystems.
Though lattice-based cryptosystems lay the claims of the provable security, none of the
recommended parameters of the lattice-based candidates selected by NIST [1] satisfies
the conditions of the provable security, and until now there has been no solid theoretical
foundation on the concrete hardness estimate of lattice-based ones.

UOV: Unbalanced Oil and Vinegar 5

Table 2: Benchmarking results of AVX2 implementations of UOV. The performance
numbers are measured on Intel Xeon E3-1230L v3 1.80GHz (Haswell) and Intel Xeon
CPU E3-1275 v5 3.60GHz (Skylake) with turbo boost and hyper-threading disabled. The
performance numbers are the median CPU cycles of 1000 executions each.

Haswell Skylake
KeyGen Sign Verify KeyGen Sign Verify

uov-Ip-classic 3 311 188 116 624 82 668 2 903 434 105 324 90 336

uov-Ip-pkc 3 393 872 311 720 2 858 724 224 006
uov-Ip-pkc+skc 3 287 336 2 251 440 2 848 774 1 876 442

uov-Is-classic 4 945 376 123 376 60 832 4 332 050 109 314 58 274

uov-Is-pkc 5 002 756 398 596 4 376 338 276 520
uov-Is-pkc+skc 5 448 272 3 042 756 4 450 838 2 473 254

uov-III-classic 22 046 680 346 424 275 216 17 603 360 299 316 241 588

uov-III-pkc 22 389 144 1 280 160 17 534 058 917 402
uov-III-pkc+skc 21 779 704 11 381 092 17 157 802 9 965 110

uov-V-classic 58 162 124 690 752 514 100 48 480 444 591 812 470 886

uov-V-pkc 57 315 504 2 842 416 46 656 796 2 032 992
uov-V-pkc+skc 57 306 980 26 021 784 45 492 216 22 992 816

Dilithium 2† [28] 97 621∗ 281 078∗ 108 711∗ 70 548 194 892 72 633
Falcon-512 [44] 19 189 801∗ 792 360∗ 103 281∗ 26 604 000 948 132 81 036
SPHINCS+‡ [25] 1 334 220 33 651 546 2 150 290 1 510 712∗ 50 084 397∗ 2 254 495∗
† Security level II. ‡ Sphincs+-SHA2-128f-simple. ∗ Data from SUPERCOP [20].

Generally speaking, our confidence in the security of the UOV scheme lies in the
following facts: UOV remains secure after more than twenty years of cryptanalysis; and
the theoretical hardness estimation of UOV matches the experimental results consistently.
We present in Section 4 those well-known attacks against UOV, including the collision

attack, the direct attack, the Kipnis-Shamir attack [36], the Intersection attack [8], as
well as an improved MinRank attack. It should be stressed that the foregoing four sets
of recommended parameters presented in Table 1 are chosen such that they satisfy the
required levels of security, respectively.

§5: Implementations. To fully demonstrate the strengths of UOV in practice, we describe
in Section 5 the implementations of 12 = 3 × 4 UOV instances among many popular
platforms, together with the experimental results. Please refer to [7] for the full details on
our implementations.

First, we present our optimization for x86-64 platforms, which is designated as the refer-
ence platform in NIST PQC standardization. More precisely, we focus on the optimization
for the AVX2 instruction set due to its availability on modern x86 platforms. In addition
to the Intel Haswell microarchitecture specifically required by NIST, we also implement
our UOV recommended instances in the Intel Skylake microarchitecture with better per-
formance. Specifically, our experimental results for x86-64 platforms are summarized
in Table 2.
Besides, we also present the optimization of UOV for the Armv8-A architecture, the

implementations of UOV for the Arm Cortex-M4, as well as the implementation of UOV
on the popular FPGA platforms.

§6: Advantages and limitations. The advantages and limitations of UOV are summarized
in Section 6.

6 UOV: Unbalanced Oil and Vinegar

2 Preliminaries
2.1 Notations and Conventions
Let λ denote the security parameter in this documentation. For the binary strings
x, y ∈ {0, 1}∗, the notation x‖y denotes their concatenation. All logarithms in this
document are to the base 2. When k is a positive integer, let [k] denote the index set
{1, 2, ..., k}. For the finite set S, let x ← S denote the process of sampling an element
from S uniformly at random and assigning it to the variable x. For a possibly randomized
algorithm A, let the notation y ← A(x) denote the processing of running A on input
x, and assigning the output to the variable y; in particular, when the algorithm A is
deterministic in essence, the notation y := A(x) is applied for emphasis. The expression
A == B evaluates to True if the given objects A and B are equal, and to False otherwise.
Throughout this documentation, q always denotes a positive integer, and Fq denotes

a finite field with q elements; all polynomials, vectors and matrices are defined over Fq.
By convention, vectors are assumed to be in column form and are written using bold
lower-case letters, whereas matrices are written as bold capital letters, and (·)T denotes
the matrix transposition operation; in particular, 0k denotes the k-dimensional zero vector
[0, 0, ..., 0]T, and Ik denote the k-by-k identity matrix (over Fq). The notation [ai]i∈[k]
represents a k-dimensional column vector whose i-th coordinate is ai, and the subscript
can be omitted when the index and the dimension are clear from the context.
A digital signature scheme Π = (KeyGen,Sign,Verify) usually consists of three proba-

bilistic polynomial-time algorithms:

• (pk, sk)← KeyGen(1λ). KeyGen is the key generation algorithm that, on input the
security parameter 1λ, outputs a public key pk and its associated secret key sk.

• σ ← Sign(sk, µ). Sign is the signing algorithm that, on input the secret key sk and
the message µ ∈ {0, 1}∗ to be signed, outputs a signature σ.

• b := Verify(pk, µ, σ). Verify is the deterministic verification algorithm that, on input
the public key pk and the message/signature pair (µ, σ), outputs b ∈ {True,False},
indicating whether it accepts the signature µ as a valid signature on µ for the public
key pk (i.e., b = True) or not (i.e., b = False).

We say a digital signature scheme Π = (KeyGen,Sign,Verify) is correct, if for any
sufficiently large λ, it holds that

Pr[Verify(pk, µ,Sign(sk, µ)) = 1] = 1− negl(λ),

where the probability is taken over the randomness of the key generation and signing
algorithms, and negl(λ) denotes a function that is negligible in the security parameter
λ. Moreover, the standard security definition for a digital signature scheme requires
that it should be existentially unforgeable under chosen-message attack, or of EUF-CMA
security for short. Roughly speaking, the existential unforgeability requirement on a digital
signature scheme states that, given a public key pk, and given access to a signing oracle
that on input a message µ outputs Sign(sk, µ) (where sk is the secret key corresponding to
pk), every computationally bound adversary is unable to come up with a valid signature for
a new message µ′ that was not given to the signing oracle with not-negligible probability.
Please refer to [26] for formal security definitions.

2.2 A Brief Introduction to MPKC
The multivariate public key cryptosystems (MPKC) are a family of candidate post-
quantum cryptographic schemes, Roughly speaking, its public/secret key pair is composed

UOV: Unbalanced Oil and Vinegar 7

of multivariate polynomials, and the hardness of MPKC is firmly connected to the hardness
of solving a system of multivariate equations. The idea of MPKC dates back to 1980s, and
many leading cryptographers (Ong, Schnorr, Matsumoto, Imai, Harashima, Diffie, Fell,
Miyagawa, Tsujii, Kurosawa, Fujioka and others) built various types of MPKCs [19, 31, 42,
35, 16, 12]. However, the linearization equations attack proposed by Jacques Patarin [30]
against the Matsumoto-Imai cryptosystem provided the major impetus for the development
of MPKC theory.

In a multivariate public-key cryptosystem, the public key P a nonlinear map from Fnq to
Fmq in essence, and consists of a sequence p(1)(x), ..., p(m)(x) of multivariate polynomials in
n variables x = [xi]i∈[n], where n,m, q are public parameters, and Fq is a finite field with
q elements. For cryptographic purposes, P should be carefully designed so that it works
like a trapdoored one-way function: first, it should be easy to carry out the evaluation
operation x 7→ P(x) of P on any input from Fnq ; moreover, given the trapdoor information
associated with the public key P , the inversion operation of P can be carried out efficiently
in the sense that for the given t ∈ Fmq , we can efficiently find a preimage s ∈ Fnq such that
P(s) = t; finally, it should “hard” to do the inversion operation for any (even quantum)
efficient adversary without the trapdoor associated with P.
When m ≥ n, we can construct a public-key encryption scheme based on the map P,

which is similar to the “Textbook RSA” encryption scheme: for a given plaintext s ∈ Fnq ,
its corresponding ciphertext is t := P(s). Conversely, what interest us most is that when
m < n, the multivariate polynomials are well suited to building secure digital signature
schemes using hash-and-sign paradigm: for a given message µ ∈ {0, 1}∗, its corresponding
signature is s ∈ Fnq such that P(s) = Hash(µ), where Hash : {0, 1}∗ → Fmq is a hash
function.

In practice, the polynomials in P are usually quadratic, which explains why MPKCs are
often referred to as Multivariate Quadratic (MQ) cryptosystems. In this case, we have

P =
(
p(1)(x1, ..., xn), p(2)(x1, ..., xn), ..., p(m)(x1, ..., xn)

)
,

where

p(k)(x1, ..., xn) =
n∑
i=1

n∑
j=i

p
(k)
i,j · xixj +

n∑
i=1

p
(k)
i · xi + p

(k)
0 , ∀k ∈ [m],

and all coefficients are taken from Fq. In such cases, the evaluation operation associated
with P is obviously efficient. Moreover, the time complexity of the inversion operation
associated with P , as well as the security of the aforementioned public-key cryptosystems,
is firmly connected to the hardness of the following NP-hard problem.

Definition 1 (MQ problem). Given (n,m, q,P) where n,m, q are positive integers, and
P denotes a multivariate quadratic map

P = (p(1), p(2), ..., p(m)) : Fnq → Fmq ,

find an n-dimensional vector s = [si]i∈[n] ∈ Fnq such that

p(1)(s) = p(2)(s) = · · · = p(m)(s) = 0 ∈ Fq.

The corresponding MQ assumption states that, for every (even quantum) probabilistic
polynomial-time algorithm, its success probability in sampling an element in the set
P−1(0m) =

{
u ∈ Fnq

∣∣P(u) = 0m
}
is negligibly small, when only (n,m, q,P) is given.

In the security analysis of multivariate quadratic public-key cryptosystems, the central
role played by the MQ problem could be gleaned from the fact that solving an MQ problem
is at least as hard as finding a preimage s in Fnq for an arbitrary target vector t in Fmq .

8 UOV: Unbalanced Oil and Vinegar

KeyGen(params = (n,m, q)):
1: Choose m OV-polynomials f (1), ..., f (m) uniformly at random
2: F := (f (1), ..., f (m))
3: Choose an invertible linear transformation T : Fnq → Fnq uniformly at random
4: P := F ◦ T
5: pk := P
6: sk := (F , T)
7: return (pk, sk)

Sign
(
params, sk = (F , T), µ ∈ {0, 1}∗

)
:

1: t← Hash(µ) . Hash : {0, 1}∗ → Fmq
2: Find a random preimage u ∈ Fnq of t such that F(u) = t
3: s := T −1(u)
4: σ := s
5: return σ

Verify
(
params, pk = P, (µ, σ = s) ∈ {0, 1}∗ × Fnq

)
:

1: t← Hash(µ)
2: t′ := P(σ)
3: return (t == t′)

Figure 1: The key generation, signing, and verification algorithms of the original UOV [35].

Furthermore, the general MQ problem is proven to be NP-hard on every finite field Fq,
and the proof is particularly simple and direct when q = 2 [23]. In particular, the most
difficult instances of the MQ problem are generally obtained when m and n are of the
same order of magnitude, and efficient algorithms are known [38]when m is either much
larger than or much smaller than n. It is also interesting to note that very often the best
known algorithms on the MQ problem have a similar complexity for worse cases and for
random cases, which is also true for quantum algorithms. Until now, no efficient quantum
algorithm against the MQ problem has been found; taking the NP-hardness of MQ into
consideration, it is generally believed that this will still be the case in the future.

2.3 An Overview of UOV
History of UOV. Here we only consider the cases where m < n and the quadratic map
P : Fnq → Fmq is applied for the construction of digital signature schemes; specifically, what
interest us most is the UOV digital signature scheme [35] and its variants. The history
of UOV scheme, as well as its variants, could be traced back to Patarin’s linearization
equations attack [30] in 1995 against the Matsumoto-Imai cryptosystem. Two years
later, Patarin converted the idea behind this attack into the design of Oil and Vinegar
signature scheme (OV) [31] in 1997. After the balanced version of this scheme was broken
by an invariant subspace attack [36] in 1998, Kipnis, Patarin and Goubin proposed the
Unbalanced Oil and Vinegar (UOV) digital signature scheme [35] in 1999. The simplicity
in the UOV design, and the fact no fundamental improvement on attacks against UOV
has been made after more than twenty years of cryptanalysis give us the confidence in the
security of the UOV scheme.

Original UOV. When the multivariate quadratic map P : Fnq → Fmq is applied for public-
key cryptographic purposes, P is the public key, and it should be well designed so that
we can build in the key generation algorithm its trapdoor td, which enables the efficient

UOV: Unbalanced Oil and Vinegar 9

inversion operation of P and hence serves as the associated secret key. With the desired
key pair (P, td), we can construct a digital signature scheme by following the hash-and-sign
paradigm:

• In the key generation algorithm, given the security parameter, it outputs a random
key pair (pk = P, sk = td).

• In the signing algorithm, given the secret key sk = td as well as a message µ ∈ {0, 1}∗
to be signed, it first compute t ← Hash(µ), and then find a preimage s ∈ Fnq of t
with the aid of td; finally, it returns the signature σ := s. Here Hash : {0, 1}∗ → Fmq
denotes a hash function.

• In the verification algorithm, given the public key pk = P and a message/signature
pair (µ, σ) ∈ {0, 1}∗ × Fnq , it simply computes t′ = P(σ) ∈ Fmq , and returns True if
and only if the equality t′ = Hash(µ) holds; otherwise, it returns False, indicating
that (µ, σ) is not a valid message/signature pair.

Similar to FDH [13], its security clearly is firmly connected to the design of the key
pair (P, td) as well as the choice of parameters. For instance, in the original UOV digital
signature scheme [35] depicted in Figure 1, we have n > 2m, td = (F , T), and the public
key P is the composite of the maps F and T , where:

• The central map F : Fnq → Fmq is a special multivariate quadratic map that consists
of m quadratic polynomials f (1), ..., f (m) in n variables; concretely, each polynomial
f (k) is in the form of

f (k)(x1, ..., xn) =
n−m∑
i=1

n∑
j=1

α
(k)
i,j · xixj . (1)

In the literature, the n −m variables x1, ..., xn−m in the UOV scheme are called
the vinegar variables, the remaining m variables xn−m+1, ..., xn are called the oil
variables, and these m quadratic polynomials are usually referred to as oil-vinegar
polynomials, or simply OV-polynomials;

• T : Fnq → Fnq is an invertible linear transformation, which is used to hide the structure
of the central map F in P.

Inversion of P. To finish the efficiency analysis of the signing algorithm in original UOV,
it remains to show that the inversion operation of P = F ◦ T is efficiently computable,
provided (F , T) is given. Since T is an invertible linear transformation, it suffices to show
that given F , the inversion operation of F is efficiently computable. It is indeed true, as
the following analysis indicates.

For a randomly chosen F : Fnq → Fmq , every fixed vinegar vector v = [vi]i∈[n−m] ∈ Fn−mq

induces a linear transformation ηv = F
([

v
·

])
: Fmq → Fmq ; thus, with gaussian elimination

we can recover, if possible, a preimage
[

v
w

]
∈ Fnq of t under F , and hence a preimage

s ∈ Fnq of t under P, where

s = T −1
([

v
0n

]
+
[
0n−m

w

])
= T −1

([
v
0n

])
+ T −1

([
0n−m

w

])
moreover, the induced linear transformation ηv is full-rank with probability approximately
1 − 1/q. and polynomial number of random attempts on the choice of v enables us to
recover a preimage for a random t ∈ Fmq , except with negligible probability. This shows
that F is indeed efficiently invertible.

10 UOV: Unbalanced Oil and Vinegar

Reformulation of trapdoor. For every i ∈ [n], define the constant vector ei = [δi,j]j∈[n] ∈
Fnq , where δ denotes the Kronecker delta function. Clearly F(en−m+1) = · · · = F(en) = 0,
and the foregoing analysis on the efficient inversion of P relies the efficient computation of

T −1
([

0n−m
w

])
in O = span

(
T −1(en−m+1), ..., T −1(en)

)
. Here O is the m-dimensional

vector space over Fq which is commonly referred to as the oil space in the literature, which
could be seen as the column space of the matrix

[
T −1(en−m+1), ..., T −1(en)

]
∈ Fn×mq .

Therefore, the trapdoor information associated with P could be reformulated as a “short”
description of the subspace O, i.e., an Fq-basis for O that can be represented by a matrix
in Fn×mq . As most m-dimensional subspaces of Fnq could be seen as column spaces of

the matrices in the form of
[

O
Im

]
, where O ∈ F(n−m)×m

q , we would adopt the convention

in this submission that the trapdoor of P is re-defined as the matrix O =
[

O
Im

]
where

O ∈ F(n−m)×m
q , and this does not reduce the key space of UOV much.

Remarks. The invertible linear transformation T could be generalized to the affine
invertible map onto Fnq ; nevertheless, this generalization does not contribute to the security
of UOV, as demonstrated in [14]. Similarly, in the central map F , every OV-polynomial
f (k) depicted in Equation 1 is homogeneous, and an inhomogeneous generalization on f (k)

does not seem to improve the security of UOV significantly.
UOV is unbalanced in the sense that we have more vinegar variables than oil variables,

which is in sharp contrast to the original (balanced) OV scheme [31], where we have the
same number of vinegar variables and oil variables.

In UOV, the key lies in the specific design of the central map F , where the oil variables
never mix with oil variables in every OV-polynomial f (k), and UOV bears its name from
this crucial design exactly. As indicated earlier, this design is crucial for the efficiency of
the signing algorithm as well. Conversely, the mixing of these two types of variables in
P is achieved via the introduction of the invertible map T : Fnq → Fnq , so as to guarantee
the hardness of the inversion operation of P. After more than twenty years of security
analysis, it has been shown that when parameters are appropriately chosen, P is indeed
“hard” to invert on average in the absence of the trapdoor (F , T), implying that P is a
promising candidate of trapdoored one-way function.

UOV: Unbalanced Oil and Vinegar 11

3 Specifications
In this section, we present the design of the UOV digital signature scheme in full detail.
First and foremost, we specify the design rationale behind our UOV digital signature

scheme in Section 3.1.
Section 3.2 is devoted to the full specification of our UOV digital signature scheme. First

come the parameters and the choice of symmetric primitives used in UOV. Then we specify
the UOV digital signature scheme itself as a tuple of five algorithms. In addition to the
usual key generation, signing, and verification algorithms, we also specify a secret
key expansion algorithm and a public key expansion algorithm. The idea is that the
key generation algorithm outputs compact representations of a secret key and a public key,
and the keys need to be expanded before they can be used in the signing or verification
algorithm respectively. This API gives more flexibility to the end user than the usual
3-part API for signature schemes. For example, if the use case demands that keys are
small, then we can store and transmit only the compact representations of the keys, and
perform the key expansion as part of the signing or verification algorithm. Alternatively, if
the use case demands that signing and/or verification is fast, then the keys can be stored
in the expanded representation to avoid having to expand the key during the signing or
verification operations. Finally, to comply with the NIST API for digital signatures, and
to facilitate a comparison with other signature schemes that only have the traditional
3-part API, we specify three variants of the UOV signature scheme with a 3-part API, as
depicted in Figure 3.

• In the classic variant, it takes the key expansion as part of the key-generation
algorithm, and hence it has larger key sizes but faster signing and verification speed.

• In the public-key-compressed pkc variant, the public key expansion is considered as
part of the verification algorithm, which decreases the public key size significantly
and at the cost of slower verification speed.

• Compared with the pkc variant, the doubly-compressed variant pkc+skc goes further
and also considers the secret key expansion to be part of the signing algorithm, which
results in tiny secret keys but slower signing speed.

Note that the three UOV variants are interoperable, in the sense that a signature produced
by the signing algorithm of one variant can be verified by the verification algorithm of the
other variants.
After discussing the data layout of UOV (variants) in Section 3.3, we conclude by

proposing four sets of recommended parameters for UOV specified in Table 4 in Section
3.4. The 12 = 3× 4 UOV instances to be implemented in Section 5 correspond precisely
to the combinations of the three UOV variants in combination with the four recommended
parameter sets.

3.1 Design Rationale Behind UOV
First, we present the design rationale behind the design of our UOV digital signature
scheme to be presented in Section 3.2.

The reformulated trapdoor O. Recall that in UOV, the matrix O =
[

O
Im

]
now can be

considered as the trapdoor of the public key P , and its column space O is usually referred
to as the oil space. To sample a random trapdoor O in the key generation algorithm, it
suffices to pick an O← F(n−m)×m

q uniformly at random; moreover, we can set the secret
key to be O, which could decrease the size of the secret key significantly.

12 UOV: Unbalanced Oil and Vinegar

Generation of the public key P. As indicated in Figure 1, in the key generation algorithm
of the original UOV [35], we first sample a random secret key sk = (F , T) and then derive
its associated public key pk = P deterministically, as the key generation algorithms in most
cryptosystems normally do. Nevertheless, inspired by the design of the CyclicRainbow
scheme [42], the process of generating a public key from the secret key could be partially
reversible, as the following indicates.

In the key generation algorithm, after the new trapdoor O =
[

O
Im

]
is chosen, it remains

to generate an associated P by generating a sequence of multivariate quadratic polynomials
p1, ..., pm that vanish on every element in the oil space O. Recall that each multivariate
quadratic polynomial pi can be uniquely represented by an upper triangular matrix
Pi ∈ Fn×nq such that pi(x) = xTPix. Let

Pi =
[

P(1)
i P(2)

i

0 P(3)
i

]
,

where P(1)
i ∈ F(n−m)×(n−m)

q , P(3)
i ∈ Fm×mq are both upper-triangular, and P(2)

i ∈
F(n−m)×m
q . Then the quadratic polynomial pi vanishes on the oil space O (i.e., the

column space of O) if and only if the matrix[
OT Im

]
Pi

[
O
Im

]
= OTP(1)

i O + OTP(2)
i + P(3)

i ∈ Fn×nq

is skew-symmetric.
Thus, given the trapdoor O, we can generate a set of random matrices {Pi}i∈[m],

which characterizes the public key P = (p1, ..., pm), as follows: first, pick m matrices
P(2)
i ← F(n−m)×m

q and m upper triangular matrices P(1)
i ← F(n−m)×(n−m)

q uniformly at
random (note that this operation is independent of O at all); then, compute

P(3)
i := Upper

(
−OTP(1)

i O−OTP(2)
i

)
, ∀i ∈ [m].

Here, Upper(M) denotes the unique upper triangular matrix M′ such that the difference
M′ −M is skew-symmetric; by definition, the function Upper(·) is deterministic in nature
and can be computed in polynomial time.

Inversion operation. For the multivariate quadratic map P = (p1, ..., pm) determined

by {Pi}i∈[m], together with its new trapdoor O =
[

O
Im

]
, we can improve the process of

calculating a preimage s ∈ Fnq for a given t = [ti]i∈[m] ∈ Fmq as follows: first pick a random
vinegar vector v ← Fn−mq , and then try to recover a preimage s for t by calculating an
appropriate x ∈ Fmq , where s is of the following form

s =
[

v
0m

]
+
[

O
Im

]
· x.

It is routine to verify that

P(s) = t if and only if vTSi · x = ti − yi for every i ∈ [m],

where yi = vTP(1)
i v is the evaluation of pi at v =

[
v

0m

]
, and Si = (P(1)

i +P(1)T
i)O+P(2)

i ∈

F(n−m)×m
q . Let L ∈ Fm×mq be the square matrix with the i-th row being vTSi, and

y = P(v) = [yi]i∈[m] ∈ Fmq . Then the foregoing argument can be simply rephrased as:

P(s) = t if and only if Lx = t− y.

UOV: Unbalanced Oil and Vinegar 13

When L is invertible (with probability approximately 1 − 1/q), we can easily recover a
desired s by calculating its corresponding x = L−1 · (t−y); otherwise, repeat the foregoing
process with a fresh new v← Fn−mq . Analysis shows that we can obtain a desired preimage
s after very few attempts, when parameters are appropriately chosen.

Note that the intermediate matrices Si ∈ F(n−m)×m
q depends only on the public/secret

key pair, and are independent of the message to be signed. Since these m intermediate
matrices Si’s are relatively expensive to compute, it is optional to define them to be part
of the secret key and compute them only once in the key generation algorithm, which
would improve the time efficiency of the signing algorithm.

Use of PRNG. For the implementations of cryptosystems, when the key size of particular
interest, it is customary to use short seeds to replace part of the key, with the use of the
cryptographic pseudo-random number generator (PRNG).

In UOV, we can first sample a short seed seedsk ← {0, 1}sk_seed_len uniformly at random,
and then carry out the deterministic expansion

Expandsk : seedsk 7−→ O

determined by the PRNG Expandsk(·), which could reduce the size of the secret key
significantly; similarly, we can reduce the size of the public key by first sampling a
short seed seedpk ← {0, 1}pk_seed_len uniformly at random, and then carrying out the
deterministic expansion

ExpandP : seedpk 7−→
{

P(1)
i ,P(2)

i

}
i∈[m]

determined by the PRNG ExpandP(·).

3.2 The UOV Digital Signature Scheme
This section is devoted to the introduction to the UOV digital signature scheme.

3.2.1 Parameters in UOV

The UOV digital signature algorithm is parameterized by the following values

params = (n,m, q, salt_len, sk_seed_len, pk_seed_len),

where

• q denotes the size of a finite field Fq. In this submission, we always have q ∈ {16, 256}.

• m denotes the number of multivariate quadratic polynomials in the public key.

• n denotes the number of variables in the multivariate quadratic polynomials in the
public key.

• salt_len denotes the bit length of a binary string salt ∈ {0, 1}salt_len.

• pk_seed_len denotes the bit length of the binary string seedpk ∈ {0, 1}pk_seed_len

used to expand the public key.

• sk_seed_len denotes the bit length of the binary string seedsk ∈ {0, 1}sk_seed_len used
to expand the secret key.

As we shall see later, for all recommended parameter sets proposed in this submission, we
have salt_len = 128, pk_seed_len = 128, and sk_seed_len = 256.

14 UOV: Unbalanced Oil and Vinegar

3.2.2 Choice of symmetric primitives

Here we define a variety of hash functions and PRNGs that are needed for the specification of
our UOV digital signature scheme. There are three functions Hash, Expandv, and Expandsk,
whose performance is not critical. We instantiate these functions with shake256 [22]. The
remaining function is Expandpk, whose performance has a high impact on the performance
of the overall signature scheme. The input and output of this function are public, so the
implementation of this function does not need to be side-channel resistant. We instantiate
Expandpk with aes128 [21] because this results in much faster implementations. The
precise instantiation of our symmetric primitives is as described below:

Hash(µ‖salt) : {0, 1}∗ × {0, 1}128 → Fmq
It maps a message µ and a 16-byte salt to the target vector t. The size of target vector
is m · log2 q bits. In our implementations Hash(·) is instantiated with shake256(·).

Expandv(µ‖salt‖seedsk‖ctr) : {0, 1}∗ × {0, 1}128 × {0, 1}sk_seed_len × {0, 1}8 → Fn−mq

It samples a vinegar vector v based on the message µ, a 16-byte salt, the secret
seed seedsk, and a 1-byte counter. The output size is (n −m) · log2 q bits. In our
implementations Expandv(·) is instantiated with shake256(·) as well.

Expandsk(seedsk) : {0, 1}sk_seed_len → Fm·(n−m)
q

It expands the seed for the secret key to the matrix O. The output size is (n−m) ·
m · log2 q bits. In our implementations, Expandsk(·) is instantiated with shake256(·),
and we sample the matrix in column-major order as it is required in key generation
and signing algorithms.

ExpandP(seedpk) : {0, 1}pk_seed_len → Fm·((n−m)(n−m+1)/2+m·(n−m))
q

It expands the 16-byte public seed to the matrices {P(1)
i }i∈[m] and {P

(2)
i }i∈[m]. We

first sample the {P(1)
i }i∈[m] matrices, and then the {P(2)

i }i∈[m] matrices. The m
matrices are expanded in an interleaved fashion, in column-major order. That is,
we start by sampling the (0,0) entry of P(1)

1 , followed by the (0,0) entry of P(1)
2 ,

etc. After sampling the (0,0) entry of the last matrix P(1)
m we continue with the

(1,0) entries, followed by the (1,1) entries and proceeding column by column, i.e., in
lexicographic order. The size of {P(1)

i }i∈[m] is m · (n−m)(n−m+1)
2 · log2 q bits. The

size of {P(2)
i }i∈[m] is m · m · (n − m) · log2 q bits. We implement ExpandP using

aes128ctr using the seed as the key and a zero nonce. If the aes128ctr API allows
passing a custom counter value, this allows sampling at arbitrary output positions
which allows for some optimizations.
Note that we do not require ExpandP to be a cryptographically secure stream cipher.
We (optionally) propose to use aes128ctr reduced to 4 (instead of 10) rounds. 4-
round aes128 has been proven to have a maximal differential probability of 2−114 [37]
which is deemed sufficient for the purpose of public-key expansion in UOV.

3.2.3 Functionalities in UOV

We now specify the five functionalities/algorithms in our UOV signature scheme, and their
pseudocode can be found in Figure 2.

• UOV.CompactKeyGen: 1λ → (csk, cpk). Given the security parameter 1λ, it outputs a
key pair (cpk, csk), where cpk and csk are compact representations of a UOV public
key and its associated secret key respectively.

• UOV.ExpandSK:csk 7→ esk. It takes as input csk, the compact representation of a
UOV secret key, and outputs esk, the expanded representation of that secret key.
This process is deterministic in nature.

UOV: Unbalanced Oil and Vinegar 15

• UOV.ExpandPK:cpk 7→ epk. It takes as input cpk, the compact representation of a
UOV public key, and outputs epk, the expanded representation of that public key.
This process is deterministic in nature as well.

• UOV.Sign:(esk, µ)→ σ. It takes an expanded secret key esk, a message µ ∈ {0, 1}∗
to be signed, and outputs a signature σ of µ.

• UOV.Verify:(epk, (µ, σ)) 7→ {True,False}. It takes as input an expanded public
key epk, a message/signature pair (µ, σ), and outputs True or False if the given
message/signature pair (µ, σ) is deemed valid or invalid, respectively.

Compact key generation. This functionality is to generate (cpk, csk), the compact
representations of a public/secret key pair.
It first samples two seeds, seedpk and seedsk, uniformly at random. And the compact

secret key csk is defined to be csk = (seedpk, seedsk).

Then we define the oil space corresponding to the matrix O =
[

O
Im

]
by expanding

the matrix O, where O ∈ Fm×(n−m)
q is obtained by expanding the random seed seedsk ∈

{0, 1}sk_seed_len using the PRNG Expandsk(·).
Furthermore, to determine the m multivariate quadratic polynomials p1, . . . , pm in the

public key, we sample the m upper-triangular matrices

Pi =
[

P(1)
i P(2)

i

0 P(3)
i

]
∈ Fn×nq ,

where P(1)
i ∈ F(n−m)×(n−m)

q ,P(2)
i ∈ F(n−m)×m

q are both obtained by expanding the random
seed seedpk ∈ {0, 1}pk_seed_len using the PRNG ExpandP, and

P(3)
i := Upper

(
−OTP(1)

i O−OTP(2)
i

)
, ∀i ∈ [m] ,

Finally, the UOV.CompactKeyGen functionality outputs cpk = (seedpk, {P(3)
i }i∈[m]) as

the compact representation of the public key, and csk = (seedpk, seedsk) as the compact
representation of the secret key.

Secret key expansion. The UOV.ExpandSK functionality simply rederives O from seedsk
and {P(1)

i ,P(2)
i }i∈[m] from seedpk. It also computes a sequence of matrices {Si}i∈[m], where

Si =
(

P(1)
i + P(1)T

i

)
O + P(2)

i .

These matrices will be used in the UOV.Sign functionality. Finally, UOV.ExpandSK(csk)
outputs the expanded representation of the secret key esk =

(
seedsk,O, {P(1)

i ,Si}i∈[m]

)
.

Signature generation. Given the message µ ∈ {0, 1}∗ to be signed, the signature
generation algorithm first computes the hash digest t = Hash(µ‖salt), where salt ←
{0, 1}salt_len is sampled uniformly at random. The remaining part of the signing algorithm
is devoted to computing a preimage s ∈ Fnq of t under the map P via rejection sampling.
Each round begins by deriving a vinegar vector v← Expandv(µ‖salt‖seedsk‖ctr) ∈ Fn−mq

from the message µ, the salt salt, seedsk and a one-byte counter ctr that is initially zero
and increments after each round. Then we seek to compute a feasible x ∈ Fmq satisfying

P
([

v
0m

]
+ O · x

)
= t by solving the system of linear equations Lx = t − y, where

16 UOV: Unbalanced Oil and Vinegar

UOV.CompactKeyGen():
1: seedsk ← {0, 1}sk_seed_len

2: seedpk ← {0, 1}pk_seed_len

3: O := Expandsk(seedsk) . O ∈ F(n−m)×m
q

4: {P(1)
i ,P(2)

i }i∈[m] := ExpandP(seedpk) . P(1)
i ∈ F(n−m)×(n−m)

q upper triangular
5: for i = 1 upto m do . P(2)

i ∈ F(n−m)×m
q

6: P(3)
i := Upper(−OTP(1)

i O−OTP(2)
i)

7: cpk := (seedpk, {P(3)
i }i∈[m])

8: csk := (seedpk, seedsk)
9: return (cpk, csk).

UOV.ExpandSK(csk): . csk = (seedpk, seedsk)
1: O := Expandsk(seedsk)
2: {P(1)

i ,P(2)
i }i∈[m] := ExpandP(seedpk)

3: for i = 1 upto m do
4: Si :=

(
P(1)
i + P(1)T

i

)
O + P(2)

i

5: esk :=
(

seedsk,O, {P(1)
i ,Si}i∈[m]

)
6: return esk.

UOV.Sign(esk =
(

seedsk,O, {P(1)
i ,Si}i∈[m]

)
, µ):

1: salt← {0, 1}salt_len

2: t← Hash(µ‖salt) . t ∈ Fmq .
3: for ctr = 0 upto 255 do
4: v := Expandv(µ‖salt‖seedsk‖ctr) . v ∈ Fn−mq .
5: L := 0m×m
6: for i = 1 upto m do
7: Set i-th row of L to vTSi.
8: if L is invertible then
9: y←

[
vTP(1)

i v
]
i∈[m]

10: Solve Lx = t− y for x

11: s :=
[

v
0m

]
+ O · x . s ∈ Fnq .

12: σ := (s, salt)
13: return σ
14: return ⊥.

UOV.ExpandPK(cpk): . cpk =
(

seedpk, {P(3)
i }i∈[m]

)
1: {P(1)

i ,P(2)
i }i∈[m] := ExpandP(seedpk)

2: for i = 1 upto m do

3: Pi :=
[

P(1)
i P(2)

i

0 P(3)
i

]
epk := {Pi}i∈[m]

4: return epk.

UOV.Verify
(

epk = {Pi}i∈[m] , µ, σ = (s, salt)
)
:

1: t← Hash(µ‖salt)
2: return

(
t ==

[
sTPis

]
i∈[m]

)
.

Figure 2: The key generation, key expansion, signing and verification algorithms of the
UOV signature scheme.

UOV: Unbalanced Oil and Vinegar 17

Table 3: Qualitative comparisons of three UOV variants.
UOV key pair public key secret key

variants compressed compressed
classic (epk, esk) 5 5

pkc (cpk, esk) X 5
pkc+skc (cpk, csk) X X

L ∈ Fm×mq is a square matrix determined by v (as well as the secret key), and y = P (v)

is the evaluation of P at v =
[

v
0m

]
. If L is invertible, we can efficiently find a unique

solution x, and hence a valid signature σ = (s, salt) of the incoming message µ; otherwise,
we just increment the counter ctr and jump to the next round.

Public key expansion. The public key expansion algorithm simply rederives {P(1)
i ,P(2)

i }i∈[m]

from seedpk, and outputs epk = {Pi}i∈[m], where Pi =
[

P(1)
i P(2)

i

0 P(3)
i

]
.

Verification. Given the expanded public key epk and the message/signaure pair (µ, σ),
the verification algorithm recomputes the salted hash digest t = Hash(µ‖salt), evaluates P
on the input s ∈ Fnq , and accepts the mesage/signature pair if and only if t = P(s).

3.2.4 Specification of the UOV variants

Based on the 5-part API for UOV that we specified thus far, we now instantiate the usual
3-part API in a digital signature scheme (Key Generation, Signing, Verification) in three
different ways. We refer to these three instantiations as three variants of UOV, but it
should be understood that the three variants are essentially the same signature scheme,
but with different representations of the secret and public keys. In particular, a signature
generated with one variant can be verified by the other variants, and they achieve the
same concrete hardness when instantiated with the same set of parameters.
In a nutshell, the three variants classic, pck and pkc+skc are summarized as follows:

• classic: in this variant, the public/secret key pair is (epk, esk), i.e., the ExpandPK
and ExpandSK operations are both considered to be part of the key generation
algorithm. This means the key sizes are larger, but signing and verification are faster.

• pkc: in this public-key-compressed variant the public/secret key pair is (cpk, esk),
i.e., ExpandSK is considered part of the key generation algorithm, but ExpandPK
is considered part of the verification algorithm. This makes the public key much
smaller (by a factor between 6 and 7), but makes verification slower.

• pkc+skc: in this doubly-compressed variant, the public/secret key pair is (cpk, csk),
i.e., ExpandSK is part of the signing algorithm, and ExpandPK is part of the
verification algorithm. Compared to the compressed pkc variant, the key generation
algorithm is faster, and the secret key becomes tiny (only pk_seed_len+sk_seed_len
bits), but the signing algorithm becomes much slower.

The key generation, signing, and verification algorithms of the three variants are
straightforward combinations of the foregoing five functionalities, i.e., UOV.CompactKeyGen,
UOV.ExpandSK, UOV.Sign, UOV.ExpandPK, and UOV.Verifyspecified in Figure 3. For the
implementers convenience, we expand out the UOV.CompactKeyGen, UOV.ExpandSK, and

18 UOV: Unbalanced Oil and Vinegar

UOV.ExpandPK subroutines in UOV.classic.KeyGen and UOV.pkc.KeyGen, because this
allows to reuse some work. Please refer to Table 3 for the qualitative comparisons of these
three variants.

3.3 Data Layout in UOV
In this subsection we specify how objects in UOV are encoded as byte strings in our
implementations.

Choices of finite fields. We use the following two finite fields in our UOV implementa-
tions:

• F256 := F2[x]/(x8 + x4 + x3 + x+ 1);

• F16 := F2[x]/(x4 + x+ 1).

And each finite field element is represented by a polynomial over F2.
Each element in F256 is stored in one byte as its coefficient array with the most significant

bit corresponding to x7. A vector in F`256 is represented as an `-byte string, the first
element of the vector corresponding to the first byte of the string.
For F16, we pack two field elements into one byte with the first element in the least

significant nibble. The most significant bit of each nibble corresponds to x3. A vector
of F`16 is represented as an `/2-byte string (we only ever need to encode vectors of even
length). The first element of the vector corresponds to the first nibble of the string.

Encoding of epk. Recall that in epk = {Pi}i∈[m], each upper triangular matrix Pi ∈ Fn×nq

corresponds to a homogeneous quadratic polynomial. Based on n and m, each Pi matrix
is further divided into three components P(1)

i ∈ F(n−m)×(n−m)
q , P(2)

i ∈ F(n−m)×m
q , and

P(3)
i ∈ Fm×mq , such that

Pi =
[

P(1)
i P(2)

i

0 P(3)
i

]
The expanded public key epk is encoded as a list of mn(n+ 1)/2 field elements. The first

m(n −m)(n −m + 1)/2 elements encode the {P(1)
i }i∈[m] matrices, the next m2(n −m)

elements correspond to the {P(2)
i }i∈[m] matrices, and the remaining m3/2 elements encode

the {P(3)
i }i∈[m] matrices.

Each sequence of m matrix is encoded in an m-fold interleaved fashion: we first encode
the first element of each matrix, before moving on to the second element of each matrix
and so on. The elements from each matrix appear in the encoding in row-major order.
In particular, note that the P(1)

i and P(3)
i matrices are upper-triangular, and we do not

encode the elements below the diagonals, since they are always zero.
The size of the expanded public key is

|epk| = mn(n+ 1) log q/16 bytes.

Encoding of esk. Recall that

esk =
(

seedsk,O, {P(1)
i ,Si}i∈[m]

)
.

The byte string for esk is the concatenation of the bit-packed representations of seedsk,
the column-major matrix O, the column-major Macaulay matrix of {P(1)

i }i∈[m], and the
column-major Macaulay matrix of {Si}i∈[m]. To be precise,

UOV: Unbalanced Oil and Vinegar 19

UOV.classic.KeyGen():
1: seedsk ← {0, 1}sk_seed_len

2: seedpk ← {0, 1}pk_seed_len

3: O := Expandsk(seedsk)
4: {P(1)

i ,P(2)
i }i∈[m] := ExpandP(seedpk)

5: for i = 1 upto m do
6: P(3)

i := Upper(−OTP(1)
i O−OTP(2)

i)

7: Pi :=
[

P(1)
i P(2)

i

0 P(3)
i

]
8: Si :=

(
P(1)
i + P(1)T

i

)
O + P(2)

i

9: esk :=
(

seedsk,O, {P(1)
i ,Si}i∈[m]

)
10: epk := {Pi}i∈[m]
11: return (epk, esk).

UOV.classic.Sign(esk, µ):
1: return UOV.Sign(esk, µ).

UOV.classic.Verify(epk, µ, sig):
1: return UOV.Verify(epk, µ, sig).

UOV.pkc.KeyGen():
1: seedsk ← {0, 1}sk_seed_len

2: seedpk ← {0, 1}pk_seed_len

3: O := Expandsk(seedsk)
4: {P(1)

i ,P(2)
i }i∈[m] := ExpandP(seedpk)

5: for i from 1 to m do
6: P(3)

i := Upper(−OTP(1)
i O−OTP(2)

i)
7: Si :=

(
P(1)
i + P(1)T

i

)
O + P(2)

i

8: cpk := (seedpk, {P(3)
i }i∈[m])

9: esk :=
(

seedsk,O, {P(1)
i ,Si}i∈[m]

)
10: return (cpk, esk).

UOV.pkc.Sign(esk, µ):
1: return UOV.Sign(esk, µ).

UOV.pkc.Verify(cpk, µ, sig):
1: epk := UOV.ExpandPK(cpk)
2: return UOV.Verify(epk, µ, sig).

UOV.pkc+skc.KeyGen():
1: (cpk, csk)← UOV.CompactKeyGen()
2: return (cpk, csk).

UOV.pkc+skc.Sign(csk, µ):
1: esk := UOV.ExpandSK(csk)
2: return UOV.Sign(esk, µ).

UOV.pkc+skc.Verify(cpk, µ, sig):
1: epk := UOV.ExpandPK(cpk)
2: return UOV.Verify(epk, µ, sig).

Figure 3: The key generation, signing, and verification algorithms of the classic, pkc,
and pkc+skc variants of the UOV signature scheme.

20 UOV: Unbalanced Oil and Vinegar

• seedsk is a sequence of sk_seed_len/8 bytes;

• We encode O as a column-major matrix; equivalently, we concatenate the encodings
of the m column vectors of length n−m;

• The { P(1)
i }i∈[m] matrices are encoded in the same way as the {P(1)

i }i∈[m] component
of epk;

• And the {Si}i∈[m] matrices are encoded in the same way as the {P(2)
i }i∈[m] component

of epk.

The number of bytes required to store the expanded secret key is therefore

|esk| = 1
8 ·

sk_seed_len︸ ︷︷ ︸
seedsk

+

m(n−m)︸ ︷︷ ︸
O

+m(n−m)(n−m+ 1)/2︸ ︷︷ ︸
{P(1)

i
}i∈[m]

+m2(n−m)︸ ︷︷ ︸
{Si}i∈[m]

 log q

 .

Encodings of cpk and csk. Recall that

cpk =
(

seedpk, {P(3)
i }i∈[m]

)
, and csk = (seedsk, seedpk).

The byte string of cpk is the concatenation of the bit-packed representations of seedpk and
the column-major Macaulay matrix of {P(3)

i }i∈[m]. Here, the encoding of the matrices
{P(3)

i }i∈[m] is the same as that of the {P(3)
i }i∈[m] component in epk. The byte string for

csk is trivially the concatenation of the binary representations of seedpk and seedsk.
Hence, the respective number of bytes to store cpk and csk is

|cpk| = (pk_seed_len +m2(m+ 1)/2 log q))/8,
|csk| = (sk_seed_len + pk_seed_len)/8.

Encoding of the signature. A signature consists of a vector s ∈ Fnq and a bitstring
salt ∈ {0, 1}salt_len. The signature is encoded as the concatenation of the encoding of s,
which is dn log q/8e bytes long, and that of salt. Therefore the signature size is

|sig| = dn/8 · log qe+ salt_len/8

bytes.

3.4 Recommended Parameter Sets for UOV
To accommodate different security needs, we propose four sets of recommended parameters
for UOV. These four sets of recommended parameters, together with their corresponding
key/signature sizes, are presented in Table 4.
First, it should be stressed that each set of recommended parameters in Table 4 is

applicable to every UOV variant presented in Section 3.2.4. Moreover, note that among all
four sets of recommended parameters, we always have pk_seed_len = 128, sk_seed_len =
256, and salt_len = 128. Finally, as shown in Table 4, their key differences lie in the choice
of (n,m, q):

• For NIST security level 1, we propose two sets of recommended parameters: uov-Ip,
which works over F256 and gets slightly smaller keys, and uov-Is, which works over
F16 and has shorter signatures.

UOV: Unbalanced Oil and Vinegar 21

Table 4: Recommended parameter sets and the corresponding key/signature sizes for UOV
variants. Note that in each parameter set, we have salt_len = 128, pk_seed_len = 128,
and sk_seed_len = 256.

NIST
n m q

|epk| |esk| |cpk| |csk| |σ|
S.L. (bytes) (bytes) (bytes) (bytes) (bytes)

uov-Ip 1 112 44 256 278 432 237 896 43 576 48 128
uov-Is 1 160 64 16 412 160 348 704 66 576 48 96
uov-III 3 184 72 256 1 225 440 1 044 320 189 232 48 200

uov-V 5 244 96 256 2 869 440 2 436 704 446 992 48 260

• For NIST security level 3, we propose one set of recommended parameters, i.e.,
uov-III.

• Finally, we propose one set of parameters, i.e., uov-V, for NIST security level 5.

In sum, given the three UOV variants presented in Figure 3 and the four sets of
recommended parameters presented in Table 4, this submission consists of 12 = 3 × 4
UOV instances, and they are labeled by concatenating the name of the variant with that
of the recommended parameters set. For instance, uov-Is-classic refers to the UOV
instance when we instantiate the classic UOV variant with the uov-Is parameter set,
while uov-V-pkc+skc refers to the UOV instance when we instantiate the pkc+skc UOV
variant with the uov-V parameter set.

Jumping ahead, Section 4 contains the concrete security analysis of UOV with these
four parameter sets, since this is independent of the choice of UOV variants; and Section 5
is devoted to the implementations of three UOV variants in combination with these four
recommended parameter sets over various platforms.

22 UOV: Unbalanced Oil and Vinegar

4 Concrete Security Analysis
In this section we introduce the state-of-the-art attacks against UOV scheme, and analyze
the hard estimation result of the four sets of recommended parameters proposed in Section
3.4. Table 5 contains lower bounds for the bit-complexity of the state-of-the-art attacks
against UOV, and we clarify how the complexities in Table 5 are obtained.

Similar to most of the cryptosystems in MPKC, researchers have not presented a formal
security proof which reduces certain well-known “hard” mathematical problem(s) say, the
MQ problem, to the security of UOV. Here, in this documentation the security analysis for
UOV is carried out by listing some of the critical attacks against UOV that may influence
its concrete hardness estimation result. Our confidence in the security of UOV lies in the
facts that UOV remains secure after more than twenty years of cryptanalysis, and that
there is a solid theoretical foundation on the concrete hardness estimation of practical
attacks against MPKC such that the theoretical hardness estimation of UOV matches the
experimental results consistently.
Historically, those attacks against UOV are usually classified into two types:

• The key-recovery attacks aims to recover the secret key from the given public key,
e.g., the Kipnis-Shamir attack [36], the Intersection attack [8] and the MinRank
attack;

• The forgery attacks that aims to forge a message/signature pair passing the verification
test, e.g., the collision attacks against the hash function, and the direct attack. It
should be noted that in the forgery attack, the hash function Hash(·) is usually
modeled as a random oracle (RO).

salt-UOV. There is yet a UOV variant, i.e., the salt-UOV, which was proposed in
2011 [32] and is very close to our recommended UOV depicted in Section 3. It can be
shown that the EUF-CMA security of salt-UOV is readily based on the hardness of the
UOV problem, an intermediate problem in the MQ realm that is firmly related to UOV
scheme(s) and hence is not as natural as the other problems in MQ realm, say the MQ
problem. Compared with salt-UOV,
we prefer the recommended UOV depicted in Section 3 for two reasons:

• All the state-of-the-art attacks against our recommended UOV are applicable to
salt-UOV, and vice versa. This means that when instantiated with the same set of
parameters, they achieve the same security level according to the state-of-the-art
cryptanalysis in MPKC.

• It is easy to see our recommended UOV is more efficient than salt-UOV in terms of
the signing speed.

For completeness, the salt-UOV scheme and its security argument are presented in A.

Table 5: Bit-complexity estimates (lower bound for the base-2 logarithm of the number
of binary gates required to perform an attack) of state-of-the-art attacks against our
proposed parameter sets. The KS and Intersection attacks are key-recovery attacks, and
the Birthday and Direct attacks are universal forgery attacks.

Parameter set Collision Direct KS Intersection
(n,m, q) log2 k log2 log2 k log2

uov-Ip (112, 44, 256) 191 2 145 218 2 166
uov-Is (160, 64, 16) 143 12 165 154 3 176

uov-III (184, 72, 256) 303 4 218 348 2 250
uov-V (244, 96, 256) 399 6 278 445 2 312

UOV: Unbalanced Oil and Vinegar 23

4.1 Collision Attack
The first attack we consider is a simple collision attack on the equality P(s) = Hash(µ‖salt).
An attacker can compute P(si) for X inputs {si}i∈[X] and compute Hash(µ‖saltj) for
Y salts {saltj}j∈[Y]. If X · Y = αqm, then there is a collision P(si∗) = Hash(µ‖saltj∗)
with probability ≈ 1− e−α, and the attacker can output the signature (si∗ , saltj∗) for the
message µ.

Computing hashes. For the sake of concreteness, we say that the cost of a Keccak-f 1600
permutation is 217.5 bit operations [48], so computing the list of hashes takes at least
Y · 217.5 bit operations.

Compute evaluations of P. Using Gray-code enumeration [6], we can evaluate a mul-
tivariate quadratic polynomial on a large number of inputs using only 3r bit operations
per evaluation (2r bit operations to compute the evaluation, and r bit operations to
copy the evaluation to a list). We can optimize the attack by, evaluating only the first
m′ = m/2 + o(m) polynomials of P (as opposed to all m of them) to look for partial
collisions (i.e., si and saltj such that the first m′ elements of P(si) matches the first m′ log q
bits of Hash(µ‖saltj)). Each time a partial collision is found, we use naive polynomial
evaluation to check if it is a complete collision. For appropriately chosen m′ this second
step is cheap because the number of partial collisions is small, therefore we ignore the
second step in our cost analysis. The cost of the polynomial evaluations is 3mr

2 X bit
operations.
The lowest conceivable bit-cost of the total attack is then

1
(1− e−α)

(
3mr

2 X + 217.5Y

)
,

which is approximately equal to 210.7√qmmr for optimally chosen X,Y and α1. This is
the formula we use in Table 5. This above formula should be interpreted as a conservative
lower bound for the “true” cost of the attack. Note that there the uov-Is entry should
compute to 142.7, which we are comfortable rounding up to 143 because the collision-
finding approach we describe here would require a huge amount of memory. This incurs a
cost2. We have not multiplied the numbers in Table 5 with this factor because realistically,
an attacker would use a memoryless collision-finding algorithm such as e.g., [51]. However,
algorithms like [51] have a small overhead in the number of function evaluations, and it
would not be possible to take full advantage of Gray-code enumeration optimization (if
you use Gray code to evaluate 2k times, you typically lose about a factor of 2k/2).

4.2 Direct Attack
The most straightforward attack against UOV, (and even against most of the MPKC
cryptosystems) is the direct attack, where the attacker aims to solve an instance of the MQ
problem associated with the public key P. In the direct attack, the attacker first chooses
a message µ∗ ∈ {0, 1}∗ and a salt salt∗ ∈ {0, 1}∗ on his will, computes t = Hash(µ∗‖salt∗),
and then is devoted to the recovery of a preimage s for t under the public key P via the
system-solving techniques.
At the heart of the attack is to solve a random system of m quadratic equations in n

variables; and the state-of-the-art approach is to first take advantage of the underdeter-
minedness of the system by reducing to the problem of solving a system of m′ = m− 1

1We want to minimize
√
α/(1− e−α), which happens at α = −W−1(−e−1/2/2)− 1

2 or around α = 1.25
2Bernstein et al. [60]: “we estimate the cost of each access to a bit within N bits of memory as the

cost of
√
N/25 ‘bit operations’.”

24 UOV: Unbalanced Oil and Vinegar

equations in n′ = m− 1 variables with the approach of Thomae and Wolf [50], and then
using the hybrid WiedemannXL algorithm to solve the new system. The estimated cost of
this state-of-the-art approach is

min
k
qk · 3

(
n′ − k + dn′−k,m′

dn′−k,m′

)2(
n′ − k + 2

2

)
(2r2 + r) , (2)

and is identified as the cost of the direct attack against UOV. Here, dN,M is the operating
degree of XL, and is defined to be the smallest d > 0 such that the coefficient of td in the
power series expansion of

(1− t2)M

(1− t)N+1

is non-positive.
Note that the attacker might compute Hash(µ‖salt) for a large number of message/salt

pairs, and then solve a multi-target version of the system-solving problem. Nevertheless,
our foregoing estimation is justified by the fact that there are no known algorithms that
can take advantage of multiple targets (beyond the naive collision attacks introduced in
Section 4.1).

4.3 Kipnis-Shamir Attack
The Kipnis-Shamir attack [36] tries to recover the subspace O from the public map
P : Fnq → Fmq . Historically, this attack was first proposed for the case n = 2m, where
it runs in polynomial time and demonstrates the insecurity of the original balanced OV
scheme proposed in [31]. Moreover, it can generalized to the cases n > 2m, and in the
literature its cost was identified as O(qn−2mn4), if n is even or q is odd.

However, it turns out that the foregoing formula overestimates the cost of the attack, as
the following analysis indicates. First, the cost of finding a single vector in O is dominated
by the cost of computing an average of qn−2m characteristic polynomials of n-by-n matrices,
and solving the same number of linear systems in n variables; This takes O(qn−2mnω log(n))
field multiplications, where ω denotes the exponent of matrix multiplication. The n4 factor
in the literature was obtained by putting ω = 3. Moreover, the foregoing attack should be
repeated m = O(n) times so as to get a basis for O. Nevertheless, this does not contribute
an m factor into the overall cost intuitively, because once a first vector in O is found, it
could be fully utilized and the other vectors in O can be found more efficiently with other
methods (e.g., see [8]).
With this in mind, in this submission the cost of Kipnis-Shamir attack is identified as

qn−2mn2.8(2r2 + r) ,

which we believe is an underestimate of the cost of the attack for our proposed parameters.

4.4 Intersection Attack
The intersection attack [8] generalizes the ideas behind the Kipnis-Shamir attack, in
combination with a system-solving approach such as in the reconciliation attack [?]. It
tries to simultaneously find k vectors in O =

{
u ∈ Fnq

∣∣P(u) = 0m
}
, by solving a system

of quadratic equations for some vector in the intersection ∩ki=1MiO, for some matrices Mi.
The attack only works if the intersection is nonempty, which is guaranteed if n < 2k−1

k−1 m.
For details, we refer to [8].
The cost of the attack is dominated by the cost of solving a random system of M =(

k+1
2
)
m− 2

(
k
2
)
equations in N = kn− (2k − 1)m variables. For the uov-Ip parameter set

we use k = 3, even though n = 2k−1
k−1 m. This means that the intersection is not guaranteed

UOV: Unbalanced Oil and Vinegar 25

to be nontrivial, and the attack is likely to fail. However, one can check that for these
parameters the intersection is non-trivial with probability 1/(q − 1), so on average we only
need to repeat the attack q − 1 = 15 times, which is still cheaper than running a single
attack with k = 2.

4.5 MinRank Attack
In the MinRank attack, the attacker tries to find a linear combination of the public
polynomials of minimal rank [56, 57].. And the MinRank problem can be formulated as:
given the m matrices P1, ...,Pm ∈ Fn×nq representing the quadratic polynomials p1, ..., pm
in the public key P, find a linear combination Q =

∑
ci ·Pi with rank no more than r.

Historically, there exist many different approaches to solve the MinRank problem, including
the linera algebra approach, the Kipnis-Shamir method, and the Minors Modeling method.
Let Ai be the submatrix of Pi which consists of the last k =

⌈
n−m
m

⌉
rows. Then

A =

A1
...

Am

 ∈ Fkm×nq has rank no more than n−m. In this way, the MinRank attacker

can be used to recover the secret key of UOV, with cost
The complexity of MinRank attack on UOV is

O

((⌈
n−m
m

⌉
(n−m)

(
n′

n−m

))2
·
⌈
n−m
m

⌉
(n−m)(n−m+ 1)

)
,

where the positive integer n′ ∈ {n−m+ 1, ..., n} satisfies

m

(
n′

n−m+ 1

)
≥ (n−m)

(
n′

n−m

)
− 1.

Although this attack works for UOV scheme, in regard to our four sets of recommended
parameters, its cost estimate is much larger than those of the other attackers.

4.6 Quantum Attacks
All the known quantum attacks against UOV are obtained by speeding some part of a
classical attack up with Grover’s algorithm. Therefore, they outperform the classical
attacks by at most a square root factor, and they do not threaten our security claims.
Indeed, the NIST security levels 1,3, and 5 are defined with respect to the hardness of a key
search against a block cipher such as the AES with 128, 192, or 256-bit keys respectively.
Grover speeds up a key search by almost a square root factor, so, for a quantum attack to
break the NIST security targets it needs to improve on classical attacks by more than a
square root factor, which is not possible by relying on Grover’s algorithm alone.

26 UOV: Unbalanced Oil and Vinegar

5 Implementations and Performance
Recall that in Section 3 we have presented three UOV variants as well as four sets of
recommended parameters. This section specifies the implementations of these 12 = 3× 4
UOV instances 3 over various platforms, as well as their performance, so as to fully
demonstrate the strengths of UOV in practice. The contents of this section come from [7].

5.1 Common Implementation Techniques
First, we describe our implementation techniques for linear equation solving in signing
and for verification , which are shared among all platforms under consideration.

5.1.1 Solving linear equations

UOV signing requires solving the system of linear equations Ax = b for the m variables
x ∈ Fmq , where A = L and b = t−y. For this we use a constant-time Gaussian elimination
algorithm and back-substitution (Algorithm 1). As the first step (line 3) in the outer loop,
we conditionally add all following rows to make sure the pivoting element a′i,i is non-zero.
This has to be performed in constant time, i.e., the addition has to be performed for all
following rows. In case it is still zero, we return ⊥ (line 7) as the matrix is not invertible
or the system of linear equations has no unique solution. Leaking that the matrix is not
invertible via a timing side-channel is not an issue as the matrix is discarded if it is not
invertible. Then, we invert the pivoting element (line 8) and multiply the current row by
the inverse (line 9). We then add multiples of that row to the remainder of the matrix
(line 11). We then back-substitute the variables into the system of equations to obtain the
solutions (line 14).
Note that, the previous works [47, 17], explicitly compute the inverse of the matrix A

and then derive the solution with a matrix multiplication as x = A−1 · b. This approach
is less efficient, as pointed out in [7].

Reducing the number of conditional additions. For Algorithm 1, we have to perform a
large number of conditional additions in lines 3-6 to achieve constant-time behavior. In
practice, most of these additions will not actually be performed as the pivoting element
is already nonzero. We instead propose to limit the additions to a small number of rows.
We propose to add at most 15 rows for F16 and at most 7 rows for F256. This results in a
probability of at most m · 16−16 = 2−58 and m · 256−8 ≤ 2−57.4 to wrongly abort for the
F16 and F256 parameters, respectively, which we deem is sufficiently small.

5.1.2 Verification

For UOV verification, we evaluate the public map represented by a Macaulay matrix at the
variables given by the signature s and verify that the output equals the hash of the message.
Note that UOV verification is exactly the same as that of Rainbow [19] and, thus, the same
techniques apply. We make use of a technique first introduced by Chou, Kannwischer,
and Yang [17]: instead of multiplying the monomials sisj by the corresponding column
of the Macaulay matrix and accumulating it into a single accumulator, we use multiple
accumulators and do not perform any multiplication while passing through the matrix. At
the end of verification, each accumulator is multiplied by the corresponding field element
to obtain the final result. This allows for delaying all multiplications to the end and,
hence, vastly reducing the number of required multiplications. This results in a substantial
speed-up. In the case of F16, we use 15 accumulators: one for each possible value of sisj
except for zero as those columns can be discarded straight away. In the case of F256, we use
2 × 15 accumulators: one set for the four least significant bits, and one set for the four most

UOV: Unbalanced Oil and Vinegar 27

Algorithm 1 Constant-time linear equation solving
using Gaussian elimination directly
Input: Linear equation Ax = b
Output: Solution x ∈ Fmq or ⊥

1: A′ := [A | b] ∈ Fm×(m+1)
q . A′ = [a′i,j]

2: for i = 0 upto m− 1 do
3: for j = i+ 1 upto m− 1 do
4: if a′i,i == 0 then
5: for k = i upto m do
6: a′i,k := a′i,k + a′j,k

7: if a′i,i == 0 then return ⊥
8: p−1

i := (a′i,i)−1

9: for k = i upto m do
10: a′i,k := p−1

i · a′i,k
11: for j = i+ 1 upto m− 1 do
12: for k = i upto m do
13: a′j,k := a′j,k + a′j,i · a′i,k
14: for i = m− 1 downto 1 do
15: for j = 0 upto i− 1 do
16: a′j,m := a′j,m + a′i,ja

′
i,m

17: return last column of A′

significant bits. Each column gets added to the corresponding accumulator of each set. By
using different accumulators for the high and low bits, we keep the memory requirements
for this approach reasonable while still vastly reducing the number of required costly field
multiplications. Note that this approach results in signature-dependent memory access
patterns which may be problematic in case signatures are secret and if the targeted device
leaks memory addresses, e.g., through cache timing side channels. For the majority of
cases, however, the signature is public and this approach should be used for signing speed.

Skipping parts of the public key. As already pointed out by Chou, Kannwischer, and
Yang [17], the verification can be further sped-up by exploiting that in case a monomial
sisj is zero, the corresponding columns in the Macaulay do not affect the result as they
are multiplied by zero. We, hence, skip ahead in case either of the variables is zero. This
is particularly significant when working with F16 as 1/16 of variables are expected to be
zero, which means 31/256 of the products sisj is expected to be zero.

“Lazy sampling”. When using compressed public keys, the P(1)
i and P(2)

i matrices are
sampled pseudo-randomly from a public seed by computing ExpandP(seedpk). Straight-
forward implementations first sample the entire pseudo-random part and then call the
classic verification routine. However, if some variables in the signature are zero, then this
is wasteful as some parts of the public key are multiplied by zero, i.e., not used. We can
simply advance the state of the PRNG (through a function prng_skip) by increasing the
counter of aes128ctr state. We refer to this technique as “lazy sampling”. Note that this
optimization is made possible by choosing a PRNG construction that allows sampling
output at arbitrary positions. This was not possible with previous constructions, e.g., used
within Rainbow which requires sampling all the output sequentially. It would also not

28 UOV: Unbalanced Oil and Vinegar

Table 6: Benchmarking results of AVX2 implementations. Numbers are the median CPU
cycles of 1000 executions each.

Haswell Skylake
KeyGen Sign Verify KeyGen Sign Verify

uov-Ip-classic 3 311 188 116 624 82 668 2 903 434 105 324 90 336

uov-Ip-pkc 3 393 872 311 720 2 858 724 224 006
uov-Ip-pkc+skc 3 287 336 2 251 440 2 848 774 1 876 442

uov-Is-classic 4 945 376 123 376 60 832 4 332 050 109 314 58 274

uov-Is-pkc 5 002 756 398 596 4 376 338 276 520
uov-Is-pkc+skc 5 448 272 3 042 756 4 450 838 2 473 254

Dilithium 2† [28] 97 621∗ 281 078∗ 108 711∗ 70 548 194 892 72 633
Falcon-512 [44] 19 189 801∗ 792 360∗ 103 281∗ 26 604 000 948 132 81 036
SPHINCS+‡ [25] 1 334 220 33 651 546 2 150 290 1 510 712∗ 50 084 397∗ 2 254 495∗

uov-III-classic 22 046 680 346 424 275 216 17 603 360 299 316 241 588

uov-III-pkc 22 389 144 1 280 160 17 534 058 917 402
uov-III-pkc+skc 21 779 704 11 381 092 17 157 802 9 965 110

uov-V-classic 58 162 124 690 752 514 100 48 480 444 591 812 470 886

uov-V-pkc 57 315 504 2 842 416 46 656 796 2 032 992
uov-V-pkc+skc 57 306 980 26 021 784 45 492 216 22 992 816
† Security level II. ‡ Sphincs+-SHA2-128f-simple. ∗ Data from SUPERCOP [20].

Table 7: Benchmarking results of AVX2 implementations using 4-round AES for public-key
expansion. Numbers are median CPU cycles of 1000 executions.

Haswell Skylake
KeyGen Sign Verify KeyGen Sign Verify

uov-Ip-pkc 3 130 128 114 012 182 100 2 815 902 106 336 150 902uov-Ip-pkc+skc 3 154 404 2 113 924 2 861 082 1 818 690

uov-Is-pkc 4 799 564 117 948 205 504 4 337 958 110 602 167 886uov-Is-pkc+skc 4 810 612 2 755 060 4 252 570 2 366 766

uov-III-pkc 21 419 104 348 756 714 252 17 441 792 300 716 589 846uov-III-pkc+skc 21 203 604 11 222 092 16 909 288 9 603 518

uov-V-pkc 55 983 388 723 628 1 516 652 45 508 552 624 774 1 268 998uov-V-pkc+skc 56 136 556 24 824 672 44 792 434 21 823 506

be possible when using a sponge-based extendable-output function (XOF) like shake256
which may have appeared to be a natural choice for seed expansion. “Lazy sampling”
results in a significant speed-up especially for F16.

5.2 x86 AVX2 Implementation
In this subsection we present our optimization for x86-64 platforms, which is designated as
the reference platform in NIST PQC standardization [41]. More precisely, we focus on the
optimization for the AVX2 instruction set, which is arguably the most useful instruction set
for its availability on modern x86 platforms. While NIST is requiring code primarily for the
Intel Haswell microarchitecture, we additionally study the Intel Skylake microarchitecture
as it is easily available more than Haswell and results in better performance.

Symmetric primitives. For implementing the four symmetric primitives (Hash, Expandv,
Expandsk, and ExpandP), we call the OpenSSL library when relating to standard crypto-
graphic primitives, e.g., shake256 and aes128. For ExpandP using round-reduced AES,

UOV: Unbalanced Oil and Vinegar 29

we adapt the aes128ctr implementation in [24], which utilizes x86 AES instructions, to
implement only 4 AES rounds.

Target platform. We benchmark our AVX2 optimization of UOV on the Intel Haswell
and the Intel Skylake architectures. The C source code is compiled with clang version
14.0.0-1ubuntu1 and the performance numbers are measured on Intel Xeon E3-1230L v3
1.80GHz (Haswell) and Intel Xeon CPU E3-1275 v5 3.60GHz (Skylake) with turbo boost
and hyper-threading disabled.

Results. Table 6 reports the performance of our AVX2 implementations and comparisons
to other standard PQC schemes, whereas Table 7 shows the results with round-reduced
AES. In Table 6, we merge the numbers for Sign() from classic and pkc versions and
Verify() from pkc and pkc+skc to indicate that they use the same implementations.
Among all comparisons, Table 6 shows that

1) uov-Ip has the fastest signing while uov-Is signing is only 2% slower;

2) uov-Is has the fastest verification although its public key is larger than uov-Ip. This
stems from the fact that uov-Ip uses more XOR operations for the 2 accumulators
while evaluating F256 public polynomials (see Section 5.1.2);

3) For verification with compressed keys, the computation of ExpandP, i.e., aes128ctr,
dominates the execution time, which can be seen by comparing with the results of
4-round AES in Table 7. The round-reduced AES improves the verification time by
around 40%;

4) For signing with compressed secret keys, the main computation is spent on expanding
the compressed keys.

5.3 Arm Neon Implementation
In this subsection we present our optimization of UOV for the Armv8-A architecture.

Symmetric primitives. For symmetric primitives relating to shake256 function, i.e.,
Hash, Expandv, and Expandsk, we also call the OpenSSL library since it is generally available
on most platforms.

We have two different Neon implementations for aes128ctr depending on the availability
of Arm AES instructions. On platforms supporting AES instructions, e.g., Apple M1, we
implement the standard and round-reduced aes128ctr with AES instructions. On plat-
forms without AES instructions, e.g., Raspberry Pi4b, we port the bitsliced implementation
for 32-bit platforms in [3], which runs four parallelized 32-bit bitsliced instances, to the
Neon instruction set, since Biesheuvel [11] reported bitsliced implementations outperform
TBL-based implementations in the Linux kernel setting.

Target platform. We benchmark our Neon implementations of UOV on Raspberry Pi4b
and Apple’s 2020 MacBook Air, both supporting 64-bit Armv8-A instruction set. The
Raspberry Pi4b equips a Broadcom BCM2711 CPU (Arm Cortex-A72 CPU [5]) running
at 1.8 GHz without Arm AES instructions. The source code is compiled with Debian
clang version version 11.0.1-2. The Macbook has an Apple M1 CPU running at 3.2
GHz with Arm AES instruction support. Its compiler is Apple clang version 14.0.0
(clang-1400.0.29.202).

30 UOV: Unbalanced Oil and Vinegar

Table 8: Benchmarking results of our Neon implementations. Numbers are median CPU
cycles of 10 000 executions.

Cortex-A72 Apple M1
KeyGen Sign Verify KeyGen Sign Verify

uov-Ip-classic 11 172 204 245 095 142 868 1 793 119 55 289 49 719

uov-Ip-pkc 11 193 794 3 677 844 1 775 826 112 934
uov-Ip-pkc+skc 11 229 231 7 617 137 1 774 748 1 056 617

uov-Is-classic 29 269 925 460 655 141 528 3 391 967 74 633 45 908

uov-Is-pkc 28 906 183 5 070 253 3 360 648 138 496
uov-Is-pkc+skc 29 467 684 16 413 501 3 393 812 2 089 131

Dilithium 2† [10] 269 724 649 230 272 824 71 061 224 125 69 792
Falcon-512 [39] — 1 044 600 59 900 — 459 200 22 700

uov-III-classic 66 871 027 1 542 143 574 080 9 836 359 147 564 189 837

uov-III-pkc 66 554 826 17 161 246 9 803 637 461 896
uov-III-pkc+skc 64 147 364 42 794 977 9 751 198 6 353 401

uov-V-classic 313 814 250 3 316 413 1 319 092 28 286 979 293 826 376 000

uov-V-pkc 305 700 907 39 337 795 26 743 866 1 011 331
uov-V-pkc+skc 312 729 427 107 305 680 26 663 940 15 830 169
† Security level II.

Table 9: Benchmarking results of Neon implementations using 4-round AES for public-key
expansion. Numbers are median CPU cycles of 10 000 executions.

Cortex-A72 Apple M1
KeyGen Sign Verify KeyGen Sign Verify

uov-Ip-pkc 9 191 247 249 910 1 672 544 1 746 623 55 175 83 021uov-Ip-pkc+skc 9 473 513 5 627 393 1 748 646 1 026 701

uov-Is-pkc 25 698 880 448 188 2 266 233 3 324 331 74 503 97 325uov-Is-pkc+skc 28 324 760 13 333 557 3 349 000 2 045 042

uov-III-pkc 56 890 636 1 569 429 8 318 527 9 640 984 147 524 330 463uov-III-pkc+skc 56 815 652 34 533 235 9 645 510 6 221 280

uov-V-pkc 282 742 682 3 339 648 18 602 008 26 305 292 293 117 704 986uov-V-pkc+skc 291 438 637 86 727 909 26 298 657 15 522 513

Results. Table 8 reports the results of Neon UOV implementation and comparison with
other PQC signatures on the two Armv8-A platforms. Table 9 shows results with the
4-round AES option of ExpandP. The results show that:

1) uov-Ip has the best signing time which is consistent with the results of AVX2
implementation (Table 6). However, uov-Ip outperforms uov-Is by a margin on
Neon while, on AVX2, uov-Ip leads uov-Is by < 10%. This is caused by the
mismatch between the sizes of registers and vectors. When processing line 9 and 10
of Sign() in Figure 2, the vectors are of length 44 or 45 bytes for uov-Ip. These
vectors are actually processed as 16× 3 bytes on Neon but 32× 2 bytes on AVX2
due to their 128-bit or 256-bit registers. It is clear that the AVX2 implementation
wastes more computations than Neon.

2) For verification, due to the fewer accumulators on F16 (see Section 5.1.2), uov-Is
outperforms uov-Ip in spite of its larger public key size. On the other hand, the
verification time is proportional to the public key sizes for the pkc and pkc+skc
variants, where ExpandP dominates the computation time.

UOV: Unbalanced Oil and Vinegar 31

Table 10: Cortex-M4F cycle counts for our M4 implementations in comparison to the
fastest implementations of the winners of the NIST PQC competition. For signing and
verification we report the average of 10 000 executions.

speed (clock cycles)
variants KeyGen Sign Verify

uov-Ip
(This work)

classic 138 833k 2 482k 995k
pkc 175 020k 11 551k

(10 717k)pkc+skc 175 021k 88 757k

uov-Is
(This work)

classic 195 744k 2 374k 616k
pkc 203 321k 16 045k

(15 175k)pkc+skc 296 161k 113 446k
Dilithium-2 [2] 1 598k 4 083k 1 572k

Falcon-512 [44, 45] 163 994k 39 014k 473k
sphincs-sha256-128f-simple [45] 16 112k 400 443k 22 548k
sphincs-sha256-128s-simple [45] 1 031 755k 7 848 131k 7 711k

3) For pkc and pkc+skc variants, the symmetric primitives play an important role in
the performance. By comparing the performance impact of key compressed variants
to the classic variant, the impact is significantly smaller on the Apple M1 than
the Raspberry Pi4b, since the native AES (and SHA3) instructions on M1 result in
faster symmetric primitives than the bit-sliced ones on the Raspberry Pi4b.

4) The 4-round AES makes for an efficient ExpandP function such that the verification
time of pkc variants is of the same order as other PQC schemes on Apple M1 CPU.

5.4 Arm Cortex-M4 Implementation
This section covers our implementations of UOV for the Arm Cortex-M4. We base our
implementation on the Rainbow implementation by Chou, Kannwischer, and Yang [17].
Due to the stack limitations of available Cortex-M4 cores, in this section we restrict our
implementations to the two sets of recommended parameters for NIST security level 1,
i.e., uov-Ip and uov-Is.

Symmetric primitives. For implementing Hash, Expandv, and Expandsk, we use shake256
as implemented in pqm4 [45] which integrates the Keccak permutation in Armv7-M assembly
from the XKCP [53]. For implementing the sampling of the public key (ExpandP), we
use the t-table AES implementation by Schwabe and Stoffelen [33]. We also modify said
implementation to implement a round-reduced AES with only 4 rounds. We present results
both for the 10-round and 4-round AES.
In the following, we present the performance of the Cortex-M4 implementation

Target platform. We use the ST NUCLEO-L4R5ZI development board featuring a
STM32L4R5ZI ultra-low-power Arm Cortex-M4F core with 640 KB of RAM, and 2048
KB of flash memory. It runs at a frequency of up to 120 MHz. However, we clock the
device at 16 MHz allowing for zero wait-states when fetching instructions and data from
flash. For benchmarking, we use the pqm4 [45] benchmarking framework.

32 UOV: Unbalanced Oil and Vinegar

Table 11: Cortex-M4F memory utilization (excluding keys) for our UOV implementation
in comparison to the fastest implementations of the winners of the NIST PQC competition.
Code size excludes 3.5 KiB of platform code and includes the code required for SHAKE
(7.5 KiB) and AES (4.6 KiB).

memory consumption (bytes) code size (KiB)
variants KeyGen Sign Verify

uov-Ip
(This work)

classic 15 744 5 268 2 548 72.4
pkc 142 312 6 592

(280 980)
75.3

pkc+skc 380 248 243 204 75.5

uov-Is
(This work)

classic 613 056 5 468 1 024 31.6
pkc 350 072 5 248

(413 632)
33.2

pkc+skc 416 636 354 216 33.6
Dilithium-2 [2] 38 000 49 000 36 000 26.0

Falcon-512 [44, 45] 18 384 42 528 4 484 79.9
sphincs-128f† [45] 2 104 2 168 2 656 13.3
sphincs-128s‡ [45] 2 432 2 392 1 960 13.6
†sphincs-sha256-128f-simple. ‡ sphincs-sha256-128s-simple.

Table 12: For the Is parameter sets the keys are too large to fully fit in RAM, we write
them to flash during key generation. Cycles in Table 10 exclude the cycles required for
flashing. This table contains the cycles required for flashing and the total key generation
cycles.

variants key generation
w/o flashing (cc) flashing (cc) key generation

w/ flashing (cc)

uov-Is
classic 195 744k 202 296k 398 040k

pkc 203 321k 110 744k 314 065k
pkc+skc 296 161k 18 287k 314 447k

Keys exceeding RAM size. For the uov-Is parameter sets, the total size of the expanded
secret key and the expanded public key is 743 KB which exceeds the RAM of our target
platform. To still be able to benchmark all primitives, we split up key generation into
secret key and public key computation. We then write the keys to flash memory as was
previously proposed by Chen and Chou for Classic McEliece [15]. This requires minimal
code modification while still being able to provide benchmarks for all parts of the scheme.
Higher security levels, however, are out of reach for running on the Cortex-M4.
Table 10 contains the performance benchmarks for Arm Cortex-M4. We present cycle

counts for all six variants of the level one parameter sets. Due to timing variations (depend-
ing only on public data) in signing and verification, we perform 10 000 measurements and
report the average. Note that public key compression does not affect signing performance,
while secret key compression does not affect verification performance. For the uov-Is, the
key generation cycles exclude the writing of keys to flash. We report the flashing cycles
separately in Table 12.

For verification with compressed public keys, there are two approaches available: Either
expanding the public key first and calling the classic verification, or inlining the expansion.
The former approach has a much larger memory footprint, but has slightly better speed.

Table 11 contains the memory utilization of our implementation excluding the key
material. The parameter sets using secret key compression are currently performing

UOV: Unbalanced Oil and Vinegar 33

Table 13: Cortex-M4F cycle counts when using 4-round AES for expanding the public
key. This change primarily affects the verification procedure providing a 2.0× speed-up for
uov-Ip and a 2.1× speed-up for uov-Is.

speed (clock cycles)
variants KeyGen Sign Verify

uov-Ip pkc 169 280k 2 502k 5 804k
pkc+skc 169 281k 83 018k

uov-Is pkc 194 875k 2 390k 7 594k
pkc+skc 287 715k 105 004k

signing by first expanding the secret key and then invoking the classic signing and, hence,
require an expanded secret key in additional memory. Key generation of uov-Is requires
much more memory than uov-Ip. This is due to having to cache the keys in RAM before
writing them to flash.

Table 13 presents the cycle counts when using a round-reduced AES (4 rounds instead
of 10 rounds) for expanding the public key. It results in significantly faster verification
(2.0× for uov-Ip and 2.1× for uov-Is).

5.5 FPGA Implementation
In this section, we present our field-programmable gate array (FPGA) design for UOV
signatures and report the performance of the design on popular platforms. Since our
design supports multiple parameters and variants of UOV, we adopt a processor design
that provides a custom instruction set dedicated for the computation of UOV functions.
This way, we support the key generation, signing, and verification functions in Figure 2
with pre-loaded firmware using the proposed instructions.

Target platform. We test our design on two Xilinx Artix-7 platforms: Zynq-7000TM

Z-7020 and Artix-7 XC7A200T. We target Artix-7 as it is the hardware target platform
recommended by NIST [4] for the PQC standardization effort. Consequently, other PQC
schemes have also been implemented on Artix-7 allowing comparison to our implementation.
Although we report our results with a setting tailoring for the Artix-7 platforms, it can be
easily adapted to other parameter sets and ported to other FPGAs.

Since we use a processor design for performing UOV in hardware, our hardware modules
can be roughly divided into the following three categories according to their functionalities:
(1) an instruction memory for storing firmware and a decoder for decoding user code and
sending control signals to other hardware modules for computation; (2) data memory
responsible for storing UOV keys and data movement from/to the computation modules;
and (3) the modules for performing actual computations.

Results. We evaluate the FPGA design by measuring the resource utilization and cycle
counts for key generation, signing, and verification. All of the designs are synthesized
and done implementation with Xilinx Vivado 2022.1 edition. The designs for uov-Ip and
uov-Is are evaluated on Xilinx Zynq-7000 Z-7020 and uov-III and uov-V are evaluated
on XC7A200T. We set the target frequency to 100MHz for both.

We report the resource utilization for UOV with non-pipelined AES and the cycle counts
in full-round AES mode in Table 14. The utilization of LUTs and Slices of the variants with
the same security level are similar, except uov-Is and uov-V-pkc+skc. Their requirements
for key storage exceed the limit of the BRAM on their target boards, resulting in an

34 UOV: Unbalanced Oil and Vinegar

Table 14: The FPGA results with full-round AES for our low-area (no pipelined AES)
design.

Utilization Cycle Count Freq.
(MHz)Slices LUTs FFs BRAM DSP KeyGen Sign Verify

uov-Ip-classic 12 145 33 221 24 097 108.5 2 3 540 971 7 515 6 435 93.5
uov-Ip-pkc 12 073 32 134 22 969 81 2 4 170 749 7 515 192 411 91.4
uov-Ip-pkc+skc 12 106 32 422 23 262 48 2 3 807 119 352 621 192 411 94.8
uov-Is-classic 12 860 44 974 27 433 140 2 9 916 182 13 070 12 986 92.2
uov-Is-pkc 11 740 29 385 25 328 110 2 11 922 375 13 070 284 379 94.8
uov-Is-pkc+skc 11 681 28 947 24 444 66 2 11 072 933 843 885 284 379 90.8
uov-III-pkc 17 610 41 761 31 543 310.5 4 18 221 241 19 285 823 108 97.5
uov-III-pkc+skc 16 574 38 352 29 446 184.5 4 16 727 607 1 465 182 823 108 96.0
uov-V-pkc+skc 27 038 77 352 38 217 359 4 39 066 651 3 308 031 1 921 513 92.5

Table 15: Results of UOV with 4-round AES for our low-area design. The resource
information is the same as that of full-round AES.

Cycle Count
KeyGen Sign Verify

uov-Ip-classic 3 393 299 7 515 6 435
uov-Ip-pkc 4 077 245 7 515 99 615
uov-Ip-pkc+skc 3 768 047 313 549 99 615

uov-Is-classic 9 746 742 13 070 12 986
uov-Is-pkc 11 814 183 13 070 176 859
uov-Is-pkc+skc 11 026 181 797 133 176 859

uov-III-pkc 17 832 117 19 285 436 036
uov-III-pkc+skc 16 556 211 1 293 786 436 036

uov-V-pkc+skc 38 671 211 2 909 727 1 015 155

increase in LUTs. The utilization of BRAMs is close to what we expect, whereas the
utilization of DSP and FF resources is low.
We discuss the results in full-round AES mode first. The cycle count of signing in

classic mode, can be broken down into individual steps as follows:

Prepare v 66 for uov-V or 24 otherwise.
Prepare y (n−m+ 1)(n−m)/2
Calculate t− y 5
Prepare L (n−m+ 13)m (13 for flow controls)
Solve Lx = t− y Σ(dm/Ne−1)

i=0 (m+ 2N)(dm/Ne+ 1− i), where
N = 32 for uov-Is or N = 16 otherwise.

Calculate Ox (n−m)dm/Ne
Calculate v + Ox 5

The signing cycle count in pkc+skc mode is dominated by the ExpandSK() function,
specifically, the calculation of the Si = (P(1)

i + P(1)T
i)O + P(2)

i . This calculation takes
(n−m) ·m · (n−m+ 15) cycles, where the 15 includes flow control and other operations
such as loading from and storing to temporary storage. In the case of uov-Ip-pkc+skc,
ExpandSK() takes 248 336 cycles. The remaining computation includes 7 515 cycles
for tasks such as Gaussian elimination and polynomial evaluation, and 189 618 cycles for
expanding P(1) and P(2) from seedpk. In the end, with savings from overlapping these
computations, it results in 78 262 cycles in uov-Ip-pkc+skc.

The cycle count of verification in classic mode is approximately n× (n+ 1)/2 cycles,
which is consistent with 6 328 for uov-Ip. On the other hand, the cycle count of verification
in pkc mode, is limited by the throughput of the ExpandP() function. The AES module

UOV: Unbalanced Oil and Vinegar 35

Table 16: The performance results using pipelined AES.
AES Utilization Cycle Count Freq.

(MHz)rounds Slices LUTs FFs BRAM DSP KeyGen Sign Verify

10

uov-Ip-pkc 12 850 37 438 25 449 81 2 4 049 016 7 515 61 499 89.5
uov-Ip-pkc+skc 12 491 37 623 25 767 48 2 3 757 662 303 164 61 499 91.8
uov-Is-pkc 12 482 35 786 27 856 110 2 11 773 796 13 070 115 258 95.5
uov-Is-pkc+skc 12 259 34 208 26 974 66 2 11 008 802 779 754 115 258 90.3
uov-III-pkc 19 612 48 068 33 997 310.5 4 17 619 070 19 285 195 651 93.7
uov-III-pkc+skc 18 177 43 166 31 982 184.5 4 16 462 364 1 199 939 195 651 94.1
uov-V-pkc+skc 28 357 83 444 40 597 359 4 38 404 186 2 645 566 364 198 92.6

4

uov-Ip-pkc 12 164 33 220 23 913 81 2 4 048 566 7 515 61 121 94.8
uov-Ip-pkc+skc 11 911 33 363 24 233 48 2 3 757 428 302 930 61 121 94.5
uov-Is-pkc 11 958 31 227 26 327 110 2 11 772 350 13 070 113 914 94.2
uov-Is-pkc+skc 11 845 31 006 25 444 66 2 11 008 124 779 076 113 914 92.4
uov-III-pkc 18 323 43 408 32 439 310.5 4 17 617 420 19 285 194 115 96.3
uov-III-pkc+skc 17 084 39 003 30 516 184.5 4 16 461 578 1 199 153 194 115 96.9
uov-V-pkc+skc 27 753 79 918 39 206 359 4 38 403 352 2 644 732 362 626 95.7

of our low area design generates 128-bit every 12 cycles. To generate P(1) and P(2), It
takes (log2 |Fq| ·m · ((n+m)(n−m)/2)/128) · 12 cycles, which is 175 032 in uov-Ip-pkc.
The additional 192 411 − (175 032 + 6 435) = 10 944 cycles come from waiting for the
secret quadratic terms sT

i sj while evaluating key polynomials. Both key polynomials and
quadratic terms connect to the systolic array with the same signal path. This cost is
hidden in the case of non-pipelined AES.

We also report the cycle counts when using a 4-round AES for ExpandP() in Table 15. It
shows a reduction in cycles for verification in pkc mode and signing in skc. The saving for
verification matches our expectation, which can be estimated by the difference in rounds
multiplied by the number of calls to the AES module. It is (8 · 44 · ((112 + 44)(112 −
44)/2)/128) · 6 = 87 516 cycles in the case of uov-Ip. For signing in skc variants, the
saving is less significant because computing the Si’s dominates the cycle count.
Finally, we present the results for our high-performance design using a fully pipelined

AES in Table 16. We show only the results for pkc and pkc+skc as only those are majorly
affected in signing and verification by the faster AES. Comparing to the results using the
no-pipelined AES, verification improves by a factor of 3. As AES now generates one block
per cycle, it requires (8 · 44 · ((112 + 44)(112− 44)/2)/128) = 14 586 cycles to generate P(1)

and P(2). The overhead 61 499− (14 586 + 6 435) = 40 478 cycles comes again from waiting
for quadratic terms sT

i sj . For the signing in pkc+skc, the cycle count slightly improves
since the bottleneck is the computation of the Si. The cycles for 4-round and 10-round
AES are similar since both are pipelined, generating 128-bits per cycle.

For the case of uov-Ip-pkc+skc, the pipelined versions use 16% and 3% more LUTs
than the non-pipelined version for 10- and 4-round AES, respectively.

36 UOV: Unbalanced Oil and Vinegar

6 Summary: Advantages and Limitations
In this section we summarize the advantages and the limitations of our UOV in this
submission.

In comparison with other post-quantum digital signature schemes, the main advantages
of the UOV signature scheme are:

Efficiency. The signature generation process of UOV consists of simple linear algebra
operations such as matrix vector multiplication and solving linear systems over small
finite fields. Therefore, the UOV scheme can be implemented very efficiently and is
one of the fastest available signature schemes.

Short signatures. The signatures produced by the UOV signature scheme are of size only
a few hundred bits and therefore much shorter than those of RSA and those of other
post-quantum signature schemes.

Modest computational requirements. Since UOV only requires simple linear algebra
operations over a small finite field, it can be efficiently implemented on low cost
devices, without the need of a cryptographic coprocessor.

Security. Though there does not exist a formal security proof which connects the security
of UOV to a hard mathematical problem such as MQ problem, there are good reasons
to have confidence in the security of UOV. Since its invention in 1999, no efficient
attack against UOV has been found; moreover, despite rigorous cryptanalysis, no
fundamental attack improvement against UOV has been developed. We furthermore
note here that, in contrast to some other post-quantum schemes, the theoretical
complexities of the known attacks against UOV match the experimental data very
well. Therefore, overall we are confident in the security of the UOV signature scheme.

Simplicity. The design of the UOV schemes is extremely simple. Therefore, it requires
only minimum knowledge in algebra to understand and implement the scheme. This
simplicity also implies that there are not many structures of the scheme which could
be utilized to attack the scheme.

On the other hand, the main disadvantage of UOV is the large size of the public keys.
The public key sizes of UOV are, for security levels beyond 128 bit, much larger than those
of classical schemes such as RSA and ECC and some other post-quantum schemes. However,
due to increasing memory capabilities even of medium devices (e.g., smartphones), we do
not think that this will be a major problem. Furthermore, to mitigate this disadvantage,
we propose variants of UOV with smaller keys to accommodate use cases that would
benefit from them.

UOV: Unbalanced Oil and Vinegar 37

References
[1] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey,

Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela
Robinson, Daniel Smith-Tone and Yi-Kai Liu. NISTIR 8413, status report on
the third round of the NIST post-quantum cryptography standardization process,
September 2022. Available at https://csrc.nist.gov/publications/detail/
nistir/8413/final.

[2] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer and Daan Sprenkels.
Faster kyber and dilithium on the Cortex-M4. In ACNS 22, LNCS vol. 13269, pp.
853–871. Springer, 2022.

[3] Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like Ciphers New bitsliced
AES speed records on Arm-Cortex M and RISC-V. In IACR TCHES 2021(1), pp.
402–425, 2021.

[4] Daniel Apon. NIST assignments of platforms on implementation efforts to
PQC teams. Available at https://groups.google.com/a/list.nist.gov/g/
pqc-forum/c/cJxMq0_90gU/m/qbGEs3TXGwAJ. Online February 7, 2019, accessed
October 12, 2022.

[5] Arm Ltd. Arm Cortex-A72 software optimization guide, 2015. Available at https:
//developer.arm.com/documentation/uan0016/a/.

[6] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben
Niederhagen, Adi Shamir and Bo-Yin Yang. Fast exhaustive search for polynomial
systems in F2. In CHES 2010, LNCS vol. 6225, pp. 203–218. Springer, 2010.

[7] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer, Bo-
Yuan Peng, Cheng-Jhih Shih and Bo-Yin Yang. Oil and Vinegar: Modern Parameters
and Implementations. IACR Cryptology ePrint Archive, Report 2023/059.

[8] Ward Beullens. Improved cryptanalysis of UOV and Rainbow. In EUROCRYPT
2021(1), LNCS vol. 12696. Springer, 2021.

[9] Ward Beullens. Breaking Rainbow takes a weekend on a laptop. In CRYPTO
2022(2), LNCS vol. 13508, pp. 464–479. Springer, 2022.

[10] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang and Shang-Yi
Yang. Neon NTT: faster dilithium, kyber, and saber on Cortex-A72 and Apple M1.
In IACR TCHES 2022(1), pp. 224–244, 2022.

[11] Ard Biesheuvel. Accelerated AES for Arm64 linux kernel, 2017. In https://www.
linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/.

[12] Ward Beullens, Bart Preneel, Alan Szepieniec and Frederik Vercauteren. LUOV
signature scheme proposal for NIST PQC project (Round 2 version), 2019.

[13] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. In CCS 1993, ACM, pp. 62–73.

[14] An Braeken, Christopher Wolf and Bart Preneel. A Study of the Security of
Unbalanced Oil and Vinegar Signature Schemes. In CT-RSA 2005, LNCS vol. 3376,
pp. 29–43, Springer, 2005.

[15] Ming-Shing Chen and Tung Chou. Classic McEliece on the ARM Cortex-M4. In
IACR TCHES 2021(3), pp. 125–148, 2021.

https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_ 90gU/m/qbGEs3TXGwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_ 90gU/m/qbGEs3TXGwAJ
https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/uan0016/a/
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/

38 UOV: Unbalanced Oil and Vinegar

[16] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin,
Ludovic Perret, and Jocelyn Ryckeghem. GeMSS 3rd round submis-
sion, NIST submission document and technical report, October 2020.
Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[17] Tung Chou, Matthias J. Kannwischer and Bo-Yin Yang. Rainbow on Cortex-M4. In
IACR TCHES, 2021(4), pp. 650–675, 2021.

[18] Jingtai Ding, Ming-Shing Chen, Matthias Julias Kannwischer, Albrecht Petzoldt,
Jacques Patarin, Dieter Schmidt and Bo-Yin Yang. Rainbow 3rd round submission,
NIST submission document and technical report, October 2020.

[19] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In ACNS 2005, LNCS vol. 3531, pp. 164–175. Springer, 2005.

[20] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of crypto-
graphic systems. In https://bench.cr.yp.to, accessed February 13, 2022.

[21] FIPS PUB 197 – Advanced Encryption Standard (AES), 2001. Available at https:
//doi.org/10.6028/NIST.FIPS.197.

[22] FIPS PUB 202 – SHA-3 standard: Permutation-based hash and extendable-output
functions, 2015. Available at https://doi.org/10.6028/NIST.FIPS.202.

[23] Michael R. Garey and David S. Johnson. Computers and intractability: A guide to
the theory of NP-Completeness. W. H. Freeman, 1979.

[24] Shay Gueron. Intel advanced encryption standard (AES) new instructions set,
2010. Available at https://www.intel.com.bo/content/dam/doc/white-paper/
advanced-encryption-standard-new-instructions-set-paper.pdf.

[25] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott
Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange, Mar-
tin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Ri-
jneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan andWard Beullens.
SPHINCS+. Technical report, National Institute of Standards and Technology, 2020.
Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[26] Jonathan Katz. Digital Signatures. Springer, 2010.

[27] Juliane Krämer, Mirjam Loiero. Fault Attacks on UOV and Rainbow In COSADE
2019, LNCS vol. 11421, pp. 193–214. Springer, Heidelberg, April 2019.

[28] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and Technology, 2020.
Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[29] H. Ong, C.P., Scnorr and A. Shamir. 1984. An Efficient Signature Scheme Based on
Quadratic Equations In Proceedings of the sixteenth annual ACM symposium on
Theory of computing (STOC ’84). Association for Computing Machinery, New York,
NY, USA, 208–216. https://doi.org/10.1145/800057.808683

[30] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In CRYPTO 1995, LNCS vol. 963, pp. 248–261. Springer, 1995.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://bench.cr.yp.to
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.202
https://www.intel.com.bo/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com.bo/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

UOV: Unbalanced Oil and Vinegar 39

[31] Jacques Patarin. The oil and vinegar signature scheme. Presented at the Dagstuhl
Workshop on Cryptography, September 1997.

[32] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. On provable security of
UOV and HFE signature schemes against chosen-message attack. In PQCrypto 2011,
LNCS vol. 7071, pp 68–82. Springer, 2011.

[33] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4. In
SAC 2016, LNCS vol. 10532, pp. 180–194. Springer, 2016.

[34] Christopher Wolf and Bart Preneel. 2011. Equivalent keys in Multivariate Quadratic
public key systems. Journal of Mathematical Cryptology 4.4 (2011): 375-415.

[35] Aviad Kipnis, Jacques Patarin and Louis Goubin. Unbalanced Oil and Vinegar
schemes. In EUROCRYPT 1999, LNCS vol. 1592, pp. 206–222. Springer, 1999.

[36] Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil and Vinegar signature scheme.
In CRYPTO 1998, LNCS vol. 1462, pp. 257–266. Springer, 1998.

[37] Liam Keliher and Jiayuan Sui. Exact maximum expected differential and linear
probability for two-round advanced encryption standard. In IET Inf. Secur., 1(2),
pp. 53–57, 2007.

[38] Hiroyuki Miura, Yasufumi Hashimoto and Tsuyoshi Takagi. Extended Algorithm for
Solving Underdefined Multivariate Quadratic Equations. In PQCrypto 2013, LNCS
vol. 7932, pp. 118–135. Springer, 2013.

[39] Duc Tri Nguyen and Kris Gaj. Fast falcon signature generation and verification using
Armv8 neon instructions, 2022. Available at https://csrc.nist.gov/csrc/media/
Events/2022/fourth-pqc-standardization-conference/documents/papers/
fast-falcon-signature-generation-and-verification-pqc2022.pdf.

[40] National Institute of Standards and Technology. Submission requirements and evalua-
tion criteria for the post-quantum cryptography standardization process. Available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf

[41] NIST. Call for additional digital signature schemes for the post-quantum cryptogra-
phy standardization process, September 2022.

[42] Albrecht Petzoldt, Stanislav Bulygin and Johannes Buchmann. CyclicRainbow - A
multivariate signature scheme with a partially cyclic public key. In INDOCRYPT
2010, LNCS vol. 6498, pp. 33–48. Springer, 2010.

[43] Albrecht Petzoldt. Efficient key generation for Rainbow. In PQCrypto 2020, LNCS
vol. 12100, pp. 92–107. Springer, 2020.

[44] Thomas Pornin. New efficient, constant-time implementations of Falcon. IACR
Cryptology ePrint Archive, Report 2019/893.

[45] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe and Ko
Stoffelen. PQM4: Post-quantum crypto library for the Arm Cortex-M4. Available at
https://github.com/mupq/pqm4.

[46] The Rainbow Team. Modified parameters of Rainbow in response to a refined
analysis of the Rainbow Band Separation attack by the NIST Team and the recent
new MinRank attacks. In June 2020, available at http://precision.moscito.org/
by-publ/recent/rainbow-pars.pdf

https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardization-conference/documents/papers/fast-falcon-signature-generation-and-verification-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardization-conference/documents/papers/fast-falcon-signature-generation-and-verification-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Events/2022/fourth-pqc-standardization-conference/documents/papers/fast-falcon-signature-generation-and-verification-pqc2022.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://github.com/mupq/pqm4
http://precision.moscito.org/by-publ/recent/rainbow-pars.pdf
http://precision.moscito.org/by-publ/recent/rainbow-pars.pdf

40 UOV: Unbalanced Oil and Vinegar

[47] Kyung-Ah Shim, Sangyub Lee and Namhun Koo. Efficient implementations of
Rainbow and UOV using AVX2. In IACR TCHES 2022(1), pp. 245–269, 2021.

[48] Nigel Smart. ‘Bristol Fashion’ MPC Circuits. Available at https://homes.esat.
kuleuven.be/~nsmart/MPC/.

[49] Chengdong Tao, Albrecht Petzoldt and Jintai Ding. Efficient key recovery for all
HFE signature variants. In CRYPTO 2021(1), LNCS vol. 12825, pp. 70–93. Springer,
2021.

[50] Enrico Thomae and Christopher Wolf. Solving underdetermined systems of multi-
variate quadratic equations revisited. In PKC 2012, LNCS vol. 7293, pp. 156–171.
Springer, 2012.

[51] Paul C. van Oorschot and Michael J. Wiener. Improving implementable meet-in-
the-middle attacks by orders of magnitude. In CRYPTO 1996, LNCS vol. 1109, pp.
229–236. Springer, 1996.

[52] Xilinx, Inc. XMP100: cost-optimized portfolio product selection guide, 2.1
edition, November 2022. Available at https://docs.xilinx.com/v/u/en-US/
cost-optimized-product-selection-guide.

[53] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche and Ronny Van Keer.
eXtended Keccak Code Package. Available at https://github.com/XKCP/XKCP.
Accessed January 19, 2023.

[54] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte
and Zhenfei Zhang. Falcon. Technical report, National Institute of Stan-
dards and Technology, 2020. Available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions.

[55] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press 2001, ISBN 0-521-79172-3.

[56] Olivier Billet and Henri Gilbert. Cryptanalysis of Rainbow. In SCN 2006, LNCS
vol. 4116, pp. 336–347. Springer 2006.

[57] Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosystem. In
Asiacrypt 2000, LNCS vol. 1976, pp. 44–57. Springer, 2000.

[58] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. Efficient key recovery for all
HFE signature variants. In CRYPTO 2021(I), LNCS vol. 12825, pp. 70–93. Springer,
2021.

[59] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel
Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Improvements of algebraic attacks
for solving the rank decoding and MinRank problems In Asiacrypt 2020, LNCS vol.
12491, pp. 507–536. Springer 2020.

[60] NTRU Prime Team. NTRU Prime: NIST Round 3 submission document. Available
from
csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://docs.xilinx.com/v/u/en-US/cost-optimized-product-selection-guide
https://docs.xilinx.com/v/u/en-US/cost-optimized-product-selection-guide
https://github.com/XKCP/XKCP
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

UOV: Unbalanced Oil and Vinegar 41

A The salt-UOV and Its EUF-CMA Security
There is yet a UOV variant, i.e., the salt-UOV, which was proposed in 2011 [32] and is
very close to our recommended UOV depicted in Section 3. It turns out that salt-UOV is
less efficient than our recommended UOV. In regard to security, it can be shown that the
EUF-CMA security of salt-UOV is readily based on the hardness of the UOV problem, an
intermediate problem in the MQ realm that is firmly related to UOV scheme(s) and hence
is not as natural as the other problems in MQ realm, say the MQ problem. Compared
with salt-UOV, our confidence in the recommended UOV lies in the fact that all the
state-of-the-art attacks against our recommended UOV are applicable to salt-UOV, and
vice versa.

For completeness, we present the salt-UOV scheme and its security argument below.

The salt-UOV scheme. The salt-UOV is very similar to our recommended UOV depicted
in Section 3, and the only difference lies in the design of the signing algorithm. In
the signing algorithm of salt-UOV, it first picks (and fixes) a random vinegar vector
v ∈ Fn−mq , and chooses multiple salts uniformly and independently, until the system

F
([

v
·

])
= Hash(µ‖salt) of linear equations is solvable. Please refer to Figure 4 for the

full detail of salt-UOV.

UOV problem and UOV assumption. We first describe the UOV problem and its asso-
ciated UOV assumption.
Definition 2 (UOV problem). The UOV problem is parameterized by params = (n,m, q).
Its input is (params,P, t), where the target vector t ← Fmq is sampled uniformly in Fmq ,
P = F ◦ T : Fnq → Fmq is a multivariate quadratic map, F : Fnq → Fmq is a set of m
OV-polynomials chosen uniformly at random, and T : Fnq → Fnq is an invertible linear
transformation uniformly at random. It asks to find a preimage s ∈ Fnq such that P(s) = t.
The associated UOV assumption states that for every (even quantum) probabilistic

polynomial-time algorithm A, its success probability in solving the UOV problem is
negligibly small.

Security proof of salt-UOV. And the relation between the UOV problem and the salt-
UOV scheme is summarized by the following theorem. Please refer to [32] for the full proof
of Theorem 1.
Theorem 1. Let the hash function Hash : {0, 1}∗ → Fmq in salt-UOV be modeled as a
random oracle. Assume there exists an attacking algorithm A, that runs in time t = t(λ)
and, after making qh = poly(λ) hash queries and qs = poly(λ) signing queries, wins in
the EUF-CMA game of salt-UOV with probability ε = ε(λ). Then we can construct an
algorithm B = BA that runs in time t′ = t′(λ) and solve the UOV problem with probability
ε′ = ε′(λ), where

t′ ≤ t+ (qs + qh + 1) · (T (λ) +O(1)), ε′ ≥ ε · 1− (qh + qs) · qs · 2salt_len

qs + qh + 1 ,

and T = T (λ) = poly(λ) denotes the running time of the evaluation operation associated
with the UOV function.

Last but not the least, it should be stressed that the UOV problem presented in Definition
2 is slightly different from the classic definition of one-way function [55] in terms of the
distribution of the image t. The requirement that t should follow the uniform distribution
over Fnq is essential for the correctness of Theorem 1, but makes the security argument in
Theorem 1 less convincing than expected.

42 UOV: Unbalanced Oil and Vinegar

KeyGen(params = (n,m, q, salt_len)):
1: Choose OV-polynomials f (1)(x1, ..., xn), ..., f (m)(x1, ..., xn) uniformly at random
2: F := (f (1), ..., f (m))
3: Choose an invertible linear transformation T : Fnq → Fnq uniformly at random
4: P := F ◦ T
5: pk := P
6: sk := (F , T)
7: return (pk, sk)

Sign
(
params, sk = (F , T), µ ∈ {0, 1}∗

)
:

1: v← Fn−mq

2: repeat . Beginning of rejection-sampling phase
3: salt← {0, 1}salt_len

4: t← Hash(µ‖salt) . Hash : {0, 1}∗ → Fmq

5: ∆t :=
{[

v
u

]
∈ Fnq

∣∣∣∣F ([vu
])

= t
}

. u ∈ Fmq
6: until ∆t 6= ∅ . End of rejection-sampling phase
7: w← ∆t
8: s := T −1(w)
9: σ := (s, salt) . σ ∈ Fnq × {0, 1}

salt_len

10: return σ

Verify(params, pk = P, (µ, σ = (s, salt))):
1: t← Hash(µ‖salt)
2: t′ := P(s)
3: return (t == t′)

Figure 4: The key generation, signing and verification algorithms of salt-UOV.

	Introduction
	Preliminaries
	Notations and Conventions
	A Brief Introduction to MPKC
	An Overview of UOV

	Specifications
	Design Rationale Behind UOV
	The UOV Digital Signature Scheme
	Data Layout in UOV
	Recommended Parameter Sets for UOV

	Concrete Security Analysis
	Collision Attack
	Direct Attack
	Kipnis-Shamir Attack
	Intersection Attack
	MinRank Attack
	Quantum Attacks

	Implementations and Performance
	Common Implementation Techniques
	x86 AVX2 Implementation
	Arm Neon Implementation
	Arm Cortex-M4 Implementation
	FPGA Implementation

	Summary: Advantages and Limitations
	References
	The salt-UOV and Its EUF-CMA Security

